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During multiple testing, researchers often adjust their alpha level to control the familywise error rate for a 
statistical inference about a joint union alternative hypothesis (e.g., “H1,1 or H1,2”). However, in some cases, they 
do not make this inference. Instead, they make separate inferences about each of the individual hypotheses that 
comprise the joint hypothesis (e.g., H1,1 and H1,2). For example, a researcher might use a Bonferroni correction to 
adjust their alpha level from the conventional level of 0.050 to 0.025 when testing H1,1 and H1,2, find a sig-
nificant result for H1,1 (p < 0.025) and not for H1,2 (p > 0.025), and so claim support for H1,1 and not for H1,2. 
However, these separate individual inferences do not require an alpha adjustment. Only a statistical inference 
about the union alternative hypothesis “H1,1 or H1,2” requires an alpha adjustment because it is based on “at least 
one” significant result among the two tests, and so it refers to the familywise error rate. Hence, an inconsistent 
correction occurs when a researcher corrects their alpha level during multiple testing but does not make an 
inference about a union alternative hypothesis. In the present article, I discuss this inconsistent correction 
problem, including its reduction in statistical power for tests of individual hypotheses and its potential causes vis- 
à-vis error rate confusions and the alpha adjustment ritual. I also provide three illustrations of inconsistent cor-
rections from recent psychology studies. I conclude that inconsistent corrections represent a symptom of statis-
ticism, and I call for a more nuanced inference-based approach to multiple testing corrections.   

The subject of multiple testing has received additional attention in 
the wake of the replication crisis. The concern is that uncorrected 
multiple testing is a major cause of false positive results (i.e., Type I 
errors) and unexpectedly low replication rates. Consequently, there is a 
renewed emphasis on researchers “doing the right thing” and correcting 
their significance thresholds (alpha levels) in order to account for 
inflated Type I error rates during multiple testing. 

In this article, I caution that an unqualified push for multiple testing 
corrections may have negative consequences. In particular, I argue that 
it may encourage what I call inconsistent multiple testing corrections: ad-
justments to alpha levels that are inconsistent with the specific statistical 
inferences that are being made. To illustrate this problem, I draw 
attention to cases in which researchers adjust their alpha level to control 
family-based Type I error rates (e.g., familywise error rates) but then do 
not make any inferences about associated family-based hypotheses. 
Instead, they only make inferences about individual hypotheses, which 
do not require an alpha adjustment. I argue that inconsistent corrections 
are problematic not only logically, but also because they result in an 
unnecessary loss of statistical power. 

To be clear, I am not opposed to an alpha adjustment for multiple 
testing under the appropriate circumstances. Hence, this is not an “anti- 
adjustment article” (Frane, 2019, p. 3). It is a pro-consistency article! My 
key point is that researchers should be logically consistent in their use of 
multiple testing corrections. If researchers use multiple testing correc-
tions, then they should make corresponding statistical inferences about 
family-based joint hypotheses. They should not correct their alpha level 
and then only proceed to make statistical inferences about individual 
hypotheses because, as I explain later, such inferences do not require an 
alpha adjustment. 

I begin by introducing the multiple testing problem and the alpha 
adjustment solution. I consider two common family-based error rates 
(the familywise error rate and the per family error rate), and I explain 
how associated alpha adjustments control these error rates. I then 
describe and illustrate inconsistent multiple testing corrections, in 
which a researcher adjusts their alpha level to control the error rate for a 
statistical inference about a family-based joint hypothesis but then only 
makes statistical inferences about individual hypotheses. I consider two 
reasons for inconsistent corrections: (a) error rate confusions and (b) 
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conformity to an alpha adjustment ritual. I highlight recent evidence from 
García-Pérez (2023) showing that inconsistent corrections are likely to 
be common. I also explain how inconsistent corrections lead to a loss of 
statistical power. Finally, I illustrate my argument with three examples 
from recent psychology studies. I conclude that inconsistent corrections 
represent a symptom of the broader problem of statisticism, and I call for 
a more nuanced, inference-based approach to multiple testing 
corrections. 

1. The multiple testing problem 

The multiple testing problem occurs when a researcher uses more 
than one significance test to make a statistical inference. In this case, 
their Type I error rate for that inference may exceed the conventional 
nominal alpha level of 0.050. For example, consider a researcher who 
uses three significance tests to make a statistical inference about a single 
joint null hypothesis. Here, each of the three tests refers to a separate 
constituent null hypothesis: H0,1, H0,2, and H0,3. These three constituent 
hypotheses comprise a joint hypothesis. The alpha level for determining 
significance with respect to each constituent hypothesis can be 
described as the constituent alpha level or αConstituent, and the alpha level 
for the final decision about rejecting or not rejecting the joint null hy-
pothesis can be described as the joint alpha level or αJoint (Rubin, 
2021b). 

If the researcher is prepared to accept a significant result on at least 
one of their three tests as sufficient grounds to reject the joint null hy-
pothesis, then the joint null hypothesis is represented as the intersection 
of each of the three constituent null hypotheses: “H0,1 and H0,2 and H0,3.” 
The hypotheses are related to one another by the logical operator “and” 
because a significant result in relation to any one of them (i.e., p <
αConstituent) would be sufficient to provisionally reject the entire inter-
section null hypothesis and make an inference about the corresponding 
union alternative hypothesis: “H1,1 or H1,2 or H1,3.” Hence, formally, this 
test is called a union-intersection test (e.g., Hochberg and Tamrane, 1987, 
p. 28; Kim et al., 2004; Parker and Weir, 2020, p. 563; Roy, 1953). 

To provide a more concrete example, imagine that the three con-
stituent alternative hypotheses refer to gender differences in attitudes 
towards biology (H1,1), chemistry (H1,2), and physics (H1,3) and that the 
researcher is interested in making a statistical inference about a gender 
difference in attitudes towards these science subjects. In this case, a 
significant result in relation to any one of the three constituent hy-
potheses, in either direction (i.e., men > women or women > men), 
would be sufficient to reject the entire intersection null hypothesis that 
there is no gender difference in attitudes towards biology, chemistry, 
and physics and make an inference about the union alternative hy-
pothesis that there is a gender difference in either biology, chemistry, or 
physics. 

Note that, logically, the results of a union-intersection test only 
warrant a statistical inference about the associated joint hypothesis. 
They do not warrant statistical inferences about each of the individual 
constituent hypotheses (García-Pérez, 2023, p. 2; Perneger, 1998, p. 
1236). For example, if the researcher obtained union-intersection test 
results for biology t(326) = 2.54, p = 0.011; chemistry t(326) = 0.030, p 
= 0.979; and physics t(326) = 1.44, p = 0.150, then they could only 
make the statistical inference that there is a significant gender difference 
in attitudes towards either biology, chemistry, or physics (i.e., the union 
alternative hypothesis). The fact that a significant gender difference is 
observed for biology and not for either chemistry or physics is irrelevant 
in the context of a union-intersection test because the test treats the 
three hypotheses as theoretically interchangeable constituents of the 
same joint hypothesis rather than as separate individual hypotheses. The 
principle is the same as that for a one-way ANOVA (García-Pérez, 2023): 
A significant result entitles us to claim that there is a significant differ-
ence between at least one pair of means, but it does not allow us to 
specify which pair. Of course, researchers can go on to make statistical 
inferences about each of the three hypotheses separately. However, 

these individual inferences are not based on the union-intersection test. 
They are based on individual tests of individual null hypotheses and, as 
such, they do not require an alpha adjustment (García-Pérez, 2023; 
Rubin, 2021b). 

This last point may be a little confronting to some readers. Surely, if 
you conduct three individual tests, then you have a greater probability 
of making at least one Type I error among your set of results. Yes, you 
do! However, (a) this inflated familywise error rate applies to the family 
of tests, not to any individual test within the family; (b) you continue to 
have the same probability of making a Type I error in relation to each one 
of your tests; and (c) it is this latter individual error rate – αIndividual – that 
underwrites statistical inferences about each individual hypothesis. 

To illustrate, imagine that a researcher conducts three individual 
tests of gender differences in attitudes towards biology, chemistry, and 
physics using an αIndividual of 0.050 and then concludes that there is a 
gender difference in relation to biology, t(326) = 2.54, p = 0.011, but 
not in relation to either chemistry, t(326) = 0.030, p = 0.979, or physics, 
t(326) = 1.44, p = 0.150. In this case, experts agree that the Type I error 
rate for each of these three tests is not inflated above the αIndividual of 
0.050 because only one test is used to make a statistical inference (de-
cision) about each hypothesis (Armstrong, 2014, p. 505; Cook and 
Farewell, 1996, pp. 96–97; Fisher, 1971, p. 206; García-Pérez, 2023, p. 
15; Greenland, 2021, p. 5; Hewes, 2003, p. 450; Hitchcock and Sober, 
2004, pp. 24–25; Hurlbert and Lombardi, 2012, p. 30; Matsunaga, 2007, 
p. 255; Molloy et al., 2022, p. 2; Parker and Weir, 2020, p. 564; Parker 
and Weir, 2022, p. 2; Rothman, 1990, p. 45; Rubin, 2017, pp. 271–272; 
Rubin, 2020a, p. 380; Rubin, 2021a, 2021b, pp. 10978-10983; Rubin, 
2024; Savitz and Olshan, 1995, p. 906; Senn, 2007, pp. 150–151; Sin-
clair et al., 2013, p. 19; Tukey, 1953, p. 82; Turkheimer et al., 2004, p. 
727; Veazie, 2006, p. 809; Wilson, 1962, p. 299). In short, if a researcher 
uses a single test to make a statistical inference about a single null hy-
pothesis, then their alpha level for that inference does not become 
inflated and no multiple testing correction is necessary. Importantly, this 
principle applies even if the researcher makes millions of such individual 
inferences side-by-side within the same study and/or using the same 
dataset. 

In contrast, in the case of union-intersection testing, the probability 
of making a Type I error about the intersection null hypothesis will al-
ways be greater than the nominal alpha level for each test (αConstituent) 
because the researcher has multiple opportunities to incorrectly reject 
the intersection null hypothesis. For example, if the intersection null 
hypothesis consists of three constituent null hypotheses, then the 
researcher will have three opportunities to make a Type I error about the 
intersection null hypothesis based on the three tests that they conduct 
using αConstituent. Hence, a multiple testing correction is necessary in this 
case in order to control the familywise error rate at the nominal level of 
αJoint. 

In summary, multiple testing increases the probability that at least 
one of your significant results is a false positive, but it doesn’t increase 
the probability that each one of your significant results is a false positive, 
and so if you make an inference about a joint null hypothesis that can be 
rejected following at least one significant result, then an alpha adjust-
ment is necessary, and if you don’t, then it isn’t! Hence, a multiple 
testing correction is necessary when undertaking multiple tests of an 
intersection null hypothesis, but not when undertaking single tests of 
multiple individual null hypotheses. 

2. The alpha adjustment solution 

During union-intersection testing, the alpha adjustment solution in-
volves lowering αConstituent until the associated family-based error rate is 
less than or equal to αJoint. There are several different ways of computing 
the degree to which αConstituent should be lowered, and they depend on 
the type of family-based error rate that is being controlled. For illus-
trative purposes, I consider two simple approaches that refer to the 
familywise error rate and the per family error rate. 
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2.1. The familywise error rate 

The familywise error rate is the probability that at least one of the 
constituent test results is a Type I error (i.e., a false positive). The 
probability that a single constituent test yields a true negative (i.e., a 
nonsignificant result when the constituent null hypothesis is true) is 1 - 
αConstituent. The probability that a family (collection) of k constituent tests 
all yield true negatives is equal to the product of the probabilities that 
each yields a true negative, assuming that test results are independent of 
one another: (1 - αConstituent)k. Hence, the familywise error rate that at 
least one of k tests yields a false positive result is 1 - (1 - αConstituent)k. 

Hence, if three constituent hypotheses are tested, each with an 
αConstituent of 0.050, then the familywise Type I error rate will be 1 - 
(1–0.050)3, which equals 0.143. In this case, the familywise error rate 
will be greater than a nominal conventional αJoint level of 0.050. 
Consequently, to control the familywise error rate at the level of αJoint, 
the Dunn–Šidák correction may be used to reduce αConstituent from 0.050 
to 1 - (1 - αConstituent)1/3, which equals 0.0167. In this case, the family-
wise error rate will be equal to 1 - (1–0.0167)3, which equals the αJoint 
level of 0.050. 

2.2. The per family error rate 

The per family error rate represents another family-based error rate. 
It is the number of constituent Type I errors that are expected to occur 
within a family of k tests, and it is calculated as the sum of the αConstituent 
values for each of the constituent hypotheses that are tested (Frane, 
2015). Hence, if the αConstituent values are the same for all constituent 
hypotheses, then the per family error rate is equal to αConstituent × k. 

For small values of k, the per family error rate is almost the same as 
the familywise error rate. However, as k increases, the per family error 
rate becomes larger than the familywise error rate and, unlike the 
familywise error rate, it can become larger than 1.00. For example, if 
100 constituent tests are conducted, and each has an αConstituent of 0.050, 
then the familywise error rate will be 0.99 but the per family error rate 
will be 5.00. In other words, there will almost certainly be one or more 
false positive results within the family, and we should expect there to be 
five false positive results in total. 

The Bonferroni correction may be used to control the per family error 
rate using the formula αConstituent/k. Hence, if k = 3, then the Bonferroni 
correction would reduce αConstituent to 0.0169 in order to control the per 
family error rate at the αJoint level of 0.050 (i.e., 0.0169 × 3). Note that, 
because the familywise error rate is the same as or smaller than the per 
family error rate, the Bonferroni correction may also be used to provide 
conservative control over the familywise error rate. 

3. Inconsistent corrections 

An inconsistent multiple testing correction occurs when a researcher 
corrects their alpha level for a union-intersection test of a joint hy-
pothesis but then only makes statistical inferences about individual 
hypotheses. For example, they might correct αConstituent in order to 
control a family-based error rate at the nominal conventional αJoint of 
0.050 but then only make statistical inferences about individual hy-
potheses, which can be made using an unadjusted conventional 
αIndividual of 0.050. In this case, their alpha adjustment is inconsistent 
with their statistical inferences about individual hypotheses, which are 
the only inferences that are made. 

Why do researchers adjust their alpha level to control family-based 
error rates for family-based joint hypotheses and then fail to make sta-
tistical inferences about those hypotheses? I think there are two reasons 
for these inconsistent corrections: error rate confusions and the alpha 
adjustment ritual. 

3.1. Error rate confusions 

Four error rate confusions may lead to inconsistent multiple testing 
corrections. Confusion I occurs when researchers incorrectly assume 
that multiple instances of individual testing somehow inflate individual 
Type I error rates for each individual inference. As previously explained, 
they don’t! During individual testing, αIndividual refers to the probability 
that a single test will incorrectly reject a single hypothesis. There is no 
union-intersection testing in this situation, no multiple opportunities to 
make each Type I error, and so no error rate inflation for each statistical 
inference. As discussed in Confusion III below, it is true that multiple 
testing increases the probability of making at least one Type I error in a 
collection of individual tests, but it is also true that multiple testing does 
not increase the probability of making a Type I error with respect to each 
test and, during individual testing, it is only this individual Type I error 
rate that is relevant to researchers’ statistical inferences. 

Confusion II occurs when researchers incorrectly assume that mul-
tiple instances of individual testing inflate family-based Type I error rates 
for each individual inference. Again, they don’t! During individual 
testing, k = 1 for each inference and so the familywise and per family 
error rates for each inference have the same value as the individual error 
rate (i.e., αIndividual = 1 - [1 - αConstituent]1 = αConstituent × 1). 

Confusion III occurs when researchers assume that multiple instances 
of individual testing inflate family-based error rates for families of 
separate statistical inferences. They do! However, these family-based error 
rates are irrelevant to each statistical inference! To illustrate, consider a 
researcher who computes the familywise error rate for 20 separate in-
dividual statistical inferences that each use an αIndividual of 0.050. In this 
case, the researcher assumes that k = 20 instead of k = 1 because they 
count the number of statistical inferences that are made (20) rather than 
the number of tests that are used to make each inference (1). The 
resulting familywise error rate (0.642) does not refer to the incorrect 
rejection of any specific null hypothesis (individual or joint) and so, by 
definition, it does not represent a Type I error rate. Nonetheless, the 
researcher may make the mistake of using this hypothesis-free familywise 
error rate to judge the stringency of each of their statistical inferences. 
This approach is flawed because the probability that at least one of 20 
statistical inferences represents a Type I error (0.642) is irrelevant to the 
probability of incorrectly rejecting each individual null hypothesis 
(0.050). Indeed, the probability that at least one inference represents a 
Type I error can be astronomically high in large groups of inferences (e. 
g., in genome-wide association studies) without it affecting the proba-
bility of incorrectly rejecting each null hypothesis, which remains 
steadfast at a conventional unadjusted αIndividual of 0.050. 

Finally, Confusion IV occurs when researchers assume that individ-
ual and family-based Type I error rates apply to substantive inferences 
rather than just statistical inferences (Meehl, 1997). They don’t! In the 
frequentist framework, a statistical inference assumes that random 
sampling error is the only source of error, and a Type I error rate in-
dicates the frequency with which this sampling error would lead to the 
incorrect rejection of a statistical null hypothesis during a long run of 
random sampling from the null population. In contrast, a substantive 
inference assumes that additional theoretical, methodological, and 
analytical errors may lead to the incorrect rejection of a substantive null 
hypothesis. Type I error rates do not account for these nonstatistical 
forms of error. Nonetheless, researchers may confuse substantive hy-
potheses with statistical hypotheses and erroneously apply Type I error 
rates and associated multiple testing corrections to their decisions about 
substantive hypotheses (Meehl, 1997). 

These four error rate confusions may be exacerbated by the ambig-
uous phrasing that is sometimes used in explanations of the multiple 
testing problem (see also García-Pérez, 2023, pp. 2–4). For example, it is 
true that “multiple testing inflates the Type I error rate,” but it is 
important to clarify what kind of “multiple testing,” what kind of “Type I 
error rate,” and what kind of hypothesis. Hence, it is more accurate to 
say that union-intersection testing inflates the familywise error rate for 
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statistical inferences about intersection null hypotheses. Multiple indi-
vidual tests do not inflate individual Type I error rates for inferences 
about individual null hypotheses. Nonetheless, the vague dictum that 
“multiple testing inflates the Type I error rate” may lead some re-
searchers to incorrectly assume that (a) multiple testing inflates indi-
vidual Type I error rates and (b) family-based error rates indicate the 
extent of this inflation. 

Given their subtle and seductive nature, it is worth considering error 
rate confusions in relation to both the familywise error rate and the per 
family error rate. Taking the familywise error rate first, Confusion III 
may lead researchers to calculate a hypothesis-free familywise error rate 
for a collection of individual statistical inferences about individual hy-
potheses with a view to controlling the (uninflated) individual Type I 
error rate. Hence, a researcher who makes 20 statistical inferences about 
20 individual hypotheses using an αIndividual of 0.050 may erroneously 
conclude that their Type I error rate for each inference is inflated because 
their familywise error rate for this collection of inferences is 0.642. In 
fact, their Type I error rate for each inference remains at the αIndividual 
level of 0.050. The researcher’s erroneous conclusion is due to an 
inappropriate application of the familywise error rate to a collection of 
single tests of individual hypotheses. 

Similarly, multiple testing inflates the per family error rate and not 
the individual Type I error rate. Again, failure to appreciate this point 
may lead to a misapplication of the per family error rate to statistical 
inferences about individual hypotheses. For example, a researcher might 
conduct 20 significance tests using an alpha level of 0.050 and obtain 
only one significant result. Given that this number of significant results 
matches the per family error rate, the researcher might then be tempted 
to assume that their significant result is more likely to be a Type I error. 
Again, however, this reasoning is flawed because it confuses Type I er-
rors about individual null hypotheses with Type I errors about joint null 
hypotheses. The per family error rate is a family-based error rate and, as 
such, it is only appropriate when making inferences about family-based 
joint hypotheses. It is inappropriate to apply it to inferences about in-
dividual hypotheses. 

In summary, family-based error rates tell us nothing about the 
probability of making a Type I error with respect to an individual null 
hypothesis. To believe that they do is to succumb to a type of ecological 
fallacy in which the Type I error rate for a decision about a family of 
hypotheses is misapplied to decisions about the individual hypotheses 
within that family. Family-based error rates only tell us the probability 
of making a Type I error with respect to family-based intersection null 
hypotheses. 

3.2. The alpha adjustment ritual 

It is possible to resolve error rate confusions through logical 
reasoning. However, researchers do not select statistical approaches on 
the basis of logical reasoning per se. Sociocultural fashions and con-
ventions are also influential, and it is here that an alpha adjustment ritual 
may come into play. 

In his article Mindless Statistics, Gigerenzer (2004) noted that the 
“null ritual” of null hypothesis significance testing “has sophisticated 
aspects … such as alpha adjustment” (p. 588). He did not go into this 
issue any further. However, in my view, the alpha adjustment ritual 
involves the automatic adjustment of alpha levels whenever multiple 
testing occurs, regardless of whether statistical inferences are made 
about individual null hypotheses or intersection null hypotheses. This 
social ritual is supported by colleagues, peer reviewers, editors, journals, 
and so on, some of whom consider failure to conform to the ritual as one 
of the “seven deadly sins” of statistical practice (Kuzon et al., 1996; 
Millis, 2003; Popp et al., 2012). 

Again, to be clear, an alpha adjustment is appropriate when making a 
statistical inference about an intersection null hypothesis on the basis of 
a union-intersection test. However, an alpha adjustment is not appro-
priate when making statistical inferences about multiple individual 

hypotheses on the basis of multiple individual tests. Hence, the problem 
with the alpha adjustment ritual is that it lacks nuance and sensitivity to 
the type of inferences that are made. In particular, it does not allow for 
the possibility that researchers make multiple individual statistical in-
ferences about multiple individual hypotheses based on multiple indi-
vidual tests. Researchers who follow the alpha adjustment ritual in this 
situation will end up making inconsistent multiple testing corrections 
because an alpha adjustment is in appropriate for the specific statistical 
inferences that they make. 

In summary, statistical inferences about intersection null hypotheses 
require an alpha adjustment, but statistical inferences about individual 
null hypotheses do not, even if multiple such inferences are made within 
the same study and/or on the same data set. Contrary to the alpha 
adjustment ritual then, there are some cases of multiple testing that do 
not require an alpha adjustment, and unthinking adherence to the ritual 
may result in inconsistent multiple testing corrections. 

4. Inconsistent corrections are common 

How common are inconsistent multiple testing corrections? In his 
recent review, García-Pérez (2023) checked 109 research articles that 
had used multiple testing corrections and that were published in the 
journals Behavior Research Methods and Psychological Science between 
2021 and June 2022. He found that 

“an invariable feature of all papers was that each and all of the in-
dividual tests for which a p value was reported (whether with or 
without corrections) was interpreted individually, that is, there was 
an inference per test and the tests were never regarded as collectively 
addressing a joint intersection null hypothesis” (p. 4). 

Hence, researchers used multiple testing corrections when they made 
statistical inferences about individual null hypotheses and not about the 
intersection null hypotheses to which their corrections would apply. We 
can conclude that, at least in García-Pérez’s (2023) sample of articles, 
inconsistent multiple testing corrections are very common. 

5. Inconsistent corrections reduce statistical power 

Inconsistent corrections also lead to an unjustifiable loss of statistical 
power. If a researcher adjusts their alpha level below its nominal level to 
account for multiple testing but only makes statistical inferences about 
individual hypotheses and not about a joint hypothesis, then they will 
have lowered the power of their individual tests for no good reason. 
Consequently, their Type I error rate will be unnecessarily low, and their 
Type II error rate will be unnecessarily high (García-Pérez, 2023, p. 11). 

For example, imagine that a researcher wanted to make two statis-
tical inferences about two individual hypotheses. Logically, they could 
use an unadjusted conventional αIndividual of 0.050 in each case. How-
ever, further imagine that the researcher followed the alpha adjustment 
ritual and used a Bonferroni correction to reduce their αIndividual level 
from 0.050 to 0.025 (i.e., αIndividual/k). If they obtained p values of 0.010 
and 0.040, then they could only reject the first null hypothesis. They 
would not be able to reject the second null hypothesis because their p 
value of 0.040 would be higher than their adjusted alpha level of 0.025. 
Of course, if they had not made this alpha adjustment, then they could 
have rejected their second hypothesis at the conventional alpha level of 
0.050. Hence, the researcher’s inconsistent correction caused a loss of 
statistical power and, assuming false null hypotheses, this loss of power 
would explain their nonsignificant result. 

It is important to clarify here that researchers can set αIndividual to be 
lower than the conventional level of 0.050 if they wish to provide more 
stringent tests of their individual hypotheses (Parker and Weir, 2020, p. 
564; Rubin, 2021b, p. 10984). However, this approach represents 
stringent alpha specification rather than an adjustment to a previously 
specified alpha level. Once αIndividual has been set at a specified level (e. 
g., 0.050, 0.010, etc.), it should not be adjusted to account for multiple 
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testing. 

6. Three examples of inconsistent corrections 

To better appreciate the implications of inconsistent corrections, it is 
helpful to consider three examples from recent research studies. To 
obtain these examples, I searched Google Scholar at the end of December 
2023 for recent articles (2021–2023) in journals that had the word 
“psychology” in the title and that included the terms “0.025” and “0.05/ 
2” or “0.050/2.” I used the period 2021 to 2023 to demonstrate the 
contemporary nature of inconsistent corrections over the past three 
years. I used the term “psychology” in the journal title to try to restrict 
articles to psychology journals, although there is no reason to believe 
that the same issue does not occur in other disciplines. Finally, I used the 
terms “0.025” and “0.05(0)/2” because they are likely to be used when 
discussing a relatively simple Bonferroni correction to a conventional 
alpha level of 0.050 when k = 2. In this case, statistical inferences about 
the two individual hypotheses can be made using an αIndividual of 0.050, 
and a statistical inference about the joint hypothesis can be made using 
an αConstituent of 0.025, which maintains the associated αJoint at 0.050. 
Hence, if researchers use this Bonferroni correction in a logically 
consistent manner, then they should make a statistical inference about a 
joint alternative hypothesis that encompasses the two constituent hy-
potheses that they test (e.g., “H1,1 or H1,2”). However, if they use it in a 
logically inconsistent manner, then they will not make a statistical 
inference about the joint hypothesis, and they will instead make two 
separate statistical inferences about two separate individual hypotheses 
(e.g., H1,1 and H1,2). 

My search returned 62 results. In screening these results, I selected 
cases in which (a) the statistical analysis was relatively simple, (b) one of 
the two test results was significant at the 0.025 level (i.e., p < 0.025), 
and (c) the other test result was significant at the 0.050 level but 
nonsignificant at the 0.025 level (i.e., 0.025 < p < 0.050). This third 
criterion allowed me to illustrate nonsignificant results that may be 
attributed to a loss of statistical power caused by inconsistent correc-
tions on the assumption that the associated null hypotheses are false. 

Using these criteria, I chose three examples: Prem et al. (2021, Study 
1), Clemens and Grolig (2023), and Janssen et al. (2023, Experiment 2). 
I selected these studies because they provided relatively clear illustra-
tions of inconsistent multiple testing corrections. Nonetheless, their se-
lection does not imply that they are any less rigorous or credible than 
other studies. Indeed, given that the researchers restricted their statis-
tical inferences to individual hypotheses, the selected studies can be 
viewed as providing more stringent tests than other studies because their 
alpha levels are lower than the conventional level of 0.050. My point 
here is only to highlight (a) the logical inconsistency in lowering the 
alpha level to control the familywise error rate and then only making 
claims about individual hypotheses and not about joint, family-based, 
hypotheses and (b) the potential implications arising from an associ-
ated loss in statistical power. 

6.1. Example 1: Prem et al. (2021, Study 1) 

Prem et al. (2021, Study 1) conducted a study to develop and vali-
date a scale to measure the cognitive demands of planning, structuring, 
and coordinating flexible working arrangements. The researchers 
explained that, “when testing Hypotheses 2 through 5, the 
Bonferroni-corrected α was 0.05/2 = 0.025 because Hypotheses 2 
through 5 each included 2 correlations” (p. 7). For example, Hypothesis 
4 was that “the subscale for the planning of working places would be 
positively related to the availability of telework possibilities to work 
from home and the availability of telework possibilities to [work] from 
other locations outside the employer’s premises” (p. 4). 

The researchers found that, 

“in line with Hypotheses 2 through 5, structuring of work tasks 
showed significant positive associations with decision-making au-
tonomy and work methods autonomy; planning of working times 
showed significant positive associations with work scheduling au-
tonomy and the availability of flextime; planning of working places 
showed significant positive associations with the availability of 
working from home and the availability of telework from other lo-
cations; and coordinating with others showed significant positive 
associations with initiated interdependence and received interde-
pendence (compare Table 1). All of these correlations remained 
significant after Bonferroni correction, with the exception of the 
correlation between planning of working places and the availability 
of working from home. Thus, Hypotheses 2, 3, and 5 were fully 
supported, and Hypothesis 4 was partly supported” (Prem et al., 
2021, p. 7). 

Hence, the researchers tested four hypotheses, each referring to two 
correlations, and they adjusted αConstituent to 0.025 (i.e., 0.050/2) in each 
case. Following this Bonferroni correction, they found support for three 
of the four hypotheses and partial support for Hypothesis 4, because 
only one of the two correlations was significant at the 0.025 level in this 
case. 

The conclusion that Hypothesis 4 was only “partially supported” is 
the result of an inconsistent correction. The use of the Bonferroni 
correction implies that Hypothesis 4 is a union alternative hypothesis 
that can be fully supported following at least one significant result using 
an adjusted αConstituent of 0.025. The researchers met this criterion, 
finding that planning of working places was significantly positively 
correlated with the availability of telework possibilities from other lo-
cations. Hence, logically, the researchers could have concluded that 
there was full support for Hypothesis 4. Instead, they concluded that 
Hypothesis 4 was only “partially supported.” This conclusion suggests 
that they construed Hypothesis 4 as being composed of two individual 
hypotheses, and they would conclude that there was “full support” for 
Hypothesis 4 if both individual hypotheses were supported, “partial 
support” if only one hypothesis was supported, and “no support” if 
neither hypothesis was supported. However, in this case, no alpha 
adjustment is required because separate statistical inferences are made 
about each individual hypothesis, and a nonstatistical summary of these 
two inferences is then provided in relation to “Hypothesis 4” (i.e., “full 
support,” “partial support,” or “no support”). Hence, the researchers 
should have reported two significant results at the 0.050 level and then 
claimed full support for Hypothesis 4. Instead, they only reported one 
significant result at the 0.025 level and claimed partial support for 
Hypothesis 4. Assuming the null hypotheses were false, this substantive 
claim of partial support may be attributed to a lack of statistical power 
caused by the inconsistent correction. 

I should note that correspondence with the first author of this study 
revealed that the decision to use a Bonferroni correction was made in 
response to a request from a peer reviewer (R. Prem, personal commu-
nication, January 03, 2024). Hence, at least in this case, a peer reviewer 
encouraged the researchers to follow the alpha adjustment ritual. 

6.2. Example 2: Clemens and Grolig (2023) 

Clemens and Grolig (2023) investigated how people would respond 
when they imagined that they were being interviewed by the police 
under either suspicion or no suspicion that they had committed an 
illegal act at a crime scene, but an act that was unrelated to the crime 
being investigated. Participants were asked to imagine that they had 
performed either a lawful act or an unlawful act at a bookstore in which 
a theft had taken place. In the lawful condition, participants looked at a 
book, and in an unlawful condition, they made an illegal purchase of a 
mobile phone. The researchers hypothesised “that unlawful act partici-
pants (vs. lawful act participants) would report … evasive strategies 
more frequently (hypothesis 1b).” The researchers considered two 

M. Rubin                                                                                                                                                                                                                                          



Methods in Psychology 10 (2024) 100140

6

evasive strategies: (a) deception and (b) reluctant information sharing. 
They reported that, 

“as two evasive categories of strategies were identified, we applied a 
Bonferroni corrected significance level (0.05/2) of 0.025 for hy-
pothesis 1b. The results show that unlawful (vs. lawful) act partici-
pants reported the evasive strategy to be deceptive (χ2(1, N = 128) =
28.038, p < 0.001, φ = 0.47) significantly more often, whereas no 
significant result was found for the evasive strategy of reluctant in-
formation sharing (χ2(1, N = 128) = 4.137, p = 0.042, φ = 0.18. These 
results are only partially in line with hypothesis 1b” (Clemens and 
Grolig, 2023, pp. 386–387). 

Again, the researchers’ conclusion that their results are “only 
partially in line” with their hypothesis is inconsistent with their 
analytical approach. The use of a Bonferroni correction implies that only 
one of the two tests needs to yield a significant result in order to reject 
the intersection null hypothesis that unlawful act participants would 
report neither of the evasive strategies more frequently than lawful act 
participants. Consistent with this criterion, the researchers found one 
significant result using an adjusted αConstituent level of 0.025 (p < 0.001). 
However, instead of claiming full support for the union alternative hy-
pothesis, they only claimed partial support. Again, this conclusion im-
plies that the two tests were construed as single tests of two individual 
null hypotheses. In this case, however, both null hypotheses could be 
provisionally rejected using a conventional αIndividual at the unadjusted 
level of 0.050 (p < 0.001 & p = 0.042), and a substantive conclusion of 
“full support” could be reached. 

6.3. Example 3: Janssen et al. (2023, Experiment 2) 

Finally, Janssen et al. (2023, Experiment 2) investigated the effec-
tiveness of different study strategies, focusing on the differences be-
tween blocked study (studying one topic at a time; e.g., AAA BBB CCC) 
and interleaved study (mixing up different topics across time; e.g., ACB 
BAC CBA). These researchers used a Bonferroni correction to adjust their 
alpha level to 0.025 during an independent samples t-test in which study 
strategy (blocked vs. interleaved) was the independent variable and (a) 
prospective judgments of learning and (b) actual learning outcomes 
were the two dependent variables. As they explained, 

“to test for significant differences, we used independent t-tests with a 
Bonferroni corrected significance level of p < 0.025 (i.e., 0.05/2). As 
expected and again consistent with Experiment 1, students who had 
used blocked studying made higher prospective judgments of 
learning (M = 5.83, SD = 1.60) than students who had used inter-
leaved studying (M = 5.24, SD = 1.82), t(297) = 2.95, p = 0.003, 
Cohen’s d = 0.34. Numerically, the actual learning outcomes were 
higher for the interleaved study condition (M = 6.92, SD = 2.06) 
than for the blocked study condition (M = 5.83, SD = 1.60). How-
ever, in contrast to our expectations, this difference was not statis-
tically significant, t(297) = − 1.99, p = 0.048, Cohen’s d = − 0.23” 
(Janssen et al., 2023, p. 24). 

Hence, using an αConstituent of 0.025, the researchers found a signif-
icant effect of study strategy (blocked vs. interleaved) on prospective 
judgments of learning (p = 0.003) but not on actual learning outcomes 
(p = 0.048). Following the logic of the Bonferroni correction, they could 
have then rejected the associated intersection null hypothesis and 
claimed full support for the union alternative hypothesis that study 
strategy affected either prospective judgments of learning or actual 
learning outcomes. Instead, they proceeded to make statistical and 
substantive inferences about each outcome variable separately. For 
example, they concluded that 

“both experiments replicated findings from prior research that, 
overall, at the group level, students reported higher effort investment 
and made lower judgments of learning during interleaved studying 

than during blocked studying (Kirk-Johnson et al., 2019; Onan et al., 
2022). Yet, we only replicated the finding that students actually 
learned significantly more from interleaved studying than from 
blocked studying (as evidenced by their test performance) in 
Experiment 1. In Experiment 2, the difference in learning outcome, 
although numerically in the hypothesized direction, was not statis-
tically significant …” (Janssen et al., 2023, p. 28). 

If the authors wanted to control their Type I error rate for each de-
cision about each individual hypothesis at 0.050, then they could have 
used an unadjusted αIndividual of 0.050, rather than an adjusted αConstituent 
of 0.025. In this case, they would have decided that both of their test 
results were significant (ps = 0.003 & 0.048) rather than only their first 
result (p = 0.003). An αConstituent of 0.025 would only be required if the 
authors wanted to make a decision about the intersection null hypoth-
esis using an αJoint of 0.050. However, they did not consider this inter-
section null hypothesis. Hence, once again, this example illustrates an 
inconsistent multiple testing correction and a nonsignificant result that, 
assuming a false null hypothesis, may be attributed to a loss of statistical 
power. 

6.4. Summary 

In summary, in all three examples, the researchers applied a Bon-
ferroni correction to adjust αConstituent from 0.050 to 0.025 in order to 
control αJoint at 0.050. In all three studies, the researchers found a sig-
nificant result in which p < 0.025 and a nonsignificant result in which 
0.025 < p < 0.050. This pattern of results would allow the researchers to 
either (a) reject the intersection null hypothesis on the grounds that at 
least one test was significant using an adjusted αConstituent of 0.025 or (b) 
reject both individual null hypotheses on the grounds that both tests 
were significant using an unadjusted αIndividual of 0.050. Instead, in all 
three cases, the researchers followed a fallacious hybrid approach in 
which they used an αConstituent of 0.025 to (a) reject one of the two in-
dividual null hypotheses and (b) fail to reject the other one. This hybrid 
approach is logically inconsistent with the use of a multiple testing 
correction. Furthermore, assuming that the null hypotheses were false, 
the researcher’s nonsignificant results can be attributed to a loss of 
statistical power caused by their inconsistent corrections: If they had 
used an unadjusted αIndividual of 0.050, then they would have decided 
that both of their tests yielded significant results. Their nonsignificant 
results also had implications for their substantive conclusions. In two of 
the three cases, the researchers described their results as providing only 
partial support for their hypotheses (Clemens and Grolig, 2023; Prem 
et al., 2021, Study 1). In fact, whichever way the results are interpreted, 
they provided full support for the hypotheses: The single significant 
result at the 0.025 αConstituent level was sufficient to reject the entire 
intersection null hypothesis, and the two significant results at the 0.050 
αIndividual level were sufficient to reject each of the two individual null 
hypotheses. 

I restricted my three examples to studies published in psychology 
journals that used a Bonferroni correction involving two simple tests in 
which one test yielded a significant result at the corrected alpha level 
and the other yielded a nonsignificant result. Nonetheless, inconsistent 
corrections may also be observed among nonpsychology studies that use 
other family-based alpha correction approaches and larger families of 
tests. 

7. Moving away from statisticism 

In my view, statisticism refers to an overgeneralization of abstract 
statistical principles at the expense of context-specific nuance and ca-
veats (e.g., Boring, 1919; Brower, 1949). Statisticism may help to 
explain the unthinking statistical ritualism that has been noted by some 
commentators (Davidson, 2018; Gigerenzer, 2004, 2018; Proulx and 
Morey, 2021). In the area of significance testing, this ritualism may lead 
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researchers to (a) preregister analyses and demote exploratory analyses 
as “tentative,” even when significance tests retain their validity in 
non-preregistered, exploratory situations (Devezer et al., 2021; Rubin, 
2017, 2020a); (b) use a conventional alpha level when an alternative 
unconventional alpha level is more appropriate (Lakens et al., 2018); (c) 
use a two-sided test when a one-sided test is more consistent with one’s 
statistical inference (Georgiev, 2018; Rubin, 2022); (d) conduct an a 
priori power analysis when there is no clear basis for an effect size es-
timate and a sensitivity power analysis is more appropriate (Lakens, 
2022; Perugini et al., 2018); and (e) follow a Neyman-Pearson inter-
pretation when a Fisherian interpretation is more appropriate (Hurlbert 
and Lombardi, 2009; Rubin, 2020b). 

Perhaps fuelled by concerns about statistical rigour following the 
replication crisis, statisticism may also help to explain a renewed pro-
mulgation of the alpha adjustment ritual. Inconsistent multiple testing 
corrections then follow as an overgeneralized response to a fairly limited 
problem. 

To move away from statisticism, we need to adopt a more nuanced, 
context-sensitive approach that pays closer attention to the specific 
statistical inferences that researchers actually make. In the case of 
multiple testing corrections, this more nuanced approach includes the 
abandonment of the alpha adjustment ritual and the adoption of an 
inference-based perspective that advocates an alpha adjustment in the 
case of inferences about intersection null hypotheses but not in the case 
of inferences about individual null hypotheses. 
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García-Pérez, M.A., 2023. Use and misuse of corrections for multiple testing. Methods in 
Psychology 8, 100120. https://doi.org/10.1016/j.metip.2023.100120. 

Georgiev, G.Z., 2018. Directional Claims Require Directional (Statistical) Hypotheses. 
One-sided.org. August 6. https://www.onesided.org/articles/directional-claims-re 
quire-directional-hypotheses.php. 

Gigerenzer, G., 2004. Mindless statistics. J. Soc. Econ. 33 (5), 587–606. https://doi.org/ 
10.1016/j.socec.2004.09.033. 

Gigerenzer, G., 2018. Statistical rituals: the replication delusion and how we got there. 
Advances in Methods and Practices in Psychological Science 1 (2), 198–218. https:// 
doi.org/10.1177/2515245918771329. 

Greenland, S., 2021. Analysis goals, error-cost sensitivity, and analysis hacking: Essential 
considerations in hypothesis testing and multiple comparisons. Paediatr. Perinat. 
Epidemiol. 35, 8–23. https://doi.org/10.1111/ppe.12711. 

Hewes, D.E., 2003. Methods as tools. Hum. Commun. Res. 29, 448–454. https://doi.org/ 
10.1111/j.1468-2958.2003.tb00847.x. 

Hitchcock, C., Sober, E., 2004. Prediction versus accommodation and the risk of 
overfitting. Br. J. Philos. Sci. 55 (1), 1–34. https://doi.org/10.1093/bjps/55.1.1. 

Hochberg, Y., Tamrane, A.C., 1987. Multiple Comparison Procedures. Wiley. 
https://www.nature.com/srep/author-instructions/submission-guidelines. 

Hurlbert, S.H., Lombardi, C.M., 2009. Final collapse of the Neyman-Pearson decision 
theoretic framework and rise of the neoFisherian. Ann. Zool. Fenn. 46 (5), 311–349. 
https://doi.org/10.5735/086.046.0501. 

Hurlbert, S.H., Lombardi, C.M., 2012. Lopsided reasoning on lopsided tests and multiple 
comparisons. Aust. N. Z. J. Stat. 54 (1), 23–42. https://doi.org/10.1111/j.1467- 
842X.2012.00652.x. 

Janssen, E.M., van Gog, T., van de Groep, L., de Lange, A.J., Knopper, R.L., Onan, E., 
et al., 2023. The role of mental effort in students’ perceptions of the effectiveness of 
interleaved and blocked study strategies and their willingness to use them. Educ. 
Psychol. Rev. 35 (3), 85 https://doi.org/10.1007/s10648-023-09797-3. 

Kim, K., Zakharkin, S.O., Loraine, A., Allison, D.B., 2004. Picking the most likely 
candidates for further development: Novel intersection-union tests for addressing 
multi-component hypotheses in comparative genomics. In: Proceedings of the 
American Statistical Association, ASA Section on ENAR Spring Meeting, 
pp. 1396–1402. http://www.uab.edu/cngi/pdf/2004/JSM%202004%20-IUTs% 
20Kim%20et%20al.pdf. 

Kuzon, W., Urbanchek, M., McCabe, S., 1996. The seven deadly sins of statistical 
analysis. Ann. Plast. Surg. 37, 265–272. 

Lakens, D., Adolfi, F.G., Albers, C.J., Anvari, F., Apps, M.A., Argamon, S.E., et al., 2018. 
Justify your alpha. Nat. Human Behav. 2 (3), 168–171. https://doi.org/10.1038/ 
s41562-018-0311-x. 

Lakens, D., 2022. Sample size justification. Collabra: Psychology 8 (1), 33267. https:// 
doi.org/10.1525/collabra.33267. 

Matsunaga, M., 2007. Familywise error in multiple comparisons: disentangling a knot 
through a critique of O’Keefe’s arguments against alpha adjustment. Commun. 
Methods Meas. 1, 243–265. https://doi.org/10.1080/19312450701641409. 

Meehl, P.E., 1997. The problem is epistemology, not statistics: replace significance tests 
by confidence intervals and quantify accuracy of risky numerical predictions. In: 
Harlow, L.L., Mulaik, S.A., Steiger, J.H. (Eds.), What if There Were No Significance 
Tests? Erlbaum, pp. 393–425. 

Millis, S.R., 2003. Statistical practices: the seven deadly sins. Child Neuropsychol. 9 (3), 
221–233. https://doi.org/10.1076/chin.9.3.221.16455. 

Molloy, S.F., White, I.R., Nunn, A.J., Hayes, R., Wang, D., Harrison, T.S., 2022. 
Multiplicity adjustments in parallel-group multi-arm trials sharing a control group: 
clear guidance is needed. Contemp. Clin. Trials 113, 106656. https://doi.org/ 
10.1016/j.cct.2021.106656. 

Parker, R.A., Weir, C.J., 2020. Non-adjustment for multiple testing in multi-arm trials of 
distinct treatments: rationale and justification. Clin. Trials 17 (5), 562–566. https:// 
doi.org/10.1177/1740774520941419. 

Parker, R.A., Weir, C.J., 2022. Multiple secondary outcome analyses: precise 
interpretation is important. Trials 23 (1), 27. https://doi.org/10.1186/s13063-021- 
05975-2. 

Perneger, T.V., 1998. What’s wrong with Bonferroni adjustments. BMJ 316, 1236. 
https://doi.org/10.1136/bmj.316.7139.1236. 

Perugini, M., Gallucci, M., Costantini, G., 2018. A practical primer to power analysis for 
simple experimental designs. Rev. Int. Psychol. Soc. 31 (1), 1–23. https://doi.org/ 
10.5334/IRSP.181. 

Popp, D., Williams, J.B., Sorantin, P., Detke, M., 2012. P2-304: guidelines for reporting 
clinical trial methodology research: the seven deadly sins. Alzheimer’s Dementia 8 
(4S_Part_10), P369–P370. 

Prem, R., Kubicek, B., Uhlig, L., Baumgartner, V., Korunka, C., 2021. Development and 
initial validation of a scale to measure cognitive demands of flexible work. Front. 
Psychol. 12, 679471 https://doi.org/10.3389/fpsyg.2021.679471. 

Proulx, T., Morey, R.D., 2021. Beyond statistical ritual: theory in psychological science. 
Perspect. Psychol. Sci. 16 (4), 671–681. https://doi.org/10.1177/ 
17456916211017098. 

Rothman, K.J., 1990. No adjustments are needed for multiple comparisons. 
Epidemiology 1, 43–46. https://www.jstor.org/stable/20065622. 

Roy, S.N., 1953. On a heuristic method of test construction and its use in multivariate 
analysis. Ann. Math. Stat. 24, 220–238. https://doi.org/10.1214/aoms/ 
1177729029. 

Rubin, M., 2017. Do p values lose their meaning in exploratory analyses? It depends how 
you define the familywise error rate. Rev. Gen. Psychol. 21 (3), 269–275. https:// 
doi.org/10.1037/gpr0000123. 

Rubin, M., 2020a. Does preregistration improve the credibility of research findings? The 
Quantitative Methods for Psychology 16 (4), 376–390. https://doi.org/10.20982/ 
tqmp.16.4.p376. 

Rubin, M., 2020b. “Repeated sampling from the same population?” A critique of Neyman 
and Pearson’s responses to Fisher. European Journal for Philosophy of Science 10, 
42. https://doi.org/10.1007/s13194-020-00309-6, 1-15.  

M. Rubin                                                                                                                                                                                                                                          

https://doi.org/10.1111/opo.12131
https://doi.org/10.1037/h0074554
https://doi.org/10.1037/h0061802
https://doi.org/10.1007/s11896-022-09525-7
https://doi.org/10.1007/s11896-022-09525-7
https://doi.org/10.2307/2983471
https://doi.org/10.1037/gpr0000154
https://doi.org/10.1098/rsos.200805
https://doi.org/10.1098/rsos.200805
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref8
https://doi.org/10.22237/jmasm/1430453040
https://doi.org/10.22237/jmasm/1430453040
https://doi.org/10.22237/jmasm/1556669400
https://doi.org/10.22237/jmasm/1556669400
https://doi.org/10.1016/j.metip.2023.100120
https://www.onesided.org/articles/directional-claims-require-directional-hypotheses.php
https://www.onesided.org/articles/directional-claims-require-directional-hypotheses.php
https://doi.org/10.1016/j.socec.2004.09.033
https://doi.org/10.1016/j.socec.2004.09.033
https://doi.org/10.1177/2515245918771329
https://doi.org/10.1177/2515245918771329
https://doi.org/10.1111/ppe.12711
https://doi.org/10.1111/j.1468-2958.2003.tb00847.x
https://doi.org/10.1111/j.1468-2958.2003.tb00847.x
https://doi.org/10.1093/bjps/55.1.1
https://www.nature.com/srep/author-instructions/submission-guidelines
https://doi.org/10.5735/086.046.0501
https://doi.org/10.1111/j.1467-842X.2012.00652.x
https://doi.org/10.1111/j.1467-842X.2012.00652.x
https://doi.org/10.1007/s10648-023-09797-3
http://www.uab.edu/cngi/pdf/2004/JSM%202004%20-IUTs%20Kim%20et%20al.pdf
http://www.uab.edu/cngi/pdf/2004/JSM%202004%20-IUTs%20Kim%20et%20al.pdf
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref23
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref23
https://doi.org/10.1038/s41562-018-0311-x
https://doi.org/10.1038/s41562-018-0311-x
https://doi.org/10.1525/collabra.33267
https://doi.org/10.1525/collabra.33267
https://doi.org/10.1080/19312450701641409
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref27
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref27
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref27
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref27
https://doi.org/10.1076/chin.9.3.221.16455
https://doi.org/10.1016/j.cct.2021.106656
https://doi.org/10.1016/j.cct.2021.106656
https://doi.org/10.1177/1740774520941419
https://doi.org/10.1177/1740774520941419
https://doi.org/10.1186/s13063-021-05975-2
https://doi.org/10.1186/s13063-021-05975-2
https://doi.org/10.1136/bmj.316.7139.1236
https://doi.org/10.5334/IRSP.181
https://doi.org/10.5334/IRSP.181
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref34
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref34
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref34
https://doi.org/10.3389/fpsyg.2021.679471
https://doi.org/10.1177/17456916211017098
https://doi.org/10.1177/17456916211017098
https://www.jstor.org/stable/20065622
https://doi.org/10.1214/aoms/1177729029
https://doi.org/10.1214/aoms/1177729029
https://doi.org/10.1037/gpr0000123
https://doi.org/10.1037/gpr0000123
https://doi.org/10.20982/tqmp.16.4.p376
https://doi.org/10.20982/tqmp.16.4.p376
https://doi.org/10.1007/s13194-020-00309-6


Methods in Psychology 10 (2024) 100140

8

Rubin, M., 2021a. There’s no need to lower the significance threshold when conducting 
single tests of multiple individual hypotheses. Academia Letters, 610. https://doi. 
org/10.20935/AL610. 

Rubin, M., 2021b. When to adjust alpha during multiple testing: a consideration of 
disjunction, conjunction, and individual testing. Synthese 199, 10969–11000. 
https://doi.org/10.1007/s11229-021-03276-4. 

Rubin, M., 2022. That’s not a two-sided test! It’s two one-sided tests.  Significance 19 (2), 
50–53. https://doi.org/10.1111/1740-9713.01619. 

Rubin, M., 2024. Type I error rates are not usually inflated. MetaArXiv. https://doi.org/ 
10.31222/osf.io/3kv2b. 

Savitz, D.A., Olshan, A.F., 1995. Multiple comparisons and related issues in the 
interpretation of epidemiologic data. Am. J. Epidemiol. 142, 904–908. https://doi. 
org/10.1093/oxfordjournals.aje.a117737. 

Senn, S., 2007. Statistical Issues in Drug Development, second ed. Wiley. 
Sinclair, J., Taylor, P.J., Hobbs, S.J., 2013. Alpha level adjustments for multiple 

dependent variable analyses and their applicability—a review. Int. J. Sports Sci. Eng. 
7, 17–20. 

Tukey, J.W., 1953. The Problem of Multiple Comparisons. Princeton University. 
Turkheimer, F.E., Aston, J.A., Cunningham, V.J., 2004. On the logic of hypothesis testing 

in functional imaging. Eur. J. Nucl. Med. Mol. Imag. 31, 725–732. https://doi.org/ 
10.1007/s00259-003-1387-7. 

Veazie, P.J., 2006. When to combine hypotheses and adjust for multiple tests. Health 
Serv. Res. 41 (3p1), 804–818. 

Wilson, W., 1962. A note on the inconsistency inherent in the necessity to perform 
multiple comparisons. Psychol. Bull. 59, 296–300. https://doi.org/10.1037/ 
h0040447. 

M. Rubin                                                                                                                                                                                                                                          

https://doi.org/10.20935/AL610
https://doi.org/10.20935/AL610
https://doi.org/10.1007/s11229-021-03276-4
https://doi.org/10.1111/1740-9713.01619
https://doi.org/10.31222/osf.io/3kv2b
https://doi.org/10.31222/osf.io/3kv2b
https://doi.org/10.1093/oxfordjournals.aje.a117737
https://doi.org/10.1093/oxfordjournals.aje.a117737
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref47
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref48
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref48
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref48
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref49
https://doi.org/10.1007/s00259-003-1387-7
https://doi.org/10.1007/s00259-003-1387-7
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref51
http://refhub.elsevier.com/S2590-2601(24)00006-7/sref51
https://doi.org/10.1037/h0040447
https://doi.org/10.1037/h0040447

	Inconsistent multiple testing corrections: The fallacy of using family-based error rates to make inferences about individua ...
	1 The multiple testing problem
	2 The alpha adjustment solution
	2.1 The familywise error rate
	2.2 The per family error rate

	3 Inconsistent corrections
	3.1 Error rate confusions
	3.2 The alpha adjustment ritual

	4 Inconsistent corrections are common
	5 Inconsistent corrections reduce statistical power
	6 Three examples of inconsistent corrections
	6.1 Example 1: Prem et al. (2021, Study 1)
	6.2 Example 2: Clemens and Grolig (2023)
	6.3 Example 3: Janssen et al. (2023, Experiment 2)
	6.4 Summary

	7 Moving away from statisticism
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


