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Abstract

We present a new code for the tracing of magnetic field lines and calculation of related quantities such as the
squashing factor in the solar corona. The Universal Fieldline Tracer (UFiT) is an open-source package that can
currently take inputs directly from four well-established coronal models, with additional models planned to be
made directly accessible in the future. This package contains tools to make use of large-scale three-dimensional
field line maps to calculate volumetric quantities, such as the total volume of the open corona, or the fraction that
maps to regions on the solar surface within some distance of a coronal hole boundary, which may be relevant to
phenomenological models of solar wind speed such as the Wang–Sheeley–Arge model. Synthetic coronagraphs
can also be produced rapidly by this package. We have postprocessed long-term magnetofrictional simulations to
demonstrate that the separatrix web occupies a larger fraction of the corona during solar maximum than solar
minimum.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Computational methods (1965); Open source
software (1866)

Materials only available in the online version of record: animation

1. Introduction

The topology of the magnetic field of the solar corona has
been a topic of intense research in recent times. Accurate
determination of field structure can yield insights into the
processes of magnetic reconnection, solar wind formation, and
generation of various solar ejecta. Adjacent field lines
frequently diverge—with mappings which are often discontin-
uous—forming the separatrix web (S-Web; Antiochos, et al.
2011) throughout the solar corona. Such locations of rapid
field-line divergence are well established as preferential
locations for the formation of current sheets and subsequent
reconnection, driving various dynamic phenomena (e.g., Pontin
& Priest 2022). Thus, an important mathematical quantity for
the analysis of magnetic reconnection is the squashing factor Q
(Titov et al. 2002), which takes large values where magnetic
field lines are divergent or helical.

In this article, we present a new code—Universal Fieldline
Tracer (UFiT)—which can rapidly calculate field line
connectivities, squashing factors, and flux surfaces. This code
is an attempt to standardize these types of calculations, taking
inputs directly from common approaches such as potential field
source surface (PFSS) models, magnetohydrodynamic and
magnetofrictional solvers, and returning the same structure of
output in all cases. This greatly simplifies comparisons between
the different models, improves portability, and streamlines
further postprocessing tools relying on field line trajectories.

UFiT is intended to be universal in the sense that it can read
the magnetic field directly from the outputs of a number of
popular codes. It does so using minimalist in-built routines,
without requiring specialist libraries or even the original code

used to calculate the magnetic field. The field lines shown in
Figure 1 have been computed from the following sources, with
geometry indicated: (a) Durham Magnetofrictional Code
(DUMFRIC; see Yeates & Bhowmik 2022); (b) Lare3d;
Adaptively Refined Magnetohydrodynamic Solver (ARMS; see
DeVore 1991) with (c) spherical and (d) Cartesian coordinates;
(e) the pfsspy package (see Stansby et al. 2020) taking as
input a synoptic magnetogram derived from observations by
the Helioseismic and Magnetic Imager (HMI) instrument on
board the Solar Dynamics Observatory (Pesnell et al. 2012);
and (f) an analytic formula evaluated on a grid of points in
Python. The squashing factor Q is also shown on a surface of
constant r and z, respectively. In the first five cases, UFiT
identified the type of output from the file name (for example,
Lare3d outputs have the .sdf extension) and then read in
the grid and the magnetic field defined on it; in the latter case,
UFiT had a grid and field passed to it programmatically.
UFiT is written in Fortran90 requiring only the OpenMP

library to be installed for normal operation. This leads to an almost
linear scaling with processor number. The total real time taken to
compute a 1000× 1000 grid of field lines is of the order of a
minute, utilizing the cores of a modern laptop computer. The
DUMFRIC code outputs data in the NetCDF format which
requires that particular library to be installed, but UFiT can be
compiled without it and still use the remaining sources in Figure 1.
The initial UFiT 1.0 release is available from Zenodo at
doi:10.5281/zenodo.10301324 (Aslanyan & Meyer 2023), while
the latest version is available from GitHub (Aslanyan 2024).5

In this article, we define the mathematical approach to
compute the field lines and, in particular, the squashing factor
in Cartesian and spherical coordinates. We validate UFiT
against an analytical solution and other field line tracing codes.
We then visualize the structure of an eruption and the
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subsequent open field, as relevant to the expulsion of solar
wind, using tools published with UFiT. We proceed to use
UFiT to analyze a dynamically evolving coronal magnetic field
using a further postprocessing library.

2. Field Line and Squashing Factor Calculation

UFiT calculates magnetic field lines in both directions from
a set of start or “seed” points, which are specified by the user
either as a regular one-, two-, or three-dimensional grid or point
by point. Based on the user configuration, UFiT saves any
combination of the locations where the field lines terminate, the
full field line trajectories, the perpendicular magnetic squashing

factor Q (sometimes called Q⊥) of the field line, the type of
connectivity (see Table 1). Alternatively, a user-defined
quantity is calculated by an existing subroutine template and
saved; thus, the user can rapidly implement a subroutine to
calculate a desired quantity such as (∣ ∣)Bmax along a field line.
The start configuration is also saved within the output file.
The first step to calculate magnetic field lines from a variety

of sources is to convert the input grid to a set of consistent
coordinates. Presently implemented in UFiT are Cartesian (x,
y, z) and spherical (r, θ, f) coordinate systems, related in the
usual way,

( )q f=x r sin cos , 1

Figure 1. The signed logarithm of the squashing factor, ( ) ( )º Q Qslog log where the + denotes closed field lines and the − all others, on an appropriate surface
(constant r for spherical geometries and constant z for Cartesian). Sample open and closed magnetic field lines are shown. UFiT has been used to read in the magnetic
field from outputs of codes indicated.
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( )q f=y r sin sin , 2

( )q=z r cos , 3

where the polar angle θ and azimuthal angle f take the usual
ranges of values

[ ) ( )q pÎ 0, , 4

[ ) ( )f pÎ 0, 2 , 5

with θ= 0 the north pole. The initial seed points of the field
lines are supplied to UFiT and outputs are returned in one of
the above sets of coordinates, in addition to a flag for the
corresponding coordinate system. The Python interface to the
code allows easy translation to and from other coordinate
systems as required.

The magnetic field B is evaluated at arbitrary points within
the simulation domain by linear interpolation from the nearest
eight grid points, in the relevant coordinate system. When
required, the gradient is calculated by differentiating the
interpolation formula directly. See Appendix A for more
details.

2.1. Field Lines

The equation for the position X(l) along a field line,
parameterized by the distance l along the field line, is given by

⎜ ⎟
⎛
⎝

⎞
⎠∣ ∣

·
∣ ∣

( )º  =
X B

B
X

B
B

d

dl
. 6

Rewriting this term explicitly for a given system of coordinates
requires the correct coordinate scale factors. These are unity for
Cartesian, leading to the familiar relations,

∣ ∣
( )=

B
dx

dl

B
, 7x

∣ ∣
( )=

B
dy

dl

B
, 8

y

∣ ∣
( )=

B
dz

dl

B
. 9z

In spherical coordinates the scale factors are taken from the
diagonal entries of the metric (see Appendix B). The

appropriate equations are given by

∣ ∣
( )=

B
dr

dl

B
, 10r

∣ ∣
( )q

= q

B
d

dl r

B1
, 11

∣ ∣
( )f

q
= f

B
d

dl r

B1

sin
. 12

These systems of equations are solved by iterative integration
methods. We plan on including higher-order, adaptive
methods, but surprisingly find that the first-order Euler method
performs very reasonably (see Section 3). This choice of
integrator proves beneficial, both in terms of calculating the
boundary intercept (see below), and as a comparison to other
codes that also use Euler steps (such as QSLsquasher and
the visualization routine for ARMS). A fixed size of the
integration step Δl, which in UFiT may be specified by the
user, is advantageous in postprocessing and storing the
resultant field lines. UFiT defaults to a step size of
Δl= 0.005 Re, which was found to provide good accuracy
for a typical field configuration while keeping the computation
times low.
Each seed point serves as an initial value for the field line

equation, corresponding to a position of X(l= 0) along the field
line. The integration proceeds in each of two directions from
the initial seed location until a domain boundary is intercepted
or a preset total number of steps is reached. In terms of the
position along the field line, the location of the forward and
backward domain boundaries are given by l+ and l−, and the
points at which the field line intersects these boundaries are
X(l+) and X(l−). In some special cases, such as in the presence
of current loops, in laboratory experiments or simulations with
artificial symmetry (see Yeates & Hornig 2016), magnetic field
lines may close on themselves within a typical simulation
volume, or they may traverse a subvolume ergodically. Almost
always, however, a field line will terminate at one or two of the
boundaries of the simulation domain. We define several terms
in Table 1 related to the termination of field lines. These are
determined directly by inspection of the field line end points
X(l+) and X(l−). The labels are assigned at the seed points,
meaning that they represent volumetric data that is inherited
from the field lines that pass through each point in the volume.
At each integration step, a check is made whether the step

will intercept any of the boundaries. If so, a shortened step is
taken, the integration terminates, and the appropriate con-
nectivity is assigned. This check is skipped if a given axis is
specified to have periodic boundary conditions, in which case
the integration proceeds forward and the coordinate is allowed
to exceed the limits. Suppose that one of the coordinates above,
c ä {x, y, z, θ, f} is defined as periodic; for the purposes of
interpolation, the position of coordinate c is remapped to within
the original grid limits through the relation

[( ) ( )] ( )¢ = - - +c c c c c cmod . 13min max min min

For example, suppose that a field line is spiraling out from the
Sun in a spherical simulation domain with periodicity in
longitude. The angle f in the output of UFiT will grow
monotonically, quickly exceeding 2π, but internally, it will at
every step be remapped to the range [0, 2π). The polar angle θ

Table 1
Terms Related to Magnetic Field Line Topology Defined for the Purposes of

This Article

Term Definition

Footpoint Location where a given field line crosses
the solar photosphere (or similar
surface), which is represented as the
lowest grid value, zmin or rmin,
respectively

Handhold Location where a given field line crosses
the highest grid value, zmax or rmax,
respectively

Closed Field line with exactly two footpoints

Open Field line with exactly one footpoint
and one handhold

Disconnected Field line with exactly two handholds
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is a special case. For many spherical simulation domains, it is
truly nonperiodic, with the grid taking the form of a wedge by
design; a field line may terminate on a boundary in θ. Other
simulations deliberately encompass the entire range of polar
angles, in which case a field line θ may go below 0 (crossing
over the north pole), or above π (over the south pole). If this
happens in a fully spherical domain, θ is restored back to the
correct range while f is incremented or decremented by π as
required.

2.2. Squashing Factor

As introduced and then developed in a series of papers, the
squashing factor (Q) is a measure of the deformation of the
field line mapping that is calculated using elements of the
Jacobian of the mapping (Priest & Démoulin 1995; Titov et al.
2002; Titov 2007). Early computational implementations took
the approach of calculating the field line mapping (typically by
integrating a large number of field lines), and then evaluating
derivatives of this mapping using finite differences, before
finally performing appropriate multiplications between these
derivative terms. For complex magnetic fields in particular, the
squashing factor distribution thus constructed is susceptible to
noise, which motivated Pariat & Démoulin (2012) to explore
various different protocols for the field line integrations.
However, as first suggested by Tassev & Savcheva (2017)
and then formalized by Scott et al. (2017), it turns out that Q
can also be calculated by propagating vectors that directly
encode the information about the mapping Jacobian, avoiding
the need for finite differences. This formalism has now been
implemented in a number of freely available codes (Zhang
et al. 2022; Yang 2024), typically requiring significantly
shorter computation times for equivalent quality data outputs.

The method for calculating Q in UFiT is taken from the
formalism described in Scott et al. (2017), and is similar in
many ways to the methods of Tassev & Savcheva (2017),
Zhang et al. (2022), and Yang (2024). When selected by the
user, Q is calculated alongside the usual field line tracing in the
Cartesian or spherical geometry using the following procedure.
For each seed point we initialize a pair of unit vectors, U and V,
which are mutually orthonormal and perpendicular to B. The
vectors U and V are then transported along X(l) according to
the Lie transport equation, which, in the case of U, takes the
form

⎜ ⎟
⎛
⎝

⎞
⎠∣ ∣

· ( )= 
U U

B
B

d

dl
, 14

and similarly for V.
In Cartesian coordinates the component form of this system

of equations is written (using U as an example) as

⎜ ⎟
⎛
⎝

⎞
⎠∣ ∣
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¶

+
¶
¶

+
¶
¶B
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1
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⎛
⎝

⎞
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¶
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¶

+
¶
¶B

dU

dl
U

x
U

y
U
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B

1
, 16
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⎞
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¶
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z
B

1
. 17z

x y z z

In spherical coordinates the system of equations is similar, but
with a number of extra terms related to the curvature of the

coordinate system and the coordinate scale factors, so that

⎜ ⎟
⎛
⎝

⎞
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( )
q q f

=
¶
¶

+
¶
¶

+
¶
¶

q f
B
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U
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U B

1 1 1
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, 18r

r r
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⎝

⎞
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B

B

dU

dl
U

r r
U

r
U B

r
B U U B

1 1 1

sin

1 1
, 19
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r

r r

These expressions are derived in more detail in Appendix B.
The vectors U(l) and V(l) are transported along the field line

X(l) using the appropriate system of equations until the field
line intersects the boundary at X(l+) and X(l−). In order to
characterize the local variation in the mapping perpendicular to
the magnetic field, the components of U and V that are parallel
to B are then removed so that U(l+) is perpendicular to
B(X(l+)), and similarly for the other terms. This procedure
defines the appropriate tangent elements

ˆ( ) ˆ ( · ( )) ( )= -+ + + + +U U B B Ul l , 21

( ) ˆ ( ˆ · ( )) ( )= -+ + + + +V V B B Vl l , 22

( ) ˆ ( ˆ · ( )) ( )= -- - - - -U U B B Ul l , 23

( ) ˆ ( ˆ · ( )) ( )= -- - - - -V V B B Vl l , 24

where ˆ+B is the magnetic unit vector at the point X(l+), and
similarly for ˆ-B .
The tangent elements have the property that, in addition to

obeying the Lie transport equation, they also transform under
the push-forward, which is directly related to the Jacobian (J)
of the field line mapping. In particular, the (square of the) norm
(N) of the Jacobian can be recovered directly from U and V as

( · )( · ) ( )= + -+ - - + + + - -U V U V U V U VN 2 . 252 2 2 2 2

Similarly, the determinant of the Jacobian is given by

( ) ( · )

( · ) ( )

= -

´ -

- - - -

+ + + +

J U V U V

U V U V

det

. 26

2 2 2

2 2 2

Alternately, (and in the current implementation) ( )Jdet can be
determined from the (divergence-free) magnetic field, in which
case

( ) ∣ ∣
∣ ∣∣ ∣

( )=
+ -

J
B

B B
det . 270

2

The (perpendicular) squashing factor is then given by

( )
( )=

J
Q

N

det
. 28

2

Like the connectivity labels, the calculated value of Q is
assigned to the seed point. In principle, Q is not a volumetric
quantity per se, as it describes the field line mapping, which is,
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itself, an integrated (global) measure. By assigning the value of
Q as volumetric data, we associate the complexity of the
mapping at the end points of the field lines with the seed points
through which the field lines pass, with the understanding that
this value describes the entire field line, and not just the seed
point. Finally, we adopt the sign convention that Q (whose
formal lower bound is 2) is positive for closed field lines and
negative otherwise.

3. Validation

To confirm the numerical accuracy of UFiT, we have
compared its results to an analytic case. We have also made a
comparison with two other field line tracing codes:
QSLsquasher, which has been widely used to study the
corona (see Tassev & Savcheva 2017 for further details and the
source code) and K-QSL (see Yang 2024 for the source code).
Figure 2 shows the structure of a potential source surface field,
which is purely dipolar at the photosphere. The field, and
consequently the squashing factor, is axially symmetric with a
central belt of closed field lines around the equator. The
squashing factor at the photosphere (r= Re) in the open field
region (see Appendix C for more details) is given by

⎜ ⎟
⎧
⎨
⎩

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎫
⎬
⎭

( )
( )









q
q

q

q

q q

= +
-

+
-

+

´
-

+ -

+

Q
C

R R

R R

C

1
cos

1 sin
1

2
tan

1 sin

cos sin
,

29

ss

ss

R R

R R

2

2 2

3 3

3 3

2

2

2 2

2
2

2
2ss

ss

3 3

3 3

( )


=

+
C

R R

R R

2

3
, 30ss

ss

3 3

2

where we have chosen Rss= 2.5 Re for this comparison; in
general, UFiT assumes Rss to be the largest value of r in the
input grid, which can take any arbitrary value. Within the
closed field region the squashing factor takes the lowest
theoretical value of Q= 2; it is everywhere symmetric about
θ= π/2. At the photosphere, the separatrix between the open
and closed regions in the northern hemisphere is located
at ( ) q = Carcsin 1 0.867 radQSL .

The results of UFiT agree very closely with the analytic
solution as shown in Figure 2. In the closed field region close to
the separatrix, the raw solution somewhat undershoots the
analytic value. However, this would ordinarily not be a
problem, as the value of the squashing factor is clamped to
force its absolute value |Q|� 2. In such a case, UFiT would
match the theoretical value identically in the closed field region
and to better than 1% away from the separatrix. K-QSL
achieves even closer agreement with the analytic result in some
places, but it should be noted that it ran significantly slower
than UFiT, the former taking 27 minutes in this test compared
to 11 s for the latter. Small differences with the analytic
solution arise because both tracers used an input magnetic field
defined on a fixed grid of (40, 90) points in (r, θ) (the dipolar
field is axisymmetric, so uniform in f), whereas the analytic
calculation can naturally rely on an exact formula. The grid is

Figure 2. Open and closed field lines for a pure dipolar potential magnetic
field (upper). Comparison of Q between the analytic solution and numerical
results from UFiT, K-QSL, and QSLsquasher (middle). The relative
error |Q − Qanalytic|/Qanalytic (lower). Q is compared at r = Re where the
separatrix occurs at θ ; 0.867 rad and is symmetric about θ = π/2. Note
that the raw result is being shown from UFiT in the closed field region; it
would ordinarily be clamped to the value of 2, thereby reproducing the
analytic result exactly.
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quite coarse, leading to interpolation errors, but its size is
realistic for what a user may choose for a dynamic global
coronal simulation. The integration step size was set at
Δl; 0.005 Re. Both codes can approach the analytic values
of Q to arbitrary precision if the interpolant grid resolution is
increased and the integration step size is decreased. Given that
UFiT has a significantly shorter computation time, the user is
free to decrease the integration step size to achieve higher
numerical precision.

We also make a comparison with the QSLsquasher code,
which used an input magnetic field defined on a grid of (61, 181)
points in (r, θ). This code produces Q> 2 in the closed field
region and underestimates Q in the open field region,
consequently deviating significantly from the analytical result.
We believe that this discrepancy arises because QSLsquasher
omits the terms pertaining to curvature (the commutators in
Equations (18), (19), (20)). Numerical experiments have been
able to reproduce the closed field behavior by omitting the
curvature terms, but in that case Q differs in the open field region
from both QSLsquasher and the analytic result.

Furthermore, we have compared the squashing factors
computed by UFiT and QSLsquasher for a more realistic
scenario in Figure 3. The input in each case is an output from a
three-dimensional spherical magnetofrictional simulation using
the code DUMFRIC at 12:00 on 1992 February 4 (see Aslanyan
et al. 2024 for further details of the simulation). Both field line
tracing codes were supplied an identical input grid, and an
identical output grid was returned. Despite its disagreement
with the analytic case, the output of QSLsquasher produces
large values of Q in the same locations as UFiT, highlighting
the topological features, such as pseudostreamers. When
compared directly, both codes produce a very similar structure,
differing mostly along separatrices where Q tends to infinity.
Both codes took a similar time to complete their calculations;
the speedup stemming from the use of a GPU in the case of
QSLsquasher was counteracted (in the experience of the
authors) by the memory transfer latency.

4. Flux Surfaces and Volumetric Quantities

One concept relevant to the discussion of magnetic field
topologies is that of a flux surface: a two-dimensional surface
to which the magnetic field is everywhere a tangent vector.
This implies that a normal vector to a flux surface is also
normal to the local magnetic field, n.B= 0. Since the property
of being tangent to the field is also the defining principle of a
field line, a flux surface is one within which magnetic field lines
lie. In general, we define a flux surface as a locus of all field
lines with a given property. For example, the last closed flux
surface (LCFS) which separates open and closed field lines, is
defined as the surface of all closed field lines which pass
infinitesimally close to an open or disconnected field line. The
LCFS will typically consist of a streamer belt running around
the midplane of the Sun, pinned to the outer simulation
boundary in typical models approaching the Parker solution.
Pseudostreamers cause bulges in the LCFS, separate from the
main streamer belt.

Similarly, the first disconnected flux surface (FDFS) is the
locus of all disconnected field lines passing infinitesimally
close to open and closed field lines. This surface arises due to
magnetic reconnection in a nonpotential, nonequilibrium
situation such as an eruption. It is also possible to define more
general flux surfaces, for example, as the locus of all open field

lines with a specified shortest distance from a footpoint to a
coronal hole boundary, dCHB. The coronal hole boundary is on
the photosphere, and the distance between two points here is
taken to be Euclidean in Cartesian coordinates,

( ) ( ) ( )= - + -d x x y y 311 2
2

1 2
2

and the great circle distance in spherical coordinates,

( ( )) ( )q q q q f f= + -d rarccos cos cos sin sin cos . 321 2 1 2 1 2

We adopt the same sign convention for dCHB as for Q, namely
that closed field lines correspond to a positive value and all
others to a negative value. A flux surface defined by dCHB is
physically meaningful because it has long been observed that a
portion of the slow solar wind emerges from near coronal hole
boundaries due to the interchange reconnection between open
and closed field lines Abbo et al. (2016), while the fast wind is
accelerated from the central regions of coronal holes. In the
latest version of the Wang–Sheeley–Arge (WSA) model (Wang
& Sheeley 1990; Arge et al. 2003), for example, the solar wind
speed on open field lines is a function of dCHB (see Kim et al.
2020 for recently used parameters).
We show examples of these three types of flux surface (each

at a different time), for a magnetic field computed by the
DUMFRIC code (see Aslanyan et al. 2024 for further details of
the simulation). In brief, the magnetofrictional code DUMFRIC
was initialized with a PFSS reconstruction on 1975 September
25 from KPVT synoptic magnetogram CR 1633 and thereafter
self-consistently computed the evolving magnetic until 2022
November 25; the output magnetic field was saved at a
frequency of once per week, or more. Solar activity was
modeled by enforcing the emergence of active regions, taken
directly from observations determined from KPVT, SOLIS,
and HMI synoptic magnetograms, and thereafter applying
differential rotation, meridional flows, and surface diffusion to
approximate the effect of flux dispersal due to supergranulation
(see Yeates & Bhowmik 2022). The code modeled the
emergence of Active Region 12672 around 2017 August 25,
which caused an eruption and associated change in magnetic
connectivity. The LCFS is shown 24 hr after the emergence of
the active region in Figure 4(a), with a full view around the
simulation domain available in the animated version of this
figure. A highly twisted and knotted surface can be seen. The
eruption has caused field lines to become disconnected and
hence the FDFS is shown 42 hr after the emergence of the
active region in Figure 4(b). It is noteworthy that this surface
has several holes, indicating that open field lines are threaded
through the bulk of the disconnected ejecta. Finally, the field
lines relax toward a new dynamic equilibrium; a flux surface
96 hr after the emergence of the active region is shown in
Figure 4(c). This flux surface corresponds to dCHB=−15Mm
and consequently it can be expected that fast wind is flowing
out through the volume outside this surface. The super-radial
expansion of the magnetic field can be seen from the trumpet-
like openings of this flux surface. The flux surface is more
corrugated, and some narrow features appear broken up, due to
the greater topological complexity of this type of flux surface.
The LCFS is generated by first computing a binary three-

dimensional grid such that the seed points of closed field lines
take the value 0, and 1 otherwise. A Gaussian filter is applied
to smooth out the resultant structure. A marching cubes
algorithm is applied to the resultant grid with a threshold of
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0.5. Marching cubes is a generic algorithm for creating an
isosurface of some constant value from a three-dimensional
scalar field. A similar approach is used for the FDFS, except
the label of 0 is applied to the seed points of disconnected
field lines and 1 otherwise.

The flux surface of dCHB is straightforwardly calculated with
UFiT as follows:

1. The field line end points at each point in the three-
dimensional volume are saved.

2. Open, closed, and disconnected field lines are identified.
3. For open field lines, identify the footpoint.

4. For closed field lines, calculate the minimum distance
from (θ,f) of each of the footpoints to the nearest coronal
hole boundary; for open field lines, do this for the
singular footpoint and set this to a negative number; for
disconnected field lines, set this to ~-rmax or some
similarly large negative number.

5. Use the above marching cubes algorithm to calculate an
isosurface with dCHB (positive or negative as required) as
the threshold value.

This procedure can be repeated for any relevant method of
labeling every point in three dimensions based on its local

Figure 3. Comparison of the signed logarithm of the squashing factor computed by QSLsquasher (upper) and UFiT (middle) at r = Re in a magnetofrictional
simulation of the corona on 1992 February 4. The absolute difference between the two codes (lower) shows narrow features along separatrices, such as the open-closed
boundary, but otherwise close agreement.
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properties, or some function of its mapping to the grid
boundaries.

A rapid calculation of field line mappings allows volumetric
quantities of interest to be evaluated. For example, for the field
configuration in Figure 4(c), we find that 81.4% of the coronal
volume consists of open field lines. Moreover, we can
determine the volume inside an arbitrary flux surface described
above. In other words, this is the volume where open field lines
have dCHB below some threshold value. The variation of the
fraction of the open corona with footpoints falling outside a
given distance from a coronal hole boundary is shown in

Figure 5. This type of analysis may allow the true width of
coronal holes to be estimated.
Another application of volumetric squashing factor calcula-

tions is to make images of the synthetic emission from the
corona, to be compared with observations. This can be done by
assigning an intensity using the method of Mikić et al. (2018),

( ) ∣ ∣ ( )òµ -I r Q dsexp log , 33
LOS

10

where s is the line-of-sight coordinate from a given point. A
more complicated method involving Gaussian weighting could

Figure 4. Flux surfaces at various times during an eruption, simulated in DUMFRIC. (upper) LCFS 24 hr after the emergence of Active Region 12672, showing
knotted structures during magnetic reconnection. (Middle) FDFS 42 hr after the emergence of the active region. (Lower) Flux surface corresponding to a signed
coronal hole boundary distance dCHB = −15 Mm (the negative sign denoting open field lines), meaning that on one side of this surface are all the open field lines with
a footpoint further than 15 Mm from a coronal boundary, 96 hr after the emergence of the active region. The active region is at a Carrington longitude of 220◦. The
images are viewed from above the equator, either directly above the active region, or 90◦ to the side as indicated. The animated version of this figure involves a view
angle rotating in f, showing these surfaces from all directions.
(An animation of this figure is available in the online article.)
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also be used. Figure 6 shows two examples of synthetic
coronagraphs produced by UFiT using this method. The upper
example is of the corona during solar maximum at 12:00 on
1992 February 4 (the situation depicted in Figure 3), while the
lower example is during solar minimum at 12:00 on 2017
August 25 with a viewpoint of 220◦ Carrington longitude (the
situation on the lower left of Figure 4). The magnetic field in
both cases was taken from the long-term magnetofrictional
simulation outlined above. These images have a clear similarity
with coronal observations and can be computed within minutes
even on a common laptop computer.

5. S-Web Evolution

The rapid calculation of field line connectivities and the
squashing factor in a three-dimensional grid allows the
complexity of the coronal magnetic field and the temporal
evolution of the S-Web to be quantified. We have postpro-
cessed a long-term magnetofrictional simulation by using
UFiT to compute Q on a grid of (120, 480, 960) points in (r, θ,
f) (including the curvature terms). Results were obtained at
weekly intervals for the year 1981—a strong solar maximum of
Cycle 21—and 1986—a solar minimum between Cycles 21
and 22. For each week in turn, field lines were traced for two
inputs. First, the field was taken by UFiT from the full
magnetofrictional simulation. Second, only the photospheric
field was taken from the magnetofrictional simulation and
supplied as a boundary condition for a PFSS solution to the
field using the pfsspy package (see Stansby et al. 2020); this
was then used as an input to UFiT.

Figure 7 shows slices through the three-dimensional grid at
constant values of each of the three coordinates such that the
panels are centered on r= 2.5 Re, θ= 20°, f= 120°, at noon
on 1981 February 26. This center is chosen as the point on the
source surface above an emerging active region. As above, the
convention of positive for closed and negative for open field
lines is used. Both the magnetofrictional and PFSS models are
considered. In the former, swirls of large Q extend upward
from the location of the active region. Reconnection across

such separatrices occurs during flares and eruptions. The
magnetic field in the PFSS model has broadly similar topology,
but is notably smooth and placid with regard to fine features.
This is expected since potential fields contain no dynamics or
current carrying structures, and it has been confirmed by
previous studies such as Edwards et al. (2015).
The grid of Q is further postprocessed by the HQVseg code

(Scott et al. 2018, 2019; Scott 2019). Above a certain threshold,
regions are designated as high-Q volumes (HQVs). Analysis of
the field topology allows different properties to be assigned to
different HQVs. For example, the regions around the helmet
streamer belt can be distinguished from all others by the
presence of both inward and outward magnetic polarities, as
shown at the source surface in respective plots in Figure 7.
The HQVs around the helmet streamers, separate from the

helmet streamers and the sum of these two types of region for
the time periods mentioned above is shown in Figure 8. The
mean and standard deviation are indicated for both magneto-
frictional and PFSS models. In the former case, the volumes

Figure 5. Fraction of coronal volume in which field lines map to the
photosphere with signed coronal hole distance dCHB below the values
indicated. Note that the negative sign of dCHB corresponds to open field lines,
so the more negative distances correspond to the centers of coronal holes.

Figure 6. Synthetic coronagraphs computed based on the squashing factor at
12:00 on 1992 February 4, during solar maximum (upper) and at 2017 August
25, during solar minimum (lower).
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during solar maximum clearly exceed solar minimum in both
categories and hence also in sum. This straightforwardly agrees
with the greater magnetic complexity arising from an increased
number of active regions during solar maximum. In the PFSS
case, the volumes are uniformly lower than for the magneto-
frictional model, and the sum total mean does not differ
significantly between solar minimum and maximum, for the
reasons outlined above.

6. Conclusion

We have presented a new field line tracing code and
associated software libraries for studies of the solar corona. It is
intended to be simple to use, requiring commonly used
programming languages and libraries. Its main advantage is
that it can read the magnetic field directly from a number of
commonly used simulation codes, with more added in the

Figure 7. Signed logarithm of the squashing factor Q on 1981 February 26, computed by UFiT from the magnetofrictional DUMFRIC code (top) and equivalent PFSS
solution (bottom). Each slice is at a constant value of r, θ, and f, respectively, as indicated. The lowest panel of each group shows HQVs at the source surface, labeled
as belonging to helmet streamers, or otherwise.
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future, particularly upon request. The results are returned in a
single, self-contained format. When computing the squashing
factor Q, we have demonstrated a good degree of numerical
accuracy compared to an analytic model and computational
performance compared to other codes. We have also demon-
strated a number of techniques for visualizing the structure of
the corona.

We have used UFiT to compute volumetric quantities from
a particular snapshot of the corona. For example, we find that
81% of the coronal volume is open; this fraction drops to 60%
for open field lines terminating >20Mm from a given coronal
hole boundary. We have also used UFiT to generate synthetic
images of the corona by integrating a function of the squashing
factor along a particular line of sight. Within a longer-term
simulation, we have computed the volumes of high Q making
up the S-Web, and identified those fractions corresponding to
the streamer belt. We find that intuitively the S-Web occupies a
larger fraction of corona during solar maximum relative to solar
minimum, but only within a more realistic magnetofrictional
model, rather than the commonly used PFSS model.

In the future, we intend to extend UFiT, which currently
uses a first-order integration scheme, to more effective higher-
order schemes. One desirable property of such a scheme is
reversibility, so that integration forward and backward would
return to the original seed point within machine precision;
commonly used higher-order integrators like Runge–Kutta do
not exhibit this property in general. We next intend to extend
our analysis of the dynamic S-Web to cover a continuous
magnetofrictional simulation of the previous 4.5 solar cycles.
We intend to investigate other methods of dividing up the
HQVs, which may elucidate the outflow of the solar wind.
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Appendix A
Interpolation

The magnetic field at an arbitrary position inside either
regular or adaptive simulation grids is calculated by linear
interpolation. A transformation is first made to a cube of unit
size, with the original and transformed coordinates defined
through

[ ] ( )Îx x x, , A10 1

˜ [ ] ( )Îx 0, 1 , A2

Figure 8. Fraction of the corona occupied by HQVs over the period of a year during solar Maximum (1981, marked “Max”) and Minimum (1986, “Min”). The panels
on the left show results for the magnetofrictional DUMFRIC code and on the right for the equivalent PFSS solution. The volume is identified as belonging to helmet
streamers (top) to other features (middle) and both these groups (bottom). The points on the right of each set of panels show the mean and standard deviation of each
respective time series.

6 https://www.csd3.cam.ac.uk/
7 https://dirac.ac.uk/
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˜ ( )=
-
-

x
x x

x x
, A30

1 0

and similarly for the other Cartesian or spherical coordinates as
required. Note that the grid is always first transformed from its
native one to one of these two coordinate systems (the ARMS
and DUMFRIC codes, for example, use ( )r = rlog ), before
interpolation.

We define a system of coefficients

( )= -a f f , A41 100 000

( )= -a f f , A52 010 000

( )= -a f f , A63 001 000

( )= - - +a f f f f , A74 110 100 010 000

( )= - - +a f f f f , A85 101 100 001 000

( )= - - +a f f f f , A96 011 010 001 000

( )
= - - - + + + -a f f f f f f f f ,

A10
7 111 110 101 011 100 010 001 000

where the value of the original function at the eight cube
vertices is denoted by ( ˜ ˜ ˜ )º = = =f f x y z0, 0, 0000 , ºf100

( ˜ ˜ ˜ )= = =f x y z1, 0, 0 , and so on.
The interpolant function is given by

( ˜ ˜ ˜) ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ( )

= + + +
+ + + +
f x y z f a x a y a z

a xy a xz a yz a xyz

, ,

. A11
000 1 2 3

4 5 6 7

Derivatives of the interpolated quantities are computed by
differentiating Equation (A11) directly, leading to the algebraic
expression

˜
˜ ( )¶

¶
=

¶
¶

¶
¶

f

x

f

x

x

x
A12

( ˜ ˜ ˜ ˜) ( )=
-

+ + +
x x

a a y a z a yz
1

A13
1 0

1 4 5 7

and similarly for the other coordinates. This method is
advantageous due to its computational simplicity when the a
coefficients are already calculated as part of the interpolation
routine. The problem with linear interpolation is that it
produces constant derivatives, which leads to a checkerboard
pattern when computing Q. This effect can be mitigated by
normalizing B for the purposes of field line tracing and vector
transport.

Appendix B
Field Lines and Lie Transport

The equation for the parameterized position X(s) along a
field line is given by

( ) ( · ) ( ) ( )º  =X B X B
d

ds
s s , B1

while the Lie transport equation for a vector U(s) that
transforms under the push-forward along X(s) is given by

( ) ( · ) ( ) ( ( ) · ) ( )º  = U B U U B
d

ds
s s s . B2

Here B is understood to be a function of X(s) and ∇ is the
gradient operator. In component form ˆ=B eBi i for some set of
orthonormal basis vectors êi, and similarly for the components

of ˆ=U eUi i, with the usual implied summation over repeated
indices.
The directional derivative (of a test function ◦) along B is

then given in terms of the components of B as

ˆ ˆ· (◦) · (◦) (◦) ( ) º
¶
¶

=
¶
¶

B e eB
q

B
q

, B3i i j
j

i
i

and similarly for the directional derivative along U. The
weighted partial derivatives ¶ ¶ º ¶ ¶-q g xi ij j

1 2 implicitly
account for the coordinate metric gij, which is the identity in
Cartesian coordinates, while for spherical coordinates gij has
(only) diagonal elements { }qr r1, , sin2 2 2 . Equation (B1)
implicitly defines the affine parameter s so that

(◦) (◦) ( )º
¶
¶

d

ds
B

q
, B4i

i

while the physical distance, l, along the field line is given
implicitly through

(◦) ∣ ∣ (◦) ( )º B
d

ds

d

dl
. B5

In order to solve Equations (B1) and (B2) (from suitable
initial conditions) we must rewrite them as a set of ordinary
differential equations in s (or l) for each component of X and U.
In Cartesian (cart) coordinates this is straightforward since only
the components of X and U change along s. The field line
Equation (B1) then becomes

( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ˆ ˆ ( )

( ) = + +

= + +

X x x y y z z

x y z

d

ds
s

d

ds
s

d

ds
s

d

ds
s

B B B , B6x y z

cart

while the Lie transport equation is

( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ ˆ ˆ ( )

( ) = + +

=
¶
¶

+
¶
¶

+
¶
¶

U x y z

x y z

d

ds
s

d

ds
U s

d

ds
U s

d

ds
U s

B
x

B B
x

B B
x

B . B7

x y z

i
i

x i
i

y i
i

z

cart

The component equations for the evolution of X(s) and U(s) in
Cartesian are, therefore,

( ) ( )=
d

ds
x s B , B8x

( ) ( )=
d

ds
y s B , B9y

( ) ( )=
d

ds
z s B , B10z

and

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )=
¶
¶

+
¶
¶

+
¶
¶

d

ds
U s U

x
U

y
U

z
B , B11x x y z x

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )=
¶
¶

+
¶
¶

+
¶
¶

d

ds
U s U

x
U

y
U

z
B , B12y x y z y

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )=
¶
¶

+
¶
¶

+
¶
¶

d

ds
U s U

x
U

y
U

z
B . B13z x y z z

In spherical (sph) coordinates the basis elements êi are not
constant, and the variation in ei along X(s) must be accounted
for. Here, we proceed with the convention that {r, θ, f} define
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a right-handed coordinate system with θ increasing away from
the north pole and ˆ ˆ ˆ´ =q fe e er . In terms of these coordinates,
the matrix of partial derivatives ˆ¶ ¶e xi j is given by

ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ ( ˆ ˆ )

( )
q q q q

¶
¶ + -
¶ + + - +

q f

q q

f f f q

e e e

e e
e e e e

0 0 0
0

sin cos sin cos

B14

r

r

r

r

with each entry corresponding to the resultant found when
differentiating the basis vector from the associated column with
respect to the coordinate from the associated row.

Noting that the position vector in spherical coordinates is
( ) ( ) ˆ( ) =X es r s r

sph , we can write (B1) as

( )

( ) ˆ ( ) ( ) ˆ ˆ ˆ ˆ( ) = + = + +q q f f

B15

X e e e e e
d

ds
s

d

ds
r s r s

d

ds
B B B .r r r r

sph

The variation in êr along s can then be written as

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

ˆ ˆ ( ) ˆ ( ) ˆ ( )
q

q
f

f=
¶
¶

+
¶
¶

+
¶
¶

B16

e e e e
d

ds r

d

ds
r s

d

ds
s

d

ds
s ,r r r r

from which it follows that

ˆ ( ) ˆ ( ) ˆ ( )

ˆ ˆ ˆ ( )

q q f+ +

= + +

q f

q q f f

e e e

e e e

d

ds
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d

ds
s r

d

ds
s

B B B

sin

. B17

r

r r

The individual components of the field line Equation (B1) in
spherical coordinates are therefore given by

( ) ( )=
d

ds
r s B , B18r

( ) ( )q = q
d

ds
s

r
B

1
, B19

( ) ( )f
q

= f
d

ds
s

r
B

1

sin
. B20

We similarly expand the Lie transport Equation (B2) into
components as

ˆ( ) ˆ ˆ ˆ

( )

( ) = + =
¶
¶

+
¶
¶

U e e e e
d

ds
s

d

ds
U U

d

ds
U

q
B B U

q
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B21

i i i i j i
i

j j i
i

j
sph

Then, making use of Equation (B4) and exchanging repeated
indices, we have

ˆ ˆ ˆ ˆ ( )=
¶
¶

+
¶
¶

-
¶
¶

e e e e
d

ds
U U

q
B B U

q
U B

q
, B22i i i j

j
i i j

j
i i j

j
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where the terms on the right-hand side (RHS) of Equation (B22)
can be computed directly from the spatial variation in B and the
local value of the components of U along X(s). Finally, after
projecting (i.e., left-multiplying) Equation (B22) against indivi-
dual basis elements ek, and exploiting orthornormality
(ˆ · ˆ d=e ek i ki), the kth component of U satisfies the scalar

ordinary differential equation

( ) ˆ · ˆ ( )=
¶
¶

+ -
¶
¶s

U U
q

B B U U B
q

e e
d

d
. B23k j

j
k i j i j k

j
i

Noting that the last term on the RHS of Equation (B23) is only
nonzero for i≠ j, the relevant entries for ˆ¶ ¶e xi j are

ˆ · ˆ ( )
q
¶
¶

=qe e 1, B24r

ˆ · ˆ ( )
f

q
¶
¶

=fe e sin , B25r

ˆ · ˆ ( )
f

q
¶
¶

=f qe e cos . B26

Substituting these values into Equation (B23) we then have

( ) ( )=
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ds
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q
B , B27r j
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+q q q
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1
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where B[iUj]= (BiUj−UjBj) and
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Appendix C
Analytic Squashing Factor Derivation

In Section 3 we have validated our methods against the
following analytical Q calculation. Consider a potential field
with the boundary condition ( ) q f q=B R , , cosr . The solu-
tion to Laplace’s equation in spherical coordinates (subject to
Neumann boundary conditions) between the photosphere at
r= Re and a source surface at r= Rss (on which Bθ= Bf= 0)
gives

⎜ ⎟
⎛
⎝

⎞
⎠

( )


q=

+
+

B
R

r

R r

R R

2

2
cos , C1r

ss

ss

3

3

3 3

3 3

⎜ ⎟
⎛
⎝

⎞
⎠

( )


q=

-
+

qB
R

r

R r

R R2
sin , C2ss

ss

3

3

3 3

3 3

( )=fB 0. C3

Let us denote the footpoint of an open field line by the point
(Re, θe, fe) and the handhold of the same field line by (Rss,
θss, fss). The axisymmetry implies that f= fe= fss all along
the field lines. The parameterization of the field line mapping of
Equation (B1) in spherical coordinates gives

( )q
= =

q
ds

dr

B

rd

B
. C4

r
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Substituting the solutions for Br, Bθ and integrating gives

( )
 

ò ò
q
q

q
-
+

=
q

q

r

R r

R r
dr d

1

2

cos

sin
, C5
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R
ss

ss

3 3
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ss ss

which, after some rearranging, gives

( )
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( )
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q
q

+
=

R R
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2

3

sin
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. C6ss

ss

ss
3 3

2

We will denote the constant on the left-hand side as follows for
brevity,

( )


=

+
C

R R

R R

2

3
. C7ss

ss

3 3

2

This implies that the separatrices have footpoints at

( ) ( )/q q= =
q p

Clim arcsin 1 . C8QSL
2ss

Using Equations (C6) and (C7) we can define the mapping
of the open magnetic field lines for Re� r� Rss in terms of the
function

( ) ( ( )) ( )  q f q qQ = = C, arcsin sin . C9ss

This allows the norm N in Equation (28) to be calculated in
spherical coordinates (using Titov 2007, Equation (38)) as

( ) ( )= *N Tr D G DG , C10T2

where
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(see also Titov 2007, Equations (39) to (41). We therefore have
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The determinant ( )Jdet is given by the ratio of the normal
components of the magnetic field to the flux tube ends,

( )
( )( )

( ) ( )

( )
( )

 








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q q
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R R
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2
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3
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3 3

Substituting Equations (C14) and (C15) into Equation (28)
gives

Note that this is valid for open field lines with footpoints
satisfying θe� θQSL and θe� π− θQSL. For closed field lines
with footpoints θQSL< θe< π – θQSL, the mapping is uniform
and symmetric about q = p

2
. This implies that Q is identically 2

in the closed field region.
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