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Abstract— Two promising approaches to coverage path plan-
ning are reward-based and pheromone-based methods. Reward-
based methods allow heuristics to be learned automatically,
often yielding a superior performance to hand-crafted rules. On
the other hand, pheromone-based methods leverage stimgergy
to achieve superior generalization and adaptation in unknown
or nonstationary environments. To obtain the best of both
worlds, we introduce Greedy Entropy Maximization (GEM),
a hybrid approach that aims to maximize the entropy of a
pheromone deposited by a swarm of homogeneous ant-like
agents. We begin by establishing a sharp upper-bound on
achievable entropy and show that this corresponds to optimal
dynamic coverage path planning. Next, we demonstrate that
GEM closely approaches this upper-bound despite depriving
agents of typical necessities such as memory and explicit
communication. Finally, we show that GEM can be executed
asynchronously in constant-time through distillation into a
shallow neural network, making our approach highly scalable.

I. INTRODUCTION

Coverage Path Planning (CPP) is the task of directing one
or more mobile agents such that they collectively explore
the entirety of a given area [1]. An example is illustrated in
Fig. 1, where four robots are coordinated to cover an area
with obstacles collaboratively. CPP has numerous applica-
tions across domains such as search and rescue [2], explo-
ration of hazardous environments [3], robot-insect interaction
[4], aerial surveillance [5], [6], and autonomous driving [7].

CPP approaches can be categorized along various axes,
such as whether they operate in stationary or nonstationary
environments, or whether they make use of discrete or
continuous action-spaces. This work concerns two classes of
approach known as reward-based and pheromone-based re-
spectively. In reward-based approaches, task-specific desider-
ata are represented by a scalar-valued reward function that
is subsequently maximized using reinforcement learning
or other mathematical optimization strategies [8]. A major
advantage of reward-based approaches is that they enable
decision heuristics to be inferred automatically through rein-
forcement learning rather than crafted by hand, often leading
to superior performance [9]. Orthogonally, pheromone-based
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Fig. 1. Cooperative coverage of four robots in a cluttered environment.

approaches take inspiration from natural swarms such as ant
colonies, wherein successful coverage path planning emerges
from localized interactions between simplistic agents [10],
[11]. Additionally, pheromone-based approaches typically
make very few assumptions about the environment dynamics,
paving the way for superior generalization and adaptation to
unknown environments [12].

While both reward- and pheromone-based approaches
have respective merits, to the best of our knowledge, very
few works aim to combine them. In this work, we affirm that
combining these approaches through learned pheromone-
based policies is highly effective and obtains the best of
both worlds. Our proposed method, known as Greedy En-
tropy Maximization (GEM), is based on the observation that
maximizing the entropy of pheromone deposited within an
environment is equivalent to optimal dynamic coverage path
planning. We find that with only local pheromone informa-
tion, a swarm of homogeneous ant-like agents can rapidly
increase the entropy, leading to highly efficient coverage.
Most notably, we find that GEM closely approaches the
upper-bound on entropy maximization performance, bring-
ing it within proximity to an optimal policy. Our training
approach is two-fold. Firstly, we pretrain GEM policies
through behaviour cloning to approximate the behavior of
an expert hand-crafted policy known as Argmin. Secondly,
we fine-tune pretrained policies on an entropy maximiza-
tion objective to learn further refinements. The resulting
policies empirically demonstrate strong generalization across
environment configurations that were not observed during
training.

In summary, our contributions are as follows:
1) We introduce entropy maximization as a generalized

dynamic coverage path planning objective suitable for
learning pheromone-based policies.

2) We develop GEM policies that leverage a pretrain then
fine-tune training strategy to obtain strong performance.

3) We conduct empirical investigations into GEM’s per-
formance under diverse environment configurations and



demonstrate evidence of strong generalization.

II. RELATED WORK

Prior work has established reward-based and pheromone-
based coverage path planning approaches as highly success-
ful. One line of work instigated by Predator-Prey Coverage
Path Planning (PPCPP) [13] introduces a multi-faceted re-
ward function based on the concepts of foraging and risk-
of-predation in predator-prey relationships. The proposed
reward function encourages agents to explore uncovered
regions (foraging) while maximizing their distance to a set of
virtual predator points. The predators cause agents to collec-
tively avoid revisiting already covered regions. Subsequent
approaches building on PPCPP include Dec-PPCPP [14] for
decentralized execution and DH-CPP [15], where the method
is extended to handle unbounded surface area environments.
An alternative line of work is based on incremental expansion
of agent regions. For instance, [16] train a decentralized
multi-agent policy with a reward that strongly penalizes over-
lap between individual agent regions. Once coverage regions
have been established, traditional spanning-tree methods [17]
are used to obtain explicit trajectories.

Regarding pheromone-based approaches, a seminal work
is Stigmergic Coverage (StiCo) [18]. In this scheme, a team
of ant-like agents traverse continuous circular paths that
encompass their individual coverage regions. Each agent
deposits pheromone along the circumference of its region
while also aiming to avoid traversing pheromone deposited
by others. Collectively, this causes an initially dense packing
of agents to disperse and cover the whole area of interest.
Following this, BeePCo [19] takes inspiration from the dy-
namics between queen and worker bees to develop a comple-
mentary method to StiCo. Finally, HybaCo [20] introduces a
hybrid ant-and-bee approach, effectively composing aspects
of StiCo and BeePCo to compensate for their individual
limitations. A key limitation of StiCo is that it does not
specify how agents should traverse the interior of their
individual coverage regions. While it provides an efficient
decomposition of the target area, it does not provide the
explicit coverage trajectories necessary in many applications
[21]. Motivated by bio-inspired learning techniques [22], we
aim to address this limitation in our work by utilizing the
advantages of both sides.

III. ENTROPY MAXIMIZATION

In this section, we introduce entropy maximization as a
generalized coverage path planning objective and provide a
corresponding reward function.

The goal of entropy maximization is to maximize the
entropy of a pheromone deposited by a swarm of ant-like
agents within an environment. Entropy in this case refers
to the Shannon entropy of the normalized pheromone dis-
tribution. Since we allow the deposited pheromone to decay
over time, regions that do not receive frequent updates will
cause the pheromone distribution to become more concen-
trated and take a lower entropy value. Redundant visitation
and unnecessary overlap between agent regions also induce

a similar effect. Indeed, we find that many conventional
coverage path planning desiderata are naturally optimized
for by maximizing entropy. To this end, we consider entropy
maximization a promising objective for training pheromone-
based policies.

A. Partially Observable Markov Decision Process

In entropy maximization, we formulate the environment as
a Partially Observable Markov Decision Process (POMDP)
(S,A, Pa, Ra), where S is the state-space, A is the action-
space, Pa(st−1 → st) is a dynamics model, and Ra(st−1 →
st) is a reward model. A policy π is a deterministic or
stochastic function that maps states to actions, i.e., for every
state st ∈ S, it produces a corresponding action at ∈ A.

Concretely, each state st holds a distribution of pheromone
over the points of a lattice G = (V,E). Each point v ∈ V
represents a location that an agent may exclusively occupy.
Each edge e ∈ V represents a path that an agent may travel
along in order to move between points. Hence, the action
space for n agents is the set of all n-sized subsets of E.
Under this formulation, obstacles and prohibited actions can
be implemented by removing subsets of edges in E.

While we assume Pa is unknown due to partial observ-
ability, we explicitly define the reward model Ra as follows.
Firstly, whenever an agent moves, we assume that it deposits
one unit of pheromone to the point it previously occupied.
Then, representing the pheromone distribution as a vector,
we have that

st = (1− α)st−1 + ot−1, (1)

where α ∈ (0, 1) is the pheromone decay rate, and ot−1 is
a one-hot vector containing 1s at the indices of previously
occupied points. For brevity, we denote the normalized
pheromone distribution by

ut =
st −min st

max st −min st
. (2)

Under this formulation, we define the entropy maximization
reward as follows:

REM (st−1 → st) = H[ut]−H[ut−1], (3)

where H[·] is the Shannon entropy measured in nats. Intu-
itively, this is the difference in entropy between successive
time steps. The reward is positive if the entropy increases and
negative otherwise. Accordingly, the entropy maximization
objective can be formulated as the expected cumulative
reward obtained by rolling out a given policy π. This is given
by,

V π = E

[
T∑

t=1

γtRπ(st−1)(st−1 → st)

]
, (4)

where γ is the discount rate.
Interestingly, we find that low-value policies exhibit con-

ventionally undesirable traits and thus cause low entropy,
while high-value policies will lead to a better coverage
performance, as shown in Fig. 2.
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Fig. 2. Behavioural characteristics of (a) low-value and (b) high-value
policies under entropy maximization.

B. Entropy Maximization Upper-bound

An advantage of formulating coverage path planning in
terms of entropy maximization is that it enables us to derive
a sharp upper bound on coverage path planning performance.
With such a bound, we can make quantitative statements
about the extent to which candidate policies are optimal.

According to our reward model, the reward accrued at
each time step is the change in entropy of the pheromone
distribution.

Theorem 1: Let π be a policy with n ≥ 1 participating
agents. Then, the expected cumulative reward at time t is at
most log(nt).

Intuitively, a reward of log(nt) is obtained if, at every time
step including t, the policy uses n agents to visit n fresh
points while maintaining a perfectly uniform distribution
over all visited points. The extent to which any policy can
achieve this reward depends on the pheromone decay rate α.
For low decay rates, any policy that avoids revisiting points
for t steps will achieve an expected cumulative reward of
approximately log(nt). However, for high decay rates, even
a policy that avoids revisitation may struggle to maintain
such high entropy. In this sense, the decay rate regulates the
relative difficulty of the CPP task. In our experiments, we
consider decay rates of α = 0.01 (standard) and α = 0.1
(hard). Ideally, we ought to use an upper bound that is
dependent on the chosen decay rate. Unfortunately, this is
highly nontrivial as the pheromone distribution at time t
depends intricately on the particular sequence of actions
taken in prior states. Nonetheless, the present upper bound
is sufficient to make quantitative claims about the optimality
of a given policy.

To motivate our use of this bound, we provide the follow-
ing analysis.

Let π be a policy with n ≥ 1 participating agents. Let
G = (V,E) be the environment lattice. Let Ot ∈ V denote
the subset of points that have ever been visited at time t.

Since the pheromone distribution is uniformly zero over
unvisited points, the entropy at time t is only variant to the
pheromone distribution over visited points. The maximum

entropy distribution is a uniform distribution over Ot. Then,

H[ut] ≤ log |Ot|. (5)

With agents n, the maximum number of points visited at
time t is nt. Then,

H[ut] ≤ log(nt). (6)

The maximum possible reward at time t occurs when
the entropy jumps from zero to maxH[ut]. Therefore, it is
upper-bounded by log(nt) and thus the proof is completed.

IV. GREEDY ENTROPY MAXIMIZATION

Greedy Entropy Maximization (GEM) is a hybrid reward-
and pheromone-based method for coverage path planning.
Concretely, GEM aims to learn a pheromone-based policy
π(·; θ) that determines each agent’s next move based only
on adjacent pheromone levels. We use a stochastic policy
function such that it returns a distribution over possible
actions {NORTH,EAST,SOUTH,WEST}. A complete cov-
erage path plan can then be simulated by rolling-out π(·; θ).

A. Asynchronous Execution

An important practical consideration is the time complexity
associated with the execution of π(·; θ) for n agents. In
theory, constant time complexity can be achieved if the
policy is executed asynchronously by all agents in parallel.
This implies that agents must move simultaneously without
waiting for each other. In practice, this presents numerous
difficulties such as race conditions that lead to collisions with
agents or dynamic obstacles. To overcome this problem, we
utilize a pretrain then fine-tune training strategy that adds a
collision avoidance term to the regular entropy maximization
reward function. This is given by

Ra(st−1 → st) = REM(st−1 → st) + βRCA(st−1 → st),
(7)

where RCA(·) returns a value of −1 on colliding actions and
0 otherwise. We set β to a high value (i.e. 100) in order to
strongly penalize collisions.

B. Student Policy Architecture

We utilize a lightweight multilayer perceptron (MLP) to
parameterize the policy function π(·; θ) (shown in Fig. 3).
We observe only minor gains in performance from utilizing
a more sophisticated convolutional architecture, presumably
due to the small spatial dimension of each agent’s local field
of view. However, we suspect that policies requiring inter-
agent communication could motivate more expressive models
such as attention-based transformer networks [23].

C. Argmin Pretraining

Our most successful GEM policies were pretrained
through behavior cloning to approximate the behaviour of
an expert policy known as Argmin (illustrated in Fig. 4).
Argmin is exceptionally simple, yet highly effective. In short,
it instructs every agent to move to the whichever adjacent
point has the least pheromone deposited there. Despite its



synchronous execution model, we find that combining be-
havior cloning with collision avoidance is sufficient to distill
Argmin into an asynchronous neural network policy.

After pretraining, we further fine-tune GEM policies on
the entropy maximization and collision avoidance rewards
given in equation (7). While Argmin is highly effective early
in coverage, it frequently exhibits slow convergence once a
large amount of pheromone has been deposited. Subsequent
fine-tuning appears to learn adjustments that compensate for
such failure modes.

In both pretraining and fine-tuning, we use multi-agent
reinforcement learning with Proximal Policy Optimization
(PPO) [24]. We found PPO to be substantially more effective
than alternative algorithms such as deep Q-learning.

D. Argmin Pseudocode

Let Ot be the set of locations occupied by agents at time
t, and let ot be a one-hot representation of Ot, i.e., ot[i] =
1 ⇐⇒ i ∈ Ot. Let adj(i) denote the set of locations
adjacent to location i. Finally, as before, let st denote the
unnormalized pheromone distribution at time t. In this case,
Argmin is executed as specified by Algorithm 1.

Algorithm 1 Argmin Policy Execution
1: for t ∈ {0, . . . , tmax} do
2: for i ∈ Ot do
3: Oi

t+1 = argminj∈adj(Oi
t)
st[j]

4: end for
5: st+1 = (1− α)st + ot

6: end for

V. RESULTS AND EVALUATION

In this section, we present results that empirically validate
GEM’s performance in diverse simulated environments. Our
methodology revolves around varying key factors such as
obstacle density, obstacle stochasticity, number of agents, and
map size, while observing changes to performance.

A. Performance Metrics

To distill the performance into a single scalar value, we
measure the mean difference between the upper bound of the
entropy and the empirical entropy achieved by GEM over the
course of a run. Since entropy is logarithmic, we prefer to
measure the mean difference in perplexity. We refer to this
metric as the “P-score”, given by

P = 1−
1

T

T∑
t=1

(
exp(R∗

t )− exp(Rt)

exp(R∗
t )

)
, (8)

where R∗
t denotes the reward obtained by an optimal policy

at time t. This is just the entropy upper-bound log(nt). An
optimal policy achieves a P-score of 1.0 since at all times,
it matches the upper-bound perplexity.

We plot the cumulative reward of GEM, GEM* and
the entropy maximization upper-bound averaged over 1000
runs. GEM* depicts the hypothetical reward that would be

 

Fig. 3. Student Policy Architecture.

 

Fig. 4. Our pretrain then fine-tune training strategy.

achieved if the pheromone was distributed perfectly uni-
formly over all points visited by GEM.

Aside from P , we use the following notation for other
variables of interest. We denote by D ∈ [0, 1), the obstacle
density, i.e., the probability that a randomly selected point
in the environment lattice is occupied by an obstacle. We
denote by S ∈ [0, 1), the obstacle stochasticity, i.e. the
probability that a particular obstacle will move at time t. In
our experiments, we simulate movement through Brownian
motion. We denote by n ∈ N, the number of agents
participating in coverage. We denote by A ∈ N, the size
of the map (e.g. 16 for a 16x16 map). Finally, we denote
by N , the number of times a particular experiment was run.
Generally, we use N = 1000.

B. Obstacle Density

How do GEM policies be trained in low obstacle density
environments (below 1%) perform in higher density settings?
Remarkably, we find that policies trained without any obsta-
cles can nonetheless achieve high coverage in their presence
(e.g., Fig. 5). This holds for densities medium to high den-
sities (5% to 20% respectively). At obstacle densities higher
than 20% (extreme), a substantial proportion of points are
entirely inaccessible (i.e. blocked by obstacles on all sides).
In this case, no CPP policy may succeed in covering them.
Moreover, many agents experience entrapment (i.e., confine-
ment to small portions of the map), leading to substantially
reduced coverage capacity. Under these circumstances, GEM
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Fig. 5. Cumulative reward for GEM vs the upper-bound. A = 16, n =
16, N = 1000,P = 0.90.
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Fig. 6. Cumulative reward for GEM vs the upper-bound. A = 32, n =
4, N = 1000, P = 0.87.

performs poorly. Nonetheless, we observe in GEM, a striking
ability to retain high coverage once such extreme conditions
have subsided. Table I compares P-score against obstacle
density with α = 0.01, A = 16, n = 16, S = 0 and
N = 1000.

C. Obstacle Stochasticity

Obstacle stochasticity represents the rate at which obsta-
cles move. In our experiments, we simulate each obstacle’s
movement through Brownian motion. The stochasticity ex-
plicitly corresponds to the probability that an obstacle will
change location (using a Brownian motion) at time t. Future
work may consider more sophisticated dynamics models.
In general, we find that increasing stochasticity does not
substantially degrade coverage performance in high obstacle
density environments. On the contrary, in extreme obstacle
density environments, increased stochasticity reduces the
risk of long-term entrapment or inaccessible points, thereby
improving coverage. We note that this effect may not be seen
in alternative obstacle dynamics models. Table II compares
P-score against obstacle stochasticity with α = 0.01, A =
16, n = 16, D = 0.2, and N = 1000.

D. Map Size

Although we conduct training on 16x16 maps, we find
that GEM policies remain effective in larger settings given
sufficient agents (namely n = A), as illustrated in Fig. 8. We
may attribute this to the fact that GEM policies only consider
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Fig. 7. Cumulative reward for GEM vs the upper-bound (500 steps). A =
32, n = 4, N = 1000,P = 0.61.
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Fig. 8. Cumulative reward for GEM vs the upper-bound. A = 32, n =
32, N = 1000,P = 0.84.

a small field of view around each agent. In this case, we
may expect only a marginal change in how these localized
features are distributed on small versus large maps. Table
III compares P-score against map size with α = 0.01, n =
A,D = 0.05, S = 0 and N = 1000. Similarly, Fig. 5 and
Fig. 8 demonstrate generalization across multiple map sizes
(i.e. 16 and 32).

E. Number of Agents

Regarding the number of participating agents, we observe
that GEM generally permits the use of only n = A agents
to achieve high coverage (i.e. P > 0.80), with a pheromone
decay rate of α = 0.99. In other words, we may use n
agents to cover n2 points efficiently. With substantially fewer
agents (i.e. n <

√
A), we find that GEM cannot match

the upper-bound at this decay rate except during the first
few steps of coverage as illustrated in Fig. 7. This can be
attributed to premature revisitation, wherein already visited
points with low pheromone are more likely to be observed
than very distant unvisited points, causing revisitation. A
simple remedy is to reduce the pheromone decay rate such
that agents are less likely to encounter visited points that
have exceptionally low pheromone. However, we find that
this approach has diminishing returns when the ratio between
n and A is below 0.1%. Table IV compares P-score against
number of agents with α = 0.01, A = 16, D = 0.05, S = 0
and N = 1000.



TABLE I
OBSTACLE DENSITY VS P-SCORE.

Obstacle Density D P-score P
0.05 0.88
0.10 0.86
0.20 0.85
0.50 0.23

TABLE II
OBSTACLE STOCHASTICITY VS P-SCORE.

Obstacle Stochasticity S P-score P
0.05 0.85
0.10 0.86
0.30 0.84
0.50 0.81

TABLE III
MAP SIZE VS P-SCORE.

Map size A P-score P
16 0.88
32 0.87
64 0.86

TABLE IV
NUMBER OF AGENTS VS P-SCORE.

Number of agents n P-score P
4 0.84
16 0.88
32 0.89

VI. CONCLUSION

In this work, we introduce GEM, a novel hybrid reward-
and pheromone-based approach to coverage path planning
that incorporates the advantages of both paradigms. We
establish an upper-bound on entropy maximization perfor-
mance and find empirically that GEM closely approaches it
in diverse environments. Moreover, our experimental results
demonstrate several instances of generalization to unseen en-
vironment configurations, which we attribute to the localized
nature of pheromone-based communication.
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