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1 Introduction

The application of machine learning algorithms to jet classification [1–29] provides an ideal
environment to gauge the interplay between performance and interpretability. On the one
hand, we need highly performant algorithms utilising the wealth of experimental data recorded
at the Large Hadron Collider (LHC), while on the other, we want to ascertain the reason
behind the algorithm’s efficiency. Architectures which are Lorentz equivariant [30–34], or
are infra-red and collinear (IRC) safe [35–42] have been shown to enhance the physical
biases of the algorithms with generally minimal loss, or at times, comparatively increased
performance [31, 34] with respect to physics-opaque constructions. In this work, we combine
IRC safety with Euclidean equivariance in the rapidity-azimuth plane. With well-known
examples of jet-shape [43–50] variables, constructed as functions of distance in the rapidity-
azimuth plane, this pushes the IRC-safe features closer to human-engineered QCD features
without losing out on performance, even with two orders of magnitude lower number of
model parameters.

Symmetry in a different sense, namely the degeneracy over nearly degenerate final
states, is fundamental to the theoretical robustness of information that can be gained
from phenomenological analyses. The Kinoshita-Lee-Nauenberg theorem [51, 52] guarantees
cancellations of soft and (final-state) collinear divergences when algorithms are infrared (IR)
and collinear safe; any departure from IRC-safe methods ultimately implies uncorrectable
interpretation shortfalls. This technically elevates IRC safety to a comparable level as the
space-time symmetries to perturbatively model and interpret scattering processes.

The recent surge in the application of machine learning for enhancing the sensitivity
to new physics in available and projected particle physics data sets has led to a departure
from observables that transparently reflect symmetry properties and IRC safety. Nonetheless,
any such serious attempt should critically feature IRC safety whilst exploiting symmetries
of the data sets in the corresponding architecture. This work aims to demonstrate that
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this is not only feasible but directly applicable to the determination of BSM parameter
regions in case a discovery can be claimed via these techniques. We construct an IRC-safe
E(2)-equivariant network and demonstrate the enhanced optimisation capability of such
an algorithm compared to approaches that do not exploit symmetry. As most popular
substructure variables are generally built out of ∆R =

√
(∆y)2 + (∆ϕ)2, our choice of the

E(2)-group preserves such a structure in the feature extraction process, thereby closely
matching the QCD-intuitive picture of high-level variables. We then apply this approach to
a classification of jet substructure analyses (we consider Hidden Valley Models [53–60] as a
representative example), where IRC safety plays a critical role in obtaining a theoretically
robust output score when the substructure becomes sparse or soft.

This work is organised as follows: in section 2, we discuss the inductive biases relevant to
phenomenology at the LHC, namely IRC safety and equivariance in the rapidity-azimuthal
plane. Then, in section 3, we apply this network to a relevant physics case where it
discriminates between QCD jets and dark shower jets (semi-visible jets). We discuss the
network architecture and its performance. Finally, we provide a summary and conclusion
in section 4.

2 Inductive biases and QCD

The success of deep learning algorithms relies on reducing the search space of possible
functions to a predetermined subset by imposing additional structures on the architecture.
These inductive biases favour the extraction of relevant features which are not too specific
(like high-level variables) but follow the intuition of the application domain. Here, we discuss
the two inductive biases we impose on the Message Passing Neural Network utilised in our
study: IRC safety and equivariance in the rapidity-azimuth plane.

2.1 Infrared and collinear safety

From a QCD perspective, infra-red and collinear safe feature extraction promises to provide
better interpretability while not losing out on the high classification capabilities. Any message
passing operation involves taking in the node features H(l)

i of each node i as the input and
updating it to H(l+1)

i . As IRC safety is defined at the level of the whole jet and not for each
constituents, these node features inevitably undergo a graph-readout operation for jet-level
classification. A way to define an IRC-safe graph-representation is the “conservation of
collinearity” of the node features in each representation indexed by l of the message passing
operation which preserves the structure of the angular components in the limit of collinear
emissions. In the following, each particle i has four vectors pµ

i = (zi, p̂i), with zi = pi
T /

∑
k pk

T

and p̂i denoting the angular vector. Mathematically, a node representation H(l)
i conserves

collinearity, if for any particle q, r, and s, we have

zq = zr + zs ∧ p̂q = p̂r = p̂s =⇒ H(l)
q = H(l)

r = H(l)
s . (2.1)

Once this condition is satisfied, it is straightforward to define an IRC safe graph repre-
sentation as

Gl =
∑

i

zi H(l)
i . (2.2)
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For implementing IRC safety in Energy-weighted Message Passing Network (EMPN) [37],
one defines an IRC-safe prescription for defining the graph structure. Once this is satisfied
for any node i in the graph, the message-passing operation

H(l+1)
i =

∑
j∈N [i]

ω
(N [i])
j Φ̂(l+1)(H(l)

i , H(l)
j ) (2.3)

where the scope-dependent factors are an analogue of zi, defined as

ω
(N [i])
j = pj

T∑
k∈N [i] pk

T

,

recursively conserves collinearity of the node features if the initial input H(0)
i follows the same.

For the input, one can use the relative coordinates in the rapidity-azimuth plane from the jet
axis, H(0)

i = (∆yiJ , ∆ϕiJ) satisfies the condition trivially. The function Φ̂(l), in general, can
be any well-behaved neural network which we take to be an edge convolution network [61].
The neighbourhood N [i] is constructed by imposing the step function Θ(∆Rij < R0) for each
particle i, R0 being a parameter that determines the density of the constructed graph. The
graph features (by taking a graph readout as defined in eq. 2.2) for l > 0 can be concatenated
up to the total number of such operations L, which is a hyperparameter. For classification, a
downstream network takes the graph representation as an input and gives a classification score.

2.2 Equivariance in rapidity-azimuth plane

Equivariance is at the core of the powerful learning ability shown by modern deep-learning
algorithms such as Convolutional Neural Networks (CNNs) and Graph Neural Networks
(GNNs). They reduce the possible set of functions that a neural network can approximate by
assuming symmetries of the input data. For instance, CNNs assume translational symmetry
in R2 while GNNs assume permutation symmetry of the nodes. Equivariance enforces group
algebraic structures in the hidden representations in a neural network. This reduces the
set of possible functions that a neural network can approximate to those which follow the
group equivariant property.

Mathematically, for a group G with an element denoted as g, let X and Y be two sets
with x ∈ X and y ∈ Y that admit group actions1 TX(g, x) and TY(g, y), respectively. A
function f : X → Y is G-equivariant if

f(TX(g, x)) = TY(g, f(x)) . (2.4)

An equivariant neural network [62] approximates such a function f for a given group, and
f is generally non-linear. From an approximation perspective, the neural network being
able to learn only those functions that follow eq. (2.4) rather than any general function
necessarily reduces the expressive power. However, the reduction generally results in higher
efficiency of the optimisation process in terms of network complexity, on top of increasing
the interpretability as the particular group G is determined from domain knowledge. If the

1An action of a group G is defined as TX : G × X → X such that for any x ∈ X, we have TX(e, x) = x for
the neutral element e ∈ G and TX(g1, TX(g2, x)) = TX(g1g2, x), for all g1, g2 ∈ G.
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action TY is trivial, i.e., TY(g, y) = y ∀g ∈ G, then the function f is said to be G-invariant.
GNNs are permutation equivariant in the node update stage, while for graph-level purposes,
the global readout renders the graph representation permutation invariant.

For our purpose, the group which preserves the separation ∆R in the (y, ϕ) plane is the
Euclidean group E(2). To incorporate E(2)-equivariance in an EMPN, we modify the general
E(n)-equivariant message-passing operation of reference [63]. To define E(n) equivariance in
this form, one segregates the node features H(l)

i , into a scalar and a vector representation.
Denoting the former as h(l)

i and the latter as x(l)
i , the E(n) equivariant operation is given as

m(l+1)
ij = Φ(l+1)

e (h(l)
i , h(l)

j , |x(l)
i − x(l)

j |) , (2.5a)

x(l+1)
i = x(l)

i +
∑
j ̸=i

(x(l)
i − x(l)

j ) Φ(l+1)
x (m(l+1)

ij ) , (2.5b)

m(l+1)
i =

∑
j ̸=i

m(l+1)
ij , (2.5c)

h(l+1)
i = Φh(h(l)

i , m(l+1)
i ) , (2.5d)

where Φ(l+1)
e , Φ(l+1)

x , and Φ(l+1)
h are multilayer perceptrons (MLPs), with Φ(l+1)

x giving a
one-dimensional output with a sigmoid activation, thereby being interpreted as a scalar
weight in the aggregation. The restriction j ̸= i in the aggregation steps can be relaxed as the
equivariance is satisfied in its absence. Moreover, as the neighbourhood construction modifies
the message functions (Φ(l+1)

e and Φ(l+1)
x ) by a product with a step function Θ(∆Rij < R0)

which is itself E(2) invariant, we can incorporate a local aggregation scheme without impeding
global equivariance. We note that modifying eq. (2.3) to

H(l+1)
i = F(l+1)

H(l)
i ,

∑
i∈N [i]

ω
(N [i])
j Φ̂(l+1)(H(l)

i , H(l)
j )

 , (2.6)

with a well-behaved (to be learned) function F(l+1) still conserves collinearity of the updated
node features. This is because the conservation of collinearity in the second argument
already requires its conservation in the first argument H(l)

q = H(l)
r = H(l)

s . In general, by the
definition of a function not being one-to-many, any function f(H(1)

i , H(2)
i , . . . , H(n)

i ) of n node
representations H(l)

i of a single node feature i conserves collinearity, if each H(l)
i conserves

collinearity. Equipped with this observation, it is straightforward to modify eq. (2.5) to
satisfy IRC safety by incorporating the energy-weighted sum structure in the aggregation as

m(l+1)
ij = Φ(l+1)

e (h(l)
i , h(l)

j , |x(l)
i − x(l)

j |2) , (2.7a)

x(l+1)
i = x(l)

i +
∑

j∈N [i]
ω

(N [i])
j (x(l)

i − x(l)
j ) Φ(l+1)

x (m(l+1)
ij ) , (2.7b)

m(l+1)
i =

∑
j∈N [i]

ω
(N [i])
j m(l+1)

ij , (2.7c)

h(l+1)
i = Φ(l+1)

h (h(l)
i , m(l+1)

i ) . (2.7d)

Conservation of collinearity of the updated scalar features h(l+1)
i , and vector features x(l+1)

i

follows from comparing their corresponding aggregation equations to eq. (2.6). We have
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Figure 1. A schematic representation of E(2)-EMPN and O(2)-EMPN network architecture.

modified the input Euclidean norm to the squared value as we have self-loops, and the square
root is not differentiable at zero.

The general E(n) group consists of translations and rotations. While there are some
instances where the translational symmetry is utilised by defining vector observables like jet
pull [64–66], most substructure observables are confined to a rotationally symmetric definition
by using only the scalar separation ∆R. Therefore, we also study an O(2)-equivariant
architecture by forgoing translational equivariance. This can be done by modifying eqs. (2.7a)
and (2.7b) to

m(l+1)
ij = Φ(l+1)

e (h(l)
i , h(l)

j , |x(l)
i − x(l)

j |2, x(l)
i . x(l)

j ) , (2.8a)

x(l+1)
i =

∑
j∈N [i]

ω
(N [i])
j x(l)

j Φ(l+1)
x (m(l+1)

ij ) , (2.8b)

and keeping eqs. (2.7c) and (2.7d) unchanged. We have added the inner product x(l)
i . x(l)

j as
it is invariant to rotations, which is not the case for translations.

Note that for the final IRC safe feature extraction, we need to perform an energy-weighted
summed global readout as given in eq. (2.2) for both x(l)

i and h(l)
i . Moreover, the input

scalars h(0)
i cannot contain zi from the requirement of IRC safety, even though it is invariant

under E(2). A schematic representation of the equivariant message passing is shown on
the left of figure 1.

3 A physics application: tagging semi-visible jets

The radiation pattern arising from perturbative QCD emissions is known to be approximately
uniform in the rapidity-azimuth plane. This guides the design of most jet-shape observ-
ables [43] to use the relative distance between ∆R, between pairs of particles [46, 48], or from
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well-defined axes [44, 45]. The implicit assumption underlying such definitions is the invariance
of the observables under the two-dimensional Euclidean group E(2) in the rapidity-azimuth
plane. It is, therefore, a natural extension of IRC-safe feature extraction to incorporate
E(2)-equivariance to better connect to known jet substructure observables in literature.

Although equivariance, in principle, would help segregate QCD radiation patterns with
different n-prong structures, a particularly challenging case would be when the parton shower
itself is altered with non-trivial physics. For example, a QCD-like dark shower in Hidden
Valley models can produce a mixture of BSM and normal SM particles, generally modelled via
interleaved parton showers. In such a case, the differences that arise from the QCD radiation
are not in the presence of the hard prongs but rather at an intricate level in the relative
distribution of the particle’s position in the (y, ϕ) plane, with possibly some missing patches
left by undetectable stable or quasi-stable particles within the jet. Generally, the energy
values would be similar to a one-prong QCD jet. At the same time, the relative position of
the particles in the (y, ϕ) plane would be the distinguishing feature in such semi-visible jets.
Therefore, E(2) equivariance would be more prominent in identifying such semi-visible jets.

Hidden Valley Models offer an intriguing perspective in particle physics, suggesting the
existence of secluded, almost decoupled sectors that interact weakly with the SM. Such a
scenario can be brought about by extending the SM gauge group with a new group Gv. The
choices of the gauge group and new fermions and their relation to the SM particles offer a
rich phenomenology with possibly distinct signatures like emerging jets or semi-visible jets
not covered by traditional searches at the LHC, like monojet searches [67, 68]. In general,
the SM particles remain neutral under the new group Gv, while there can be two classes of
new particles: those charged under the SM gauge group and the Gv and those which solely
have a Gv charge. Interactions between the new sector and SM particles can occur through
intermediary mechanisms, such as a TeV scale Z ′ or through higher-dimensional operators
and loops involving heavy particles possessing non-trivial GSM and Gv charges. The case of
a confined dark sector decoupled from SM in the lower energies is of particular interest.

3.1 Simulation details

Strongly coupled hidden-sector particles produced at the LHC could produce invisible dark
mesons along with stable mesons. In such a case, novel LHC signatures such as semi-visible
jets could be produced, almost indistinguishable from QCD backgrounds, therefore posing
an exciting challenge for jet classification. This study considers resonant and non-resonant
production of semi-visible jets. For the latter, we consider both Electroweak (EW) and QCD
productions separately. We simulate these dark shower jets events at 14 TeV centre-of-mass
energy proton-proton collisions using the Hidden Valley (HV) module of Pythia8.310 [69].
They are generated as:

• Resonant production: a new leptophobic vector boson Z ′ is produced as a BSM
mediator, decaying to a pair of dark quarks. Events are generated setting with the
process HiddenValley:ffbar2Zv = on. We set the mass of Z ′ = 1 TeV with a width
of 10 MeV. The Z ′ decays to a pair of dark quarks (qd q̄d), which has no SM charge but
can decay to another dark sector particle and an SM quark. The subsequent showering
and hadronisation produce dark mesons and SM particles.
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Ūv

g
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g

Figure 2. Representative Feynman diagrams for the dark shower event generation processes.

• Non-resonant EW production: we produce a pair of Uv quarks using the process
HiddenValley:ffbar2UvUvbar = on. These Uv’s are charged under the fundamental
representation of the dark SU(N) and mirror the SM charges of the u-quark. It, therefore,
radiates into both SM and dark sector particles.

• Non-resonant QCD production: the same Uv pair of quarks are produced using the
process HiddenValley:gg2UvUvbar = on. Unlike the previous channel, which occurs
via an s-channel colour singlet propagator, this channel has an SM colour connection
between the initial and the final state lines, resembling QCD dijet productions more
closely.

The fraction of stable to total dark mesons produced in the process is controlled by the
probVector parameter in the HV Module. We have chosen probVector=0.5 in our analysis.
This choice is motivated by higher values producing events with low missing transverse energy,
which is covered by dijet bump hunts. In comparison, lower values correspond to signatures
where the missing transverse energy’s ϕ direction is away from the jet axes and, hence, are
covered by more traditional dark matter searches.

All final state particles detectable at the LHC are clustered into microjets of radius
R = 0.1 using the anti-kt algorithm [70], mimicking the calorimeter resolution. Inclusive
microjets with transverse momentum pT > 1 GeV are then clustered into jets of radius R = 0.8
with the anti-kt algorithm. The jet clusterings are performed using the FastJet (v3.4.1) [71]
package. Events are required to have at least two jets within |η| < 3, the leading jet is required
to have pT > 150 GeV, and other sub-leading jets are required to have pT > 120 GeV.

For the background, QCD dijet events are generated by setting HardQCD:all = on. To
have better efficiency in the event selection, we set PhaseSpace:pTHatMin= 100, which puts
a lower bound of 100 GeV on the transverse momentum on each of the two final state legs in
the 2 → 2 processes for all classes. We generate 300k events passing the selection criteria
for each class, which are used to create three binary classification datasets for each of the
three signals vs the background. The leading jet’s constituents in these events are used to
construct jet graphs. We use R0 = 0.5 to construct the radius graph and extract h(0)

i = ∆RiJ ,
and x(0)

i = (∆yiJ , ∆ϕiJ) along with zi and ω
(N [i])
j . For the ordinary EMPN architecture, we

use H(0)
i = x(0)

i . Since all three networks process the node features to extract relevant edge
features as inputs to the learnable functions, no edge features are added. The combined
datasets of the signal and background (consisting of 600k samples) are segregated into 60%
training, 20% testing, and 20% validation datasets.
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3.2 Network architecture and training

The network analysis is carried out using the PyTorch-Geometric [72] package. We
consider an IRC-safe EdgeConv operation modified with the radius graph and the energy-
weighted structure as an example of a non-equivariant architecture. The message passing
operation for this architecture follows from eq. (2.3), with Φ̂ being an MLP which takes
the input of the form:

H(l+1)
i =

∑
j∈N [i]

ω
(N [i])
j Φ̂(l+1)(H(l)

i , H(l)
j − H(l)

i ) . (3.1)

For ease of reading, we name the three architecture as E(2)-EMPN, O(2)-EMPN, and
EdgeConv-EMPN. As one of the hallmarks of equivariant architectures is the efficiency of
feature extraction with a low number of tunable parameters, we consider a small variant
containing about 4k parameters and a large variant containing about 150k parameters. The
E(2)-EMPN and O(2)-EMPN have the same structure of MLPs, and the difference arises
from the edge input to Φ(l)

e and the aggregation of the vectors. Since the EdgeConv-EMPN
has only one MLP, while the equivariant ones have three, we reduce the dimensionality of
the hidden (scalar) node representations in the latter to keep the number of parameters
comparable. We apply the message-passing operation twice for all architectures and extract
the IRC-safe graph representation after each operation to feed to a classifier MLP. A schematic
diagram for the equivariant ones is shown on the right side of figure 1.

For the small parameter size, the equivariant architectures have a 12-dimensional up-
dated scalar node feature after each message operation, while the EdgeConv-EMPN has
16-dimensional updated node features. For l ∈ {1, 2}, the MLPs Φ(l)

e , Φ(l)
x , and Φ(l)

h have two
hidden layers with the same dimension as the updated scalar feature dimension. Similarly, the
edge MLPs have two hidden layers with the same dimensions as the updated node features.
An analogous architecture is repeated for the large parameter case, with the equivariant
ones updating 80-dimensional scalar node features and the EdgeConv-EMPN updating 128-
dimensional ones. All hidden layers have ReLU activation. Except for Φ(l)

x ’s, which have a
one-dimensional output with Sigmoid activation, we do not put any output activation for
the other MLPs. The graph representation for the E(2)-EMPN and O(2)-EMPN cases is
obtained from the two scalar node representations and two vector node representations.

In total, we have three binary classification datasets and six networks, thereby giving
us eighteen training cases. We train the network from random initialisation five times for
each of these cases with a batch size of 300 for 200 epochs. The networks are optimised with
the Adam [73] optimiser with an initial learning rate of 10−3. A decay-on-plateau criterion
is utilised for the learning rate, triggering a decay by a factor of 0.5 if the validation loss
remains stagnant for three consecutive epochs.

3.3 Results

We extract the prediction on the test dataset from the epoch with the lowest validation lost
for each of the five training of the eighteen instances. To obtain a summary representation
of the receiver-operator characteristics (ROC) curve, we extract the background acceptance
ϵB, at fixed signal efficiency ϵS over the five training instances of training using a custom
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q q̄ → Z ′→ qd q̄d

E(2)-EMPN

O(2)-EMPN

EdgeConv-EMPN

4k NN. Parameters

0.0 0.2 0.4 0.6 0.8 1.0

εS

100

101

102

103

1/
ε̄ B

g g → Uv Ūv
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Figure 3. The network performance is shown for two scenarios: one with a low number of neural
network parameters (≈ 4k) and another with a high number of parameters (≈ 150k), for E(2)-EMPN
(solid), O(2)-EMPN (dashed) and EdgeConv-EMPN (dotted) for the three cases of semi-visible jet
tagger.

NN parameters 4k 150k

Process g g → Uv Ūv q q̄ → γ∗/Z∗ → Uv Ūv q q̄ → Z ′ → qd q̄d g g → Uv Ūv q q̄ → γ∗/Z∗ → Uv Ūv q q̄ → Z ′ → qd q̄d

E(2)-EMPN 0.807±0.051 0.896±0.003 0.913±0.002 0.855±0.002 0.906±0.001 0.923±0.001
O(2)-EMPN 0.827±0.036 0.872±0.037 0.904±0.028 0.848±0.003 0.903±0.002 0.922±0.001

EdgeConv-EMPN 0.767±0.041 0.817±0.042 0.845±0.006 0.848±0.000 0.904±0.000 0.921±0.001

Table 1. The network performance is illustrated for two scenarios: one with a low number of
neural network parameters (≈ 4k) and another with a high number of parameters (≈ 150k), for the
E(2)-EMPN, O(2)-EMPN, and EdgeConv-EMPN.

implementation.2 Extracting the mean value of the background acceptance ϵ̄B , over these five
instances, we plot the ROC curve between 1/ϵ̄B and ϵS in figure 3. The average of the area
under the curve (AUC) and the standard deviation are listed in table 1. Before comparing the
relative differences for the considered architectures, we see that the classification efficiency
follows the usual physics intuition. The resonant production of a heavy colour singlet Z ′ sets
a hard scale, which induces significant changes in the jets, while the non-resonant productions
do not have such a hard scale. In the colour-singlet s-channel non-resonant production via
the γ and Z, there is no colour flow from the initial quarks to the final state (even though the
Uv quark carries an SM QCD charge). These jets are less QCD-like than the non-resonant
production via gluons, where colour flows between the initial and final states and hence
closely resembles QCD jet production.

For the large network on the right side of figure 3, the three architectures have virtually
overlapping ROCs with a very minute decrease for the non-equivariant EdgeConv-EMPN.
The values of the AUCs in table 1 follow the same trend. This suggests that with sufficiently
large parametrisation, the EdgeConv-EMPN can catch the distinguishing features as well as

2This was verified against the scikit-learn [74] implementation with AUCs being equal up to four decimal
points.
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the E(2) and O(2) equivariant ones, even though the extracted features are not equivariant.
In stark contrast, there is a very noticeable dip in performance for the EdgeConv-EMPN of
4k parameters for all three signal cases compared to the two equivariant architectures, with
the E(2)-EMPN having the best classification power for the resonant and electroweak non-
resonant processes, while the O(2)-EMPN bettering the E(2)-EMPN for the non-resonant
production via gluons. Moreover, the best equivariant AUCs in the low parameter case are not
that far off from their corresponding best ones in the large parameter cases, with the highest
difference for the hardest case of distinguishing gluon-induced production of semi-visible jets.
This clearly shows that the inductive bias of equivariance in the rapidity-azimuth plane helps
optimise feature extraction and reduces the need for many parameters.

4 Summary and conclusions

The future roadmap of particle physics crucially depends on maximising the discovery potential
of the LHC and its high luminosity phase. Recent developments in optimising searches for
new physics using machine learning have demonstrated the enormous opportunity created
by less traditional approaches to data analysis. Interfacing such highly adapted strategies
with theoretical predictions to make robust statements about parameter measurements,
whether related to SM or BSM effects, highlights infrared and collinear safety as a central
theme of neural network architecture design, e.g. through energy-weighted message passing.
Adding such features to the neural network design can practically increase computational
demands, which requires optimisation improvements. In this work, we have considered
E(2) equivariance as an avenue to remove computational overhead. In particular, we have
considered jet-substructure-based analysis to show that an E(2) equivariant Graph Neural
Network optimises the network’s learning capability by directly exploiting the physical
symmetry that the data set possesses. As most jet substructure observables deal with
rotationally invariant quantities, we also considered O(2)-equivariance which is a subgroup
of E(2).

Such advances directly impact physics applications. To highlight this, we have considered
a representative (but not exclusive) scenario of semi-visible jets. In theories underpinning this
BSM signature, extracting, e.g., dark shower parameters critically depends on an IRC-safe
implementation of the tagging algorithm as the model navigates between visibly hard and
invisibly soft final states. This asks for the correct modelling of the QCD null hypothesis to
draw theoretically consistent conclusions. The architecture presented in this work provides
excellent signal vs. background discrimination with these desired properties. This opens up
the possibility of employing the architectures proposed in this work as a new tool for BSM
discovery in challenging QCD-dominated final states.
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