
Proceedings of 2024 IEEE 12th International Conference on Intelligent Systems (IS)

RRT*-Based Leader-Follower Trajectory Planning
and Tracking in Multi-Agent Systems

Catalina Agachi
Department of Computer Science
University College London, UK

Email: catalina.agachi.19@ucl.ac.uk

Farshad Arvin
Department of Computer Science

Durham University, UK
Email: farshad.arvin@durham.ac.uk

Junyan Hu
Department of Computer Science

Durham University, UK
Email: junyan.hu@durham.ac.uk

Abstract—Coordination of multi-agent systems has received
significant attention during the past few years owing to its wide
real-world applications, such as cooperative exploration, aircraft
formation, and autonomous vehicle platooning. To address this
issue, this research presents a novel method for multi-agent
systems to navigate through environments with obstacles. The
system consists of a group of agents with a leader-follower
structure, where the leader aids in guiding the agents toward the
target location and the followers are steered to maintain a flexible
formation. To achieve cooperation, the agents communicate
within a connected and undirected network, exchanging informa-
tion within a specific radius. The leader’s path is generated using
the RRT* algorithm, which serves as a reference for the followers.
A control law utilizes consensus and APF is then implemented,
ensuring coordinated motion while maintaining safe distances
among agents and between agents and obstacles. Finally, the
effectiveness of the developed two-layer coordination strategy is
verified by simulations.

Keywords—Path planning; cooperative control; multi-robot
systems; swarm robotics.

I. INTRODUCTION

Multi-agent systems (MASs) include multiple intelligent
agents that interact in a shared environment to achieve col-
lective goals, which have been widely implemented in some
real-world applications, e.g., vehicle platooning [1], [2], area
coverage [3]–[5], search and rescue [6], robot and bee colony
interactions [7], etc. Due to the existence of multiple cooper-
ating agents, MASs may provide a more efficient approach to
problem-solving, as they can handle situations that are difficult
to be solved by a single agent. Besides, they can collectively
work towards achieving a common goal, thus resulting in high
efficiency and robustness. There are various challenges in the
research area of MASs. One of the main challenges is the
limited communication among agents. Another challenge is
decentralized decision-making, where each agent acts inde-
pendently based on its local perception and its own goals.
Therefore, control protocols have to ensure that the behaviors
and actions taken by the agents can lead to reaching the global
goal.

Motivated by natural behaviors, such as bird flocks, fish
schools, and bee colonies, distributed control aims to coordi-
nate a team of robots to achieve desired collective movements
through local information. Many studies were conducted to
develop control protocols for MASs. One of them has been

conducted by Couzin et al. [8] and it demonstrated that by
using controllers that are based only on state exchange from
the close neighbors, a swarm of agents can have a global
impact in the speed and direction of motion of the whole group
towards the final destination. Another study [9] proposed a
discrete-time model for MASs that are traveling in the same
plane and have the same speed, where the communication
topology of the systems changes at every point in time, and
where there is a leader with a fixed heading. Having a dynamic
communication topology leads to the set of neighbors of
each agents constantly changing. The research proves that the
headings of all agents must converge if all the agents are
linked directly or indirectly to their leader. A similar study [10]
looked at the dynamics of MASs that have the same velocity,
use decentralized nearest-neighbors rules, and exchange their
information on networks that change over time. Additionally,
nonsmooth analysis was used to accommodate for the unex-
pected network topology change. Besides, it was proved that
convergence to a common velocity vector is guaranteed as long
as the communication network of the agents stays connected.
However, in the aforementioned studies, the movement of
the whole group in a constraint environment (e.g., containing
obstacles) was not addressed.

In the context of MASs, efficient path planning is crucial
for achieving coordinated agent motion. To navigate an MAS
safely in an unknown environment, reliable and efficient
planning algorithms will need to be considered in the protocol
design. For a single agent path finding problem, Rapidly-
Exploring Random Tree (RRT) [11] has been widely applied
to many robotic applications. RRT tends to expand mostly
in unexplored areas, and although the number of edges its
generated final path contains is minimal, the tree always
stays connected. Various improvements of the algorithm have
been published throughout the years. The most well-known
one being RRT*, which introduces two new concepts: near
neighbor search and rewiring tree operations [12]. The near
neighbor operation finds the nearest neighbour for a randomly
generated configuration in an area within a given radius. Then
the tree is rewired in that area so that all nodes in that area are
connected by the shortest paths [13]. The RRT* algorithm can
achieve an optimal solution if enough iterations are performed,
and the generated path is smoother than the one generated by

979-8-3503-5098-2/24/$31.00 ©2024 IEEE 1

RRT. Another improved version of RRT uses two trees that get
extended with every iteration, and then using the starting point
and the goal point as focus, and the trajectory length as the
long axis, an ellipse interval sampling is constructed [14]. The
algorithm aims to shorten the convergence time of both RRT
and RRT*. An interesting issue of path planning strategies
that RRT also has is the sharp change in direction, and a
solution has been published that smooths the path generated
[15]. However, how to use RRT-based navigation solutions
properly in a MAS remains an open question.

Inspired by the aforementioned research advancements and
limitations, this paper plans to develop a novel coordination
framework via path planning and consensus approach. The
MAS is firstly divided into leaders and followers. The leader’s
path is generated using the RRT* approach, which aims to
obtain a safe and efficient path in the obstacle environment.
Then, followers connected via a communication network are
steered to keep a flexible formation using local information.
To avoid potential collision among the agents, the artificial
potential field (APF) approach is combined with the consensus
protocol. To the best observation of the authors, such a uni-
fied framework that integrates path planning, consensus, and
collision avoidance, has not been developed in the literature.

II. PRELIMINARIES

A. Motion Planning

The motion planning issue is a computationally demanding
task that comprises of determining a list of feasible con-
figurations that enable a robot to travel from a start to a
goal position while avoiding collision with all obstacles. This
planning issue can be formulated as proposed by Karaman et
al. [16] [12]. The dynamics of a robot can be expressed as
ẋ(t) = f(x(t), u(t)), where x(t) ∈ X and u(t) ∈ U , with
X ⊂ Rd and U ⊂ Rm represent the robot’s position and the
designed control input, respectively. The obstacle region is
denoted as Xobs, the obstacle-free space as Xfree = X \Xobs,
the initial state as xinit ⊂ X , and the goal state as xgoal ⊂ X .
The motion planning issue consists of finding a designed effort
u : [0, T]→ U that produces a reliable path x(t) ∈ Xfree for
t ∈ [0, T] starting from an initial position x(0) = xinit to
the goal position x(T) ∈ Xgoal . To obtain an optimal path,
the obtained optimal waypoints should minimize a given cost,
c(x), where each acceptable trajectory x : [0, T] → X is
mapped to a positive value.

B. Graph Theory

To describe the communication of the robots, graph theory
can be used [17]. A graph is a tuple G = (V, E) where
V ={v1, ..., vn} is the set of vertices, E is the set of edges
or arcs, and n is the total number of vertices in the graph.
A vertex or a node represents a robot, and the edges or
arcs represent connections between them. E contains all edges
between nodes, an edge ei = (vi, vj) represents an edge from
vi to vj and it is usually represented as an arrow with a tail
at vi and the head at vj , it also means that vj can receive

information from vi. Two nodes vi and vj are considered
networked if there is a direct path from one node to another,
and the shortest path length between vi and vj is defined as
the distance between them. If all nodes vi and vj in graph G
are connected, then G is defined as strongly connected. In the
case of undirected graphs, a direct path from vi to vj indicates
the existence of a direct path from vi to vj . An adjacency
matrix A = [aij] ∈ Rn×n is a square matrix of size n, and its
elements are defined as

aij =

{
1 ∀(vi, vj) ∈ E ,
0 otherwise.

(1)

C. Control Protocol Design

As mentioned above, the communication of a group of
robots can be represented by a graph, however, in order to
explain their dynamics, each node i of the graph representing
a robot needs to correspond to a dynamic state vector xi(t)
[18]. The dynamics of each node or robot can be expressed
as

ẋi = fi(xi, ui) (2)

where ui is the control input and fi(·) is a flow function [17].
Control protocols involve designing distributed algorithms that
coordinate the actions of individuals so that a common goal
is reached by the system. And they are based on the ability of
each node in a graph to communicate with another and obtain
information. The performance of a control protocol can be
affected by the communication graph topology as each agent’s
control law relies solely on data that is received from its
local neighbors. A common objective of cooperative controller
design is consensus, which means driving all the nodes to the
same value, also known as a consensus value.

III. MAIN RESULTS

The MAS considered in this study consists of a group
of N agents. To aid the group of agents in navigating, a
leader is introduced, resulting in a two-layer system. The
communication network of the agents is considered to be
connected and undirected. Each agent in the group has the
capability to share information with neighboring agents within
a specific radius. The group must navigate through an en-
vironment that has obstacles, and each agent is responsible
for avoiding them. Additionally, agents must avoid colliding
with one another while traveling through this environment.
Agents are represented as objects with a center and a radius
of 0, while objects are represented as objects with a center
and a positive radius. This method integrates two primary
algorithms, which are explained as follows. Firstly, the RRT*
strategy is used to produce the path of the leader. Secondly, a
control protocol based on consensus and collision avoidance
is described. The section concludes with the explanation of
the two-layer dynamical system consisting of the leader and
the followers.

2

A. Motion Planning of the Leader

The following part gives a detailed explanation of the RRT*
algorithm, which forms a key component in finding the path
of the leader.

The RRT∗ algorithm is a path finding algorithm, it works
by creating and maintaining a tree structure, T = (V, E), that
consists of a set of nodes V which represent states belonging to
Xfree, and directed edges E that connect them E ⊆ V ×V . To
understand how the RRT∗ algorithms solves the optimal path
planning issue, we first need to explain a set of the procedures
the algorithm uses [19].

• Sample: Randomly samples a state zrand ∈ Xfree from
the obstacle-free region.

• Distance: Returns the optimal trajectory cost between
two states assuming there are no obstacles. The Euclidean
distance is used for the calculation of the cost.

• Nearest: Returns the closest node in the tree T = (V, E)
to a given state zrand ∈ X based on the Distance
function.

• Near: Returns the vertices in V that are within the
confines of a ball of volume γ((log n)/n)d around
zrand ∈ Z, where γ is a constant value, and n is given
as input to the function.

• ObstacleFree: Checks if a path x : [0, T] is in the
obstacle-free region Xfree for all t = 0 to t = T .

• Steer: Solves for a control input u : [0, T] that drives
the system from x(0) = zrand to x(T) = znearest along
the path x : [0, T]→ X .

• InsertNode: Adds a new node znew to V in the tree
T = (V, E) and creates an edge to an existing tree node
zcurrent as the parent of znew. It also assigns a cost to
znew which is the sum of its parent’s cost and the cost
of the trajectory belongs to the new edge.

The RRT∗ algorithm which is outlined in Alg. 1 begins from
an empty tree and creates a single node for the initialization.
Afterward, it proceeds to build and improve the tree over
N iterations. During each iteration, the algorithm samples a
random state zrand from the obstacle-free space Xfree, and
finds a trajectory xnew that extends the nearest node in the
tree znearest towards the sample. If the trajectory does not
cross the obstacle region Xobs, the RRT∗ evaluates the cost
regarding arriving potential parent nodes in the neighborhood
of znew. The cost is calculated as the sum of the cost required
to reach the potential parent node and the cost of the trajectory
to znew. The node with the lowest cost is chosen as the parent
for the new node that is being included in the tree. The ReWire
procedure is then applied to nearby nodes znear to determine
whether it is possible to reduce the total cost by making znew
their parent. If this is the case, the algorithm rewires the tree
accordingly and proceeds with the next iteration.

When given the start coordinate and goal coordinate of the
leader, the RRT* algorithm generates a sequence of x and y
coordinates that can be connected to form the final path. The
leader will then use the consensus protocol described in the

Algorithm 1 T = (V, E)← RRT∗(zinit)

1: T ← InitializeTree();
2: T ← InsertNode(∅, zinit, T);
3: for i = 1 to i = N do
4: zrand ← Sample(i);
5: znearest ← Nearest(T , zrand);
6: (xnew, unew, Tnew)← Steer(znearest, zrand);
7: if ObstacleFree(xnew) then
8: Znear ← Near(T , znew, |V|);
9: zmin ←

ChooseParent(Znear, znearest, znew, xnew);
10: T ← InsertNode(zmin, znew, T);
11: T ← ReWire(T ,Znear, zmin, znew);
12: end if
13: end for
14: return T

following sections to reach each of these coordinates one by
one.

B. Consensus of the Followers

Consensus protocols achieve the rendezvous of all robots to
a desired state. For an efficient protocol, collision avoidance
must also be integrated. The following subsections provide
detailed explanations of both the convergence process and the
integration of collision avoidance techniques.

1) Convergence: The dynamics of an agent that is part of
a group moving in a 2-dimensional space can be represented
by

ẋi(t) = ua,i(t) (3)

where the rate of change of the agent’s position with respect
to time ẋi(t) is determined by a control input ua,i(t), and is
studied in the context of continuous-time models.

In a fixed topology network G with an adjacency matrix A
representing a MAS, a consensus protocol can be defined as
follows

ua,i = kC(s)

N∑
j=1

aij(xi − xj) + ai0(xi − x0) (4)

where i ∈ {1, 2, . . . , N}, C(s) is an Strict Negative Imaginary
(SNI) transfer function with C(0) > 0, and k is a positive
control gain, and x0 is the position of the leader.

Motivated by [20], we then have the following theorem to
ensure that the consensus of the followers can be achieved.

Theorem 1: Let N mobile robots be networked via the graph
G. C(s) is an SNI transfer function with C(0) > 0. Thus, there
is a bounded k⋆ > 0 so that for any k ∈ (0, k⋆], the mobile
robots reach consensus via the cooperative protocol (4).

Proof: We use the notations E(s), X(s), R(s)
to describe the Laplace transform of the vector sig-
nals e(t) = [x0 − x1(t), x0 − x2(t), · · · , x0 − xN (t)]

⊤
=

[e1(t), e2(t), · · · , eN (t)]
⊤, x(t) = [x1(t), x2(t), · · · , xN (t)]

⊤

and r(t) = 1Nx0. Let the consensus position error be

3

e(t) ≜ r(t) − x(t). We can easily obtain the equation below
by considering the property of C(s)

E(s) =

[
I + (L ⊗ k

s
C(s))

]−1

R(s). (5)

Following Lemma 3 in [20], the distributed consensus strategy
is asymptotically stable when the SNI controller is applied for
all k ∈ (0,∞). The steady-state consensus error is then given
by

ess = lim
t→∞

e(t) = lim
s→0

sE(s) (6a)

= lim
s→0

s

[
IN +

(
L ⊗ k

s
C(s)

)]−1

R(s)

= lim
s→0

s [sIN + (L ⊗ kC(s))]
−1

(sR(s))

= [L ⊗ (kC(0))]
−1

(
lim
s→0

sIN

)(
lim
s→0

sR(s)
)

= [0 0 · · · 0]⊤ (6b)

since C(0) > 0, L > 0 and lim
t→∞

r(t) = 1Nx0 = rss,
where rss is the steady-state value of the leader’s position. The
asymptotic stability property of the position reaching error,
i.e., lim

t→∞
e(t) = 0 implies x(t) → 1Nrss as t → ∞. This

completes the proof.
The interconnection topology between the robots changes

over time however. The changes occur in non-overlapping,
contiguous time intervals [ti, ti+1), i = 0, 1, ..., and there are
infinite such intervals starting at time t0 = 0. The neighbour
set for each robot and the Laplacian associated with the
switching interconnection graph are time-varying, but remain
constant over each time interval [ti, ti+1). Therefore, a dy-
namic graph Gs(t) should be considered where s(t) : R→ J
and J is a set of indices J = {1, 2, ...,m}.

2) Collision Avoidance: While traveling in a space con-
taining obstacles, if a collision avoidance protocol is not used,
robots might collide with these obstacles. Furthermore, robots
might collide with each other as well. Considering the set
of N robots where xi ∈ R2, i ∈ {1, 2, ..., N} represents the
position of the ith robot, and the set of M obstacles where
wk ∈ R2, k ∈ {1, 2, ...,M} represents the position of the kth

obstacle, then the APF approach can be integrated with the
control law to achieve collision avoidance.

The collision avoidance between robots ub,i which is ex-
pressed as

ub,i =

N∑
j=1

µbbijaij

(
1

∥xi − xj∥
− 1

db

)
xi − xj

∥xi − xj∥2
, (7)

and the collision avoidance between robots and obstacles uc,i

which is expressed as

uc,i =

M∑
k=1

µccik

(
1

∥xi − wk∥
− 1

dc

)
xi − xk

∥xi − xk∥2
. (8)

Consider db to represent the minimum distance of repulsive-
region between any two robots so that they don’t collide,

and dc to represent the minimum distance of repulsive-region
between any robot and obstacle, the distance to be calculated
from the center of each object. The value of distance dc
needs to be larger than the minimum distance between any
two obstacles. This minimum distance is measured from the
centers of the two obstacles while accounting for their radii
being subtracted. Given the set of N robots and the set of
M obstacles, ∀i, j ∈ {1, 2, ..., N} and ∀k ∈ {1, 2, ...,M}, bij
and cik can be defined as follows

bij =

{
1 ∀∥xi − xj∥ ≤ db,

0 otherwise,
(9)

and

cik =

{
1 ∀∥xi − wk∥ ≤ dc,

0 otherwise.
(10)

Finally, both µb and µc represent constant gains, and by
choosing µb, µc > 0, the protocol is guaranteed to drive all
robots without any collisions [21].

C. The Combined Two-Layer Multi-Agent Systems

The MAS considered consists of two layers: the leader, and
the followers. The followers compose the multi-agent system,
and the leader aids the group in guiding them to the final target
location. The leader finds an almost optimal path by using the
RRT* algorithm, and also doesn’t have any communication
with any of the followers. The followers however, can com-
municate between them and also can communicate with the
leader as long as they are withing a certain radius ρ from the
given follower or the leader. The motion of each agent with
the combined input can be given by

ui = ua,i + ub,i + uc,i. (11)

Although all robots and the leader follow the control low
described above, subtle variations exist in the law applicable
to each of them, as elaborated in the subsequent sections. It is
worth noting that the only aspect that remains consistent for
all entities is the approach to obstacle collision avoidance.

For the leader, the control law reduces only to consensus
ua and collision avoidance with obstacles uc as the leader is
considered to have a virtual presence only, and therefore it
has no physical form, so there is no need to check whether it
collides with other robots. For the consensus law, instead of
considering all robots within a radius ρ, the leader uses only its
target location which is part of the list of coordinates along the
final path generated by applying the RRT* algorithm. When
the first target coordinates from the list are reached by the
leader, the target location changes to the coordinates of the
next point in the list. To ensure that the leader moves at a
reasonable speed and that the followers are able to follow the
leader and not remain behind, a new constant γ is introduced,
where γ ∈ R is within the following range (0, 1). Therefore
the control law used by the leader is defined as

u0 = γ(ua,0 + uc,0) (12)

4

In summary, the proposed method for the MAS involves
a leader and followers. The leader uses the RRT* approach
to obtain an optimal path without communication, while the
followers communicate with each other and the leader within
a radius. Each agent’s motion is governed by consensus for
coordination, collision avoidance between robots, and collision
avoidance between robots and obstacles. The leader follows a
list of target coordinates, while the followers use the general
control law with neighbors within a radius. The method
combines path planning, consensus, and collision avoidance
to guide the followers while ensuring safety and efficiency in
navigation.

IV. EVALUATION

To be able to put the new method in practice, we have
created an environment where motion of the MAS will be
simulated. The environment is a 2-dimensional space with x
and y coordinate limits from 0 to 50. The space contains 4
obstacles of various sizes that were placed in such way to
show the capacity of the approach to avoid these obstacles
and still reach the target location in a reasonable time.

In Fig. 1, the paths generated by the RRT* algorithm can
be observed. The most important parameters when using the
RRT* algorithm are ϵ, the number of nodes n, and the radius.
Epsilon represents the step size or the maximum distance that
a new node can extend from its parent node in the tree. It
determines the granularity of the search space exploration. A
smaller epsilon value leads to a finer exploration, potentially
resulting in a more precise and detailed path, therefore we
have decided to use ϵ = 1. The number of nodes refers to the
total count of nodes in the RRT* tree. Each node represents a
configuration or state in the search space. A higher number of
nodes generally implies a more extensive exploration of the
space, which can lead to a better estimation of the optimal
waypoints. Various values for the number of nodes have been
tested and the results can be seen in Fig. 1. From these
figures, the most optimal path was generated when n = 5000.
Finally, the radius parameter defines the region around a new
node within which other existing nodes are considered for
potential connection or rewiring. It determines the extent of
the local search for finding nearby nodes. A larger radius
allows for greater flexibility in connecting nodes, facilitating
the discovery of alternative paths and potentially improving
the quality of the final path. We considered the most suitable
value for the radius to be 4. The paths in red in Fig. 1 represent
the paths generated by the RRT* method, and the path in sub
figure (d) will be used for testing the method.

As already mentioned in the previous paragraph, the leader
will follow the path calculated by the RRT* strategy in Fig. 1
(d). For this simulation a MAS consisting of 4 agents will
be used. The initial positions of the agents are randomly
generated within a range (0, 8) for both x and y. The agents
can exchange information with other agents within a radius
ρ = 6, and the distance to be maintained between the robots
and between the robots and obstacles is d = 2. For the

(a) 1000 iterations (b) 2000 iterations

(c) 3000 iterations (d) 5000 iterations

Fig. 1. The path from coordinate (0,0) to coordinate (49,49) generated by
the RRT* algorithm using (a) 1000 iterations, (b) 2000 iterations, (c) 3000
iterations, and (d) 5000 iterations.

motion of the leader, γ = 0.2 has been used. For the collision
avoidance algorithm both µb and µc are equal to 80. The
results of applying the method can be seen in Fig. 2. The
agents manage to travel from the starting location to the target
location, while also maintaining a constant distance between
them and avoiding any obstacles. The algorithm takes 35 s to
achieve this. Depending on the size of the MAS, the time taken
will vary. As well, depending on the settings of the robotic
platforms and the working environment, the parameters of
values such as ρ, the distance to be maintained between agents
and obstacles, and γ should be adjusted to further improve the
performance.

Fig. 3 illustrated the consensus error of the trajectory of all
agents. The tracking error represents the difference between
the target location and the actual trajectory followed by the
agents. It is easy to observe that all agents converge to a
common value while maintaining a distance between them.
This demonstrates that the system successfully adapts and cor-
rects its motion to minimize deviations, resulting in accurate
tracking and convergence to the desired target location.

V. CONCLUSIONS

In this work, we proposed a unified approach for MAS to
navigate through environments with obstacles. The integration
of a leader in the group of agents resulted in a two-layer
system, therefore improving the navigation capabilities of the
agents. To generate the path for the leader, the RRT* algorithm
was used, which provided an almost optimal trajectory. The
leader’s path served as a reference for the followers, helping
coordination and consensus among the agents. The commu-

5

(a) t = 0 s (b) t = 10 s

(c) t = 15 s (d) t = 20 s

(e) t = 25 s (f) t = 35 s

Fig. 2. A MAS comprised of 4 robots traveling from coordinate (0,0) to
coordinate (49,49), showing the progress of the system at various points in
time.

Er
ro

r

Time (s)

Fig. 3. Tracking error (distance between agent location and target location
over time).

nication network among the agents was considered connected
and undirected, enabling information sharing within a specific
radius. Through simulations, the feasibility of the developed
approach in guiding the MAS through complex environments
was demonstrated.

ACKNOWLEDGEMENT

This work was supported by EU H2020-FET-OPEN
RoboRoyale project [grant number 964492].

REFERENCES

[1] Z. Qiang, L. Dai, B. Chen, and Y. Xia, “Distributed model predictive
control for heterogeneous vehicle platoon with inter-vehicular spacing
constraints,” IEEE Transactions on Intelligent Transportation Systems,
vol. 24, no. 3, pp. 3339–3351, 2022.

[2] S. Xie, J. Hu, Z. Ding, and F. Arvin, “Cooperative adaptive cruise control
for connected autonomous vehicles using spring damping energy model,”
IEEE Transactions on Vehicular Technology, vol. 72, no. 3, pp. 2974–
2987, 2023.

[3] F. Rekabi-Bana, J. Hu, T. Krajnı́k, and F. Arvin, “Unified robust path
planning and optimal trajectory generation for efficient 3D area coverage
of quadrotor UAVs,” IEEE Transactions on Intelligent Transportation
Systems, vol. 25, no. 3, pp. 2492–2507, 2024.

[4] E. J. Rodrı́guez-Seda, X. Xu, J. M. Olm, A. Dòria-Cerezo, and Y. Diaz-
Mercado, “Self-triggered coverage control for mobile sensors,” IEEE
Transactions on Robotics, vol. 39, no. 1, pp. 223–238, 2022.

[5] K. Champagnie, F. Arvin, and J. Hu, “Decentralized multi-agent cov-
erage path planning with greedy entropy maximization,” in 2024 IEEE
International Conference on Industrial Technology, 2024, pp. 1–6.

[6] K. Wu, J. Hu, Z. Li, Z. Ding, and F. Arvin, “Distributed collision-free
bearing coordination of multi-uav systems with actuator faults and time
delays,” IEEE Transactions on Intelligent Transportation Systems, 2024.

[7] F. Rekabi-Bana, M. Stefanec, J. Ulrich et al., “Mechatronic design for
multi robots-insect swarms interactions,” in 2023 IEEE International
Conference on Mechatronics, 2023, pp. 1–6.

[8] I. Couzin, J. Krause, N. Franks, and S. Levin, “Effective leadership and
decision-making in animal groups on the move,” Nature, vol. 433, pp.
513–6, 03 2005.

[9] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on
Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[10] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Transactions on Automatic Control, vol. 52,
no. 5, pp. 863–868, 2007.

[11] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path
planning,” The annual research report, 1998.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotic Research, vol. 30,
pp. 846–894, 06 2011.

[13] I. Noreen, A. Khan, and Z. Habib, “A comparison of RRT, RRT*
and RRT*-smart path planning algorithms,” International Journal of
Computer Science and Network Security (IJCSNS), vol. 16, no. 10, p. 20,
2016.

[14] J. Chen and J. Yu, “An improved path planning algorithm for UAV based
on RRT,” in 2021 4th International Conference on Advanced Electronic
Materials, Computers and Software Engineering, 2021, pp. 895–898.

[15] K. R. Jayasree, P. R. Jayasree, and A. Vivek, “Smoothed rrt techniques
for trajectory planning,” in 2017 International Conference on Techno-
logical Advancements in Power and Energy, 2017, pp. 1–8.

[16] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller,
“Anytime motion planning using the RRT*,” in 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 1478–1483.

[17] F. Lewis, H. Zhang, K. Movric, and A. Das, Cooperative Control of
Multi-Agent Systems: Optimal and Adaptive Design Approaches, 2014.

[18] R. Olfati-Saber and R. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” IEEE Transactions on
Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[19] S. Karaman and E. Frazzoli, “Optimal kinodynamic motion planning
using incremental sampling-based methods,” in 49th IEEE Conference
on Decision and Control (CDC), 2010, pp. 7681–7687.

[20] J. Hu, B. Lennox, and F. Arvin, “Robust formation control for networked
robotic systems using negative imaginary dynamics,” Automatica, vol.
140, p. 110235, 2022.

[21] H. Tnunay, Z. Li, C. Wang, and Z. Ding, “Distributed collision-free
coverage control of mobile robots with consensus-based approach,” in
IEEE International Conference on Control & Automation, 2017, pp.
678–683.

6

Citation on deposit: Agachi, C., Arvin, F., & Hu, J.

(2024, August). RRT*-Based Leader-Follower

Trajectory Planning and Tracking in Multi-Agent

Systems. Presented at 2024 IEEE International

Conference on Intelligent Systems (IS), Varna,

Bulgaria

For final citation and metadata, visit Durham Research Online URL:

https://durham-repository.worktribe.com/output/2745359

Copyright statement: This accepted manuscript is licensed under the Creative

Commons Attribution 4.0 licence.

https://creativecommons.org/licenses/by/4.0/

https://durham-repository.worktribe.com/output/2745359

