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1 Introduction

Perhaps one of the most intriguing quantum field theories in four space-time dimensions is
N = 4 supersymmetric Yang-Mills theory (SYM) with gauge group SU(N). Amongst the
many reasons for its undeniable appeal is that it provides for a moduli space of non-trivial
superconformal theories parameterised by the Yang-Mills coupling gYM and theta angle θ,
conveniently packaged in the complex coupling τ := θ/(2π) + 4πi/g2

YM
, upon which the

Montonen-Olive [1] duality group SL(2,Z) acts.
Another important reason for our interest in N = 4 SYM is that it provides a non-

perturbative description of type IIB string theory in an AdS5 × S5 background [2]. The
gauge theory coupling τ is identified holographically with the type IIB string theory coupling
τs := χ + i/gs, i.e. τ = τs, while the string length scale ℓs is related to the number of colours
N of the dual SU(N) gauge theory side by (L/ℓs)4 = g2

YM
N , with L the length scale of

the AdS5 × S5 background.
Thus, the string theory effective gravitational description at small ℓs corresponds on

the gauge side to a large-N and finite τ regime. Although in this limit the bulk is weakly
curved, as a consequence of ℓs/L → 0, the string theory remains strongly coupled due to τs

being finite. Super-graviton scattering amplitudes on AdS5 × S5 are consequently related
to correlation functions of the stress tensor multiplet in N = 4 SYM. Despite offering a
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non-perturbative definition of string theory through a well-defined CFT, practical applications
of this duality aimed at exploring string theory in the gravity regime remain challenging
since the CFT is still strongly coupled at large N . To advance our understanding of quantum
gravity through AdS/CFT it is therefore necessary to analyse N = 4 SYM non-perturbatively.

An extremely powerful method to extract non-perturbative properties of N = 4 SYM for
arbitrary coupling τ and number of colours N , is the use of supersymmetric localisation. It
is precisely thanks to this tool that it was recently understood [3, 4] how to obtain certain
integrals of the correlator of four superconformal primary operators, usually denoted1 by
O2(x), in the N = 4 stress tensor multiplet.

The particular integrated correlators of interest for the present work have been introduced
in [3, 4] and are computed from derivatives of the S4 partition function ZN (m, τ) for N = 2∗

SYM obtained by Pestun [5] in terms of an SU(N) matrix model integral:

CN (τ) := 1
4∆τ ∂2

m logZN (m, τ)
∣∣
m=0 , HN (τ) := ∂4

m logZN (m, τ)
∣∣
m=0 , (1.1)

where ∆τ := 4τ2
2 ∂τ ∂τ̄ is the hyperbolic laplacian and the complexified coupling constant

τ = τ1 + iτ2 ∈ H parametrises the upper-half plane H := {τ ∈ C : Im(τ) > 0}, where we
identify τ1 = θ/(2π) and τ2 = 4π/g2

Y M
.

When the mass parameter m is set to zero N = 2∗ SYM reduces to N = 4, hence the
expressions just defined correspond to N = 4 observables. More precisely, the quantities
CN (τ) and HN (τ) are identified with integrals over the insertion points of four superconformal
primary operators of the form,

CN (τ) =
∫
⟨O2(x1) · · · O2(x4)⟩ dµ({xi}) , HN (τ) =

∫
⟨O2(x1) · · · O2(x4)⟩ dµ̃({xi}) .

(1.2)
We refer to [3, 4] for the precise relation between the supersymmetric localisation defini-
tions (1.1) and the exact forms of the integrated correlators (1.2), and in particular for details
on the integration measures dµ({xi}) and dµ̃({xi}) distinguishing CN (τ) and HN (τ).

Thanks to these results, it has finally become possible to perform holographic “precision-
tests” [3, 4, 6–8], and reconstruct from the large-N expansion of the integrated correlators (1.1),
the first few low-energy string theory corrections to the tree-level supergravity contribution
to four-graviton scattering in AdS5 × S5 as well as in flat-space.

Surprisingly, in a series of papers [9–11] an exact and modular covariant expression for
finite τ was proven for a generalisation of the first integrated correlator CN (τ) to arbitrary
classical gauge group, then extended to exceptional gauge groups in [12]. A key rôle in
determining these astonishing results is played by the action of the Montonen-Olive duality
group SL(2,Z) on the complex coupling τ , strongly constraining the space of modular
invariant objects at play.

This led to a flourishing of exact results2 for other integrated correlators in N = 4 SYM
such as higher-point maximal U(1)Y -violating correlators [14, 15], four-point functions of
higher conformal dimensions operators [16–19] and giant gravitons [20], as well as integrated
two-point functions of two superconformal primary operators in the presence of a half-BPS

1For simplicity we suppress R-symmetry indices.
2See [13] for a recent review.
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line defect [21, 22]. More recently these methods have also been applied to integrated
correlators in less supersymmetric theories such as N = 2 SYM [23–25]. We stress that
these finite-N , finite-coupling results provide furthermore important data for numerical
bootstrap studies, see e.g. [26, 27].

While novel studies [28] have shown intriguing conjectural relations between the two
integrated correlators in (1.1), particularly in the large-N fixed-τ limit, we still lack an
exact modular invariant expression for the second integrated correlator HN (τ) valid for
arbitrary N and fixed τ . On the contrary, thanks to the pivotal results of [9, 10] we have an
almost complete control over the first integrated correlator CN (τ). In particular we know
that for all N the quantity CN (τ) can be represented as a simple lattice sum integral whose
systematic large-N expansion can be computed [11] starting from a lattice sum generating
series over the number of colours N .

From the analysis of [11] it follows that the large-N , fixed-τ expansion of CN (τ) is
an asymptotic factorially divergent formal series which has to be completed by an infinite
tower of modular invariant, non-perturbative exponentially suppressed terms at large-N ,
thus confirming the earlier impressive numerical studies of [29]. These non-perturbative
corrections are extremely important and have the holographic interpretation of contributions
from coincident (p, q)-string world-sheet instantons.

The first main scope of this paper is to provide a resurgence analysis approach to the
resummation of modular invariant large-N perturbative expansions akin to that for CN (τ).
We show that it is possible to define a modified Borel resummation kernel with manifest
modular invariance. By applying this resummation procedure to the formal perturbative large-
N expansion of the integrated correlator CN (τ), we retrieve its complete exact transseries
expansion previously only found via generating series methods. The modular invariant
non-perturbative sectors of CN (τ) are amazingly encoded in its perturbative part. We also
show that our approach is extremely useful in deriving novel non-perturbative results for a
particular sector of the large-N expansion for the second integrated correlator HN (τ). The
proposed modular invariant resurgent resummation is furthermore perfectly suited to perform
a large-N ’t Hooft limit expansion at large λ := Ng2

YM
, thus recovering the non-perturbative

worldsheet instanton completions first obtained using resurgence analysis order by order
in the genus expansion [10, 29].

The second parallel, yet deeply intertwined goal of this work is understanding how the
large-N exact transseries expansion of the integrated correlator CN (τ) is encoded in an
alternative and equivalent representation nicely found in [30] via SL(2,Z) spectral theory.
The key idea behind spectral analysis is that modular invariant functions, such as CN (τ),
can be decomposed as linear combinations of “good” basis elements, i.e. L2-normalisable
eigenfunctions of the hyperbolic Laplace operator ∆τ . We show that the large-N expansion
of this spectral decomposition yields precisely the spectral decomposition of the large-N
transseries expansion obtained via resurgence analysis.

The outline of the paper is as follows. In section 2 we review some important properties
of the integrated correlator CN (τ), in particular we present its lattice sum representation
and generating series, thanks to which the large-N modular invariant transseries expansion
was first derived. We also present a spectral representation for CN (τ) obtained via SL(2,Z)
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spectral theory. In section 3 we define a modular invariant resummation for formal large-N
perturbative expansions akin to that of CN (τ), and demonstrate how this method can be used
to derive non-perturbative but modular invariant corrections at large-N . We present how this
resummation method can be used to reconstruct both the full transseries expansion of CN (τ)
as well as a particular non-perturbative sector of the second integrated correlator HN (τ). In
the process, we show that our modular invariant resurgent resummation neatly encodes the
large-N ’t Hooft limit transseries expansion of CN (τ). The same modular invariant large-N
transseries expansion of CN (τ) is derived in section 4 from a spectral representation for the
integrated correlator, thus clarifying how the large-N non-perturbative sectors are encoded
in the spectral overlap functions. We conclude in section 5 with some comments on possible
future directions. The paper contains two appendices where we discuss more technical details.

2 Brief review of integrated correlators

In this section we review some of the key properties of the integrated correlator CN (τ) defined
in (1.1) which will be the main character of our story. In particular, we present two equivalent
representations valid for all complex coupling τ ∈ H and arbitrary number of colours N .
Firstly in section 2.1, we discuss the original exact expression for CN (τ) found in [9, 10] in
terms of a lattice sum combined with a Borel-like integral transform. In section 2.2 we review
how to construct from the lattice-sum representation a generating series over N and with
it compute the exact large-N modular invariant transseries [31].

Secondly, in section 2.3 we discuss an equivalent expression for the integrated correlator
CN (τ), first presented in [30] and then extended in [18], in terms of an extremely simple
spectral representation with respect to L2-normalisable functions on the fundamental domain
of SL(2,Z). One of the main results of our work is showing how the spectral data beautifully
encodes the large-N modular invariant perturbative expansion of (1.1), its non-perturbative
completion and, in fact, the complete transseries representation.

2.1 Lattice sum representation

Even though the integrated correlator CN (τ) is defined in (1.1) by taking a suitable combina-
tion of derivatives of the S4 partition function in the N = 2∗ mass deformed supersymmetric
Yang-Mills theory, it was proven in [9, 10] that this integrated correlator has the far more
convenient lattice sum representation,

CN (τ) = 1
2

∑
(m,n)∈Z2

∫ ∞

0
e−t Ymn(τ)BN (t) dt , (2.1)

where we define the ubiquitous “lattice-sum coupling”,

Ymn(τ) := π
|nτ + m|2

τ2
. (2.2)

This extremely simple formula can be seen as a combination of the lattice sum over (m, n) ∈ Z2

and a Laplace integral of a “Borel transform” function BN (t), which is a rational function
of t given by

BN (t) := QN (t)
(t + 1)2N+1 . (2.3)
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The function QN (t) is a polynomial in the variable t of degree 2N − 1 which can be written
for all N ∈ N as

QN (t) := − 1
2N(N − 1)(1− t)N−1(1 + t)N+1 (2.4){
[3 + (3t + 8N − 6)t]P (1,−2)

N

(
1 + t2

1− t2

)
+ 1

1 + t
(3t2 − 8Nt − 3)P (1,−1)

N

(
1 + t2

1− t2

)}
,

where P
(a,b)
n (x) are Jacobi polynomials. We note that for any N the function BN (t) satisfies

the inversion identity

t−1BN (t−1) = BN (t) . (2.5)

The form of the function BN (t) given in (2.3) and (2.4) was conjectured in [10, 11] and then
proved in [31] using matrix model methods.

Interestingly, in [11] it was shown that a more general version of the lattice sum expres-
sion (2.1), yields the integrated correlator of four superconformal primary operators (1.2)
for N = 4 SYM with arbitrary classical gauge group G = SO(N), USp(2N), then completed
in [12] to the case of exceptional gauge groups. Goddard-Nuyts-Olive [32] electro-magnetic
duality plays a fundamental rôle in dictating the particular lattice sum expressions appearing
for different gauge groups. For the rest of this paper we focus our attention to the original
discussion (2.1) of the integrated correlator in the SU(N) theory.

As already noted, compared to the original expression (1.1), it is much easier to analyse
the dependence of the integrated correlator from the parameters τ and N starting from the
lattice sum expression (2.1). However, while the τ dependence has been basically trivialised,
the dependence of (2.3) on the number of colours N is absolutely not transparent. This
shortcoming was remedied in [31] where a generating function for the N -dependence was
derived starting from (2.1), thus allowing for a direct calculation of the exact large-N , fixed-τ
transseries expansion.

This generating series is defined as

CSU (z; τ) :=
∞∑

N=1
CN (τ) zN , (2.6)

with z an auxiliary complex variable. We can then invert (2.6) via

CN (τ) =
∮

γ

CSU (z; τ)
zN+1

dz

2πi
, (2.7)

where γ denotes a counter-clockwise contour circling the pole at z = 0 of radius strictly less
than one in order to avoid other singularities. From (2.1) we can equivalently define the
generating series for the rational functions BN (t) which can be computed directly from (2.3):

BSU (z; t) :=
∞∑

N=1
BSU(N)(t)zN = 3tz2 [(t − 3)(3t − 1)(t + 1)2 − z(t + 3)(3t + 1)(t − 1)2]

(1− z)
3
2 [(t + 1)2 − (t − 1)2z]

7
2

,

(2.8)
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leading to

CSU (z; τ) :=
1
2

∑
(m,n)∈Z2

∫ ∞

0
e−t Ymn(τ)BSU (z; t) dt . (2.9)

This generating function satisfies several properties of note,

BSU (z; t) = t−1BSU (z; t−1) , BSU (z; t) = −BSU (z−1;−t) ,

as well as the integral identities,∫ ∞

0

BSU (z; t)√
t

dt = 0 ,

∫ ∞

0
BSU (z; t) dt =

∞∑
N=1

N(N − 1)
4 zN . (2.10)

The first of these equations, directly related to (2.5), is an inversion relation that follows
automatically from the lattice sum definition of the integrated correlator (2.1), as was pointed
out in [30] where the lattice sum is re-expressed in terms of a modular invariant spectral
representation which will shortly be reviewed. The second equation in (2.10) is an inversion
relation in the variable z, which relates the SU(N) correlator with coupling g2

YM
to the

SU(−N) correlator with coupling −g2
YM

, as previously discussed in [11].

2.2 Modular invariant large-N transseries

One of the main advantages of introducing a generating series such as CSU (z; τ) is that it has
a much simpler form than CN (τ). This makes CSU (z; τ) extremely convenient for analysing
the large-N properties of the integrated correlators. In particular, starting from (2.9) a
key result of [31] was the derivation of the exact large-N transseries expansion for CN (τ)
at fixed τ , which takes the form

CN (τ) = CP (N ; τ) + σ CNP (N ; τ) . (2.11)

In this expression CP (N ; τ) contains the formal asymptotic perturbative expansion in 1/N

for the integrated correlator CN (τ) given by

CP (N ; τ) = N2

4 +
∞∑

ℓ=0
N

1
2−ℓ

⌊ℓ/2⌋∑
m=0

b̃ℓ,mE∗
(3
2 + δℓ + 2m; τ

)
, (2.12)

where δℓ = ℓ (mod 2) and we denote with ⌊x⌋ the floor of x. As discussed in [31], the constant
coefficients b̃ℓ,m can be easily computed starting from the generating series (2.9) but otherwise
are not known in closed form for arbitrary ℓ and m. The first few coefficients b̃ℓ,m for ℓ ≤ 4
where already computed in [6], while expressions for general ℓ and fixed m can be found in [10].

We stress that although this power-series in 1/N does not converge for any value of τ , it
is nonetheless manifestly a modular invariant function of τ order by order in 1/N . The only
τ dependence in (2.12) appears through the well-known modular invariant functions called
non-holomorphic Eisenstein series, which in the present convention are defined as

E∗(s; τ) := Γ(s)
2

∑
(m,n) ̸=(0,0)

Ymn(τ)−s = 1
2

∑
(m,n) ̸=(0,0)

∫ ∞

0
e−t Ymn(τ) ts−1 dt (2.13)

= ξ(2s)τ s
2 + ξ(2s − 1) τ1−s

2 +
∑
k ̸=0

e2πikτ12
√

τ2 |k|s−
1
2 σ1−2s(k)Ks− 1

2
(2π|k|τ2) ,

– 6 –
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where ξ(s) := π−s/2Γ(s/2)ζ(s) = ξ(1 − s) denotes the completed Riemann zeta function,
while Ks(y) is a modified Bessel function and σs(k) :=

∑
d|k ds is the standard sum over

positive divisors. We note that while in the first line of (2.13) both the lattice sum and the
integral are only well defined for Re(s) > 1, the non-holomorphic Eisenstein series E∗(s; τ)
can nonetheless be analytically continued to a meromorphic function of s ∈ C satisfying
the functional equation E∗(s; τ) = E∗(1 − s; τ).

For the perturbative sector (2.12), the coefficient of each order in 1/N is given by a finite
sum of non-holomorphic Eisenstein series, E∗ (s; τ), of half-integer index s ranging from a
maximal value s = 3

2 + ℓ to a minimal value s = 3
2 . From CP (N ; τ) we can recover higher

derivative corrections to the flat space-limit in the type IIB S-matrix of four gravitons at
finite string coupling τ via the holographic dictionary [6].

Importantly, the transseries expansion (2.11) of the full integrated correlator CN (τ)
does also contain non-perturbative, exponentially suppressed terms at large-N , captured
by CNP (N ; τ) and given by the formal series

CNP (N ; τ) =
∞∑

ℓ=0
N2− ℓ

2

ℓ∑
m=0

d̃ℓ,mDN

(
ℓ

2 − 2m; τ
)

, (2.14)

where the novel modular invariant function DN (s; τ) is defined as3

DN (s; τ) :=
∑

(m,n) ̸=(0,0)
exp

(
− 4

√
NYmn(τ)

)(
16Ymn(τ)

)−s
. (2.15)

Via the holographic dictionary, it was conjectured in [31] that these non-perturbative correc-
tions capture the contribution of ℓ coincident (p, q)-string Euclidean world-sheet instantons
wrapping a great two-sphere, S2, on the equator of the five-sphere, S5.

Finally, it was also argued that there is an ambiguity in resumming the large-N asymp-
totic perturbative expansion (2.12) which has to be compensated by a change in the non-
perturbative sector captured by CNP (N ; τ). This amounts to a jump in the transseries
parameter σ, which is a piece-wise constant function of arg(N), taking values σ = ± i ac-
cording to arg(N) > 0 or < 0 respectively. In section 3, we show that the non-perturbative
corrections (2.14), as well as the transseries parameter σ, can be fixed completely from
a proper resurgence analysis of a modified modular invariant Borel resummation of the
purely perturbative data (2.12). This explains the resurgent origins of the transseries (2.11),
originally found solely via generating series methods.

2.3 Spectral representation

An alternative and equivalent representation to the lattice-sum integral expression (2.1) is
obtained via SL(2,Z) spectral theory, a method of decomposing any (suitable) modular
invariant function as a linear combination of “good” basis elements, i.e. L2-normalisable
eigenfunctions of the hyperbolic Laplace operator ∆τ .

3Note that compared to [31], where this class of functions was first introduced, we here use a slightly
different and more convenient normalisation Dthere

N (s; τ) = 24sDhere
N (s; τ), which for the expansion (2.14),

where a different indexing is implemented, in turns implies dthere
ℓ,m = 26ℓ−8md̃ℓ,ℓ−m.

– 7 –
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For the present discussion we only highlight the fact that this integrated correlator
possesses an astonishingly simple spectral representation which only involves an integral
over special normalisable eigenfunctions: the non-holomorphic Eisenstein series E∗(s; τ) with
Re(s) = 1

2 . The coefficient of a given non-holomorphic Eisenstein series in this linear combina-
tion is called the spectral overlap. This spectral approach to the integrated correlator (1.1) was
first derived in [30] where the interested reader can also find more details on spectral theory.

Here we rederive the spectral representation for CN (τ) starting directly from the lattice-
sum integral representation (2.1). We begin by considering the lattice sum in (2.1) and
splitting it into the sum of the (m, n) = (0, 0) contribution and terms with (m, n) ̸= (0, 0),

CN (τ) = 1
2

∫ ∞

0
BN (t) dt + 1

2
∑

(m,n) ̸=(0,0)

∫ ∞

0
e−t Ymn(τ) BN (t) dt . (2.16)

We now rewrite the second term in this expression in terms of the Mellin transform,
MN (s), of the function BN (t) defined as

MN (s) :=
∫ ∞

0
ts−1 BN (t) dt . (2.17)

Given the expression (2.3) for BN (t), this Mellin integral can be shown to converge in the
strip −1 < Re(s) < 2 and has an analytic continuation to a meromorphic function of s ∈ C.
This transform can be inverted via Mellin inversion formula,

BN (t) =
∫

Re(s)=α
t−sMN (s) ds

2πi
, (2.18)

where the constant α ∈ R is chosen in such a way that the original Mellin integral (2.17)
converges for Re(s) = α. Crucially, we notice that the functional equation (2.5) translates
immediately to the reflection formula,

MN (1− s) = MN (s) . (2.19)

We now substitute Mellin inversion formula in (2.16) and perform a reflection s → 1− s

while using (2.19) to arrive at,

CN (τ) = 1
2

∫ ∞

0
BN (t) dt+

∫
Re(s)=1+ϵ

MN (s)

1
2

∑
(m,n) ̸=(0,0)

∫ ∞

0
e−t Ymn(τ)ts−1dt

 ds

2πi
. (2.20)

The s-contour of integration has been shifted to Re(s) = 1 + ϵ, with ϵ > 0 sufficiently small,
so that the t-integral and the lattice-sum are both convergent and we are allowed to use the
integral representation (2.13) for the non-holomorphic Eisenstein series, thus arriving at the
sought-after spectral representation for the integrated correlator

CN (τ) = ⟨CN ⟩+
∫

Re(s)= 1
2

MN (s)E∗(s; τ) ds

2πi
, (2.21)

⟨CN ⟩ :=
∫ ∞

0
BN (t) dt = lim

s→1
MN (s) , (2.22)

– 8 –
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where the additional factor 1/2 for the constant term originates from having moved the
contour of integration back to Re(s) = 1

2 combined with the fact that ress=1E∗(s; τ) = 1
2 .

While in the lattice-sum representation the N dependence is encoded entirely in the
rational functions BN (t) given in (2.3), here this information is captured by the spectral
overlap function, i.e. the Mellin transform MN (s). The function MN (s) can be obtained
by exploiting an intriguing Laplace-difference equation found in [10] and satisfied by the
integrated correlator:

∆τCN (τ)− (N2 − 1)
(
CN+1(τ)− 2CN (τ) + CN−1(τ)

)
−(N + 1)CN−1(τ) + (N − 1)CN+1(τ) = 0, (2.23)

which fixes CN (τ) in terms of the initial data C2(τ) and C1(τ) = 0.
By specialising (2.3) to the SU(2) theory, i.e. by setting N = 2, we obtain the initial

condition,

B2(t) =
9t − 30t2 + 9t3

(t + 1)5 , (2.24)

from which it is immediate to derive its Mellin transform,

M2(s) =
πs(1− s)(2s − 1)2

2 sin (πs) . (2.25)

We can then combine (2.21) with (2.23) and the known Laplace equation

∆τ E∗(s; τ) = s(s − 1)E∗(s; τ) , (2.26)

to find a recurrence relation satisfied by the spectral overlaps, namely

N(N − 1)MN+1(s) = [s(s − 1) + 2(N2 − 1)]MN (s)− N(N + 1)MN−1(s) . (2.27)

As show in [18], this recursion is solved by

MN (s) =N(N − 1)
4

πs(1− s)(2s − 1)2

sin (πs) 3F2(2− N, s, 1− s; 3, 2|1) , (2.28)

thus implying from (2.22) that ⟨CN ⟩ = N(N − 1)/4. The hypergeometric function in this
equation is somewhat misleading, since the parameter 2 − N is a non-positive integer for
N ≥ 2 and as a consequence, the hypergeometric function always reduces to a polynomial in
s(1− s) of degree N − 2. In appendix A we find a more convenient expression given by

MN (s) =
2−2s(2s − 1)Γ

(
3
2 − s

)
√

π Γ(−s)

∫ 1

0
xs−3(1−x)N

2F1 (s − 1, s; 2s|x) dx+(s ↔ 1−s), (2.29)

where a certain regularisation is required when treating the x-integral near x = 0, see in
particular equation (A.10) and the detailed analysis presented in appendix A.

While at finite N it is straightforward to evaluate the Mellin transform (2.28) and obtain
the spectral representation for the integrated correlator (2.21), it is absolutely not obvious
how to deduce its large-N expansion. In particular, prior to the present work, it has not
been shown how to reconstruct the complete transseries expansion (2.11) starting directly
from the spectral decomposition (2.21). In section 4 we start from the spectral overlap (2.29)
to manifest how the resurgent structure of the integrated correlator is beautifully encoded
in the spectral representation (2.21).
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3 Resurgence of modular invariant transseries

In this section we want to show how the exact large-N transseries expansion at fixed τ for CN (τ)
displayed in (2.11), so far only analysed numerically in [29] and derived [31] via generating
series methods, can be derived using resurgence analysis. In particular, we prove that it is
possible to reconstruct the non-perturbative and modular invariant contributions (2.14) from a
suitable resummation of the large-N formal, yet modular invariant perturbative sector (2.12).

We start by focusing our attention on the purely perturbative expansion of the integrated
correlator (1.1), which at large-N and fixed τ has the formal asymptotic perturbative
expansion (2.12), here rewritten for convenience

CN (τ) ∼ CP (N ; τ) = N2

4 +
∞∑

ℓ=0
N

1
2−ℓ

⌊ℓ/2⌋∑
m=0

b̃ℓ,mE∗
(3
2 + δℓ + 2m; τ

)
, (3.1)

with δℓ = 0 for even ℓ and δℓ = 1 for odd ℓ.
As already noted previously, in the perturbative sector the coefficient of each order in

1/N is given by a finite sum of non-holomorphic Eisenstein series, E∗ (s; τ), of half-integer
index s ranging from the maximal value s = 3

2 + ℓ to the minimal one s = 3
2 . Following [28],

we reorganise this formal power series in 1/N as

CP (N ; τ) = N2

4 +
∞∑

r=0
N2−2rC(r)

P (N ; τ) , (3.2)

having defined

C(r)
P (N ; τ) :=

∞∑
k=0

br,kN− 3
2−kE∗

(3
2 + k; τ

)
. (3.3)

Here we made the change of summation variables ℓ = 2r+k and m = ⌊k
2⌋ and correspondingly

denoted the rearranged coefficients by br,k = b̃ℓ,m. For fixed r, the formal power-series
C(r)

P (N ; τ) can be understood as collecting, order by order in 1/N , the contributions to (3.1)
coming from the “r-subleading index” non-holomorphic Eisenstein series, i.e. all E∗ (s; τ)
with index s = 3

2 + ℓ − 2r.
For example, we can focus on the contribution to (3.1) coming only from grouping all

“leading-index” non-holomorphic Eisenstein series, i.e. all terms in (3.1) with m = ⌊ℓ/2⌋ or
equivalently specialising (3.3) to k = ℓ and r = 0:

C(0)
P (N ; τ) =

∞∑
k=0

b0,kN− 3
2−kE∗

(3
2 + k; τ

)
, (3.4)

where the coefficients b0,k = b̃k,⌊k/2⌋ have been computed in [10] and are given by

b0,k :=
(k + 1)Γ(k − 1

2)Γ(k + 5
2)

22k+1 π3/2 Γ(k + 1)
. (3.5)

As manifest from this particular example (and other cases presented in [10, 31]), we
notice that the coefficients br,k appearing in the series (3.3) grow factorially with k for fixed
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r, i.e. br,k ∼ k!, so that C(r)
P (N ; τ) can be thought of as a formal asymptotic series with

coefficients given by rational multiples of half-integer non-holomorphic Eisenstein series. This
simple observation suggests immediately that a proper Borel-like resummation of the formal
perturbative expansion (3.3), and hence of the whole perturbative sector (3.2), should by
consistency require the introduction of the anticipated non-perturbative terms CNP (N ; τ)
presented in (2.14) and here rewritten for convenience,

CNP (N ; τ) =
∞∑

ℓ=0
N2− ℓ

2

ℓ∑
m=0

d̃ℓ,mDN

(
ℓ

2 − 2m; τ
)

. (3.6)

We stress once more that in [31] these terms have been recovered starting from the generating
series (2.8), while presently we are in the process of describing how to retrieve them from a
resurgence analysis approach to the resummation of the perturbative sector (3.3).

To this end, we proceed just like we did in the perturbative sector starting from (3.1) to
arrive at (3.2), and rearrange the non-perturbative terms (3.6) as

CNP (N ; τ) =
∞∑

r=0
N2−2rC(r)

NP (N ; τ) , (3.7)

C(r)
NP (N ; τ) =

∞∑
k=−3r−1

dr,k N− k+1
2 DN

(
k + 1
2 ; τ

)
, (3.8)

where we made the change of summation variables ℓ = 4r+k+1 and m = r and correspondingly
denoted dr,k = d̃ℓ,m. Although using the methods of [31]4 it is possible to compute the
coefficients dr,k for different values of r and k, no analytic expression similar to (3.5) has been
found prior to this work. Using resurgence analysis we show how to derive the coefficients
dr,k from the perturbative coefficients br,k and manifest that at fixed value of r the numbers
dr,k are once again factorially divergent as k → ∞.

In what follows we show that the large-N transseries representation (2.11) for the
integrated correlator (1.1) can be recovered from the Borel-Écalle median resummation of
the perturbative sectors (3.3), i.e.

CN (τ) = N2

4 +
∞∑

r=0
N2−2rC(r)(N ; τ) , (3.9)

C(r)(N ; τ) = C(r)
P (N ; τ) + σ C(r)

NP (N ; τ) . (3.10)

As already mentioned previously, the median resummation contains an additional parameter
called the transseries parameter σ = σ(arg(N)) which is a piecewise constant function of
arg(N). We will show that for the median resummation here considered the transseries
parameter takes values σ = ± i according to whether arg(N) > 0 or < 0, this will in turn be
correlated with the how we perform the resummation of the perturbative sector C(r)

P (N ; τ).
Thanks to our modular invariant resurgence analysis approach we find that:

4We note again that, due to the change in normalisation (2.15) and in summation variables, to compare
the non-perturbative coefficients dr,k with the results of [31] we must use dthere

r,k = 26r−8kdr−k,4k−3r−1.
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(i) From the “r-subleading index” non-holomorphic Eisenstein series E∗ (s; τ) with index
s = 3

2 + ℓ − 2r, grouped in C(r)
P (N ; τ), we can retrieve all of the “r-subleading index”

non-perturbative terms DN (s; τ) with s = ℓ
2 −2r, grouped in C(r)

NP (N ; τ), see section 3.2;

(ii) As a consequence of modularity, in the ’t Hooft limit where λ =
√
4πN/τ2 is kept fixed,

the function C(r)(N ; τ) reduces to the transseries expansion of the genus-r contribution to
the integrated correlator, as well as the transseries expansion of the “dual ’t Hooft-limit”
genus-r contribution where λ̃ := (4πN)2/λ is kept fixed, see section 3.3;

(iii) The sum over r in (3.9) is actually Borel summable and does not introduce any
additional non-perturbative corrections. Furthermore, the large-N expansion of the
spectral representation (2.21) leads directly to the spectral representation of C(r)(N ; τ)
whose spectral overlap encodes quite naturally both the perturbative, C(r)

P (N ; τ), and
non-perturbative, C(r)

NP (N ; τ), sectors; see section 4

3.1 Modular invariant resummation at large-N

Motivated from the case of present interest, namely the formal perturbative series (3.3),
the main goal of this section is to define a modular invariant resummation for the formal
but modular invariant series,

ΦP (N ; τ) :=
∞∑

k=0
bk N− 3

2−kE∗
(3
2 + k; τ

)
, (3.11)

where the coefficients bk diverge factorially fast, i.e. bk ∼ k!.
Inspired by the particular exponential structure of the candidate non-perturbative terms,

DN (s; τ), defined in (2.15), we introduce a somewhat non-standard integral representation
for the non-holomorphic Eisenstein series

N−sE∗ (s; τ) =
∫ ∞

0
E(

√
Nt; τ) 2Γ(s)Γ(2s)(4t)2s−1dt , (3.12)

where we have defined a modular invariant modified Borel kernel

E(t; τ) := Dt2(0; τ) =
∑

(m,n) ̸=(0,0)
e−4t

√
Ymn(τ) , (3.13)

which converges absolutely for all τ in the upper-half plane when Re(t) > 0. Some of the
properties of E(t; τ) are presented in appendix B, in particular from (B.6) we see that (3.12)
is convergent for Re(s) > 1.

We are now in a position to define the Borel transform of the formal series (3.11) as

B[ΦP ](t) :=
∞∑

k=0
bk

2Γ(k + 3
2)

Γ(2k + 3) (4t)2k+2 , (3.14)

which has a positive radius of convergence in the complex Borel t-plane under the assumption
that bk ∼ k!, thus defining a germ of analytic functions at the origin.
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Following standard resurgence analysis arguments, see e.g. the introductory notes [33],
we combine (3.14) with the integral representation (3.12) specialised to s = k + 3

2 , and define
the directional Borel resummation of the original formal series (3.11) as

Sθ[ΦP ](N ; τ) :=
∫ eiθ∞

0
E(

√
Nt; τ)B[ΦP ](t)dt . (3.15)

If the direction of integration −π < θ ≤ π is such that the Borel transform B[ΦP ](t) has
no singularities, i.e. if arg(t) = θ is not a Stokes direction, we have that the directional
Borel resummation (3.15) is well-defined (under a moderate growth condition for the Borel
transform) and it defines a modular invariant function of τ , which is analytic in N in the
wedge Re(

√
Neiθ) > 0 of the complex N -plane. From equation (3.12), we see that the

asymptotic expansion of (3.15) at large-N reproduces the formal expansion (3.11) we started
with, i.e. we have resummed (3.11) in a modular invariant way.

Furthermore, given two directions θ1 and θ2 with θ1 < θ2 such that B[ΦP ](t) is regular
in the wedge θ1 ≤ arg(t) ≤ θ2, we find that Sθ1 [ΦP ](N ; τ) = Sθ2 [ΦP ](N ; τ) on the common
domain of analyticity. Hence Sθ2 [ΦP ](N ; τ) defines an analytic continuation of Sθ1 [ΦP ](N ; τ)
to a wider wedge of the complex N -plane. However, if the direction θ = θ⋆ is a singular
direction for B[ΦP ](t), usually called a Stokes direction, we find instead that the analytic
functions Sθ⋆−ϵ[ΦP ](N ; τ) and Sθ⋆+ϵ[ΦP ](N ; τ), with ϵ → 0+, do not coincide on the common
domain of analyticity and they crucially differ by non-perturbative terms. Near a Stokes
direction θ⋆, we are then naturally led to consider the lateral Borel resummations defined as

Sθ±⋆
[ΦP ](N ; τ) := lim

ϵ→0+
Sθ⋆±ϵ[ΦP ](N ; τ) . (3.16)

In the case where N denotes the number of colours, we obviously want to define a
resummation of (3.11) which is analytic in a neighbourhood of the positive real axis arg(N) = 0.
However, we will shortly see that for the cases of interest the direction θ = 0 happens to be a
Stokes ray. In particular, we need to consider the case where the Borel transform B[ΦP ](t) has
polar singularities at t = 1 plus a branch cut starting at t = 1 with an expansion of the form

B[ΦP ](t) ∼ − 1
π

M∑
k=1

d−k(k − 1)!
(1− t)k

+
( ∞∑

k=0

dk(t − 1)k

k!

)
log (1− t)

π
+ reg(t − 1), (3.17)

with M a positive integer specifying the maximal order of the pole, while reg(t − 1) denotes
the analytic part at t = 1. Besides the polar part, we also have a logarithmic singularity
multiplied by a new germ of analytic functions at the origin, which is specified by a series
of factorially divergent coefficients dk.

Starting from (3.17), we easily compute the difference between the two lateral resum-
mations of the original series (3.11), related to the so-called Stokes automorphism, which
takes the form(

S+ − S−
)
[ΦP ](N ; τ) = −2i

∞∑
k=−M

dk N− k+1
2 DN

(1 + k

2 ; τ
)

, (3.18)

where for ease of notation we write S± := S0± since θ = 0 will be the only Stokes line we
need considering. Notice that since the coefficients dk are in general factorially divergent,
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as we show for the integrated correlator, the discontinuity equation (3.18) defines once
again a formal series, which is however modular invariant and whose coefficients are no
longer given by non-holormorphic Eisenstein series but rather they belong to the class of
functions defined in (2.15).

We stress how general this result is: given a formal series of the form (3.11) whose
Borel transform, B[ΦP ](t), defines a germ of analytic function at the origin with a singular
structure akin to (3.17), along any Stokes direction we must have a non-perturbative and
modular invariant discontinuity in lateral resummations captured by an infinite sum of
DN (s; τ) functions.

To finally construct a complete modular invariant transseries starting from the purely
perturbative sector (3.11), we additionally need to understand how to modify the lateral
resummations S± to take into account their discontinuity (3.18). Proceeding as we just did for
the perturbative sector, we start from the non-perturbative modular invariant series in (3.18)

ΦNP (N ; τ) :=
∞∑

k=−M

dk N− k+1
2 DN

(1 + k

2 ; τ
)

, (3.19)

and consider the integral representation

N− k+1
2 DN

(
k + 1
2 ; τ

)
=
∫ ∞

0
E(

√
N(t + 1); τ) tk

Γ(k + 1)dt , (3.20)

with k ≥ 0. Just like the integral representation (3.12) leads to the perturbative Borel
transform (3.14), we now use (3.20) to define the directional Borel resummation of the
non-perturbative sector (3.19),

B̃[ΦNP ](t) :=
∞∑

k=0

dk

Γ(k + 1) tk, (3.21)

Sθ[ΦNP ](N ; τ) :=
−1∑

k=−M

dk N− k+1
2 DN

(1 + k

2 ; τ
)
+
∫ eiθ∞

0
E(

√
N(t + 1); τ) B̃[ΦNP ](t) dt .

(3.22)

Note that the finitely many terms in (3.22) with a positive power of N have to be treated
separately since they cannot be represented via (3.20), these terms correspond to the polar
part of the singular behaviour of the Borel transform (3.17).

In standard applications of resurgence theory the Borel kernel is given by the usual
Laplace measure e−

√
Ntdt. In this case it is well appreciated that under a shift of integration

variable t → t + 1, the measure naturally factors into the same integration kernel multiplied
by the expected exponential suppression factor −

√
N which characterises the non-perturbative

sectors. Due to the lattice sum nature (3.13) of the present modular invariant Borel integration
kernel E(

√
Nt; τ), we do not have such property, i.e.

E(
√

N(t + 1); τ)dt ̸= E(
√

N ; τ) E(
√

Nt; τ)dt .

This explains why we have to define a second Borel transform B̃[ΦNP ](t) in (3.22): while the
building blocks of the perturbative sector are given by non-holomorphic Eisenstein series,
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they differ from those of the non-perturbative part, i.e. the functions DN (s; τ). However,
our modular invariant Borel kernel contains both objects:

N−sE∗ (s; τ) =
∫ ∞

0
E(

√
Nt; τ) 2Γ(s)Γ(2s)(4t)2s−1dt ,

N−sDN (s; τ) =
∫ ∞

0
E(

√
N(t + 1); τ) t2s−1

Γ(2s)dt . (3.23)

Given the discontinuity (3.18), it is now manifest that for the physically relevant domain
N > 0, the two resummations S±[ΦP ](N ; τ) do differ and we have an ambiguity in how we
resum the purely perturbative formal power series (3.11). Furthermore, while the original
formal power series (3.11) is manifestly real for N > 0 and τ ∈ H, neither of the two lateral
resummations S±[ΦP ](N ; τ) is. To obtain a real and unambiguous resummation for N > 0,
we have to consider an average between the two lateral resummations S±[ΦP ](N ; τ), usually
referred to as median resummation [34],

Φ(N ; τ) = ΦP (N ; τ) + σ ΦNP (N ; τ) . (3.24)

The additional parameter σ, called the transseries parameter, is the piece-wise constant
function of arg(N) given by σ = ±i according to arg(N)≷0, which in turn is correlated
with the choice of lateral resummation

Smed[ΦP ](N ; τ) :=
{
S+[ΦP ](N ; τ) + iS0[ΦNP ](N ; τ) , arg(N) > 0 ,

S−[ΦP ](N ; τ)− iS0[ΦNP ](N ; τ) , arg(N) < 0 .
(3.25)

We shortly show that the equality between the two seemingly different expressions comes from
the discontinuity equation (3.18) combined with the fact that for the integrated correlator
arg(N) = 0 is not a Stokes direction for ΦNP (N ; τ), which can then be resummed via (3.22)
along θ = 0, i.e. by considering S0[ΦNP ](N ; τ).

The median resummation produces an unambiguous resummation of (3.11) in a wedge
of the complex-N plane which contains the physical domain N > 0. In particular, it is easy
to show that (3.25) is real-analytic for N > 0 and τ ∈ H, since it can be rewritten as

Smed[ΦP ](N ; τ) = 1
2(S+ + S−)[ΦP ](N ; τ) =

∫
M

E(
√

Nt; τ)B[ΦP ](t)dt , (3.26)

=
∫ ∞

0
E(

√
Nt; τ)Re

(
B[ΦP ](t)

)
dt .

Here we have defined for later convenience the notation for the median integration∫
M

:= 1
2
( ∫ ∞+iϵ

0
+
∫ ∞−iϵ

0

)
, (3.27)

in the limit ϵ → 0+. The particular integral representation (3.26) for the non-perturbative
integrated correlator will be obtained directly from spectral theory in section 4.

3.2 Resurgence of the integrated correlators

Thanks to the analysis of the previous section, we have thus constructed an unambiguous
resummation for a formal perturbative series in non-holomorphic Eisenstein series E∗ (s; τ),
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schematically presented in (3.11), and have shown that it generically requires exponentially
suppressed terms which involve the modular invariant function DN (s; τ).

In this section we show how an application of this resummation method to the two
integrated correlators (1.1) yields the complete large-N expansion of the first integrated
correlator CN (τ), as well as a particular non-perturbative sector of the second integrated
correlator HN (τ). This explains the appearance of such non-perturbative terms in the full
transseries representation (3.9) of the integrated correlator CN (τ) and our analysis establishes
a connection between the perturbative coefficients b̃ℓ,m in (3.1), or alternatively the coefficients
br,k in (3.3), and the non-perturbative coefficients d̃ℓ,m in (3.6), or alternatively the coefficients
dr,k presented in (3.8), as we now show in more detail.

First integrated correlator. For concreteness we discuss the cases r = 0 and r = 1,
although our analysis can be extended straightforwardly to arbitrary r. We begin by
deriving the non-perturbative resummation of C(0)

P (N ; τ) presented in (3.4), which contains
all large-N perturbative contributions originating from non-holomorphic Eisenstein series
with leading index.

Given the definition (3.14) we compute the associated Borel transform of this series,
which takes the form

B[C(0)
P ](t) = 4

π

∞∑
k=0

Γ(k − 1
2)Γ(k + 5

2)
Γ(k + 1)2 t2k+2 = −6t2

2F1

(
−1
2 ,

5
2; 1|t

2
)

. (3.28)

As anticipated, we see that the Borel transform has two Stokes directions: one for θ = 0 and
the other for θ = π, both with logarithmic branch cuts starting respectively at t = ±1 due to
the hypergeometric function 2F1. Since we are interested in obtaining a non-perturbative
resummation for arg(N) = 0, we have to compute the singular behaviour of the Borel
transform (3.28) near the point t = 1. This can be obtained from the integral representation
of the hypergeometric function thanks to which we find

B[C(0)
P ](t) ∼ − (−2)

π(1− t) − 9 t2
2F1

(
−1
2 ,

5
2; 2|1− t2

) log (1− t)
π

+ reg(t − 1) , (3.29)

where again reg(t − 1) denotes the analytic part at t = 1.
This structure is precisely of the form (3.17) previously analysed and, as a consequence,

we have that the two lateral resummations of (3.28) do not coincide on the common domain
of analyticity. We can compute the difference in lateral resummations (3.18) directly from
the singular behaviour (3.29),

(S+ − S−)[C(0)
P ](N ; τ) = −2iS0[C(0)

NP ](N ; τ) (3.30)

= 4iDN (0; τ) + 18i

∫ ∞

0
E(

√
N(t + 1); τ) (1 + t)2

2F1

(
−1
2 ,

5
2; 2| − t(2 + t)

)
dt .

Following our general discussion, we use this discontinuity and (3.22) to define the
resummation of the non-perturbative sector which is then given by

S0[C(0)
NP ](N ; τ) (3.31)

= −2DN (0; τ)− 9
∫ ∞

0
E(

√
N(t + 1); τ)(1 + t)2

2F1

(
−1
2 ,

5
2; 2| − t(2 + t)

)
dt .
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As already mentioned, the Borel transform of the non-perturbative sector is regular along
the direction arg(t) = 0, hence (3.31) is precisely the Borel resummation of the formal series
of non-perturbative corrections

C(0)
NP (N ; τ) =

∞∑
k=−1

d0,k N− k+1
2 DN

(
k + 1
2 ; τ

)
(3.32)

= −2DN (0; τ)− 9N− 1
2 DN

(1
2; τ

)
− 117

4 N−1DN (1; τ) + . . . ,

with the coefficients d0,k given by

d0,−1 = −2 , B̃[C(0)
NP ](t) = −9(1 + t)2

2F1

(
−1
2 ,

5
2; 2| − t(2 + t)

)
=

∞∑
k=0

d0,k

k! tk , (3.33)

matching and extending the results of [31] (modulo the trivial change in normalisation in
footnote 4) for the coefficients of the leading index non-perturbative terms, i.e. all DN (s; τ)
terms in (2.14) with m = ℓ, presented in equation (3.26) of the same reference.

We can then construct the median resummation (3.25) and express it via the transseries

C(0)(N ; τ) = C(0)
P (N ; τ) + σ C(0)

NP (N ; τ) , (3.34)

where the associated transseries parameter σ has value σ = ±i according to arg(N)≷0,
precisely matching the transseries (3.10) found in [31] by use of generating series methods.
Furthermore, the median resummation of said transseries can be written as the average of
the two lateral resummations presented in (3.26), taking the form

C(0)(N ; τ) = Smed[C(0)
P ](N ; τ) =

∫
M

E(
√

Nt; τ)
[
−6t2

2F1

(
−1
2 ,

5
2; 1|t

2
)]

dt

=
∫ ∞

0
E(

√
Nt; τ)Re

(
−6t2

2F1

(
−1
2 ,

5
2; 1|t

2
))

dt , (3.35)

which will be retrieved from spectral methods later in section 4, see (4.19).
We can repeat this analysis for the contribution to (3.1) coming from all “sub-leading-

index” non-holomorphic Eisenstein series, i.e. all terms in (3.1) with m = ⌊ℓ/2⌋ − 1 or
equivalently consider (3.3) with r = 1:

C(1)
P (N, τ) =

∞∑
k=0

b1,kN−k− 3
2 E∗

(3
2 + k; τ

)
, (3.36)

where the coefficients b1,k = b̃k+2,⌊k/2⌋ have been computed in [10] and are given by

b1,k := −
(k + 1)2(2k + 13)Γ(k + 5

2)
2

22k+6 3π
3
2Γ(k + 3)

. (3.37)

The associated Borel transform (3.14) is then given by

B[C(1)
P ](t) = − 1

24π

∞∑
k=0

(k + 1)(2k + 13)Γ(k + 5
2)

2

Γ(k + 1)Γ(k + 3) t2k+2 (3.38)

= − t2

8192

[
1248 2F1

(5
2 ,

5
2; 3|t

2
)
+ 3400 t2

2F1

(7
2 ,

7
2; 4|t

2
)
+ 1225 t4

2F1

(9
2 ,

9
2; 5|t

2
)]

,

– 17 –



J
H
E
P
0
7
(
2
0
2
4
)
2
3
5

where again, due to the presence of these particular hypergeometric functions, we find the
two Stokes directions arg(t) = 0 and arg(t) = π with corresponding logarithmic branch cuts
starting at t = ±1. The singularity structure of B[C(1)

P ](t) near t = 1 is given by

B[C(1)
P ](t) ∼− 1

32π(1− t)4 − 3
64π(1− t)3 − (−77)

512π(1− t)2 − 127
1024π(1− t)

+ B̃[C(1)
NP ](t − 1) log (1− t)

π
+ reg(t − 1) , (3.39)

where, following the discussion around (3.18), we have already interpreted the germ of analytic
functions multiplying the logarithm as the Borel resummation of the non-perturbative sector
given by

B̃[C(1)
NP ](t) = (3.40)

−
14[60t(t + 2) + 47] 2F1

(
1
2 , 1

2 ; 5;−t(t + 2)
)
+ [113t(t + 2) + 269] 2F1

(
1
2 , 3

2 ; 5;−t(t + 2)
)

8192(t + 1)4 .

We observe that, when compared to the Borel transform (3.29) for the case r = 0, the order
of the pole at t = 1 has now increased to a fourth-order pole. Similarly to (3.31), from (3.40)
we can now obtain the formal expansion of the sub-leading index non-perturbative sector

C(1)
NP (N ; τ) =

∞∑
k=−3

d1,k N− k+1
2 DN

(
k + 1
2 ; τ

)
, (3.41)

with coefficients

d1,−4 = 1
192 , d1,−3 = 3

128 , d1,−2 = − 77
512 , d1,−1 = 127

1024 , (3.42)

B̃[C(1)
NP ](t) =

∞∑
k=0

d1,k

k! tk = − 927
8192 + 3897

16384 t − 47217
65536

t2

2! + O(t3) . (3.43)

Once again these results extend those found in [31] for the sub-leading diagonal of non-
perturbative terms presented in equation (3.26) of that reference, i.e. all DN (s; τ) terms
in (2.14) with m = ℓ − 1.

In general, to reconstruct the non-perturbative completion of C(r)
P (N ; τ), i.e. the non-

perturbative sector completing the formal asymptotic expansion of “r-subleading index”
non-holomorphic Eisenstein series (3.3), we start from the singular behaviour near t = 1
of the corresponding Borel transform

B[C(r)
P ](t) ∼− 1

π

3r+1∑
k=1

dr,−k(k − 1)!
(1− t)k

+ B̃[C(r)
NP ](t − 1) log (1− t)

π
+ reg(t − 1) , (3.44)

with
B̃[C(r)

NP ](t) =
∞∑

k=0

dr,k

k! tk . (3.45)

Equation (3.44) yields a difference in lateral Borel resummation of the form

(S+ − S−)[C(r)
P ](N ; τ) = −2iS0[C(r)

NP ](N ; τ) . (3.46)
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The coefficients dr,k of the non-perturbative sector are then entirely encoded in the disconti-
nuity equation (3.46) of the Borel transform B[C(r)

P ](t) along the Stokes line t > 0, i.e.

S0[C(r)
NP ](N ; τ) ∼ C(r)

NP (N ; τ) =
∞∑

k=−3r−1
dr,k N− k+1

2 DN

(
k + 1
2 ; τ

)
. (3.47)

Arguing as above, we must add to the lateral Borel resummation of the perturbative
sector a suitable multiple of these non-perturbative terms to finally arrive at the modular
invariant and unambiguous median transseries (3.10)

C(r)(N ; τ) = C(r)
P (N ; τ) + σ C(r)

NP (N ; τ) = Smed[C(r)
P ](N ; τ)

=
∫
M

E(
√

Nt; τ)B[C(r)
P ](t)dt =

∫ ∞

0
E(

√
Nt; τ)Re

(
B[C(r)

P ](t)
)
dt , (3.48)

where again the transseries parameter σ = ±i according to arg(N) > 0 or < 0.

Second integrated correlator. We now apply the same resummation method to analyse a
particular sector of the second integrated correlator HN (τ) presented in (1.1). The large-N
expansion of HN (τ) was initiated in [7] and then conjectured in [28] to have the asymptotic
perturbative form

HN (τ) ∼ 6N2 +Hh
N (τ) +Hi

N (τ) , (3.49)

where the two different perturbative sectors Hh
N (τ) and Hi

N (τ) are formal modular invariant
power series in respectively half-integer powers and integer powers in 1/N . In particular,
the large-N expansion of Hh

N (τ) is of the same form (3.2) for CP (N ; τ) and only contains
non-holomorphic Eisenstein series,

Hh
N (τ) =

∞∑
r=0

N2−2rH(r)
h (N ; τ) , (3.50)

H(r)
h (N ; τ) :=

∞∑
k=0

ar,kN− 3
2−kE∗

(3
2 + k; τ

)
. (3.51)

For fixed value of r, the perturbative coefficients ar,k have been found in [28] exploiting
an intriguing inhomogeneous Laplace difference equation relating this second integrated
correlator HN (τ) to CN (τ). In particular, for the leading-index non-holomorphic Eisenstein
series we have

a0,k := −
(k + 1)(k + 3)Γ

(
k − 1

2

)
Γ
(
k + 3

2

)
22k−3π3/2Γ(k + 1)

. (3.52)

Focusing for concreteness on the r = 0 case, it is then straightforward to compute the
corresponding Borel transform (3.14),

B[H(0)
h ](t) = 192 t2

2F1

(
−1
2 ,

3
2; 1|t

2
)
− 48 t4

2F1

(1
2 ,

5
2; 2|t

2
)

(3.53)

from which we obtain the singular behaviour along the Stokes direction arg(t) = 0:

B[H(0)
h ](t) ∼− 32

π(1− t) + B̃[H(0)
h,NP ](t − 1) log (1− t)

π
+ reg(t − 1) , (3.54)
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and interpret the germ of analytic functions multiplying the logarithm as the Borel resum-
mation of the non-perturbative sector given by

B̃[H(0)
h,NP ](t) = 48(t + 1)2

[
4 2F1

(
−1
2 ,

3
2; 1| − t(t + 2)

)
+ 2F1

(
−1
2 ,

3
2; 2| − t(t + 2)

)]
. (3.55)

Following the same process as before, we extract from the singular behaviour (3.54) a
novel formal series of non-perturbative corrections

H(0)
h,NP (N ; τ) =

∞∑
k=−1

h0,k N− k+1
2 DN

(
k + 1
2 ; τ

)
(3.56)

= 32DN (0; τ) + 240N− 1
2 DN

(1
2; τ

)
+ 804N−1DN (1; τ) + . . . ,

with the coefficients h0,k given by

h0,−1 = 32 , B̃[H(0)
h,NP ](t) =

∞∑
k=0

h0,k

k! tk = 240 + 804t + 855
2

t2

2! + O(t3) . (3.57)

A similar analysis can be carried out for higher values of r > 0 to obtain the non-
perturbative completion of the formal power series (3.50). However, we stress that this
process does not define the full non-perturbative completion for the second integrated
correlator HN (τ). The procedure here discussed can only resum the formal power series in
half-integer powers of 1/N contained in (3.50). As discussed in [28], besides the sector just
discuss the large-N expansion of the second integrated correlator (3.49) contains the formal
modular invariant power series H(i)

N (τ) in integer powers of 1/N .
Order by order in 1/N , the coefficients of H(i)

N (τ) are given by finite linear combinations
of a different class of modular functions called generalised Eisenstein series. Generalised
Eisenstein series have appeared in other string theory context, see e.g. [35–37], and display
a more complicated structure of perturbative and non-perturbative corrections [38–41]. In
particular, we easily see that our resummation methods starting from the formal perturbative
expansion (3.11) cannot be exploited to extract the non-perturbative completion to the sector
H(i)

N (τ) of the second integrated correlator.

3.3 Large-N ’t Hooft expansions

In this section we consider the standard large-N ’t Hooft limit where λ := 4πN/τ2 = Ng2
YM

is
kept fixed as N → ∞, starting from the transseries expansion (3.9). We show that in this limit
the non-perturbative resummation C(r)(N ; τ) naturally encodes the strong coupling genus-r ’t
Hooft transseries contribution, which includes an infinite tower of non-perturbative corrections
of the form e−2ℓ

√
λ with ℓ ∈ N, which can be interpreted as fundamental string world-sheet

instantons. However, as a consequence of modularity we see that each C(r)(N ; τ) also contains
the strong coupling non-perturbative resummation of the “dual” genus-r ’t Hooft expansion,
where the dual ’t Hooft coupling λ̃ = (4πN)2/λ is kept fixed as N → ∞. This resummation
contains an infinite tower of non-perturbative corrections of the form e−2ℓ

√
λ̃ with ℓ ∈ N,

which can be interpreted as an averaging of all dyonic-string world-sheet instantons.
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Since in the ’t Hooft limit we keep fixed λ = 4πN/τ2 = Ng2
YM

as we send N → ∞,
we have that contributions from Yang-Mills instantons, of order e−8π2N |k|/λ with instanton
number k ̸= 0, are exponentially suppressed. In the Fourier mode expansion of C(r)(N ; τ)
with respect to τ1 = θ/(2π), such contributions can be idenfitied with the kth Fourier mode.
Hence in the ’t Hooft limit we can restrict our attention to the analysis for the zero-mode
sector of (3.48), which is obtained from

I(r)(N ;λ) :=
∫ 1

2

− 1
2

C(r)(N ; τ) dτ1 =
∫
M

[ ∫ 1
2

− 1
2

E(
√

Nt; τ) dτ1
]
B[C(r)

P ](t) dt . (3.58)

To extract the ’t Hooft expansion of this expression, we need to compute the zero Fourier
mode of the modular invariant modified Borel kernel E(

√
Nt; τ). This calculation is presented

in appendix B where we derive an explicit formula in (B.10), here rewritten for convenience:

∫ 1
2

− 1
2

E(
√

Nt; τ)dτ1 = 2
e4t

√
Nπ/τ2 − 1

+ U(
√

Nt; τ2) . (3.59)

The function U(t; τ2) is given by either the contour integral representation (B.9) or as
an infinite sum over Bessel functions (B.11)–(B.12). Substituting this expression for the
zero-mode in (3.58) we arrive at

I(r)(N ;λ) = I(r)(λ) + N−1 Ĩ(r)(λ̃) , (3.60)

I(r)(λ) :=
∫
M

2
e2t

√
λ − 1

B[C(r)
P ](t) dt , (3.61)

Ĩ(r)(λ̃) :=
∫
M

U
(
t; λ̃

4π

)
B[C(r)

P ](t) dt . (3.62)

where we have introduced the dual ’t Hooft coupling λ̃ = (4πN)2/λ, and we have used the
identity U(

√
Nt; 4πN

λ ) = N−1U(t; λ̃
4π ) which follows easily from (B.9).

If we plug this expression back into the full transseries representation (3.8), we obtain
the complete ’t Hooft limit expansion of the integrated correlator CN (τ):

I(N ;λ) :=
∫ 1

2

− 1
2

CN (τ) dτ1 =
∞∑

r=0
N2−2rI(r)(N ;λ) (3.63)

=
∞∑

r=0
N2−2r

∫
M

2
e2t

√
λ − 1

B[C(r)
P ](t) dt +

∞∑
r=0

N1−2r
∫
M

U
(
t; λ̃

4π

)
B[C(r)

P ](t) dt .

We stress that thanks to our careful rewriting of the complete transseries (3.9), the N -
dependence has now been trivialised. Furthermore, as we will shortly demonstrate, the
modular invariant median resummation (3.26) naturally leads to the median resummation
of the genus-r large ’t Hooft coupling expansion, given by the contribution I(r)(λ) in (3.60),
plus the median resummation of the genus-r dual ’t Hooft coupling expansion, encoded in
the second term Ĩ(r)(λ̃) in (3.60). As already appreciated in [31], we note that modular
invariance unifies in the single expression (3.48), the seemingly different median ’t Hooft-limit
and dual ’t Hooft-limit resummations studied in [10] and [29].
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Figure 1. Hankel contour γ in the complex t-plane circling around the branch-cut singularity starting
at t = 1.

To clarify these statements, let us separately consider the two terms in (3.60). Starting
with the analysis for I(r)(λ), we first rewrite the median resummation making use of (3.25),

I(r)(λ) =
∫ ∞±iϵ

0

2
e2t

√
λ − 1

B[C(r)
P ](t) dt ∓ 1

2

∫
γ

2
e2t

√
λ − 1

B[C(r)
P ](t) dt , (3.64)

where the Hankel contour γ is given in figure 1.
The first term in this expression can be easily computed by expanding the Borel transform

B[C(r)
P ](t) using the definition (3.14) and then integrating term by term using the identity∫ ∞

0

2
e2t

√
λ − 1

tkdt = 2−kλ− k
2−

1
2Γ(k + 1)ζ(k + 1) , (3.65)

valid for k ≥ 0. In this way we arrive at the formal asymptotic power series expansion∫ ∞±iϵ

0

2
e2t

√
λ − 1

B[C(r)
P ](t) dt ∼

∞∑
k=0

br,k ξ(2k + 3)
( λ

4π

)−k− 3
2

, (3.66)

where ξ(s) = π−s/2Γ(s/2)ζ(s) = ξ(1 − s) is the completed zeta function as before. For
example, substituting the r = 0 coefficients (3.5) or the r = 1 coefficients (3.37), one can
check that (3.66) reduces respectively to the standard genus-0 and genus-1 large ’t Hooft
coupling expansion of the integrated correlator presented in [10], cf. equations (5.26) and
(5.28) of the reference.

Alternatively, we note that

d

dt

[ 2
e2t

√
λ − 1

]
= − 4

√
λ

4 sinh2(t
√

λ)
, (3.67)

hence we can integrate (3.66) by parts5 as∫ ∞±iϵ

0

2
e2t

√
λ − 1

B[C(r)
P ](t) dt =

√
λ

∫ ∞±iϵ

0

1
4 sinh2(t

√
λ)

(
− 4 d

dt
B[C(r)

P ](t)
)
dt . (3.68)

Again, substituting the Borel transform (3.28) for r = 0 or the r = 1 counterpart (3.38),
it is easy to see that this expression reduces precisely to the corresponding modified Borel
resummation for the ’t Hooft genus expansion considered in [10].

5It is easy to check from (3.28) and (3.38) that integration by parts does not produce any boundary
contributions.
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An important difference between the current analysis and the complete genus-r large ’t
Hooft expansion is the absence in (3.66) of finitely many positive powers of λ which appear
at any fixed genus. These powers will be retrieved by analysing the large-λ perturbative
expansion of the “dual” ’t Hooft contribution (3.62).

The second term in (3.64) can again be computed from our general analysis, starting from
the singular behaviour (3.17) of the Borel transform B[C(r)

P ](t), along the Stokes direction
t > 0. To compute the contribution coming from the polar part of B[C(r)

P ](t), we simply
need the polylogarithm, Lik(x), identity∮

|t|=1

2
e2t

√
λ − 1

1
(1− t)k

dt

2πi
= −2(4λ)

k−1
2 Li1−k(e−2

√
λ)

Γ(k) , (3.69)

valid for k ∈ N, while to evaluate the contribution coming from the discontinuity of the
logarithmic singularity we first shift the contour of integration t → t + 1 and then use∫ ∞

0

2
e2

√
λ(t+1) − 1

tk dt = 2(4λ)−
k+1
2 k!Lik+1(e−2

√
λ) , (3.70)

valid for Re(k) > 0.
We then express the second term in (3.64) as

∓ 1
2

∫
γ

2
e2t

√
λ − 1

B[C(r)
P ](t) dt = ±i

∞∑
k=−3r−1

dr,k(4λ)−
k+1
2 Lik+1(e−2

√
λ) , (3.71)

which, as anticipated, encodes all non-perturbative contributions from worldsheet instantons.
It is easy to check that if we plug in the above expression the r = 0 non-perturbative
coefficients (3.33), or similarly for the r = 1 (3.42), we retrieve the necessary non-perturbative
completions to the formal large-λ perturbative expansion (3.66), which had been obtained
previously in [10, 29] via resurgence analysis applied directly to (3.66).

An analogous analysis can be carried out for the second contribution Ĩ(r)(λ̃). We again
use the decomposition (3.25) to rewrite equation (3.62) as

Ĩ(r)(λ) =
∫ ∞±iϵ

0
U
(
t; λ̃

4π

)
B[C(r)

P ](t) dt ∓ 1
2

∫
γ
U
(
t; λ̃

4π

)
B[C(r)

P ](t) dt , (3.72)

with the same Hankel contour γ as shown in figure 1.
As before, the perturbative expansion at large-λ̃ is obtained from the first term in the

above equation. Similarly to the analysis of (3.66), we expand the Borel transform B[C(r)
P ](t)

for t small and integrate order by order using

∫ ∞

0
U
(
t; λ̃

4π

)
tk dt =

Γ
(

k
2 + 1

)
Γ
(

k
2

)
ζ(k)

4π
λ̃

1−k
2 , (3.73)

valid for Re(k) > 1 and proven in appendix B. Given the above identity and the definition (3.14)
for the Borel transform, we arrive at the formal asymptotic power series expansion valid
for large-λ̃: ∫ ∞±iϵ

0
U
(
t; λ̃

4π

)
B[C(r)

P ](t) dt ∼
∞∑

k=0
br,k ξ(2k + 2)

( λ̃

4π

)−k− 1
2

. (3.74)
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Using (B.12), we rewrite (3.74) as a Borel resummation of a modified Borel transform

∫ ∞±iϵ

0
U
(
t; λ̃

4π

)
B[C(r)

P ](t) dt =
∞∑

n=1

λ̃

π

∫ ∞±iϵ

0
n e−2nx

√
λ̃ B̂[C(r)

P ](x) dx , (3.75)

B̂[C(r)
P ](x) :=

∫ x

0

x

t
√

x2 − t2
B[C(r)

P ](t) dt . (3.76)

Substituting the r = 0 coefficients (3.5) or the r = 1 coefficients (3.37), one can check
that (3.74) reduces respectively to the dual ’t Hooft expansion at genus-0 or genus-1 of the
integrated correlator presented in [29, 30]. In particular, the integral representation (3.75)
in terms of a modified Borel transform6 (3.76) of the original B[C(r)

P ](t) is identical (modulo
some integration by parts) to the Borel integral-representation presented in [29] for the
dual ’t Hooft genus expansion.

As in the previous decomposition (3.64), we find that second term in (3.72) encodes
non-perturbative effects at large λ̃ and can be computed from our general analysis of the
singular behaviour (3.17) of the Borel transform B[C(r)

P ](t), along the Stokes direction t > 0.
The polar and logarithmic parts can be rewritten as

∓ 1
2

∫
γ
U
(
t; λ̃

4π

)
B[C(r)

P ](t) dt

= ∓i
3r+1∑
k=1

dr,−k(k − 1)!
∮
|t|=1

U
(
t; λ̃

4π

) 1
(1− t)k

dt

2πi
± i

∞∑
k=0

dr,k

k!

∫ ∞

0
U
(
t + 1; λ̃

4π

)
tk dt ,

(3.77)

with γ the same Hankel contour in figure 1. While it is easy to compute the polar part
directly from (B.11) or (B.12), we have not been able to find closed-form expressions akin
to the ’t Hooft limit analogues (3.69) and (3.70).

However, it is a straightforward task to plug in the above expression the genus-0 non-
perturbative coefficients (3.33), or similarly for genus-1 (3.42), and upon expanding at
large-λ̃ retrieve the necessary non-perturbative completions to the formal perturbative
expansion (3.66), obtained in [29, 30] via resurgence analysis applied directly to (3.74). This
is expected given that (3.75) relates the integral transform with kernel U(t;x) to a more
standard Borel resummation for the modified Borel transform B̂[C(r)

P ](x) given in (3.76). The
non-perturbative terms in the dual ’t Hooft genus expansion which are encoded in (3.77)
can then be recovered directly from the directional Borel resummation (3.75), precisely as
discussed in [29].

As previously stated, our analysis shows that the modular invariant median resum-
mation (3.48) of the “r-subleading”-index non-holomorphic Eisenstein series (3.3), nicely
encodes the median resummation of the genus-r large ’t Hooft expansion and dual large
’t Hooft expansion.

As a last comment, we notice that when we substitute the dual ’t Hooft perturbative
expansion (3.74) in the complete correlator I(λ), given in (3.63), this can rewritten as a

6We note that the net effect of this modified Borel transform is to simply multiply the Taylor coefficients of
the Borel transform by a ratio of gamma functions, i.e.

∫ x

0
x

t
√

x2−t2
t2k+2 dt =

√
πΓ(k+1)

2Γ(k+ 3
2 ) x2k+2.
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series in positive powers of λ of the form:

∞∑
r′=0

N1−2r′
∞∑

k=0
br′,k ξ(2k + 2)

( λ̃

4π

)−k− 1
2 =

∞∑
r=0

N2−2r
r−1∑
k=0

br−k−1,k ξ(2k + 2)
( λ

4π

)k+ 1
2

, (3.78)

where we changed the summation variable r′ = r−k−1, thus retrieving the “missing” powers
of λ from the complete perturbative genus-r contribution in the ’t Hooft limit, i.e. we have
recovered the known perturbative genus expansion:

I(N ;λ) ∼
∞∑

r=0
N2−2rT (r)

P (λ) , (3.79)

T (r)
P (λ) :=

r−1∑
k=0

br−k−1,k ξ(2k + 2)
( λ

4π

)k+ 1
2 +

∞∑
k=0

br,k ξ(2k + 3)
( λ

4π

)−k− 3
2

. (3.80)

This particular combination of positive and negative powers of λ is a direct consequence of
having rearranged the perturbative large-N expansion (3.1), where each non-holomorphic
Eisenstein series (2.13) at large τ2 contributes E∗ (s; τ) ∼ ξ(2s)τ s

2 + ξ(2s − 1) τ1−s
2 .

If we extend the definition of br,k for r ∈ N to negative values of k as

b̂r,k :=


br+k+1,−k−2 , k ∈ Z , k ≤ −2 ,

0 , k = −1 ,

br,k , k ∈ N ,

(3.81)

and make use of the functional equation ξ(s) = ξ(1 − s), we can rewrite (3.80) in the
uniform manner

T (r)
P (λ) =

∞∑
k=−r−1

b̂r,k ξ(2k + 3)
( λ

4π

)−k− 3
2

. (3.82)

Note that the would-be singular term ξ(1) does not appear in the above expression since it
multiplies b̂r,−1 = 0. Interestingly, the coefficients b̂r,k are in fact identical to the continuation
of br,k to negative values of k.

The first non-trivial example of this fact appears at genus r = 2 for which the coefficients
b2,k have been computed in [10] and are given by

b2,k =
(k + 1)2(20k2 + 208k + 219)Γ(k + 5

2)Γ(k + 11
2 )

22k+12 45π
3
2Γ(k + 4)

. (3.83)

Given the definition (3.81) and the explicit genus-0 and genus-1 coefficients (3.5)–(3.37)
we obtain directly

b̂2,−1 = 0 , b̂2,−2 = b1,0 = − 39
2048

√
π

, b̂2,−3 = b0,1 = 15
32
√

π
, (3.84)

while all other b̂2,k = bk+3,−k−2 = 0 for k ≤ −4 since br,k with r < 0 vanishes. Surprisingly
if we substitute in (3.83) negative values of k we find precisely these numbers, i.e. we have
b̂2,k = b2,k. We have confirmed that the equality b̂r,k = br,k for all k ∈ Z, in particular
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for k < 0, seems to persist at higher genus r ≥ 3, however we do not have a proof of this
statement, nor we understand the reasons behind it.

Since the analysis for the large-N ’t Hooft expansion of the sector Hh
N (τ) for the second

integrated correlator is pretty much identical to the above discussion, we will not repeat it
here. However, we want to highlight that the same analytic continuation to negative k of
the perturbative coefficients ar,k for the “r-subleading index” non-Holomorphic Eisenstein
series sector H(r)

h (N ; τ) still seems to hold. That is if we take the analytic expressions for
the coefficients ar,k, which following [28] can be computed recursively in r from the br,k, and
continue them to negative values of k exactly as in (3.81), i.e. for all the values of r studied we
find that ar,−1 = 0 and ar,k = ar+k+1,−k−2 for k ∈ Z , k ≤ −2 where again ar,k = 0 for r < 0.

4 Transseries from spectral representation

In this section we show that the transseries (3.12) can also be neatly derived starting from
the spectral representation (2.21) given in terms of the spectral overlap, MN (s), presented
in (2.29). Firstly we show that the large-N expansion of (2.21) naturally leads to a Borel
resummed version of (3.9) thus demonstrating that the series over r ∈ N of all sectors
N2−2rC(r)(N ; τ) is indeed Borel summable as previously stated. From here we derive the
spectral representation of C(r)(N ; τ) for arbitrary r, thus reinterpreting the perturbative
piece (3.3) as the polar contributions to the spectral integral, while the non-perturbative
terms (3.6) arise as contributions from infinity. In this way, we produce a beautiful spectral-
integral representation for the full transseries (3.9).

4.1 Spectral representation at large-N

We start by analysing the large-N expansion of the spectral representation (2.21) for the
integrated correlator CN (τ). Given the functional identity E∗(s; τ) = E∗(1− s; τ) of the non-
holomorphic Eisenstein series (2.13) and the symmetry MN (s) = MN (1− s) of the spectral
overlap (2.29), at the price of losing manifest symmetry under s ↔ 1− s we simply write

CN (τ) = N(N − 1)
4 +

∫
Re(s)= 1

2

M̃N (s)E∗(s; τ) ds

2πi
, (4.1)

M̃N (s) :=
21−2s(2s − 1)Γ

(
3
2 − s

)
√

π Γ(−s)

∫ 1

0
xs−3(1− x)N

2F1 (s − 1, s; 2s|x) dx . (4.2)

where MN (s) = 1
2(M̃N (s) + M̃N (1 − s)).

By changing integration variable in (4.2) to x = 1− e−µ with µ ∈ [0,∞), the spectral
overlap M̃N (s) takes immediately the form of a standard Borel resummation in N ,

M̃N (s) =
21−2s(2s − 1)Γ

(
3
2 − s

)
√

π Γ(−s)

∫ ∞

0
e−µN µsB(s;µ) dµ , (4.3)

B(s;µ) := µ−3e−µ

(
1− e−µ

µ

)s−3

2F1
(
s − 1, s; 2s|1− e−µ) , (4.4)
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where we notice for future reference that arg(µ) = 0 is not a Stokes direction for B(s;µ) and
that B(s;µ) = −B(s;−µ) as a consequence of the hypergometric function identity:

2F1(a, b; c|x) = (1− x)−a
2F1(a, c − b; c

∣∣ x

x − 1) . (4.5)

As one can see by direct calculation, the simple expression (4.3) solves identically the Laplace
difference equation (2.27) after some integrations by parts.

The Borel transform B(s;µ) has an expansion for small µ of the form

B(s;µ) = µ−3 − s(s + 5)
24(2s + 1)µ−1 + (s + 2)(s + 3)

(
5s2 + 37s − 12

)
5760(2s + 1)(2s + 3) µ + O(µ3) . (4.6)

In particular, we notice the potentially singular behaviour of µs−3 at the origin of the Borel
µ-plane in (4.3). However, it is easy to check that the regularisation procedure discussed
in (A.10), amounts to regarding the term µs in (4.3) as a regulator to perform the Borel
integral term by term and only after integration taking s to lie on critical strip Re(s) = 1/2.

We then compute the µ-integral in (4.1) by expanding the Borel transform for small µ

and then integrate term by term arriving at the formal power series expansion

M̃N (s) =
2−2r∑
r=0

N2−2r−sM(r)(s) , (4.7)

where for the first two orders we have

M(0)(s) = 2−2s(2s − 1)2Γ(s)Γ(s + 1)
√

πΓ
(
s + 1

2

) tan(πs)
(s − 1)(s − 2) , (4.8)

M(1)(s) = −2−2s−1s(s + 5)(2s − 1)2Γ(s)Γ(s + 1)
24
√

πΓ
(
s + 3

2

) tan(πs) , (4.9)

while for r ≥ 2 we find the general form

M(r)(s) = 2−2s−4r(2s − 1)2Γ(s + 2r)Γ(s + 1)
√

π Γ
(
s + r + 1

2

) P (r)(s) tan(πs) , (4.10)

for some polynomials P (r)(s) of degree 2r − 2. For example we find

P (2)(s) = 5s2 + 37s − 12
90 , P (3)(s) = −35s4 + 462s3 + 1153s2 + 750s − 720

5670 ,

P (4)(s) = 175s6 + 3745s5 + 24579s4 + 71327s3 + 84086s2 + 12648s − 60480
340200 . (4.11)

A key observation about the functions M(r)(s) is that they are all analytic functions
in the strip 1/2 < Re(s) < 3/2 and they all have a simple zero at s = 1, apart from the
case r = 0 for which we have

lim
s→1

M(0)(s) = −1
2 . (4.12)
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This means that if we substitute the large-N expansion for the spectral overlap (4.7) in
the integral representation (4.1), we can push the contour of integration to Re(s) = 1 + ϵ

with 0 < ϵ < 1
2 .

Only for the case r = 0 we have to be careful, since by doing so we pick up the residue
at s = 1 coming from the non-zero limit lims→1 M(0)(s) = −1

2 multiplying the simple pole of
the non-holomorphic Eisenstein series (2.13), which in our normalisation has residue

ress=1E∗(s; τ) = 1
2 . (4.13)

This residue at s = 1, coming from the case r = 0, combines with the constant term
N(N − 1)/4 so that (4.1) can be rewritten as

CN (τ) = N2

4 +
∞∑

r=0
N2−2r

∫
Re(s)=1+ϵ

M(r)(s)N−sE∗(s; τ) ds

2πi
, (4.14)

with 0 < ϵ < 1
2 .

Few comments are in order at this point:

(i) the expansion in even powers of N (modulo the Mellin-like term N−s) is a direct
consequence of the previously noted fact that the Borel transform is an odd function of
the Borel variable µ;

(ii) by comparing the expansion (4.14) with (3.9) it appears manifest, and it is proven in
the next section, that M(r)(s)N−s must be the spectral overlap of C(r)(N ; τ);

(iii) once we identify (3.9) with the spectral representation for (4.14), we deduce, as previously
stated, that the sum over r in (3.9) is Borel summable: the resummation over r ∈ N of
the asymptotic series of spectral overlaps (4.7) is understood via the standard Borel
transform (4.3).

We now move to show that (4.14) in fact provides for the spectral representation of
the modular invariant transseries (3.9).

4.2 Large-N transseries from a spectral perspective

By comparing the large-N spectral representation (4.14) with the previously analysed modular
invariant transseries representation (3.9), we immediately see that the spectral representation
for each C(r)(N ; τ) must take the form

C(r)(N ; τ) =
∫

Re(s)=1+ϵ
M(r)(s)N−sE∗ (s; τ) ds

2πi
, (4.15)

where the spectral overlaps, M(r)(s), are precisely the ones we obtained from the large-N
expansion (4.7).

To prove that (4.15) is in fact correct, we relate this expression directly with the median
resummation formula (3.48), for example we show that when r = 0 the expression (4.15)
reduces identically to (3.35). To this end we make use of the integral representation (3.12) for
N−sE∗(s; τ), presently appropriate since Re(s) = 1 + ϵ, and we rewrite (4.15) as to obtain

C(r)(N ; τ) =
∫ ∞

0
E(

√
Nt; τ)

[ ∫
Re(s)=1+ϵ

(4t)2s−1 2Γ(s)M(r)(s)
Γ(2s)

ds

2πi

]
dt . (4.16)
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By comparing this expression with the median resummation formula (3.48), we conclude
that for t > 0 we must have

Re
(
B[C(r)

P ](t)
)
=
∫

Re(s)=1+ϵ
(4t)2s−1 2Γ(s)M(r)(s)

Γ(2s)
ds

2πi
, (4.17)

i.e. the Borel transform for the median resummation is related to the inverse Mellin transform
of the spectral overlap M(r)(s).

For concreteness, let us consider the explicit cases r = 0 presented in (4.8), for r > 0
the story is identical with just slightly different expressions (4.9)–(4.10). Starting from (4.8),
we need to compute:∫

Re(s)=1+ϵ
(4t)2s−1 2Γ(s)M(0)(s)

Γ(2s)
ds

2πi
=
∫

Re(s)=1+ϵ
t2s−1 4Γ(s − 2)Γ(s + 1)

Γ
(
s − 1

2

)2 tan(πs) ds

2πi
. (4.18)

These integrals can be understood as inverse Mellin transforms in the s variable and can
be evaluated by closing the contour of integration in a suitable manner. For 0 < t < 1 we
must close the contour of integration to the right half-plane Re(s) > 1, hence picking up the
simple poles coming from tan(πs) and located at s = n + 1/2 with n ∈ N>0. Similarly, for
t > 1 the contour of integration must be closed in the left half-plane Re(s) < 0. The poles
from tan(πs) are now compensated by the gamma functions at denominator, and we are left
with the simple poles located at s = −n with n ∈ N>0 coming from the double poles of the
gamma functions at numerator combined with the simple zeroes of tan(πs). In both cases
it is possible to show that the contribution at infinity vanishes.

Proceeding as just described, we see that (4.18) is given by

∫
Re(s)=1+ϵ

(4t)2s−1 2Γ(s)M(0)(s)
Γ(2s)

ds

2πi
=

−6t2
2F1

(
−1

2 , 5
2 ; 1| t

2
)

, 0 < t < 1 ,

− 3
8t3 2F1

(
5
2 , 5

2 ; 4 | t
−2
)

, t ≥ 1 .
(4.19)

Since we want to show that the spectral representation (4.16) coincides with the median
transseries resummation, then for r = 0 we must have that (4.19) equals (3.35). In particular,
we see that (4.19) is identical to the Borel transform B[C(0)](t) given in (3.28) for 0 < t < 1.
Furthermore, as already discussed in detail we know that B[C(0)](t) has a branch-cut singularity
starting at t = 1 with a discontinuity (3.29) which is purely imaginary for t > 1. From
the integral representation for the hypergeometric function we can then derive that for
t ∈ [0,∞) we have

Re
(
B[C(0)](t)

)
= 1

2(−6t2) lim
ϵ→0+

[
2F1

(
−1
2 ,

5
2; 1|(t + iϵ)2

)
+ 2F1

(
−1
2 ,

5
2; 1|(t − iϵ)2

) ]

=

 −6t2
2F1

(
−1

2 , 5
2 ; 1| t

2
)

, 0 < t < 1 ,

− 3
8t3 2F1

(
5
2 , 5

2 ; 4 | t
−2
)

, t ≥ 1 ,
(4.20)

hence we conclude that indeed (4.19) is identical to Re
(
B[C(0)](t)

)
. For higher values of

r > 0, we have checked that indeed the spectral representation (4.15) coincides precisely with
the modular invariant median resummation (3.48) for C(r)(N ; τ).
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Before concluding, we also want to clarify how to extract directly from the spectral
representation (4.15) the formal transseries expansion (3.10) in terms of the perturbative,
non-holomorphic Eisenstein series part (3.3) and the non-perturbative sector (3.8). We
again focus concretely on the case r = 0, although everything we say can be applied to
arbitrary r. Substituting the expression (4.8) for M(0)(s) in (4.15) and massaging some
of the gamma functions we arrive at

C(0)(N ; τ)=
∫

Re(s)=1+ϵ

22−4sΓ(2s)
Γ(s)

2Γ(s − 2)Γ(s + 1)

Γ
(
s − 1

2

)2 tan(πs)N−sE∗ (s; τ) ds

2πi
. (4.21)

The perturbative part (3.4) is clearly obtained by formally closing the contour of inte-
gration to the right half-plane, Re(s) > 1, and summing over minus (due to the orientation
of the integration contour) the residues from the poles coming from tan(πs) and located at
s = k + 3/2 with k ∈ N. A simple residue calculation immediately shows

−ress=k+ 3
2

22−4sΓ(2s)
Γ(s)

2Γ(s − 2)Γ(s + 1)

Γ
(
s − 1

2

)2 tan(πs)N−sE∗ (s; τ)

=b0,kN− 3
2−kE∗

(3
2 + k; τ

)
,

(4.22)

for k ∈ N and where the coefficients b0,k are exactly the ones given in (3.5).
While the formal sum over all residues on the positive real s-axis reproduces the pertur-

bative series C(0)
P (N ; τ) in (3.4), the non-perturbative sector C(0)

NP (N ; τ) in (3.32) is encoded
in the formal contribution at infinity. This can be made explicit by first substituting in (4.21)
the lattice sum representation (2.13) for the non-holomorphic Eisenstein series E∗ (s; τ), and
then evaluating the s-integral via a saddle-point analysis. One can easily see that at large-N
the spectral representation (4.21) behaves as

22−4sΓ(2s)Γ(s − 2)Γ(s + 1)

Γ
(
s − 1

2

)2 (NYmn(τ))−s

∼ exp
[
2s

(
log s − log

(
2
√

NYmn(τ)
)
− 1

)] 4√π√
s

(
1 + 55

24s
+ O

(
s−2

))
. (4.23)

In the limit N ≫ 1, the argument of the exponential function has a saddle point located
at s = s⋆ with |s⋆| ≫ 1:

s⋆ := 2
√

NYmn(τ) . (4.24)

By evaluating (4.23) at the saddle point s = s⋆, we find that the leading growth is
given by exp(−4

√
NYmn(τ)), i.e. precisely the exponential suppression factor of the non-

perturbative DN (s; τ) modular functions (2.15).
We notice furthermore, that the term tan(πs) in (4.21) is the realisation of the transseries

parameter σ in (3.34). If we evaluate this factor at the saddle location (4.24), we see that
it reduces to

tan(πs⋆)
|N |≫1−→

{
+i , arg(N) > 0 ,

−i , arg(N) < 0 .
(4.25)
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It is straightforward to expand around the saddle point by changing integration variables to

s = s⋆ + i (NYmn)
1
4 δs , (4.26)

so that the integral representation (4.21) reduces at large-N to a gaussian integral in the
fluctuations δs timed by an infinite formal series of perturbative corrections, which can be
evaluated to arbitrary high order in (NYmn)−1 thus recovering the non-perturbative sector
C(0)

NP (N ; τ) previously obtained in (3.32) via resurgent analysis arguments.
We conclude with a quicker and suggestive, albeit not completely rigorous way of showing

that the non-perturbative coefficients dr,k of the non-perturbative sector (3.47) are encoded
directly at the level of spectral overlap M(r)(s). Focusing again on the showcase example
where r = 0, we analyse the integrand of the spectral decomposition (4.21) and we expand
it at large-s in the following manner,

22−4sΓ(2s)
Γ(s)

2Γ(s − 2)Γ(s + 1)

Γ
(
s − 1

2

)2 = 22−4sΓ(2s)
Γ(s)

( ∞∑
ℓ=0

δℓ (2s)−ℓ

)
, (4.27)

where the first few δℓ coefficients are given by

δ0 = 2 , δ1 = 9 , δ2 = 153
4 . (4.28)

We find that the non-perturbative coefficients d0,k presented in (3.32) are in fact encoded
entirely in the above expression via

d0,k =
k+1∑
ℓ=0

S
(ℓ)
k+1 δℓ , (4.29)

where S
(ℓ)
k denotes the Stirling number of the first kind. This identity follows from the

properties of the Stirling numbers: the particular linear combination of the coefficients δℓ

defined in (4.29) allows us to rewrite (4.27) in the alternative large-s expansion

22−4sΓ(2s)
Γ(s)

( ∞∑
ℓ=0

δℓ (2s)−ℓ

)
= 22−4sΓ(2s)

Γ(s)

 ∞∑
k=−1

d0,k

k+1∏
i=1

(2s − i)−1


=

∞∑
k=−1

d0,k
22−4sΓ(2s − k − 1)

Γ(s) . (4.30)

As a last step, we notice that the particular factor in the summand,

22−4sΓ(2s − k − 1)
Γ(s) ,

is precisely the spectral overlap with the non-holomorphic Eisenstein series of the modular
invariant function N− k+1

2 DN (k+1
2 ; τ) computed in [18], for general index given by

DN (p; τ) = ⟨DN (p)⟩+
∫

Re(s)= 1
2+ϵ

22−4sΓ(2s − 2p)
Γ(s) Np−sE∗ (s; τ) ds

2πi
. (4.31)
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A similar analysis can be carried out starting from M(r)(s) with r ≥ 1 to retrieve the
non-perturbative coefficients dr,k.

While the expansion (4.30) is rather suggestive, we stress that this result does not quite
show how to rigorously obtain the non-perturbative sector (3.47) from the spectral represen-
tation (4.21), unlike the previous two arguments exploiting either median resummation (4.17)
or saddle point analysis. In fact, we see from (4.31) that the spectral representation for
DN (p; τ) is given by an integral over the line Re(s) = 1/2, while here we have obtained
indeed the correct spectral overlaps in the expansion (4.30), but only in the limit Re(s) ≫ 1
and without any apparent trace of the spectral average ⟨DN (p)⟩.

We find it rather beautiful how the simple spectral representation (4.15) encodes in
these various interesting ways the perturbative non-holomorphic Eisenstein series part (3.3),
the non-perturbative DN (p; τ) sector (3.8) and, as a matter of fact, the complete median
resummation transseries representation (3.10).

5 Conclusions

This paper contains two main results. Firstly, we have defined a modified modular invariant
Borel kernel (3.15), thanks to which we have been able to reconstruct the full non-perturbative
large-N transseries representation of the first integrated correlator CN (τ) starting from its
formal perturbative expansion defined in (1.1). With the same method we resummed the
non-holomorphic Eisenstein series sector of the second integrated correlator HN (τ). As a
consequence of our modular invariant approach, both the resurgent genus expansion transseries
at large ’t Hooft-coupling λ and large dual-’t Hooft-coupling λ̃ are neatly encoded in our
modular invariant non-perturbative resummations.

Secondly, we analysed the problem of extracting the large-N transseries expansion of
the first integrated correlator CN (τ) starting from its spectral decomposition in terms of
L2-normalisable eigenfunctions of the hyperbolic Laplace operator ∆τ . We have rewritten the
spectral overlap function as a simple Borel transform in the number of colours N , from which
we have extracted the large-N spectral overlaps for the transseries we previously constructed.
Both the perturbative and non-perturbative formal yet modular invariant large-N expansions
are nicely encoded in these spectral overlaps.

A first interesting follow-up to our work, is the analysis of the first integrated correlator
CN (τ) for other classical gauge groups, i.e. for G = SO(N) and USp(2N). Generating series
over N have been constructed for all these cases in [31], relying heavily on [8]. Similarly
to the SU(N) case, starting from the generating series it is possible to construct the non-
perturbative completions at large-N for all classical gauge groups. Although the non-
perturbative sectors for any classical gauge groups all live in the same class of exponentially
suppressed modular functions, DN (s; τ), we find many subtle differences between the complete
transseries expansions for the various gauge groups, for example in the transseries parameters.
We believe that thanks to our modular invariant resurgent analysis approach, it should be
possible to explain why and how the non-perturbative sectors vary amongst the classical
gauge groups, G = SU(N), SO(N) and USp(2N).

Secondly, we believe that our resummation method can help with the study of other
integrated correlators. In particular, exact expressions have been found [16–19] for certain
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integrated four-point functions of two superconformal primary operators, O2, and two identical
higher conformal dimension operators denoted by Op, with p ∈ N and p ≥ 2. An interesting
story [18, 19] arises in the large charge limit, p ≫ 1, at fixed N of these observables: for
N odd the modular invariant large-p expansion takes a form very similar to (3.1) (where
the rôle of N in that equation is now played by p), while for N even the modular invariant
perturbative expansion in 1/p does become convergent.

Independently from the nature of the large-p perturbative expansion, [18, 19] showed
that the large-charge expansion of these integrated correlators does in fact contain non-
perturbative corrections of the form Dp/2(r; τ). This phenomenon is very likely a nice
example of “Cheshire cat” resurgence [42–46], where a would-be asymptotic perturbative tail
disappears at special values of some external parameters, in this case for N an even integer,
while the body of the resurgent structure lingers on. We believe that the modular invariant
resummation procedure here introduced can be exploited to resum the large-p expansion
of these higher-charge integrated correlators and manifest the Cheshire cat nature in N of
the resurgent perturbative large-p expansion.

Another important open problem is understanding the complete large-N expansion for
the second integrated correlator HN (τ) in (1.1). Focusing at first on the sector Hh

N (τ),
containing only half-integer powers in 1/N and non-holomorphic Eisenstein series, we believe
that exploiting the Laplace difference equation conjectured in [28] it should be possible
to obtain a Borel-resummed spectral representation, hopefully akin to the first integrated
correlator (4.3). Although Hh

N (τ) is only part of the full integrated correlator, this would
be a big step towards understanding the N dependence of HN (τ).

However, a tougher hurdle is posed by the sector Hi
N (τ), which contains integer powers

in 1/N whose coefficients are generalised Eisenstein series. While in [28] it was conjectured
that Hi

N (τ) admits a lattice sum representation order by order in 1/N , the systematic is
still not fully understood and no useful spectral decomposition is available. Furthermore [28]
proposed an intriguing equation which relates ∆τHi

N (τ) to CN (τ)2. From the transseries
representation (2.11), we then expect a novel class of modular invariant non-perturbative
corrections7 to appear in the resummation of Hi

N (τ) of the form

(∆τ − λ)F (τ) = Dt1(s1; τ)Dt2(s2; τ) . (5.1)

Here t1, t2 are auxiliary parameters which can be set either to N as to retrieve a non-
perturbative term DN (s; τ) or to 0 as to reduce from (2.15) to a standard non-holomorphic
Eisenstein series. This analysis is well beyond the scope of this paper and most definitely
deserves further investigations.
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Figure 2. The contour of integration γ2 circles around the poles in the complex x-plane located at
x ∈ {2, 3, . . . , N} while avoiding other singularities.

A An alternative spectral overlap

In this appendix we derive an alternative expression for the spectral overlap (2.28) that will
be fundamental in computing the large-N transseries expansion of the integrated correlator,
CN (τ), starting from its spectral representation (2.21). Throughout this derivation we assume
for simplicity that N ≥ 2 is an integer (which is also the case of physical interest) and that
the spectral parameter s lies on the critical line Re(s) = 1

2 . Despite these assumptions, the
regime of validity for the final result (A.5) will be more general and in particular it will
provide an analytic continuation valid for N ∈ C with Re(N) > 0.

We begin by rewriting the hypergeometric function appearing in the spectral overlap (2.28)
via the integral representation,

3F2(2− N, s, 1− s; 3, 2|1)

= 2(−1)NΓ(N − 1)
Γ(1− s)Γ(s)

∮
γ1

Γ(x + N − s − 1)Γ(x + N + s − 2)Γ(x)
Γ(x + N − 1)Γ(x + N)Γ(x + N + 1)

dx

2πi
, (A.1)

where γ1 is a contour around the poles coming from Γ(x)/Γ(x + N − 1) and located at
x ∈ {0,−1, . . . ,−(N − 2)}. It is convenient to make a change of integration variables
x → x′ = x + N which we then rename x again and, after using the reflection formula for
the gamma functions, we reduce the integral to

3F2(2− N, s, 1− s; 3, 2|1)

= 2Γ(N − 1) sin (πs)
∮

γ2

Γ(x − s − 1)Γ(x + s − 2)
sin (πx)Γ(N + 1− x)Γ(x − 1)Γ(x)Γ(x + 1)

dx

2πi
, (A.2)

where γ2 is a contour around the poles at x ∈ {2, 3, . . . , N} presented in figure 2.
We now exploit the known asymptotic expansion of the gamma functions to find that

the integrand of (A.2) behaves as |Im(x)|−3−N as |Im(x)| → ∞. Since this bound is uniform
throughout the x-plane, we have that the integrals coming from the horizontal contributions
to γ2 located at |Im(x)| = M vanish when we send M → ∞. The non-vanishing contributions
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to the contour integral (A.2) can then be rewritten as∮
γ2

= −
∫

Re(x)=2−ϵ
+
∫

Re(x)=N+ϵ
, (A.3)

with ϵ > 0 small enough.
Furthermore, given that the integrand of (A.2) does not have any poles in the domain

Re(x) > N + ϵ, we can push the second contour of integration towards Re(x) = +∞ and
show that it vanishes given the bound on the integrand discussed above. We then deduce
that the original contour integral (A.2) reduces simply to an integral over Re(x) = 2− ϵ,

3F2(2− N, s, 1− s; 3, 2|1)

= −2Γ(N − 1) sin (πs)
∫

Re(x)=2−ϵ

Γ(x − s − 1)Γ(x + s − 2)
sin (πx)Γ(N + 1− x)Γ(x − 1)Γ(x)Γ(x + 1)

dx

2πi
. (A.4)

We now push the contour of integration towards Re(x) → −∞ and collect the residues
from the poles originating from the two gamma functions at numerator, which are located at
x = −k + 1 + s and x = −k + 2 − s for k ∈ N, while the contribution at infinity vanishes
thanks to a similar argument as above. Picking up these residues we arrive at the identity

3F2(2− N, s, 1− s; 3, 2|1) = 2Γ(N − 1)× (A.5)[Γ(1−2s)3F2(s−2, s−1, s; 2s, N+s−1|1)
Γ(s + N − 1)Γ(1− s)Γ(2− s)Γ(3− s) +

Γ(2s−1)3F2(−s−1,−s, 1−s; 2−2s, N−s|1)
Γ(N − s)Γ(s)Γ(s + 1)Γ(s + 2)

]
,

where we notice that the two factors in this expression are related by the transformation
s → 1− s, as expected given that the equation we started with (A.1) had this symmetry.

Substituting (A.5) back in the spectral overlap (2.28), we derive the symmetric expression

MN (s) = (A.6)
2−2s√π(2s − 1)Γ(1 + N)Γ(3

2 − s)3F2(s − 2, s − 1, s; 2s, N + s − 1|1)
sin (πs)Γ(3− s)Γ(−s)Γ(N + s − 1) + (s ↔ 1− s) .

The above equation can be simplified even further by using the Euler-like integral repre-
sentation

3F2(s−2, s−1, s; 2s, N+s−1|1)= Γ(N+s−1)
Γ(s)Γ(N−1)

∫ 1

0
(1−x)N−2xs−1

2F1 (s−2, s−1; 2s|x) dx .

(A.7)

Combining (A.6) with (A.7), we conclude that

MN (s) =
2−2s(2s − 1)Γ

(
3
2 − s

)
√

π Γ(−s) IN (s) + (s ↔ 1− s) , (A.8)

IN (s) := N(N − 1)
(s − 1)(s − 2)

∫ 1

0
(1− x)N−2xs−1

2F1 (s − 2, s − 1; 2s|x) dx . (A.9)

Finally, we rewrite the expression for IN (s) by noticing that

d2

dx2 (1− x)N = N(N − 1)(1− x)N−2 ,
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which can be substituted in (A.9) to perform twice an integration by parts. However, we
need to be careful in doing so since the boundary terms diverge as x → 0+ and we must
introduce a regulator as to cancel the singular terms. The end result is a formula for the
spectral overlap (A.8) which is valid for Re(s) = 1

2 and N ∈ C with Re(N) > 0

IN (s)= lim
ϵ→0+

[
ϵs−2

s − 2 + (s − 2N − 1)ϵs−1

2(s − 1) +
∫ 1

ϵ
(1− x)N xs−3

2F1 (s − 1, s; 2s|x) dx

]
. (A.10)

B Properties of a modular invariant Borel kernel

In this appendix we review some known properties for the modular invariant Borel kernel
E(t; τ) as well as derive novel expressions which are of use in the main body of this work.

The family of modular invariant functions DN (s; τ) defined in (2.15) was first introduced
in [31], while a generalisation has also recently appeared in the study of torodial Casimir
energy in 3-dimensional conformal field theories [47]. In this appendix we focus our attention
to the special element (3.13) in this family, namely E(t; τ) = Dt2(0; τ), which plays the rôle
of a modular invariant kernel for our modified Borel resummation.

The Fourier mode decomposition of the lattice sum (3.13) can be analysed straightfor-
wardly [31] starting from an integral representation valid for Re(t2) > 0

E(t; τ) =
∑

(m,n) ̸=(0,0)

∫ ∞

0
e−xYmn(τ)− 4t2

x
2t√

πx3/2dx . (B.1)

In particular, for our analysis of the large-N ’t Hooft limit of section 3.3 we need an expression
for the zero-mode sector of E(t; τ), which can be easily extracted from (B.1) via standard
Poisson resummation methods thus yielding

∫ 1
2

− 1
2

E(t; τ)dτ1 = 2
e4t

√
π/τ2 − 1

+
∞∑

n=1
4nτ2 K1(4nt

√
πτ2) . (B.2)

Alternatively, the lattice sum representation (3.13) can be written as a Poincaré series,

E(t; τ) = 2
∑

γ∈B(Z)\SL(2,Z)
Li0
(
e−4t

√
π/τ2

)
= 2

∑
γ∈B(Z)\SL(2,Z)

[
1

exp (4t
√

π/τ2)− 1

]
γ

. (B.3)

Here γ denotes an element of the coset space B(Z)\SL(2,Z), where B(Z) is the Borel
stabilizer of the cusp τ = i∞, given by

B(Z) :=
{
±
(
1 n

0 1

) ∣∣∣∣∣n ∈ Z
}

⊂ SL(2,Z) :=
{(

a b

c d

) ∣∣∣∣∣ a, b, c, d ∈ Z , ad − bc = 1
}

. (B.4)

The notation [f(τ)]γ := f(γ · τ) in (B.3) indicates that the coset element γ ∈ B(Z)\SL(2,Z)
acts on any instance of the modular parameter τ via the standard fractional transformation

γ · τ := aτ + b

cτ + d
, γ =

(
a b

c d

)
. (B.5)
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As shown in [18], the spectral representation of E(t; τ) can be obtained directly from
the Poincaré series representation (B.3) and takes the form

E(t; τ) = 1
8t2 + 4

∫
Re(s)= 1

2

(4t)−2sΓ(2s)
Γ(s) E∗ (s; τ) ds

2πi
. (B.6)

From the spectral representation we may also obtain a different expression for the Fourier
zero-mode (B.2). We start by substituting in (B.6) the Fourier zero-mode (2.13) of the
non-holomorphic Eisenstein series,∫ 1

2

− 1
2

E∗ (s; τ) dτ1 = ξ(2s)τ s
2 + ξ(2s − 1)τ1−s

2 . (B.7)

To evaluate (B.6) we focus separately on the contribution coming from either of the two
terms ξ(2s)τ s

2 and ξ(2s − 1)τ1−s
2 in the above expression.

Starting with the term ξ(2s)τ s
2 , we rewrite the completed Riemann zeta using the Dirichlet

series representation of the zeta function ζ(2s) =
∑

k≥1 k−2s valid for Re(s) > 1/2

4
∫

Re(s)= 1
2+ϵ

(4t)−2sΓ(2s)
Γ(s) ξ(2s)τ s

2
ds

2πi
=

∞∑
k=1

4
∫

Re(s)= 1
2+ϵ

Γ(2s)
(4t

√
π

√
τ2

k
)−2s ds

2πi

= 2
e4t

√
π/τ2 − 1

, (B.8)

where we simply evaluate the sum over all the residues coming from the poles of Γ(2s) and
subsequently perform the sum over k. Note that in doing so we have to shift the contour of
integration to the right by an infinitesimal quantity, ϵ > 0, since ξ(2s) has a pole at s = 1/2.
The contribution from this pole is cancelled by an equal and opposite pole coming from
the second zero-mode term ξ(2s − 1)τ1−s

2 , since the complete non-holomorphic Eisenstein
E∗ (s; τ) is perfectly regular for s = 1

2 and the integral expression (B.6) is unchanged if we
move the contour of integration to Re(s) = 1/2 + ϵ.

The remaining zero-mode contribution to E(t; τ) comes from the leftover 1/(8t2) term
in (B.6) and the non-holomorphic Eisenstein series factor ξ(2s − 1)τ1−s

2 which can be com-
bined as

U(t; τ2) :=
1
8t2 +

∫
Re(s)= 1

2+ϵ

4(4t)−2sΓ(2s)
Γ(s) ξ(2s − 1)τ1−s

2
ds

2πi

=
∫

Re(s)=1+ϵ

Γ
(
s − 1

2

)
Γ
(
s + 1

2

)
ζ(2s − 1)

2πt2 (2t
√

πτ2)2−2s ds

2πi
. (B.9)

We then conclude that the Fourier zero-mode of E(t; τ) can also be expressed as∫ 1
2

− 1
2

E(t; τ) dτ1 = 2
e4t

√
π/τ2 − 1

+ U(t; τ2) , (B.10)

where it is worth noting that for large values of t both terms are exponentially suppressed.
Comparing with (B.2), we see that U(t; τ2) has the alternative representation

U(t; τ2) =
∞∑

n=1
4nτ2 K1(4nt

√
πτ2) . (B.11)
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Unfortunately U(t; τ2) does not seem to have a simpler expression in terms of elementary func-
tions, however we can use the integral representation for the Bessel function to rewrite (B.11)
in the useful Borel-like form

U(t; τ2) =
∞∑

n=1

∫ ∞

t
(4nτ2)e−4nx

√
πτ2 x

t
√

x2 − t2
dx . (B.12)

To discuss the ’t Hooft large-N limit in section 3.3, we need certain integrals involving the
Fourier zero-mode just discussed. In particular, we need a formula for the moments tα with
respect to the measure U(t; τ2)dt. From the definition (B.9), we see that the t-dependence of
such integrals is simply of the form tα−2s, we then consider the analytic continuations∫ 1

0
tα−2s dt = 1

α − 2s + 1 , Re(s) <
α + 1
2 , (B.13)∫ ∞

1
tα−2s dt = − 1

α − 2s + 1 , Re(s) >
α + 1
2 . (B.14)

After having performed the integral over t, we notice that the integrand of (B.9) acquires a
single simple pole located at s = α+1

2 . Closing the contour of integration to the right half-plane
Re(s) > 1 picks up the residue at this pole without any boundary contribution, thus giving us

∫ ∞

0
U(t; τ2) tα dt =

Γ
(

α
2 + 1

)
Γ
(

α
2

)
ζ(α)

4π
(2
√

πτ2)1−α . (B.15)

Alternatively, we may start from the expression in terms of Bessel functions (B.11)
and compute

∫ ∞

0
4nτ2K1(4nt

√
πτ2) tα dt =

Γ
(

α
2 + 1

)
Γ
(

α
2

)
4π

n−α (2
√

πτ2)1−α , (B.16)

valid for Re(α) > 0, which can then be easily summed over n to reproduce (B.15).
In section 3.3 we also discuss the non-perturbative terms in the dual ’t Hooft limit which

require finding an expression for the moments tα with respect to the measure U(t + 1; τ2)dt.
To this end, we start with the identity∫ ∞

0

tα

(t + 1)2s
dt = Γ(1 + α)Γ(2s − 1− α)

Γ(2s) , (B.17)

which we then substitute in the defining formula (B.9) to derive∫ ∞

0
U(t + 1; τ2) tα dt = Γ(1 + α)

∫
Re(s)= 1+α

2 +ϵ

Γ(s − 1
2)Γ(2s − 1− α)ζ(2s − 1)

4
√

πΓ(s)(4√πτ2)2s−2
ds

2πi
. (B.18)

Although this expression does not quite yield a closed form such that (B.15), it still suffices
for the discussion of section 3.3.
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