
communications biology Article

https://doi.org/10.1038/s42003-024-06657-w

Behavioural compatibility, not fear, best
predicts the looking patterns of chacma
baboons

Check for updates

Andrew T. L. Allan 1,2 , Laura R. LaBarge2,3, Annie L. Bailey2, Benjamin Jones2, Zachary Mason2,
Thomas Pinfield2, Felix Schröder2, AlexWhitaker2, Amy F.White1,2, HenryWilkinson 2 & Russell A. Hill1,2,4

Animal vigilance is often investigated under a narrow set of scenarios, but this approach may
overestimate its contribution to animal lives. A solution may be to sample all looking behaviours and
investigate numerous competing hypotheses in a single analysis. In this study, using a wild group of
habituated chacma baboons (Papio ursinus griseipes) as a model system, we implemented a
framework for predicting thekeydriversof lookingbycomparing the strength of a full arrayof biological
hypotheses. This included methods for defining individual-specific social threat environments,
quantifying individual tolerance to human observers, and incorporating predator resource selection
functions. Although we found evidence supporting reactionary and within-group (social) vigilance
hypotheses, risk factors did not predict looking with the greatest precision, suggesting vigilance was
not a major component of the animals’ behavioural patterns generally. Instead, whilst some
behaviours constrain opportunities for looking, many shared compatibility with looking, alleviating the
pressure to be pre-emptively vigilant for threats. Exploring looking patterns in a thorough multi-
hypothesis framework should be feasible across a range of taxa, offering new insights into animal
behaviour that could alter our concepts of fear ecology.

Vigilance, visually monitoring surroundings for possible dangers and diffi-
culties, is a behaviour used bymany animals to avoid costly interactionswith
threats1. Vigilance has been investigated in a wide range of taxa, but as
research has grown, so too has the diversity of definitions used to sample
vigilance1,2. Concomitantly, analytical approaches have also diversified,
which combined with definitional variation, make cross-study comparisons
challenging2. Despite animal vigilance lacking a clear unified research fra-
mework, a common approach has been to sample ‘vigilance’ directly, often
under anarrow set of scenarios, and to explore a small number of hypotheses
in isolation1,2. This approach isproblematic as it doesnothelpdisentangle the
numerous competing hypotheses and may thus overestimate the extent to
which fear regulates animal lives. A preferable approach is to employ a
framework that explores numerous factors inunison, allowing researchers to
gain amore intricate understanding of the relative weighting each factor has
and their contribution to behavioural patterns generally3. So far, this
approach has been underutilised, particularly in vigilance research2.

There are now numerous context-dependent and often competing
vigilance hypotheses for researchers to consider1,2. For example, it has long

been viewed that vigilance limits how much time an animal can spend
engaged in otherfitness-enhancing activities such as foraging4. This notion
underpins the group-size effect on vigilance5, whereby group-living ani-
mals are hypothesized to circumnavigate the foraging-vigilance trade-off
by diminishing their individual investment in vigilance as group-size
increases. Yet, vigilance may also increase as group-size increases6, owing
to greater within-group competition and conflict. For example, dominance
rank can influence vigilance patterns exhibited by group members in
complex social systems7. Group cohesion and individual spatial position
can then enhance or diminish dilution8,9 and confusion10 effects, whilst
food intake rate and food availability can interact with risk hypotheses - as
animals foraging in areas with more food are expected to decrease
investment in vigilance to maximise energy intake11. These predictions
may also change based on the sensory capacity an animal has during
different behaviours, as some species can use their peripheral vision during
foraging to detect or monitor threats12. Similarly, many species have the
sensory capacity todetect localised threats during engaged behaviours such
as foraging, despite not being overtly vigilant13,14. Conversely, foraging
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tasks requiring increased attention and handling time can hinder threat
detection substantially13. Vigilance predictions are therefore inextricably
linked to a specific study species’ postures and sensory capacity, and the
specific foraging tasks they encounter.

Given these complex, interacting, and context-dependent predictions,
several authors have attempted to tease apart different forms of vigilance
and sample them directly, including social/non-social vigilance15, social/
antipredator16, pre-emptive/reactionary17, and induced/routine18. The clear
drawbackof this approach is that themultitude of vigilance hypothesesmay
warrant a potentially endless list of subtypes of vigilance to be defined.
Additionally, under field conditions, it is very challenging to precisely and
consistently identify when an animal is performing specific vigilance
behaviours (e.g., pre-emptive or social vigilance)2,19. This is largely because
few animals flawlessly betray an internal state of vigilance or their precise
focus of visual attention on a consistent basis1,20.

Given that different definitions can also vary in their likelihood of
achieving inter-rater agreement19, increasing the breadth and specificity of
vigilance definitions will likely introduce error into findings whilst also
making cross-study comparisons very challenging2. Allan & Hill2,19 sug-
gested that researchers consider adopting a single definition and research
approach, presenting the looking definition and framework as an option.
In this approach, observers record all looking behaviours across a full range
of scenarios, regardless of the study animals’ posture (e.g., head up) or
internal state (e.g., vigilant, cautious etc). The contextual information from
each observation can then be used to identify the most prominent trends
analytically, allowing researchers to explore the relative weighting of a full
array of hypotheses in a single consolidated analysis2. Looking has been
associated with greater inter-observer reliability than other vigilance-
specific definitions19, but the research framework has yet to be fully
implemented.

In this study, using a wild group of habituated chacma baboons (Papio
ursinus griseipes) as a model system, we implemented the looking frame-
work to disentangle the various subcomponents of vigilance (e.g., within-
group vigilance, pre-emptive vigilance for predators, observer vigilance)
from non-risk driven looking patterns (e.g., behaviour, compatible hand-
ling/feeding time) and weight them according to their relative prediction
accuracy. This included newmethods for quantifying the local social threat
environment and observer tolerance for each individual and incorporating
spatial variables for predator habitat use. We found little evidence sup-
porting pre-emptive risk hypotheses (e.g., looking was not elevated in areas
where predation risk was high), but did find evidence supporting reac-
tionary (e.g., encountering another group) and within-group (social) vigi-
lance hypotheses; however, these risk factors predicted looking with less
precision than foraging (e.g., feeding rate) and compatibility (e.g., specific
foraging task) factors. In particular, certain foraging items/tasks (e.g., biting
seeds or manipulating roots with their hands) offered moments of
compatible-looking time, which the baboons readily used, regardless of the
ecological scenario. As baboons have the capacity to collectmultiple types of
information concurrently (e.g., detecting an approaching threat despite
looking at another stimuli)14, there is unlikely to be a consistent need for
them to adjust their looking patterns according to pre-emptive risk sce-
narios. Together, our approach suggests that studying looking in a thorough
multi-hypothesis framework can advance our understanding of the role fear
plays in regulating animal lives.

Results
Research framework
We initially employed an information-theoretic approach21 to identify these
competing hypotheses and then created a set of independent models to
represent each of the key biological hypotheses for looking (see Table 1 and
Supplementary Table S1 and Text S1 for detailed justifications). No single
risk model included more than one type of risk variable, allowing insights
into whether certain patterns of behaviour (e.g., time spent engaged/not
engaged, spatial position) can independently produce different influences
on looking patterns depending on the risk type.

Stacking weights and Bayesian R² estimates
We found the greatest prediction accuracy for looking frequency in models
incorporating data on an animal’s feeding rate/food item, specific beha-
viours, habitat type (e.g., forest, woodland, grassland etc), home-range
familiarity (core, frequently used, and boundary areas), and the number of
within-group threats (within 5 meters), although several other models
shared lower weight (Table 2). When the models with at least 0.001 weight
were re-stacked, those including specific behaviours and feeding rate/items
shared 0.863 of the model weights and were the only models to produce R²
estimates greater than 0.1 - suggesting that these factors were the most
accurate for predicting the frequency of looking. Moderate initial weights
(and R² values close to zero) for models exploring within-group threats,
habitat type, and home-range familiarity suggests these models likely pre-
dicted somepointswithhighprecisionbut produced less accurate predictive
distributions of looking frequency overall. The remaining factors are unli-
kely to be consistent drivers of looking frequency as theydidnot consistently
yield greater weight than the intercept, minimal, or group geometry and
cohesion models (see Supplementary Tables S2–S7 for model summaries).

The R² estimates for duration models were all greater than 0.5
(excluding the intercept-only model) and their initial stacking
weights indicated that specific behaviours, feeding rate/items, time
since male calls associated with threats (wahoos), time since extra-
group/within-species encounters (e.g., another group or a lone
foreign individual), and within-group threats held the greatest pre-
diction accuracy for the total duration of looking. When models with
at least 0.001 weight were re-stacked, the models exploring specific
behaviours, feeding rate/items, time since male vocalisations, and
time since extra-group/within-species encounters shared 0.899 of the
model weights. These models were therefore considered to be the
most accurate and consistent predictors of looking duration,
although within-group threats may also be important considering its
initial weighting.

We observed a small difference between conditional and marginal R²
estimates, suggesting that the group-level structure (i.e., observation date
crossedwith individual identity) didnot significantly improve the predictive
performance of our models. In several cases, models exhibited less weight
after the stacks were simplified. This is because of the stacking procedure,
whereby similarly performing models (that share some of the same pre-
dictors) have their weight combined to the model exhibiting greater pre-
dictive accuracy22. For example, for the frequency response variable, the
stacking procedure likely combined the weights for the habitat type model
(model 17) with other similar models using some of the same predictors
(e.g., models 9, 10, and 16). This indicates that the habitatmodel produces a
predictive distribution with greater accuracy than these similar models but
still has far lower prediction accuracy than specific behaviours and feeding
rate/items models.

Feeding rate and food items (model 4)
We found a positive association between feeding rate (number of bites or
items consumed) and the frequency of looking and a negative relationship
between feeding rate and duration of looking (see Fig. 1 and Supplementary
Tables S8 and S9 for model summaries). The main food item consumed,
foraged, ormanipulated during the observationwas also important for both
variables - certain species of seeds were associated with lower durations but
more frequent bouts of looking, whilst feeding on leaves and grass blades/
seeds was associatedwith longer durations (Fig. 2). Collectively these results
suggest that foraging tasks and their relative complexity, success, and
compatibility with looking are key factors governing behavioural patterns;
the positive association between frequency of looking and feeding rate
reiterates that some foraging tasks can promote looking.

Specific behaviours (model 5)
The frequency of looking was positively associated with biting, handling,
picking, scratching, and movement, but negatively associated with
grooming another animal. All other behaviours produced credible intervals
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overlapping zero (Supplementary Table S10). Looking duration was posi-
tively associated with chewing, but negatively associated with biting, dig-
ging, searching substrate, giving grooming, self-grooming, receiving
grooming, handling, picking, and movement (Supplementary Table 10).
These results highlight the constraints certain behaviours (e.g., grooming,
digging) have on looking patterns, but also highlight the compatibility that
biting, picking, and handling food items has with frequent but brief-looking
bouts. Time spent resting was negatively associated with looking frequency
and positively associated with looking duration (resting-only model: Sup-
plementary Table S11; full model with multi-collinearity issues: Supple-
mentaryTable S12), highlighting that these animalsmaximised theduration
of looking when it was cost-free.

Reactionary risk models (models 6–14)
None of the models incorporating factors on immediate risks to animals
(reactionary risk models) produced substantial R² values or held consider-
able weight for looking frequency. In contrast, for the duration response
variable, time since male vocalisations and extra-group/within-species
encounters had stacking weights greater than 0.1 in both stacks, whilst all
reactionary models had marginal R² values greater than 0.535. The total
duration of looking was greatest whilst within-group aggressions, alarms,
wahoos, and extra-group/within-species encounters were ongoing, but was
relatively consistent across the remaining time categories, including when
no event had occurred (Fig. 3). This suggests the study animals had a strong
reactionary vigilance response to these stimuli but reverted to typical

Table 1 | Research framework for investigating the looking patterns of a habituated group of chacma baboons

Model Population-level effects Model purpose/hypothesis

1 ~1 Intercept-only model

2 Age-sex class+Behaviour Minimal model

Group geometry and cohesion

3 Number of neighbours within 5 meters * Spatial position+ Age-sex class+Behaviour A: Pre-emptive vigilance when isolated/
peripheral

B: Within-group vigilance when surrounded/
central

Compatibility factors (feeding rate/food items and specific behaviours)

4 Amount eaten+ Food item+ Behaviour+ Age-sex class Looking readily used when compatible with
feeding

5 Biting+Digging+Handling+ Pick+ Searching substrate+Give groom+ Self-grooming+Receive
groom+Chewing+ Self scratch+Movement+ Posture+ Age-sex class

Looking readily used when cost-free or
compatible with underlying behaviours

Reactionary stimuli and risks

6 Time since within-group aggression+ Age-sex class+Behaviour+ Visibility+Rank Reactionary vigilance for within-group threats

7 Time since mating+ Age-sex class+Behaviour Social monitoring for mates and competitors

8 Time since adult female calls+ Age-sex class+ Behaviour Multifunctional calls – social monitoring or
reactionary vigilance for within or extra-group
threats

9 Time since adult or adolescent male calls+ Age-sex class+ Behaviour+ Visibility+Rank Multifunctional calls – social monitoring or
reactionary vigilance for within or extra-group
threats

10 Time since active heterospecific encounter+ Age-sex class+ Behaviour+ Visibility+Rank Reactionary vigilance for predator/extra-group
threats

11 Time since passive heterospecific encounter+ Age-sex class+ Behaviour Reactionary vigilance for predator/extra-group
threats

12 Time since dog encounter+ Age-sex class+Behaviour+ Visibility+ Spatial position+Number of
neighbours

Reactionary vigilance for predator/extra-group
threats

13 Time since alarm+ Age-sex class+Behaviour+ Visibility+ Spatial position+Number of neighbours Reactionary vigilance for predator/extra-group
threats

14 Time since encounter with another group+ Age-sex class+Behaviour+ Visibility+ Spatial
position+ Rank+Number of neighbours

Reactionary vigilance for extra-group threats

Within-group threats

15 Number of within-group threats+ Age-sex class+ Behaviour+ Visibility+Rank+Number of neighbours Within-group (social) vigilance

Pre-emptive risks (spatial position/cohesion and landscape of fear for external group threats)

16 Spatial risk of encountering a leopard * (Number of neighbours+ Spatial
position+ Behaviour)+ Visibility+ Rank+ Age-sex class

Pre-emptive vigilance for predators

17 Categorical habitat type * (Number of neighbours+ Spatial
position+ Behaviour)+ Visibility+ Rank+ Age-sex class

Pre-emptive vigilance for predators

18 Continuous landscape familiarity * (Number of neighbours+ Spatial
position+ Behaviour)+ Visibility+ Rank+ Age-sex class

Pre-emptive vigilance in unfamiliar areas

19 Categorical landscape familiarity * (Number of neighbours+ Spatial
position+ Behaviour)+ Visibility+ Rank+ Age-sex class

Pre-emptive vigilance in unfamiliar areas

20 Spatial risk of encountering another baboon group * (Number of neighbours+ Spatial
position+ Behaviour)+ Visibility+ Rank+ Age-sex class

Pre-emptive vigilance for other baboon groups

Observer risks

21 Observer tolerance * (Observer distance+Observer movement+ Behaviour)+ Age-sex class Pre-emptive vigilance for observer threats
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behavioural patterns very quickly; however, given the stacking weights,
wahoos and encounters with extra-group baboons predict the duration of
looking with more accuracy than within-group aggressions or predator-
associated alarms, but less than the feeding rate/food items and specific
behaviours models. See Supplementary Tables S13 and S14 for summary
results for all reactionary models.

Within-group risk (model 15)
For both frequency and duration models, we found positive relationships
between proximity to social threats and looking (see Fig. 4c, d, and Sup-
plementary Tables S15 and S16). Interestingly, this relationship is opposite
to what we found with looking patterns and proximity to group members
generally (e.g., the ‘many eyes’ hypothesis) in the same models (see
Fig. 4a, b). As the social threats variable was tuned to each individual, these
results indicate that the focal animals were attentive to the identity of their
neighbours and increased looking if their individual-specific risk increased,
regardless of the potential risk reduction experiencedwithmore neighbours
(i.e., dilution or confusion effects). It should be noted, however, that the R²
value of the frequency model is close to zero, suggesting it was poor at
predicting new observations, whereas the durationmodel performed better.

Pre-emptive risk (models 16–20) and observer effects (model 21)
All pre-emptive risk models investigating the frequency of looking pro-
duced low R² values, with leopard risk (model 16 – leopard resource
selection function value at the location of the focal observation), home-
range familiarity (model 18 – the utilisation distribution value at the
location of the focal observation), and spatial risk of encountering another
group (model 20 – derived from the spatial distribution of interactions
with other groups) models all holding zero weight in the initial stack.
Frequency models for habitat type (model 17) and home-range familiarity
(model 19) held weights greater than 0.1 in the initial stack but 0 and 0.031
respectively in the second stack. Yet, duration models produced R² values
greater than 0.5, indicating moderate predictive performance; however, the
leopard model held zero weight and the other models held minimal weight
in the initial stack, with all zero or close to zero in the second stack. We did
observe some minor relationships across the frequency and duration
models which both support and oppose certain vigilance hypotheses (see
Supplementary Tables S17–S26 and Figs. S1–S4). For example, being
peripheral whilst at farms (where there is risk of being killed by humans)
was associated with looking more frequently (see Supplementary Fig. S1).
Models incorporating data on individual visual tolerance of observers and
observer behaviours (model 21, see Supplementary Tables S27–S28) also
exhibited poor predictive accuracy. This suggests observers were not a
consistent nor significant driver of the focal animal’s looking patterns.

Discussion
Vigilance has long been considered one of the most ubiquitous anti-
predator behaviours, yet there is generally a lack of evidence supporting the
notion that animals must be vigilant to detect predators23. We used the
looking framework, whereby all looking behaviours are sampled regardless
of the underlying behaviours being performed, to identify the most pro-
minent factors regulating the visual behaviours of awild groupof habituated
chacma baboons. The looking framework allowed the data to reveal reac-
tionary vigilance for external threats (e.g., other groups) and within-group
(social) vigilance use in reactionary and pre-emptive scenarios, whilst still
highlighting that specific behaviours and foraging tasks were the central
drivers promoting and constraining looking.

We found that as the time spent biting, picking, and handling
increased, the frequency of looking increased but the duration of looking
decreased. We also found that items typically processed using their teeth
(e.g., biting large fruits, seed pods, succulent leaves, and roots) were also
associated with greater frequency of looking, whereas smaller items (e.g.,
small fruits and seeds, and invertebrates) were associatedwith less frequents
bouts.When leaves, grass blades, andgrass seedswere thepredominant food
item thedurationof lookingwas greater thanall other items, includingwhenT
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Fig. 1 | Conditional effects plots displaying the relationship between looking
patterns and the number of bites/items consumed within a focal observation.
a Relationship between the number of bites/items consumed within a focal
observation and the frequency of looking bouts. b Relationship between the

number of bites/items consumed within a focal observation and the duration of
looking. Shaded areas display the relevant credible intervals (2.5% and 97.5%
quantiles).

Fig. 2 | Conditional effects plots displaying the relationship between looking
patterns and foraging items. a Relationship between the frequency of looking and
the predominant foraging item searched for, manipulated/handled, or consumed
(during a 30-s focal observation). b Relationship between the duration of looking
and the predominant foraging item searched for, manipulated/handled, or con-
sumed (during a 30-s focal observation). Dots display parameter estimates and bars
display the relevant credible intervals (2.5% and 97.5% quantiles). Aat refers to
Acacia/Senegalia ataxacantha, Aka: Acacia/Vachellia karoo, Asi: Acacia/Vachellia
sieberiana subsp. woodie, Dci: Dichrostachys cinerea subsp. Africana, and Z.mu:
Ziziphusmucronata subsp. mucronata, each of the species was commonly consumed

and represented unique manipulation/handling tasks that were hypothesized to
have differential impacts on looking patterns. Small fruits could be placed in a
baboon’s mouth whole whereas large fruits required several bites or manipulation.
No food eaten refers to no food being consumed or foraged for during the focal
observation. ‘Other’ were rarer items grouped together, including fungi, bamboo
shoots, and animal matter. Succulent leaves included numerous Aloe sp. and
Opunita ficus-indica. ‘Unknown’ was when the focal animal picked or consumed
something the observer could not identify. Unknown seeds were seeds taken from
the ground/leaf litter where it was clear seeds were being foraged but the precise
identity of the species not known.
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no foraging or feeding behaviours took place, whilst food items with thick
casings (e.g., seed pods)were associatedwith the lowest durations of looking
(see Fig. 2).Digging and searching substrate timedidnot appear to influence
the frequency of looking substantially but had a strong negative relationship
with the duration of looking. These results align well with previous findings
that vigilance use shares some compatibility with food handling in
mammals24–26 and birds27, whilst tasks taking place exclusively on the
ground (e.g., digging and searching leaf litter) can force animals into a head
down posture, creating a trade-off between looking and foraging28.

When taking the specific behavioural and food item results in com-
binationwith feeding rate results (i.e., feeding ratewas positively associated
with frequency andnegatively associatedwith the duration of looking), our
results support that tasks allowing for numerous moments of compatible-
looking time may do so without sacrificing feeding rate significantly18,26

(see Fig. 5). In fact, some feeding tasks may actively promote looking. For
example, leaves, grasses, and grass seeds were abundant in most food
patches such that picking behaviours did not seem to require a precise
focus of attention and an animal could look towards the next food item,
promoting looking, whilst continuing to pick. Thus, baboons seem to
prioritise feeding over longer-looking episodes but have a consistent ten-
dency to use the compatible and cost-free moments of their underlying
behaviours to update their information on their surrounding
environment18, regardless of the current pre-emptive risk scenario.
Investigating specific behaviours and foraging tasks in combination with
feeding rate should therefore be especially important for research on
species that use their hands to forage for or manipulate food. In addition,

given that birds can also raise their heads whilst handling food, resulting in
a positive association between peck rate and predator detection27, our
methodological and analytical approach may reveal new insights into the
contribution of vigilance to the general behavioural patterns of numerous
taxa, potentially altering our concepts about vigilance and fear in the
animal world.

Despite not attempting to sample vigilance specifically, we identified
reactionary vigilance use (increased duration of looking) during periods of
increasedwithin-group conflict, wahoos, alarms, and encounters with other
groups or foreign lone individuals. Interestingly, in all cases the animals
returned to baseline levels of lookingwithin 5min, suggesting vigilancemay
often be a more induced behaviour in this group18, and that if a threat is
worth monitoring, the animals typically focus on it entirely, as opposed to
utilising more frequent bouts or glancing.

Count of social threats within 5 meters was the only risk variable to
produce the same positive relationship across both response variables. This
supports within-group (social) vigilance hypotheses, which are also well
supported across primate vigilance research2. Interestingly, the count of
conspecifics within 5meters had a negative effect on both looking variables,
suggesting these animals perceived less risk from external threats (e.g.,
predators) when spatial cohesion was high29, but altered strategies readily if
their personal social risk increased. However, social threat models did not
yield any weight in the simplified stacks and the R² value of the frequency
model was low. It is therefore likely that the within-group threats model is
good at predicting the duration of looking boutswhen thenumber of threats
is high but does poorlywhen they are absent. It seems likely that the baboons

Fig. 3 | Conditional effects plots displaying the relationship between the time
since an event and the total duration of looking bouts. a Relationship between the
time since a wahoo and the duration of looking. b Relationship between the time
since an encounter with another group/foreign individual and the duration of

looking. c Relationship between the time since within-group aggression and the
duration of looking.dRelationship between the time since an alarm and the duration
of looking. Dots display parameter estimates and bars display the relevant credible
intervals (2.5% and 97.5% quantiles).
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actively avoided spending considerable time near within-group threats30,
thus minimising the likelihood of being attacked and the need for pre-
emptive within-group (social) vigilance. As intra-clique aggressions were
low in our study group, we did not explore whether the number of high-
ranking neighbours (including clique members) had an effect on looking
patterns, but this may be appropriate in other groups and systems. It would
also be interesting to explore how looking patterns are affected by the
presence/number of social threats interacted with the number of neigh-
bouring clique members as this would identify whether affiliates can buffer
social threat perception.

The models specifically exploring the interaction between spatial
position and cohesion garnered no weight in any of the stacks, again sug-
gesting that broad risk dilution and confusion hypotheses concerning

external threats (i.e. 8,9,31) were not key drivers of looking. Future research
may want to consider exploring the effect of ‘isolation’ explicitly however
(e.g., no conspecific within 50 meters), as in our approach ‘peripheral’
observations still allowed for neighbours to be present nearby, which may
have decreased risk perception. We also found little evidence that looking
patterns were altered according to landscape familiarity or the spatial risk of
encountering leopards or other groups, counter to findings supporting
landscape of fear findings elsewhere32 and in this group33. The contrasting
results to the latter study is intriguing; however, despite the lead researchers
and study animals remaining consistent across studies, a ‘scanning’
definition34 and instantaneous point sampling protocol were used in the
other study, reinforcing the notion that methodological consistencies
are clearly needed when making comparisons2,35,36, even within the same

Fig. 4 | Conditional effects plots displaying the relationship between looking
patterns and the number of conspecifics and number of social threats.
aRelationship between the number of conspecifics (neighbours) within 5meters and
the frequency of looking. b Relationship between the number of conspecifics
(neighbours) within 5 meters and the total duration of looking. c Relationship

between the number of social threats within 5 meters and the frequency of looking.
d Relationship between the number of social threats within 5 meters and the total
duration of looking. Shaded areas display the relevant credible intervals (2.5% and
97.5% quantiles).
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study group19. Lack of support for pre-emptive external risk hypothesesmay
be linked to the large group-size, whereby dilution and confusion effects are
maximised, leading to reduced individual risk perception (for external
threats). It could also be argued that there may be a human-shield effect
present37, i.e., that observers are consistently displacing predators such as
leopards, artificially reducing the baboons’ perceived predation risk38,
leading to diminished natural anti-predator behaviours.We do not rule out
this possibility and encourage future research to explore human-shield
factors explicitly, likely via comparative analyses making use of remote
technologies39.

Future research may also consider expanding our framework to
include random slopes (e.g., spatial position over individual identity). This
will reveal whether individuals differ in their looking responses according to
various ecological scenarios (e.g., certain individuals may be more vigilant
when in less accustomed spatial positions). Additionally, researchers may
wish to incorporate additional interaction terms (e.g., age-sex class * spatial
cohesion * spatial position or number of social threats * specific beha-
viours), as this may offer insights into nuanced risk hypotheses and their
contribution to activity patterns generally. We don’t dispute this, but
increased sampling demands and analytical complexities involved may
make such approaches challenging. The benefit of our approach is that the
sampling requirements are feasible for most systems and allow for themost
fundamental hypotheses to be investigated both independently and jointly
in a consolidated approach. Thus, even if within-group (social) vigilance is
more pronounced for specific foraging tasks, our current analysis would
highlight this via stacking weights being shared between the within-group
threats and specific behaviours models (i.e., both models would predict

looking patterns with similar precision). Such outcomesmay thenmotivate
additional model comparisons. Here, our results demonstrate that specific
behaviours and feeding rate/food items independently predict the frequency
and duration of looking with greater precision than risk models (that also
include behaviour as additive effects); thus, more nuanced models are
unnecessary.

It may be debatable whether animals should be attentive to the true
spatial likelihood of encountering external threats or instead use spatial
memory of encounters to inform their risk-sensitive behaviours. For
example, the baboons may avoid areas where predator encounters have
recently occurred, as opposed to increasing their pre-emptive risk-sensitive
behaviours in areas where encounters aremost likely (based on the previous
movements of predators). The group’s landscapes of fear could also bemore
sensitive to the interaction between predator behaviour and climatic con-
ditions, e.g., misty conditions reduce visibility and are associated within
increased leopard activity at Lajuma33. Future research should consider
constructing landscapes of fear on multiple predators (and potentially
integrating them into a single layer or variable) across various timescales and
conditions as this should help elucidate important information about how
animals perceive risk innately, the extent to which they can learn and adjust
behaviours from experience, and the duration and extent of their spatial
memory for threats.

The study group’s looking patterns were also not consistently
explained by the interaction between individual tolerance estimates and the
proximity and behaviour of researchers. This finding adds some validity to
our results but may also demonstrate that when aware of tolerance factors,
researchers can adjust their behaviour accordingly (e.g., increase

Fig. 5 | Baboon behaviours and feeding tasks vary in their compatibilities with
looking. a Self-grooming and allogrooming were associated with lower durations of
looking. b Digging and searching the substrate for food items were associated with
lower durations of looking. c Picking was associated with more frequent bouts of
looking. d Although handling food items was associated with lower durations of

looking, these tasks could promote momentary opportunities for looking that could
be used to monitor within-group threats, as shown in (e). Items processed using the
teeth, such as large fruits (as shown in f), corms, succulent leaves, and seeds
(especially from Acacia sieberiana subsp. woodie and Dichrostachys cinerea subsp.
Africana – as shown in g) were associated with a greater frequency of looking bouts.
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observation distances for intolerant individuals), thus achieving the goal of
having minimal influence on the behaviours we record. It also highlights
that concentrating purely on focal animals as a measure for observer effects
is inadequate, as across the same focal observations we showed that when
the observer was within 4.5 meters (of a focal animal) that intolerant group
members were less likely to occur in proximity and make physical contact
with the focal animal40. Thus, despite minimising observer effects on the
behaviours of focal animals, our presence may have altered the social
environment for focal animals by buffering or displacing potential threa-
tening conspecifics away from the focal animals. This is especially important
to consider in other study systems where animals may be less habituated to
observers.

To conclude, our analysis suggests that while elevated-looking patterns
appear to be driven by vigilance use in certain reactionary circumstances,
pre-emptive vigilance was not a consistent functional determinant of this
group’s looking patterns. Instead, the baboons seem to rely on the com-
patibility their natural behaviours have with looking and their capacity to
collect multiple types of information concurrently to detect threats14. If this
is the case, it could mean that any factor that encourages looking will
increase the likelihood of the baboon’s detecting a threat early34. Under-
standing the sensory capacity and threat detection capabilities of study
animals should therefore be a topic for future research to explore in more
detail as there is likely a differential need for pre-emptive vigilance across
species and taxa with varying detective capabilities. Given the relationships
we found for specific behaviours, there’s a strong possibility that risk sen-
sitivities may be very nuanced and therefore require these questions to be
explored on finer scales. For example, future work could break down
foraging behaviours into specific components (e.g., biting, pecking, digging,
handling) and explore risk sensitivities within each specific behavioural
bout. Such an approach would build a more complete picture of the
compatible-looking time various species have according to the behaviours
and tasks they engage in, andhow such factors vary temporally, i.e., different
seasons offer different foraging tasks.

It could be argued that research can adequately sample the various
subcomponents of vigilance directly, e.g., routine/induced41, pre-emptive/
reactionary42; however, there is very little empirical evidence that researchers
are able to do this task flawlessly. The looking definition and framework
alleviate this issue and may improve inter-observer reliability2,19. A major
criticism of such an approach may have been that it makes no attempt to
sample vigilance specifically; however, the results of this study give support
to the notion that risk-sensitive behaviours and their drivers can still be
identified when using a broad definition and framework.

As little work has previously investigated so many competing risk
drivers in combination with precise behavioural and task information, it
may be that the contribution of ‘vigilance’ to looking patterns and overall
activity budgets has been overestimated in many studies and systems. This
would be especially true if animals prioritise alternative anti-predator/threat
strategies (over vigilance) tominimize the riskof beingdetected and targeted
(e.g., adjusting spatial position, avoiding riskyplaces, stayingnear refuges, or
readily using compatible-looking time during feeding or foraging tasks).
Considering that the looking definition shares similarities to ‘vigilance’
definitions used in other studies and species, these findings are applicable to
numerous taxa. We therefore encourage researchers to consider con-
solidating on similar definitions and adopting research frameworks that
explore all major hypotheses in unison, this will allow researchers to tease
apart the relative contributions of competing hypotheses to looking pat-
terns, improvingour understandingof the contribution of fear and vigilance
to animal lives.

Methods
Ethical approval and permissions
All research methods included in this study were performed in accordance
with the relevant guidelines and regulations, under ZA/LP/81996 research
permit (Limpopo Province Department of Economic Development and
Tourism), with ethical approval from the Animal Welfare Ethical Review

Board atDurhamUniversity. The authors confirm they have compliedwith
all relevant ethical regulations for animal use and the study was carried out
in compliance with ARRIVE guidelines.

Study area and group
Data were collected on a wild habituated group of chacma baboons (Papio
ursinus griseipes) at Lajuma Research Centre, western Soutpansberg
Mountains, South Africa (central coordinates S29.44031°, E23.02217°)
between May 2018 and July 2019. The area was designated Afro-montane
mist-belt community and contained a diverse range of natural habitats
varying in plant species composition, canopy height, and foliage density43,44.
Most of the study area was classified as a private nature reserve, but agri-
cultural practices and habitatmodification occurred in areas adjacent to the
study group’s core home range45. The major predator of baboons was leo-
pards (Panthera pardus). The group were habituated for research purposes
in 200514 and contained 80 individuals at the start of the study, increasing to
92 individuals by the end due to births (no permanent immigration took
place during the study). From February 2015, ATLA typically followed this
group between two and four days a week throughout the year and was
proficient at identifying all individuals (including infants), even at a distance
with binoculars. To ensure the baboons still experienced natural encounters
with predators, we tried tominimize the study group’s contact with humans
during non-follow days (e.g., non-observers scared them from camps) and
limited the number of observers to three during this study (one or two
observers was the most common). In total, 65 baboons were used for this
analysis, representing all non-infant individuals present at the start of this
study (Supplementary Text S2).

Video sampling methodology
30-s continuous focal sampling was used to record the temporal organi-
sation of looking behaviours1,2,46 using a high-definition video camera
(Panasonic HC-W580 Camcorder). All of the video focal sampling was
conductedbyATLA.The30 s focal durationwas selectedafter undertaking
a pilot study designed to identify the ideal methodology (Supplementary
Text S3 and Figs. S5–S9). Each observation day was split into four sea-
sonally adjusted time periods that each accounted for 25% of the day
length. A ‘randomly’ generated observation list was created and focal
individuals were then selected pseudo-randomly from this list by sampling
the first individual encountered from the top 15 identities on the list
(approximately 20% of the original group-size). Individuals were never
sampled more than twice a day or more than once in a single time period
per day.More generally, we also tried to avoid sampling individuals within
a time period if they already had one more sample in this time period
overall than 75% of the group. For example, if 60% of the group had only
one sample in time period 1 (T1), then an individual who already had two
samples in T1 could not receive a third sample until <15 individuals (20%)
remained that required a second T1 observation. This approach created
issues whereby the top 15 individuals on the ‘random’ focal list sometimes
could not be sampled for multiple days until sampling had evened out, but
this avoided over-sampling individuals in certain season-specific time
periods. As a result, the individual sampling effort was relatively even
acrossmonths (range: 1–3) and between years (2018: 29–32, 2019: 25–28).
We completed 3676 focal observations across the study subjects (range:
54–59 per individual) that were used in this analysis. Data came from 78
observation days, with individuals generally receiving 14 observations
per seasonally adjusted timeperiod,mostly in the range of 13–15, but some
errors in the field meant that a few individuals received as few as 12 and as
many as 16 observations in some time periods, with one individual
receiving 18 in T2.

Focal observationswere deemed successful if at least 25 s of footage had
at least 50% of the animal’s face and one eye completely in view. Observa-
tions were aborted or discarded if more than 50% of the focal animal’s face
was out of sight for more than 5 s. In situations where the focal animal was
clearly using their hands (e.g., grooming, foraging, handling), ATLA also
made sure we keep at least the focal animal’s hands in view but generally
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attempted to capture a view of the entire animals plus ~2.5 meters of the
environment around them. Where possible, ATLA tried to start focal
observations from at least four meters, but the baboons could often adjust
position to narrow or increase this distance (see also ref. 41). Observers
never adjusted their position if a baboon reduced their distance to the
observer – displacing away from a baboon may be interpreted as a sub-
ordinate gesture and potentially lead to habituation issues and ‘problem’
animals developing that direct aggression towards observers. After failed
observations, ATLA would then adjust position and try to restart the focal
observation, a process that was repeated a maximum of three times before
moving to another individual from the list. The individual receiving the
aborted focal would then be reintegrated at the end of the list. Animals that
disappeared during the study period were removed from the main focal-
looking analysis, but their influence on focal animals (i.e., as a neighbour)
was still explored for the periods they were still in the group.

Operationally defining looking and extracting data from videos
Media Player Classic (MPC-HC: Guliverkli project) was used to slow down
and extract precise looking bout lengths from videos (video skip length
could be reduced to 4 hundredths of a second). A single observer (ATLA)
extracted all looking and behavioural data from videos, thus removing the
possibility of interpretation effects (as described in ref. 19). Extracting data
from videos was initiated during fieldwork (i.e., on non-observation days)
but some of the data extraction was completed after fieldwork had been
completed.

A looking bout began when the focal animal’s eyes were open, and its
line of vision extended beyond (or diverted away from) its hands and the
substrate, animal, or object its hands were in contact with2,19. The substrate
usually referred to the ground but could also include rocks or branches the
baboonswere sitting or standing onormoving across. A lookingbout ended
when the focal animal diverted its line of vision towards an item in contact
with their own hands, such as the focal animal’s own body, foraging sub-
strate, the ground (or another substrate they are sitting or standing on), or
another monkey; or the animal closed its eyes. When animals were in
contact with or facing large objects within arm’s reach (e.g., tree trunks,
rocks, buildings etc.,), these objects were considered an extension of the
substrate and the animal had to divert its line of vision away from its hands
and the object to be considered looking. In cases where an individual dipped
its head to the substrate/object (e.g., ground when biting grassroots), to
water (e.g., drinking), or to another baboon (e.g., to bite an ectoparasite),
then the observer assessed whether its line of vision extended beyond the
conspecific or beyondan arm’s reachof the surface of thewater, substrate, or
object. In these cases, an arm’s ‘reach’ was adjusted according to the size of
the focal animal. This definition allowspassive ornon-goal-oriented looking
to be recorded, which may be excluded by some observers when imple-
menting definitions that use terminology such as ‘gazing’ or ‘scanning/
searching directed beyond arm’s reach’ (see also ref. 19 for discussion). After
extracting looking behaviours from video footage only one observation
occurred with less than 25 s with at least 50% of the focal animal’s face in
sight (24.639 s), we retained this observation as ‘time in sight’was controlled
for analytically (see Model structures).

The key concept underpinning this definition is that any looking
behaviour allows for concurrent threat detection, thus, as long as ananimal’s
line of vision extends beyond its immediate vicinity and is not obscured (e.g.,
by vegetation or objects) then it should detect a threat if it is there, regardless
of its precise focus of attention34. In previous work, we experimentally
validated that this was the case (using the looking definition) in this study
group14,47 and recommend that similar work is done in other systems before
implementing the looking definition and framework. The operational
nature of the definition therefore should allow researchers of other taxa to
adapt it accordingly (see also ref. 19 for discussion). Thus for specieswithout
hands or forward-facing eyes (e.g., most birds or deer), the validation
experiments should instead focus on the line of sight part only (regardless of
postures) and identify operationalised distances (e.g., a wing or neck’s
length) at which visual obstructions hinder threat detection19.

Contextual variables
Contextual factors were collected at the beginning and end of focal obser-
vations and used as predictors within a range of candidate models (see
Table 1). These included the number and identity of all neighbours within 5
meters of the focal animal (spatial cohesion), the estimated visibility (per-
centage) to 5 meters in all directions from the focal animal (see Supple-
mentary Text S4 and Fig. S10 for detailed methods), and the distance
between the focal animal and the observer. These were averaged across the
start and end assessments so that each focal observation had a single value
for each variable.

Additional variableswere recorded at the endof each focal observation.
We recorded habitat type as one of forest, woodland, bush, grassland, rock,
camps, farms, and roads (Supplementary Text S5). Cliffs were incorporated
into these categories according to the underlying substrate or vegetation
structure (e.g., rock, grassland).Wedidnot investigate focal animalheight as
it was challenging to complete observations on animals high above the
grounddue to visibility, practicality, and safety concerns; thus, focal samples
are biased towards locations relatively near to the ground. We also noted
whether the observer moved at any point during the focal observation (e.g.,
to keep the animal in view).

Spatial positionwas assessedaswhether the focal animalwaswithin the
centre or on the periphery of the group for the majority of the focal
observation. An individual was peripheral if on the edge of the group or had
nomore than5non-infant individuals (~5%of the group)between itself and
the edge of the group, based on sightings and audible cues given by other
group members. This was assessed from ATLA’s position when it was
unambiguous (e.g., high visibility locations allow a good view of the entire
group) but if visibility was an issue, then ATLA and the other observer(s)
quickly assessed the broader area. Although five individuals may seem a
large buffer that could dilute the risk of predation/attacks, inter-individual
spacings were typically irregular. Thus, although five local individuals may
be ‘further away’ from the rest of the group, it was rare that they were all
directly ‘outside’ of the focal, and so would have little influence on dilution
effects.

Reproductive information for the focal animal, including consortship
information and female cycle status (e.g., sexual swelling present, not
cycling, lactating/infant carrying, pregnant etc) was also recorded, along
with the age-sex class and location (i.e., distance or out of sight of the
mother) of the offspring of lactating/nursing females.

Thedurationof eachbehaviour exhibited by the baboonswas extracted
from the focal videos by ATLA. Engaged behaviours were those requiring
visual attention and use of the hands, including grooming another indivi-
dual, self-grooming, digging, searching substrate, and picking. Picking was
the action of picking or pulling a food item towards theirmouths andwould
often lead to the entire item being consumed without further processing.
However, if the item was bitten or manipulated further, then the picking
boutwould end and a handling or biting boutwould start. These behaviours
were used as additive effects in the specific behaviours model (see Table 1:
model 5) or grouped together as ‘engaged’ behaviours and included as a
covariate (see Table 1: all models except 1 and 5). Aggression/play (fighting/
wrestling and the aggressive/submissive vocalisations and screams during
these episodes, chasing, pinning, biting, ground-swiping, threat/play facial
gestures) were also recorded and considered engaged behaviours but were
not investigated within the specific behaviour model as they were under-
sampled.

Not-engaged behaviours included resting, chewing, mating, self
scratch, receiving grooming, drinking, movement (e.g., walking/running
when not foraging or engaged in socialising and aggression/play), com-
munication (e.g., facial gestures and greetings), biting, and handling. Biting
was defined as when animals take several smaller bites of large food items,
instead of placingwhole items in theirmouth (e.g., ‘picking’ small fig fruits).
Handling involved the action of cleaning dirt off of roots or the use of their
fingers to peel or pull open casings of some thick-skinned fruit or seed pods
or pick off wings/legs of invertebrates. The food species and food itemswere
recordedduring the focal observations and the feeding rate (total number of
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bites taken and items consumed during the observation) determined from
video playback (see Table 1: model 4). Communicative gestures, drinking
and mating observations were rare and so not included within the specific
behaviour model but were accounted for in time spent not engaged calcu-
lations, which was included as a covariate in all models except 1 and 5 (see
Table 1).

Finally, it was noted whether certain events were ongoing during each
focal observation, including within-group events such as copulations and
aggressions, and loud vocalisations, such as thosemade by females (e.g., lost
calls) when the groupwas very dispersed and bymales (i.e., wahoos) during
a range of scenarios. Alarm calls were recorded as distinct to other vocali-
sations when cooccurring with certain behaviours (e.g., fleeing behaviours,
screaming) or the threatening stimuli was identified (e.g., a leopard).
Encounters with domestic dogs were coded separately to other factors.
Encounters with other species were coded based on whether the event was
considered passive or active. Passive encounters included other animals,
such as bushbuck (Tragelaphus scriptus), coming within 10 meters of a
group-memberwith no detectable behaviour change or interaction between
the two species. Active encounters occurred when some form of displace-
mentor agonistic interactionoccurredbetween the two species (e.g.,fighting
was frequently observed with samangomonkeys (Cercopithecus albogularis
schwarzi)).We grouped passive (e.g., distant visual contact) and active (e.g.,
agonistic interactions) encounters with foreign baboons as all encounters
elevated the threat level. Similarly, we did not distinguish between
encounters with other baboon groups and encounters with foreign indivi-
duals, partly because it was sometimes hard to identify if an individual was
truly alone, but also because encounters with lone males usually elicited
group-wide alarms. The time each of these events occurred and appeared to
end was recorded ad libitum throughout the day by ATLA and the other
observers present, allowing us to calculate the time since each event as: no
event (during the day so far), event ongoing, 0–5min post event, 5–10min
post event, 10–15min post-event, and greater than 15min post-event.

Calculating dominance rank and within-group threats
We recorded aggressions and displacement/supplant events ad libitum and
created separate directedmatrices for 2018 (n = 638 observations) and 2019
(n = 695). We then calculated the dominance rank for each year using the
isi13 function from the ‘compete’ package48. Individual rank was then
included as a covariate in severalmodels (see Table 1). The dominance rank
information was then applied to the identity of all neighbours within 5
meters of each focal observation, producing a count of higher-ranked
neighbours. Since higher-ranking neighbours could be affiliated with the
focal animal and unlikely to be considered threatening, we refined the
number of social threats variable so that itwasnot biased by affiliates: i.e., the
number of higher-ranked neighbours minus the number of higher-ranked
clique members (see Table 1 – model 15). Clique membership was calcu-
lated using dyadic grooming data and community detection in igraph with
the spinglass algorithm49, see Supplementary Text S6 for details.

Spatial variables for pre-emptive risk hypotheses
Between February 2015 and July 2019, ranging data were collected every
20min during dawn-to-dusk follows of the study group (n = 11,936 GPS
points) and encounter data for all interactionswith other groups of baboons
or foreign individuals (n = 240).We calculated a 99%utilisationdistribution
at 1% intervals via Time-Local Convex Hull Analysis50, incorporating all
ranging data from 2015 to 2019. To turn this utilisation distribution into a
continuous home-range familiarity variable, we applied a linear stretch to
rescale the utilisation distribution predicted values between 0 and 151. We
then inverted the scale so that the hypothesized positive relationship
between risk and vigilance could be visualised appropriately. For the cate-
gorical variable (for home-range familiarity), we defined the isopleths at
33.3̇̇% intervals to explore whether distinct differences between core
(n = 1302 focal observations), frequently used (n = 1352), and boundary
areas (n = 1022) influenced lookingpatterns.Weused the samemethods (as
with the utilisation distribution at 1% intervals) to calculate the distribution

of inter-group encounters during the same period. In this case, the time-
scaled distance metric was set to 0 to reflect GPS points being collected
opportunistically. The subsequent distribution was then scaled (as above)
and divided by the scaled utilisation distribution to produce a layer pro-
viding a proxy for the spatial probability of encountering another group
(offset by home-range utilisation), this variable was scaled a further time to
ensure all values were between 0 and 1. To explore whether the study group
altered their looking patterns pre-emptively in response to the spatial risk of
encountering leopards, we used the scale integration51 of the 2nd and 3rd
order Resource Selection Functions (RSF) calculated byAyers33 for leopards
occupying the same study area as the baboons - a proxy for the spatial
probability of encountering a leopard (for further details see Supplementary
Text S7 and Figs. S11–S15).

Observer tolerance
Weexploredwhether observerdistance (to the focal animal) andmovement
during focal observations (coded yes/no) interacted with individual visual
tolerance of observers to influence lookingpatterns (seeTable 1–model 21).
Using Flight Initiation Distance methods, we previously quantified the
distance at which each baboon visually oriented towards approaching
observers, which was found to be distinct amongst individuals and con-
sistent across time and scenarios14,47. To quantify each individual’s visual
tolerance of the observers, we extracted the individual-level effects (i.e.,
conditionalmodes) fromamodel exploring the visual orientation responses
of the study animals to approaches made by observers (using the same data
from ref. 14). See Supplementary Text S8 for complete methodology and
Table S29 and Fig. S16 for the results associated with this analysis.

Model structures
We examined the drivers of two dependent variables, the frequency and
total duration of looking bouts within 30-s focal observations, in separate
arrays ofmodels, allfitted using the brm function from the ‘brms’package52.
As the focal animal’s face could go out of sight temporarily, we included the
duration of the observation that 50% of the animal’s face was visible as an
offset variable in all models. Duration models used a Gaussian family with
an identity link and so the offset variable was not transformed. Since fre-
quency models used a Poisson family with a log link, the natural log of the
offset variable was used.

Observations were considered right censored when the total duration
of looking was equal to the duration of time at least 50% of the animal’s face
was in view. This approach allowed the duration models to predict accu-
rately beyond the 30-s cut-off imposed by the sampling design. As it is
impossible for the duration to be less than 0, we defined a lower bound of 0
(i.e., truncated) to the posterior distribution to ensure data was modelled
correctly. For all durationmodels, we allowed all parameters to be initialised
at zero, allowing the no U-turn sampler to efficiently produce a finite log
posterior52.

Following the information-theoretic approach of Burnham et al.21 we
developed a series ofmodels designed to weight themain theoretical drivers
of looking (Table 1).Age-sex class andbehaviourwere included in all but the
intercept-onlymodel. In frequencymodels, the behaviourwas the total time
spent ‘engaged’ as these behaviours required the focal animal’s focus of
attention, and thus the frequency of looking was the more likely risk-
sensitive behaviour. For duration models, the behaviour was the total time
spent ‘not engaged’ as these behaviours did not require the animal’s focus of
attention, and thus the duration of lookingwas themore likely risk-sensitive
behaviour. Reactionary variables (e.g., time since aggression) did not con-
tain any interactions (e.g., with spatial position) as the ongoing event should
be a clear driver to exhibit changes in looking duration or frequency
regardless of the animal’s current behaviour or scenario. Pre-emptive risk
factors (e.g., spatial risk of encountering another group) should be more
sensitive to behavioural and individual factors and therefore several 2-way
interactions were included (e.g., the interactions between leopard RSF and
spatial position, spatial cohesion, and current behaviour (time spent
‘engaged’ or ‘not engaged’); see Table 1). Theoretically most hypotheses
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could warrant 3-way interactions (or more) as well as random slopes over
individual identity, butwe did not pursue these options as themodelswould
have become very complex and likely overparametrized/unreliable.We did
not centre or scale any variables as several were categorical, hadmeaningful
values for zero (e.g., time allocated to behaviour or number of neighbours),
or were already scaled (leopard RSF, utilization distribution, and within-
group encounter risk), whilst tolerance represented each individual’s mean
difference to the populationmean. For all models, the observation date was
also a random effect, crossed with individual identity.

For all models we used the default Student-t priors (df = 3, mean= 0,
scaling factor = 10) for all model components. In the case of the standard
deviationsofgroup-level (i.e., random)effects, theseparametersareconstrained
to be positive and therefore a half Student-t priorwas implemented.Allmodels
produced high estimation accuracy, including at the tails of the distribution53

(see Supplementary Text S9 for details on model checks). The variable ‘time
spent resting’ createdmulti-collinearity issues in the specific behavioursmodels
(model 5) and was therefore not included in the main analysis (Table 2), but
results from a resting-only model are reported in the results.

Assessing relative model prediction performance
We estimated the pointwise out-of-sample prediction accuracy from each
model using leave-one-out cross-validation (LOO) from the ‘loo’ package54.
LOO is computed via a Pareto smoothed importance sampling (PSIS)
procedure for regularising importance weights22. PSIS approximation
reliability was confirmed by inspecting the estimated shape parameter k̂
diagnostic values in the generalized Pareto distribution, thus ensuring that
extreme values are not too influential22,55. The LOOprocess uses n-1 sample
points (focal observations) to tune a specific algorithm to predict the left-out
point, allowing the n-1 samples to act as a training set for optimising the free
parameters of themodel and assess how well the tuned algorithm performs
at predicting the left-out sample point. This process is repeated for the
remaining samples and produces a test performance for all samples within
each model. The resultant estimates therefore represent relative model
prediction performance based on the full distribution of model parameters,
unlike simpler estimates of predictive error (e.g., Akaike information cri-
terion or deviance information criterion) that use only a single point esti-
mate to approximate out-of-sample fit56.

We employed Bayesian stacking using the loo_model_weights func-
tion from the ‘loo’package.Wedevelopedanumber of ‘stacks’ to explore the
relative weighting of each hypothetical driver of looking. When comparing
two (or more) models using stacking with PSIS-LOO values, stacking uti-
lises the data produced from the PSIS-LOO procedures of each candidate
model and compares the performance and accuracy of each model at pre-
dicting each left-out sampling point. Compared to other methods, such as
weights produced from the widely appliable information criterion or
pseudo-Bayesian Model Averaging, stacking performs well when several
candidate models share similar covariates. This is achieved by optimizing
the model weights jointly, allowing for similar models to share their weight
whilst more unique models keep their original weights22. Thus, when a
similar low stacking weight is shared across a number of models, it suggests
that these models share similar prediction accuracy55, i.e., certain drivers
predict some sample points with accuracy but perform poorly at predicting
looking behaviours across a broad range of scenarios. Therefore, a model
with the maximum weight of 1 would predict every observation with the
most accuracy, whilst amodel with the lowest weight of 0 would not predict
a single observation with better accuracy than any of the remaining can-
didate models. The initial stacks for each response variable contained all
theoretical models in their respective stacks. A subsequent stack was then
computed for each response variable including only models that shared
non-zero weights in the initial stacks (Table 2). This was done to identify
which model weights in the initial stack were derived from the joint opti-
mization procedure combining weights of similar models22. We also cal-
culatedBayesianR² estimates for eachmodel using the r2_loo function from
the ‘performance’ package57, as a data-derived estimate of the proportion of
variance explained for future observations predicted using a given model58.

Statistics and reproducibility
Eachmodel used the complete dataset (n = 3676 total focal samples from65
individuals, range: 54–59 focal samples per individual) andwas run for four
HamiltonianMarkov chains for 2000 iterations, with warmup iterations set
to 1000, totalling 4000 post-warmup draws (default settings for brms). We
used model estimates and 95% credible intervals to assess the effect of each
predictor variable and interaction term on our response variables. If esti-
mateswere non-zero and credible intervals did not overlap zero, we inferred
evidence that a predictor variable had an association with the response
variable. Models were considered to be accurate at predicting looking pat-
terns if their stacking weight was at least 0.1.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw data can be found on figshare (https://doi.org/10.6084/m9.figshare.
26105674.v1)59.
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