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Purpose: Several machine learning studies have used optical coherence
tomography (OCT) for multiple sclerosis (MS) classification with promising outcomes.
Infrared reflectance scanning laser ophthalmoscopy (IR-SLO) captures high-resolution
fundus images, commonly combined with OCT for fixed B-scan positions. However, no
machine learning research has utilized IR-SLO images for automated MS diagnosis.

Methods: This study utilized a dataset comprised of IR-SLO images and OCT
data from Isfahan, Iran, encompassing 32 MS and 70 healthy individuals. A
number of convolutional neural networks (CNNs)—namely, VGG-16, VGG-19,
ResNet-50, ResNet-101, and a custom architecture—were trained with both
IR-SLO images and OCT thickness maps as two separate input datasets. The highest
performing models for each modality were then integrated to create a bimodal model
that receives the combination of OCT thickness maps and IR-SLO images. Subject-wise
data splitting was employed to prevent data leakage among training, validation, and
testing sets.

Results: Overall, images of the 102 patients from the internal dataset were
divided into test, validation, and training subsets. Subsequently, we employed a
bootstrapping approach on the training data through iterative sampling with
replacement. The performance of the proposed bimodal model was evaluated on
the internal test dataset, demonstrating an accuracy of 92.40% ± 4.1% (95% confi-
dence interval [CI], 83.61–98.08), sensitivity of 95.43% ± 5.75% (95% CI, 83.71–100.0),
specificity of 92.82% ± 3.72% (95% CI, 81.15–96.77), area under the receiver operating
characteristic (AUROC) curve of 96.99% ± 2.99% (95% CI, 86.11–99.78), and area
under the precision–recall curve (AUPRC) of 97.27% ± 2.94% (95% CI, 86.83–99.83).
Furthermore, to assess the model generalization ability, we examined its performance
on an external test dataset following the same bootstrap methodology, achieving
promising results, with accuracy of 85.43% ± 0.08% (95% CI, 71.43–100.0), sensitivity
of 97.33% ± 0.06% (95% CI, 83.33–100.0), specificity of 84.6% ± 0.10% (95% CI,
71.43–100.0), AUROC curve of 99.67% ± 0.02% (95% CI, 95.63–100.0), and AUPRC of
99.65% ± 0.02% (95% CI, 94.90–100.0).

Conclusions: Incorporating both modalities improves the performance of automated
diagnosis of MS, showcasing the potential of utilizing IR-SLO as a complementary tool
alongside OCT.

Translational Relevance: Should the results of our proposed bimodal model be
validated in future work with larger and more diverse datasets, diagnosis of MS based
on both OCT and IR-SLO can be reliably integrated into routine clinical practice.
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Introduction

Multiple sclerosis (MS) is an autoimmune disease
of the central nervous system characterized by chronic
inflammation, demyelination, and axonal degenera-
tion.1 Currently, a diagnosis of MS is based on clini-
cal presentations, magnetic resonance imaging (MRI)
findings, and the presence of oligoclonal bands in
the cerebrospinal fluid (CSF).2 Notably, optical coher-
ence tomography (OCT) studies have shown that the
peripapillary retinal nerve fiber layer (RNFL) and
both ganglionic cell and inner plexiform layers in the
macular region (collectively abbreviated as mGCIPL)
are thinner in MS patients compared with healthy
controls (HCs)3; a retrograde neuroaxonal atrophy
following acute inflammatory attacks could be a likely
explanation.4 The thickness of these layers has been
associated with patients’ visual problems,MS subtypes,
physical and cognitive disability, and MRI findings.5
Therefore, OCT parameters are now regarded as useful
biomarkers for the quantitation of neurodegeneration
in MS, allowing for facilitated monitoring of disability
progression and assessing the efficacy of neuroprotec-
tive therapies.4 Artificial intelligence (AI) has emerged
as a promising aid for diagnosingMS,6 with impressive
performance being shown in a recent meta-analysis.7
Data analyzed for the automated classification of MS
primarily stem from MRI, serum, CSF, and OCT
investigations8; specifically, the OCT parameters have
involved the macular and/or peripapillary thickness of
RNFL, GCIPL, inner nuclear layer (INL), and the
whole retina, alone or in combination,9–20 leading to
high levels of accuracy (ACC) reaching up to 100%.14

Infrared scanning laser ophthalmoscopy (IR-SLO),
also known as monochromatic fundus imaging, is
another widely used retinal imaging technology that
uses low-powered laser light to create two-dimensional
images of the retina. IR-SLO is usually performed
along with OCT B-scan acquisition; this approach
allows for accurate alignment of the B-scans despite
eye movements, which improves the signal-to-noise
ratio and reduces measurement variability at follow-
up examinations21 (Fig. 1). Compared to fundus
camera images that share a similar appearance, IR-
SLO images pose different contrast characteristics,
meaning that some structures that are not obvious
on fundus photographs may show up well using IR-
SLO images; conversely, there could be imperceptible
regions in IR-SLO images that fundus photography
captures well. This is because each imaging modality
uses varied wavelengths.22

Currently, machine learning–based diagnosis of MS
relies solely on OCT thickness measurements.7 One

Figure 1. The acquisition window of the SPECTRALIS software
containing both the IR-SLO image (left) and the OCT B-scan (right).
Note that the green line superimposed on the IR-SLO image corre-
sponds to thepositionof theB-scan. (Reprinted fromAumannet al.23

under the terms of the Creative Commons Attribution 4.0 Interna-
tional License.24)

underlying reason for this could be the fact that
evidence on retinal pathology is primarily obtained
from structural OCT investigations; however, a number
of studies have shown that the retinal vascular system
is also damaged inMS.25 According to a recent system-
atic review and meta-analysis of OCT angiography
(OCTA) studies, including 1552MS and 1107 HC eyes,
the vessel density of the superior and deep capillary
plexuses within different peripapillary and macular
regions is significantly decreased in patients with MS
compared with HC individuals.25 Of note, retinal
imaging modalities, such as fundus camera photogra-
phy and IR-SLO, that provide en face pictures of the
retina typically lack structural and/or vascular patho-
logical changes that can be readily identified by human
physicians; therefore, it is of relevance to take advan-
tage of machine learning models to investigate whether
features capable of distinguishing betweenMS andHC
states can be detected within these images.

In the current study, we aimed to develop deep
learning (DL) models for classifying MS based on
IR-SLO images using a dataset provided in a previ-
ous work.26 To our knowledge, this is a pioneering
study incorporating IR-SLO into automated diagnosis
of MS. Moreover, our work is among the few studies
that have applied DL14,20,27 to retinal imaging data for
detecting MS.

Materials and Methods

Dataset

Internal Dataset
In this study, we utilized 265 IR-SLO images from

32 patients with MS and 70 HC individuals, captured
using a SPECTRALIS SD-OCT device (Heidelberg
Engineering, Heidelberg, Germany). The dataset was
obtained from a previous study by Ashtari et al.,26
performed between April 2017 and March 2019 at
Kashani Comprehensive MS Center, Isfahan, Iran, a
main referral center for MS in Isfahan.
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Table 1. Demographic Characteristics of the Participants in the Isfahan and Johns Hopkins Datasets

Isfahan (n = 102)a Johns Hopkins (n = 35) Pb

Mean age ± SD MS 34.13 ± 8.53 41.97 ± 8.77 0.002*
HC 31.87 ± 7.66 35.77 ± 13.03 0.678
All 32.58 ± 7.97 39.49 ± 10.94 0.001*

Gender (female/male) MS 32/0 17/4 0.042*
HC 53/15 12/2 0.771
All 85/15 29/6 0.976

aFor the Isfahan dataset, there were missing values for two individuals’ gender; therefore, descriptive analysis for gender
was performed for 100 individuals.

bThe statistical comparisons between the Isfahan and Johns Hopkins datasets were implemented using independent
Students’ t-test or its non-parametric equivalent (i.e., Mann–Whitney U test), if the data did not follow a normal distribution
(according to the Kolmogorov–Smirnov test) and χ2 tests.

*P < 0.05 was considered statistically significant.

All OCT B-scans were examined using Heidel-
berg Eye Explorer (HEYEX) version 5.1 (Heidel-
berg Engineering) and were controlled for a suffi-
cient quality according to the OSCAR-IB criteria28 by
an experienced technician. By applying the automatic
real time mean algorithm, the scans were repeatedly
captured in the same location nine times and then
averaged, thereby reducing both the speckle noise and
fluctuations in the background noise.23 The B-scans
were segmented into nine boundaries using a graph-
based method that relies on regional texture features29;
all segmented scans were then checked by an expert and
manually corrected whenever needed. Macular OCT
volumes corresponding to a 6 × 6-mm area centered
around the fovea, consisting of 45 horizontal B-scans,
each composed of 512 A-scans, with an axial resolu-
tion (between 2 pixels in the A-scans) of 3.8 μm, were
finally saved into a .vol file.

External Dataset
To investigate the generalization ability of our

proposed model, an external dataset from an indepen-
dent center (Johns Hopkins University, here referred
to as the Johns Hopkins dataset) was also utilized. A
detailed comparison of the demographic characteris-
tics of the internal and external datasets is provided
in Table 1. The Johns Hopkins dataset employed in this
study consisted of IR-SLO images and OCT data from
the right eyes of 32 individuals (14 HC and 18 MS).
The dataset was collected using the SPECTRALIS
SD-OCT device (Heidelberg Engineering), and all B-
scans were segmented into nine boundaries using the
internally developed software. Similar to the Isfahan
dataset, macular OCT volumetric data covered an area
of 6 × 6 mm around the fovea, consisting of 49 B-
scans, each composed of 1024 A-scans, with an axial

resolution of 3.9 μm. In order to match the contrast
and brightness of the external dataset to our internal
data, we increased the contrast by a factor of 1.25 and
adjusted the brightness by 40 units for IR-SLO images.
Additionally, for OCT thickness maps, we reduced the
contrast by a factor of 0.70 and applied a brightness
parameter of 40. The IR-SLO images and OCT thick-
ness maps from both datasets were resized to 128× 128
× 1 and 60 × 256 × 1 pixels, respectively. Also, images
that belonged to the left eyes in the Isfahan dataset
were mirrored to achieve uniform orientation across all
images.

Training and Validation Data and Test Splitting
Initially, 20% of the subjects from the Isfahan

dataset were selected to form the test dataset, enabling
us to evaluate the generalization capability of our
models on unseen images. For the remainder of the
Isfahan dataset, random training and validation data
splitting was performed using k-fold cross-validation
(CV), where k was set as 5. The k-fold CV is preferred
for random splitting in terms of completeness and
generalization. It ensures that the system has seen
the complete dataset for training and guarantees that
both training and test sets on every observation of the
dataset are selected an equal number of times (k − 1
times and 1 time, respectively); whereas, in random split
by resampling, at each iteration duplicate members of
the test set can be selected twice or even more. Thus, k-
fold CV is the preferred choice over random data split-
ting because it guarantees that the entire dataset is used
for training the model, and each observation appears
an equal number of times (i.e., k − 1 times in train-
ing and 1 time in testing phases). On the other hand,
random split may lead to duplicate selections in the test
set due to resampling at each iteration.
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Stratified sampling was also used to ensure that each
fold had the same proportion of samples with a certain
label (i.e., MS or HC). Furthermore, to prevent data
leakage between the training and validation datasets,
a “subject-wise” approach was followed that involves
putting all images belonging to each individual, regard-
less of its left-or-right orientation, in a single group.
Therefore, the images of the same participant could not
be used in both training and validation datasets concur-
rently, preventing an overestimation of the model
performance.30

Data Augmentation
Data augmentation is a popular preprocessing

technique in machine learning studies with limited
training data in order to minimize the risk of overfit-
ting. It works by adding minor modifications to
the original input images to create new but similar
examples, artificially increasing the size and diversity
of training samples. In this study, several geometric
and color space transformations were applied to the
IR-SLO images and thickness maps; each set of these
transformations is specifically discussed in the relevant
sections.

Classification

Convolutional Neural Networks
DL is a broad term applied to machine learning

algorithms that are based on deep neural networks
(i.e., neural networks typically with three or more
hidden layers). DL has gained much attention during
recent years as it has yielded remarkable results in
various applications, such as natural language process-
ing, speech recognition, and computer vision. An
important contributor to the high performance of
DL-based algorithms in computer vision is convolu-
tional neural networks (CNNs). The idea of CNNs is
very similar to the way animal visual cortex processes
the visual signals; lower level neurons capture simple
features such as edges and corners, but higher level
cells detect more complex patterns, such as shape
and texture. Generally, CNNs consist of three types
of layers: convolutional, pooling, and fully connected
(FC). Training of a CNN involves updating the weights
of convolutional and FC layers through the process
of backpropagation so that the difference between the
actual and predicted class is minimized.31

In this study, we took advantage of transfer learn-
ing by using a number of state-of-the-art CNN
architectures—VGG-16,32 VGG-19,32 ResNet-50,33
and ResNet-10133—which have yielded high levels of
classification ACCs on large image benchmarks such
as ImageNet.34 The idea behind transfer learning is

that, instead of learning from scratch, the knowledge
learned by such high-performing architectures can be
transferred to a new dataset with a much lower size,
thereby preventing overfitting. In this study, the above
architectures were utilized as a fixed feature extractor,
where the weights of the models were frozen; however,
the FC part was replaced by a custom one applicable
to our binary classification task (MS vs. HC).

Also, the fine-tuning approach was applied to the
CNN model with the best performance; the topmost
convolutional layers that capture features specific to
the new domain became unfrozen so that the weights
of these layers could be updated during the train-
ing process. However, the first convolutional layers
were still kept frozen because they detect general
features shared between natural images found in the
ImageNet dataset and the IR-SLO images. Further-
more, a custom CNN model was developed to be fully
trained on IR-SLO images. In order to search for
the optimal CNN hyperparameters, including learning
rate, batch size, dropout probability, number of hidden
layers of the FC part, and number of neurons in each
hidden layer, the Optuna hyperparameter optimization
framework was utilized.35

Evaluation of Classification Models

The metrics that were employed to evaluate the
model performance consisted of ACC, sensitivity (SE),
specificity (SP), precision (PR), and F1 score, with the
mathematical formula for calculating them being repre-
sented as follows:

ACC = TP + TN
TP + TN + FP + FN

(1)

SE = TP
TP + FN

(2)

SP = TN
TN + FP

(3)

PR = TP
TP + FP

(4)

F1 = 2 × TP
2 × TP + FP + FN

(5)

where TP, FN, TN, and FP are true positive, false
negative, true negative, and false positive, respec-
tively. Moreover, the receiver operating characteristic
(ROC) curves and precision–recall curves were plotted;
the ROC curve illustrates the relationship between
the true-positive and false-positive rates, and the
precision–recall curve showcases the tradeoff between
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the precision and recall across various thresholds.
The areas under these curves, known as the area
under the ROC (AUROC) curve and area under the
precision–recall curve (AUPRC), were also calcu-
lated. Moreover, the gradient-based class activation
map (Grad-CAM)36 was utilized to obtain saliency
heatmaps for interpreting CNN predictions.

Notably, a standard probability threshold of 0.5 was
chosen for the evaluation metrics consisting of ACC,
SE, SP, PR, and F1 score. Although other methods,
such as Youden’s J index,37 were also viable options, we
found that utilizing a probability threshold of 0.5 yields
better outcomes, particularly when ACC is selected for
comparing the performance of the models. Addition-
ally, the selection of ACC as the base metric for
comparing the performance of different models is due
to its intuitive appeal to non-technical audiences, ease
of interpretation, and lack of bias in datasets where
class imbalance is absent, such as the one in this study.
Although other metrics such as sensitivity would take
precedence in designing research with specific purposes
(e.g., screening to ensure individuals with MS are not
missed and to minimize false negatives), this choice
does not alter the analysis or methodological approach
outlined in thismanuscript and can be selected in differ-
ent versions of this study.

All of the experiments in this study were imple-
mented using Python programming language in the
Keras platform backend in Python 3.7 software
environment (code and models are available at https:
//github.com/royaarian101/SLO-MSNet).

Results

Initially, we demonstrated the effectiveness of IR-
SLO in the diagnosis of MS. However, considering that
IR-SLO images are acquired using the same devices as
OCT images, we proposed utilizing IR-SLO images as a
supplementary tool to enhance the diagnostic potential
of OCT data. To achieve this, OCT thickness maps of
the entire retina were also incorporated as input data,
and the performance of each modality was assessed in
comparison to the combined approach.

The entire dataset was comprised of 132 IR-SLO
and 124 OCT images from HC individuals and 133
IR-SLO and 60 OCT images from patients with MS.
The variation in the number of OCT thickness maps
and IR-SLO images is due to certain cases undergo-
ing multiple imaging sessions due to data quality issues
in each modality. Despite this, we included all high-
quality images, even if one modality was excluded. For
all three subsequent sections (two unimodal models

with IR-SLO and OCT thickness maps and one
bimodal with a combination of IR-SLO and OCT
thickness maps), test data were chosen and set aside
for final analysis, consisting of 27 IR-SLO and 29 OCT
images from HC individuals and 24 IR-SLO and 14
OCT images from patients with MS. Subsequently,
in each fold, after splitting the training and valida-
tion datasets, the IR-SLO training images underwent
the augmentation process with a rotation range of
±5, width shift range of (–30, 30), height shift range
of (–5, 5), zoom range of ±0.2, brightness range of
(0.2, 1.5), and vertical flip. Similarly, augmentation of
OCT thickness images of the training dataset, involved
a rotation range of ±10, width shift range of (–30, 30),
and zoom range of ±0.2.

Of note, the imbalance between the number of
MS and HC OCT thickness maps was addressed
during the training and evaluation phases.We oversam-
pled the minority class by employing augmentation
techniques, including rotation, zoom, and flipping.
Also, robust performance metrics, such as F1 score
and AUROC curve, were used for a more accurate
assessment.

Classification of MS Using IR-SLO Images

After an initial random selection of 56 images (HC
= 27, MS = 29) as the test dataset, the remaining
images were finally utilized as training and validation
datasets, using stratified k-fold CV. Figure 2A illus-
trates the architecture of the models used for IR-SLO
images. As shown in Table 2, the CNNwith a backbone
of ResNet-101 yielded themost appealing results (ACC
= 82.57% ± 0.42%, SE = 83.06% ± 1.62%, SP =
85.14% ± 3.82%, AUROC curve = 91.19% ± 0.57%,
AUPRC = 92.87% ± 0.39%). To further improve the
results, we also unfroze the first, second, third, and
fourth topmost convolutional layers of ResNet-101, so
additional numbers of parameters could be retrained
with the IR-SLO image dataset. However, this fine-
tuning approach did not lead to a better perfor-
mance. For example, when the first topmost layer was
unfrozen, the results obtained were as follows: ACC
= 80.6%, SE = 80.6%, SP = 82.6%, AUROC curve =
87.2%, and AUPRC = 89.4% (Table 3, Fig. 3).

Classification of MS Using OCT Thickness
Maps

In our next experiment, we aimed to investigate
how model performance would change when OCT
data were utilized instead of IR-SLO images. OCT
thickness maps employed in this study were from the
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Figure 2. An overview of the models utilized for (A) IR-SLO images and (B) OCT thickness maps.

Table 2. Performance Metrics of Models Where Only SLO Images Were Utilized
Mean ± SD Optimal Hyper Parameters

Model ACC (%) SP (%) SE (%) PR (%) F1 Score (%) AUROC Curve (%) AUPRC (%) Batch Size, n Learning Rate

ResNet-50 75.00 ± 3.09 76.97 ± 7.83 77.82 ± 2.40 80.15 ± 3.23 73.12 ± 4.60 80.45 ± 0.83 87.28 ± 0.39 8 1.6e-4
ResNet-101 82.57 ± 0.42 85.14 ± 3.82 83.06 ± 1.62 85.25 ± 3.45 82.39 ± 0.42 91.19 ± 0.57 92.87 ± 0.39 16 1.58e-4
VGG-16 80.78 ± 0.35 86.68 ± 2.23 78.91 ± 0.99 85.79 ± 1.96 80.63 ± 0.37 91.26 ± 0.31 92.71 ± 0.15 8 1.7e-4
VGG-19 80.71 ± 0.45 86.90 ± 0.63 78.74 ± 0.50 85.98 ± 0.67 80.55 ± 0.48 92.84 ± 0.54 93.76 ± 0.44 8 1.2e-4
Custom CNN 80.71 ± 0.50 82.89 ± 1.36 80.18 ± 1.35 80.50 ± 0.98 80.63 ± 0.54 89.88 ± 0.61 91.44 ± 0.50 16 1.34e-4

Table 3. Performance Metrics Obtained After Fine-Tunning the ResNet-101–Based Model So Only SLO Images
Were Utilized for Training

SLO Data ACC (%) SP (%) SE (%) PR (%) F1 Score (%) AUROC Curve (%) AUPRC (%)

0 convolutional layer 82.57 85.14 83.06 85.25 82.39 91.19 92.87
1 convolutional layer 80.6 82.6 80.6 82.2 80.6 87.2 89.4
2 convolutional layers 82 83.4 81.4 82.8 81.8 87.8 89.8
3 convolutional layers 82.4 83.6 82.6 83.4 82.4 88.6 90.2
4 convolutional layers 82.8 82.8 83.6 83 82.2 87.6 91

total retina and were calculated by subtracting the first
and the last retinal boundaries. Figure 2B depicts the
structures of the models developed for the training
OCT thickness maps. Again, ResNet-101 emerged as
the winning model (ACC = 94.32% ± 1.12%, SE =
97.59% ± 0.43%, SP = 90.48% ± 1.86%, AUROC
curve = 97.70% ± 0.37%, AUPRC = 94.67% ± 1.03%)

(Table 4). The fine-tunning experiments, performed in
a similar manner as for the IR-SLO images, again
did not lead to a better performance. For example,
when the first topmost layer was unfrozen, the results
obtained were as follows: ACC = 92%, SE = 96.6%,
SP = 87.6%, AUROC curve = 97.2%, AUPRC = 95%)
(Table 5, Fig. 4).
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Figure3. Performancemetrics obtainedafter fine-tunningResNet-
101 so only SLO images were utilized for training.

Classification of MS Using Both IR-SLO
Images and OCT Thickness Maps

In this step, we aimed to investigate whether
adding IR-SLO images to OCT thickness maps leads
to even superior classification performance. IR-SLO
images were exclusively matched with OCT thickness
maps of the corresponding eye. An overview of this
merged model is illustrated in Figure 5. As ResNet-101
appeared to be the best-performing model for classify-
ingMS based on both IR-SLO images and OCT thick-
ness maps, it was selected as the convolutional part
of the merged model with its weights being frozen.
Freezing layers is justified as the test cases are precisely
excluded in both methods using individual modalities
(as described earlier), and the same test cases (number

Figure4. Performancemetrics obtainedafter fine-tunningResNet-
101 so only OCT thickness maps were utilized for training.

of cases in the test dataset was HC = 14 and MS=
7) are utilized in the combined model. The modality-
specific features extracted by the convolutional part
were then concatenated and given to a novel FC part.
According to Table 6, the merged model was able to
achieve superior performance compared to each of the
models trained with either IR-SLO images or OCT
thickness maps (ACC = 96.85% ± 0.45%, SE = 100%
± 0.0%, SP = 94.96% ± 0.66%, AUROC curve =
99.69% ± 0.12%, AUPRC = 99.75% ± 0.1%).

Record-Wise, Eye-Wise, and Subject-Wise
Data-Splitting Approaches

In addition to the subject-wise approach mentioned
earlier, two other data-splitting methods were also
applied: record-wise and eye-wise. The record-wise

Table 4. Performance Metrics of Models Where Only OCT Thickness Maps Were Utilized
Mean ± SD Optimal Hyper Parameters

Model ACC (%) SP (%) SE (%) PR (%) F1 Score (%) AUROC Curve (%) AUPRC (%) Batch Size, n Learning Rate

ResNet-50 91.16 ± 1.38 85.42 ± 1.87 98.63 ± 0.52 87.36 ± 1.38 91.28 ± 1.36 95.05 ± 0.76 86.22 ± 1.82 32 4.34e-5
ResNet-101 94.32 ± 1.12 90.48 ± 1.86 97.59 ± 0.43 91.17 ± 1.57 94.34 ± 1.1 97.70 ± 0.37 94.67 ± 1.03 64 3.72e-4
VGG-16 92.32 ± 1.39 89.44 ± 0.61 95.68 ± 1.83 90.30 ± 0.65 92.32 ± 1.42 98.70 ± 0.19 97.86 ± 0.23 8 4e-4
VGG-19 90.53 ± 0.75 85.72 ± 0.92 95.79 ± 1.12 87.24 ± 0.73 90.63 ± 0.73 96.93 ± 0.53 95.16 ± 0.64 32 11.95e-5
Custom CNN 86.95 ± 1.47 83.92 ± 1.65 89.38 ± 1.41 85.51 ± 1.10 86.94 ± 1.50 92.10 ± 0.97 84.63 ± 2.22 16 13.36e-5

Table 5. Performance Metrics Obtained After Fine-Tunning the ResNet-101–BasedModel So Only OCT Thickness
Maps Were Utilized for Training

OCT Data ACC (%) SP (%) SE (%) PR (%) F1 Score (%) AUROC Curve (%) AUPRC (%)

0 convolutional layer 94.32 90.48 97.59 91.17 94.34 97.7 94.67
1 convolutional layer 92 87.6 96.6 88.4 92.2 97.2 95
2 convolutional layers 88 83.6 96.6 86 88.4 95 88
3 convolutional layers 92.94 88.75 96.32 89.67 91.96 96.17 91.8
4 convolutional layers 92.4 88.4 97.4 89.6 92.4 96.4 92
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Figure 5. An overview of the bimodal model proposed in this study, where both SLO images and OCT thickness maps of the total retina
were utilized to train a ResNet-101–based CNN.

Table 6. Performance Metrics Obtained From Applying Subject-Wise, Eye-Wise, and Record-Wise Data-Splitting
Approaches to the Best-Performing Model Trained With Both SLO Images and OCT Thickness Maps

Mean ± SD Optimal Hyper Parameters
Data-Splitting
Approach ACC (%) SP (%) SE (%) PR (%) F1 Score (%) AUROC Curve (%) AUPRC (%) Batch Size, n Learning Rate

Subject-wise 96.85 ± 0.45 94.96 ± 0.66 100 ± 0.0 95.22 ± 0.60 96.83 ± 0.45 99.69 ± 0.12 99.75 ± 0.1 16 2.75e-4
Eye-wise 99.19 ± 0.45 99.85 ± 0.30 98.57 ± 0.11 99.86 ± 0.28 99.18 ± 0.44 99.99 ± 0.02 99.99 ± 0.01
Record-wise 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0

approach is a conventional data-splitting method in
which the entire image dataset (MS class, 133 IR-
SLO images and 60 OCT thickness maps; HC class,
132 IR-SLO images and 124 OCT thickness maps),
after reserving 20% of the samples for the test dataset
(acquired from seven MS cases and 14 HC cases), was
given to the fivefold CV algorithm to create training
and validation images in each fold. In the eye-wise
approach, all images belonging to either the right or
left eye of each individual were put in separate groups.
This resulted in 118 (19 test and 99 training/validation
datasets) and 59 (12 test and 47 training/validation
datasets) “eye” groups for HC individuals and patients
with MS, respectively. Results of these approaches are
summarized in Table 6. Figure 6 presents a box plot
showcasing the accuracy variations among the differ-
ent methods across five runs.

Bootstrapping

Bootstrap aggregating, commonly known as
bagging, is a resampling technique fundamental to
classification models, first introduced by Breiman in
1996.38 Through iterative sampling with replacement
from the training dataset, it generates multiple subsets

Figure 6. Box plots illustrating the variance in classification
accuracy of different methods across five runs.

for training. This ensemble approach enhances model
stability and generalization, mitigating issues associ-
ated with overfitting. To estimate confidence intervals
for performance metrics such as ACC, a bootstrap
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Table 7. PerformanceMetricsObtainedby BootstrapAggregation of the Best PerformingCNNs TrainedWith Both
IR-SLO Images and OCT Thickness Maps

Test Data ACC (%) SP (%) SE (%) PR (%) F1 Score (%) AUROC Curve (%) AUPRC (%)

Internal
Mean ± SD 92.40 ± 4.1 92.82 ± 3.72 95.43 ± 5.75 91.62 ± 3.75 92.12 ± 4.35 96.99 ± 2.99 97.27 ± 2.94
95% CI 83.61–98.08 81.15–96.77 83.71–100.0 83.42–96.88 81.45–98.07 86.11–99.78 86.83–99.83

External
Mean ± SD 85.43 ± 0.08 84.6 ± 0.10 97.33 ± 0.06 87.39 ± 0.08 84.95 ± 0.08 99.67 ± 0.02 99.65 ± 0.02
95% CI 71.43–100.0 71.43–100.0 83.33–100.0 77.78–100.0 70.23–100.0 95.63–100.0 94.90–100.0

procedure involves creating multiple subsets, training
the model on each, and deriving a distribution of
results. The confidence interval is then computed from
this distribution, offering a robust measure of the
model performance variability.39 Given the relatively
small sample size of the dataset, one possible solution
is to utilize bootstrapping with replacement and
reporting the confidence interval. Table 7 and Figure 7
represent the results of bootstrapping for the proposed
bimodal model.

Generalization Ability of Our Models on an
External Dataset

To check for the generalization ability of our
optimal model (i.e., Res-101–based CNN trained with
both IR-SLO images and OCT thickness maps of the
Isfahan dataset), we used IR-SLO images and OCT
thickness maps from the Johns Hopkins dataset (all
of which belong to the right eye) as an extra source
for the test phase. To achieve this goal, we divided the
external data into the training, validation, and test sets
with a ratio of 60:20:20, respectively. Subsequently, we
fine-tuned the optimal model on the external training
set through the bootstrapping approach. During this
process, only the last convolutional layer was made
trainable, and the others were kept frozen. Each itera-
tion of the bootstrapping involved evaluating the newly
trainedmodel on the external test set. The outcomes are
depicted in Figure 7 and Table 7.

Model Interpretability

By applying the Grad-CAM algorithm to the best-
performing model trained with IR-SLO images, the
saliency maps visualized in Figure 8 were generated.

Discussion

The incorporation of OCT technology with IR-
SLO in SPECTRALIS SD-OCT devices allows for

locking the B-scans at a desired position using a real-
time eye tracking system (TruTrack), which removes
the effects of eye motion during image acquisition,
creating high-quality OCT images. Furthermore, this
is necessary for an accurate evaluation of the disease
progression, as a B-scan on the same position should
be studied during follow-up examinations.23 Given that
IR-SLO images are also available when OCT scans are
being captured, we examined whether any additional
features can be provided from the IR-SLO images,
which would be useful for discriminating between MS
and HC individuals.

Notably, we showed that the model trained solely
withOCT thicknessmaps outperformed themodel that
relied only on IR-SLO images, suggesting that IR-SLO
images may lack sufficient features for distinguishing
between MS and HC subjects. However, integration
of IR-SLO images and OCT thickness maps led to
superior model performance (approximately 3% higher
than when only OCT thickness maps were utilized).
This is indeed in line with our expectations, as the
merged model leverages a broader range of input
images from two distinct modalities, thus incorporat-
ing more useful information for accurate detection of
MS. In addition, among CNNs that were trained with
either IR-SLO images or OCT thickness maps, those
with a backbone of ReNet-101 led to the most promis-
ing results, revealing that complex models with much
greater number of parameters are necessary to extract
features from IR-SLO and OCT thickness maps that
are appropriate for distinguishing between MS and
HC.

According to Table 6, as expected, the best
results were achieved using the record-wise approach,
followed by eye-wise and subject-wise data-splitting
methods. In both record-wise and eye-wise approaches,
it is possible to simultaneously utilize images of a
participant as the training data and the other images
belonging to the same person as the validation data;
therefore, the subject-wise method seems to be a more
reliable data-splitting approach. This is because this
strategy is potentially protected against an overesti-
mation of the model performance due to the absence

Downloaded from tvst.arvojournals.org on 08/16/2024



SLO-Net TVST | July 2024 | Vol. 13 | No. 7 | Article 13 | 10

Figure 7. Histograms representing the results of both internal and external test datasets achieved by bootstrap aggregating of the best-
performing CNN trained with both IR-SLO images and OCT thickness maps.

of data leakage between the training and validation
datasets.30 As shown in Table 6, should a conventional
record-wise approach be employed, a best ACC of
100% would be achieved, which is higher than that

of most of the OCT studies, the majority of which
have used the same technique for training and valida-
tion data splitting. The only exception that employed
a subject-wise approach is the study by Khodaban-
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Figure 8. Saliencymaps generated for eight SLO images and OCT thicknessmaps of the total retina of (A) HC and (B) MS subjects from the
test dataset when the best-performing model trained with SLO images were utilized.

deh et al.,18 who used the Isfahan dataset, similar to
the current study. This allowed us to directly compare
the results of these two studies; however, Khodaban-
deh et al.18 relied solely on OCT scans. They cropped
squares 20 × 20, 30 × 30, and 40 × 40 pixels around
the macula from the OCT thickness maps of different
retinal layers and applied principal component analy-
sis (PCA) and recursive feature elimination for dimen-
sionality reduction; finally, three conventional machine
learning classifiers—support vector machine (SVM),
random forest, and neural networks—were trained
with the obtained features. The authors were able to
reach an ACC of 88% using an SVM with a linear
kernel that was applied to the PCA-extracted features
from the GCIPL/INL thickness maps. In the current
study, we showed that ACC = 96.85% ± 0.45%, SE =
100% ± 0.0%, SP = 94.96% ± 0.66%, AUROC curve
= 99.69%± 0.12%, and AUPRC= 99.75%± 0.1% can
be achieved when CNN-based models are trained with
OCT and IR-SLO data.

As illustrated in Figure 8, the optic nerve head
(ONH) and the area around are where our IR-SLO–
based models focused to distinguish between MS and
HC state. Optic nerve neuropathy, with or without
clinical symptoms, is observed in nearly all patients
with MS, as confirmed by postmortem pathological
investigations.4 During an ophthalmologic examina-
tion, a clinician is able to diagnose RNFL damage in
optic neuritis but only when more than 50% of this
layer has been destroyed.40 This highlights the impor-
tant role that an AI-based system can play, as demon-
strated in the current study, where the model identified
minor optic nerve pathologies that may not be readily

recognizable by humans within an en face image such
as IR-SLO. Furthermore, the proposed model has also
focused on the vessels around the ONH, which is in
line with previousOCTA studies where theONHblood
flow index, defined as the average flow signal within
the en face OCTA image, has shown to be reduced
in MS patients, both with and without optic neuri-
tis, compared to HC individuals.25,41,42 OCTA studies
have also shown a decreased level of radial peripapil-
lary capillary vessel density within superior, nasal, and
temporal sectors in patients positive for optic neuri-
tis compared to patients who are not.25 Alterations of
retinal blood flow inMS have been linked to a decrease
in metabolic demand due to ganglionic cell degener-
ation as a result of the neuroinflammatory mecha-
nisms.25 Conversely, some studies have hypothesized
that retinal vascular pathology serves as a primary
trigger, causing hypoxia, which in turn gives rise to
inflammation and neurodegeneration.43,44 In addition,
as is shown within heatmaps of OCT thickness maps,
the area around the fovea has been identified as an
important region for discriminating between MS and
HC individuals, in line with previous studies showing
reductions in thickness of the total macula, macular
RNFL, or GCIPL in MS patients.4,45

During recent years, automated diagnosis of MS
has been made possible using machine learning
algorithms, with a remarkable overall ACC of 94%.7
Various input data have been utilized thus far, with
the most desirable results achieved using the parame-
ters obtained from MRI (pooled ACC = 96%), OCT
(pooled ACC = 93%), CSF/serum (pooled ACC =
93%), and even gait and breathing pattern (pooled
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ACC = 88%) investigations. The OCT-based studies
have mainly applied conventional machine learning
classifiers on the thickness values9,10,12,13,15–17,19 or
the extracted features from them,11,14,18 with only two
studies utilizingDL.14 López-Dorado et al.14 employed
Cohen’s d coefficient technique on the thickness maps
of RNFL, ganglion cell layer (GCL+; equivalent to
GCIPL), GCL++ (equivalent to GCIPL plus RNFL),
the total retina, and the choroid from 48 MS patients
and 48 HC individuals. The resulting thickness map
images were then given to a custom CNN model
made up of two successive blocks, each containing
one convolutional and one pooling layer, ultimately
achieving very encouraging results (SE = 100%, SP =
100%). This finding is akin to our results when a similar
training and test data splitting approach (record-wise)
was employed. Similar to the study by López-Dorado
et al.,14 three other studies captured OCT data using
a swept-source device (SS-OCT),9,10,12 all leading to
ACC levels of more than 90%. Such promising results
could partly be attributed to the high-resolution scans
generated by the SS-OCT technology. It should be
noted that these studies had a limited sample size with
insufficient diversity; indeed, three studies used the
same dataset.9,12,14 In the second study that utilizedDL
for distinguishing between MS and HC, Ortiz et al.27
first analyzed the AUROC curve of the average thick-
ness of both eyes and the inter-eye thickness differences
for each of the nine segmented retinal layers (RNFL,
GCL, IPL, INL, outer plexiform layer [OPL], outer
nuclear layer [ONL], retinal pigment epithelium [RPE],
inner retinal layers [RNFL, GCL, IPL, INL, OPL,
ONL], and outer retinal layers [RPE and photorecep-
tors layer]), and identified the most important features
accordingly. TheGCL average thickness and IPL inter-
eye thickness differences were finally selected to be used
for training a CNN from scratch. The input size was
8 × 8 × 2, and the model architecture consisted of
two consecutive convolutional layers with 16 and 32
kernels (with a size of 3 × 3), generating a 4 × 4
× 32 feature map, which was given to a FC network
at the end; an ACC of 87%, a SE of 82%, and a
SP of 92% were finally achieved.27 The largest study
that aimed to classify MS based on OCT data was
undertaken by Kenney et al.,19 who evaluated 1568
MS patients and 552 HC subjects from the United
States, Europe, and the Middle East. The dataset
included various demographic, visual acuity, and SD-
OCT parameters; using classification and regression
tree models, the authors identified GCIPL thickness of
both eyes on average, inter-eye GCIPL thickness differ-
ence, and binocular 2.5% low-contrast letter acuity
as the features with the highest discriminant capac-
ity. Kenney et al.19 applied both logistic regression

and SVM algorithms that ultimately were shown to
have a similar performance. The use of SVM with a
linear kernel achieved an ACC of 88%, a SE of 83%,
and a SP of 90%. Overall, although the majority of
machine learning research on MS classification has
taken advantage of MRI,8 OCT measurements have
also been shown to be invaluable input data. Notably,
the diagnostic performance of the models trained with
MRI and OCT parameters are not far different, but
the OCT technology is much less invasive and costly.
In the current study, we utilized IR-SLO images in
addition to OCT data, resulting in best ACCs of
100% ± 0.0%, 99.19% ± 0.45%, and 96.85% ± 0.45%,
respectively, for record-wise, eye-wise, and subject-wise
data-splitting approaches. As mentioned above, the
proposed bimodalmodel is indeed aResNet-101–based
CNN with novel FC architecture fitted to our dataset.

This study is the first work in which machine learn-
ing models were trained with two different imaging
modalities for the diagnosis of MS. Unlike MS, in
previous studies on neurodegenerative diseases such
as Alzheimer’s disease and Parkinson’s disease, fundus
camera photographs, OCT angiography, and ultra-
widefield color and fundus autofluorescence SLO
images have been utilized as input data to classifica-
tion models. For example, Wisely et al.46,47 trained a
RenNet50-based CNN with data obtained from OCT,
OCTA, and ultra-widefield color and fundus autofluo-
rescence SLO to distinguish patients with mild cogni-
tive impairment46 or Alzheimer’s disease47 from HC
individuals, with AUROC curves of 0.81 and 0.84,
respectively, when applied to the test set. Two studies
on patients with Parkinson’s disease have also been able
to detect Parkinson’s disease48 or differentiate it from
movement disorders atypical for Parkinson’s disease49
based on fundus camera photographs, yielding encour-
aging performance of 71%and 70%ACCs, respectively.

This study had several limitations. Initially, the
internal dataset originated from a single center and
was comprised of a limited number of samples,
thus limiting the generalization ability of our models
to real-world scenarios. To address this limitation,
we employed various data augmentation techniques
to generate similar input data with slight varia-
tions, thereby increasing the number of images used
for training. Additionally, we utilized the bootstrap-
ping method, demonstrating that our top-performing
model maintained strong performance across 100 runs
involving different combinations of training samples.
Furthermore, we validated the classification perfor-
mance of our proposed model on an external indepen-
dent dataset and achieved acceptable results. Second,
we were not able to separate the eyes with a prior
history of optic neuritis (ON), which are shown to
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have a thinner RNFL and GCIPL compared to ON-
negative eyes. Hypothetically, IR-SLO images of the
ON-positive eyes might also become more affected and
have to be separated similar to OCTmaps to havemore
robust results. Third, a reliable statistical comparison
of the performance of the different models was not
feasible. Indeed, the independence assumption funda-
mental to statistical hypothesis tests was not at all met,
as all of the models were repeatedly applied to the
same test dataset across different folds and iterations;
the assumption was even further violated because the
images within each of the training, validation, and test
datasets lacked complete independence, given that both
images of an individual’s eyes were utilized through our
subject-wise data-splitting approach. Finally, the cross-
sectional nature of this study precludes any conclusion
regarding the disease progression.

Conclusions

To conclude, we have taken a significant step toward
automated and precise detection of MS using a non-
invasive, low-cost, and easily accessible technology.
This is of great importance, as in current clinical
practice diagnosing MS is a challenging and time-
consuming task that relies heavily on the findings from
MRI and CSF investigations. We showed that a hybrid
CNN receiving input data from both modalities can
detect MS with astonishing ACCs near 100%. In order
to enhance the reliability and real-world applicabil-
ity of our findings, we employed a subject-wise train-
ing and validation data-splitting strategy during k-fold
cross-validation. Future studies can incorporate IR-
SLO images with fundus camera photographs or other
types of OCT data such as thickness maps of RNFL
and GCIPL or projection images, as well. Projection
images are typically generated by taking the average
of OCT A-scan intensities between the retinal layer
boundaries.50 With this increased variety of informa-
tion given to themodel, more favorable outcomes could
potentially be attained. Indeed, large-scale multicenter
studies are encouraged to further evaluate the diagnos-
tic ACC of machine learning algorithms trained with
OCT thickness maps and IR-SLO images, paving the
way for their integration into routine clinical practice.
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