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Preface

Dear Delegates,

It is a huge pleasure to host the 38th International Workshop on Statistical
Modelling in Durham. The conference is attended by more than 130 delegates
from about 20 countries, who, between them, will present about 100 papers to
the audience, in form of oral or poster presentations.
This is the 4th time that this conference resides in the UK, following Exeter
(1994), Glasgow (2010), and Bristol (2018). As you will have realized on your
way to the conference venue, Durham is pretty far up in the North of England,
and indeed there have been frequent interactions with Scotland over the centuries
— some of which you will have opportunity to get some insight into when we
visit Auckland Castle in one of the excursions on Wednesday.
The community which annually finds its way to the IWSM conferences is a quite
extraordinary one — it is a friendly, welcoming, open community (albeit still
driven by a rather specific vision of contemporary statistical science), which puts
particular emphasis on the integration and support of postgraduate students. In-
deed, it is quite remarkable that, among the 56 contributed oral presentations
at this conference, 31 are delivered by postgraduate students. As some way to
honour their contributions, the workshop will once more provide prizes for the
best student oral presentation, poster, and paper. The Statistical Modelling So-
ciety has furthermore contributed two overseas travel awards for presenting PhD
students, and the Durham Research Methods Centre two Durham summer grants
to facilitate attendance of the short course.
A particular thank goes to the Scientific Committee, who took up their roles soon
after the Trieste meeting in 2022, and have closely worked with the Organizers
since then. The work of the SC included suggesting and selecting invited speakers,
reviewing submissions to the conference (all contributions got reviewed in the
same way, whether oral or poster, and whether student or non-student), and,
even during this meeting, the scoring of the student prizes.
We are also particularly looking forward to the presentations by the invited speak-
ers, Dimitris Rizopoulos (Erasmus MC Rotterdam), Robin Henderson (Newcas-
tle University), Fiona Steele (University College London), Maria Kateri (RWTH
Aachen), and Ernst Wit (Lugano), who will cover a range of exciting topics in
their talks, touching the boundaries of the state of current knowledge in their
fields. In addition, Emanuele Giorgi (Lancaster) is delivering a short course on
model-based geostatistics for Public Health.
Arriving into Durham on the eve of the workshop, one can’t help noting that
the sentiment appears familiar – a long summer night with omnipresent screens
displaying the football finals. Surely this will result in some more, and some less,
smiling faces in the audience in the early sessions of the conference on Monday!
But certainly, the science will take over soon, and we we will be engaged in a
week of stimulating exchanges on new developments and advances in statistical
modelling.

Durham, July 2024
Jochen Einbeck1,2, Reza Drikvandi1,2, Hyeyoung Maeng1, Konstantinos Perrakis1,2,
Georgios Karagiannis2, and Qing Zhang2

1 Hosts of the IWSM 2024; 2 Editors of this volume.
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Oskar Laverny, Nathalie Grafféo, Roch Giorgi: Non-parametric
estimation of net survival under dependence between death causes . . . 176
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Abstract: While the difference between “Data Science” and “Statistics” disci-
plines is, at best, blurred, many people associate machine learning methods and
big data with the former, and modelling and inference for small samples (little
data) with the latter. We present a big data application where no sophisticated
method at all is needed, a small data application where a partial modelling ap-
proach seems useful, and a big-and-little data application where we can borrow
strength from limited information in a large sample, to improve estimation based
on more detailed data in a small sample.
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Abstract: Standard statistical models such as models for contingency tables,
logistic regression, and models for rank data are revisited and redefined in a
statistical information theoretical context, connecting them to divergences. This
fact, on the one hand, reveals new properties for these models that lead to deeper
understanding of their nature and new interpretation options and, on the other
hand, offers the possibility of generalising them into flexible families of models.
Choosing as divergence the Cressie-Read divergence, which is a parametric family,
flexible parametric families of models are derived, controlling the scale by a single
parameter that can be fixed or estimated by the data.
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1 Introduction

Traditional topics of categorical data analysis that remain popular in diverse
fields of applications (e.g., medical sciences, psychology, education and social sci-
ences, economics and machine learning) and simultaneously retain their research
interest in new frameworks, include contingency table analysis, logistic regression
and modelling of rank data (cf. Agresti, 2013; Kateri, 2014; Marden, 1995). We
revisit these models and point out a structural property they share in a statisti-
cal information theoretic framework. In particular, it can be proved that each of
them is, under certain conditions, the closest to a parsimonious reference model,
when the closeness is measured in terms of the Kullback-Leibler (KL) divergence.
Keeping the conditions and the reference model but changing the divergence, dif-
ferent models are derived as closest to the reference model on different scales than
that imposed by the KL divergence. Thus, based on the ϕ–divergence, a gener-
alized family of divergences that includes KL, (cf. Pardo, 2006), we can define a
class of models, all of the same structural nature, but measuring the divergence
from a common reference model on different scales. Thus, the fit of models of a

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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class applied on the same data may vary significantly, depending on the scale.
This provides a powerful tool that allows for flexible parsimonious modelling.
Section 2 deepens in the understanding and modelling of the association structure
of a contingency table, while Section 3 discusses illustrative examples. Section 4
refers briefly to generalised models for binary regression and for rank data. The
final Section 5 provides concluding remarks.

2 Generalized association models

Consider an I × J contingency table n = (nij) with nij being the observed
frequency in cell (i, j). Let further the sample size n =

∑
i,j nij be fixed and the

random table N is multinomial distributed N ∼ M(n,π), with probability table
π ∈ ∆IJ , where ∆IJ is the simplex ∆IJ = {π = (πij) : πij > 0,

∑
i,j πij = 1},

and corresponding table of expected cell frequencies m = E(N) = nπ.
The log-linear independence model (IM) of the underlying row and column clas-
sification variables X and Y is given by

log(mij) = λ+ λXi + λYj , i = 1, . . . , I, j = 1, . . . , J, (1)

with identifiability constraints applying on the row and column main effects (e.g.,
λX1 = λY1 = 0). Upon rejection of model (1), the only alternative in the standard
log-linear models setup is the saturated model

log(mij) = λ+ λXi + λYj + λXYij , i = 1, . . . , I, j = 1, . . . , J. (2)

Notice that the (I − 1) × (J − 1) table of local odds ratios (LOR) θL = (θLij),
where

θLij =
πijπi+1,j+1

πi+1,jπi,j+1
, i = 1, . . . , I − 1, j = 1, . . . , J − 1, (3)

along with the row and column marginal probabilities πr = (π1+, . . . , πI+)
T and

πc = (π+1, . . . , π+J)
T , specify uniquely the corresponding I×J probability table

π. Thus, given πr and πc, model (1) can equivalently be expressed in terms of
θL, as log θLij = 0, for all i = 1, . . . , I − 1 and j = 1, . . . , J − 1, while (2) imposes
no structure on θL. Hence, under IM, all LOR of the table are equal to zero in
the log-scale. For ordinal X and Y , assuming that all LOR are equal but non-zero
(log θLij = c, c ̸= 0), we are lead to a highly structured dependence model, known
as Uniform (U) association model, that has just one parameter more than IM. It
is expressed in log-linear form as

log(mij) = λ+ λXi + λYj + φµiνj , i = 1, . . . , I, j = 1, . . . , J, (4)

with µ = (µ1, . . . , µI) and ν = (ν1, . . . , νJ) being known scores assigned to
the rows and columns, equidistant for successive categories. From (4), it follows
directly that log θLij = φ(µi − µi+1)(νj − νj+1), which is constant in case of
equidistant successive scores, and hence φ is an intrinsic association parameter.
Relaxing the assumption of equidistant row and column scores, or considering
one or both of them to be unknown parameters, further association models (AM)
are defined. When µ and ν are both unknown, the model is the multiplicative
row-column (RC) AM and is not log-linear (s. Goodman (1985) and references
therein). Whenever a set of scores is parametric, the scores need not to be ordered



6 ϕ–divergence scaled models

and the associated classification variable (X or/and Y ) can also be nominal. The
RC model can further be extended to AM of order M , M ≤M∗ = min(I, J)− 1,

logmij = λ+ λXi + λYj +

M∑
m=1

φmµimνjm , i = 1, . . . , I , j = 1, . . . , J , (5)

with the row and column scores satisfying the following orthonormalising con-
straints ∑

i

w1iµim =
∑
j

w2jνjm = 0, m = 1, . . . ,M , (6)

∑
i

w1iµimµiℓ =
∑
j

w2jνjmνjℓ = δmℓ, m, ℓ = 1, . . . ,M,

for some weights w1 and w2, with δmℓ being Kronecker’s delta. Model (5) is
denoted by RC(M) and its sum term corresponds to the generalized singular
value decomposition of the matrix of interaction parameters of model (2). For
M = M∗ , RC(M∗) is saturated. Expression (5) resembles another score-based
method for exploring association structures in contingency tables, namely the
correspondence analysis (CA). The CA of order M is given by

pij = pi+p+j

(
1 +

M∑
m=1

ρmximyjm

)
, i = 1 . . . , I, j = 1, . . . , J , (7)

with xm = (x1m, . . . , xIm) and ym = (y1m, . . . , yJm), m = 1, . . . ,M , being row
and column scores, satisfying constraints analogue to (6) with marginal weights,
i.e., w1 = πr and w2 = πc (s. Greenacre, 2007). CA is mainly a descriptive
method, well-known for the graphical displays of its scores. Goodman (1981)
developed inferential procedures for (7), analogue to (5), and called it the row-
column correlation model of order M , while for M = 1 special correlation models
for known scores have also been considered (s. Goodman, 1985).
Though association and correlation models were initially opposed to each other
(s. Goodman, 1986), Gilula et al. (1988) emphasised in a pioneering work their
similarity and linked them in a information theoretic setup. They proved that, for
given marginal distributions (πr and πc), given scores (µ and ν) and fixed corre-
lation ρ = corr(µ,ν), both have a common property. They are the closest model
to independence (1), but are differentiated by the divergence used to measure
their closeness. AM are the closest in terms of the KL divergence and correlation
models in terms of the Pearson’s divergence. Based on this result, Kateri and Pa-
paioannou (1994) introduced a general class of dependence models, based on the
ϕ–divergence, which is a family of divergences that includes the KL and Pearson
divergences as special cases.
For two discrete finite bivariate probability distributions π = (πij), q = (qij)
∈ ∆IJ , the ϕ–divergence between q and π (also known as Csiszar’s measure of
information in q about π), is given by

ICϕ (q,π) =
∑
i,j

πijϕ(qij/πij), (8)

where ϕ is a real–valued strictly convex function on [0,∞) with ϕ(1) = ϕ′(1) = 0,
0ϕ(0/0) = 0, 0ϕ(y/0) = limx→∞ ϕ(x)/x (cf. Pardo, 2006). For ϕ(x) = x log x
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and ϕ(x) = (1 − x)2, (8) becomes the KL and Pearson divergence, respectively.
Then, under the conditions of Gilula et al. (1988), the joint distribution π that
is closest to independence in terms of the ϕ–divergence is

πij = πi+π+jF
−1 (αi + βj + φµiνj) , i = 1, . . . , I, j = 1, . . . , J , (9)

where F−1 is the inverse function of F (x) = ϕ′(x) and the scores µ and ν satisfy
(6) for M = 1 and with marginal weights. With the additional identifiability
constraints on the main effect parameters∑

i

πi+αi =
∑
j

π+jβj = 0 ,

it is easily verified that φ is an intrinsic association parameter, since

φ = φ(π,µ,ν) =
∑
i,j

πi+π+jµiνjF

(
πij

πi+π+j

)
,

and φ = 0 if and only if the independence model (1) holds (Kateri and Papaioan-
nou, 1994) .

If ϕ(x) = xλ+1−x
λ(λ+1)

, −∞ < λ < ∞ and λ ̸= −1, 0, (8) becomes the power

divergence of Cressie and Read (1984) and model (9) leads to the parametric
family of models

πij = πi+π+j

[
1

λ+ 1
+ λ(αi + βj + φµiνj)

]1/λ
, i = 1, . . . , I, j = 1, . . . , J ,

(10)
denoted by ULλ . For λ → 0 and λ = 1, (10) yields (4) and (7) for M = 1,
respectively.
Furthermore, the RC(M) model (5) is generalized through the ϕ–divergence to
the class of models RCϕ(M), given by

πij = πi+π+jF
−1

(
αi + βj +

M∑
m=1

φmµimνjm

)
, i = 1, . . . , I, j = 1, . . . , J ,

(11)
with µm and νm satisfying (6) with marginal weights. Models (5) and (7) are
derived for ϕ(x) = x log x and ϕ(x) = (1− x)2, respectively. For a discussion on
ϕ–scaled more advanced AM and their properties we refer to Kateri (2014, 2018)
and references cited therein. The LOR (3) generalises to the ϕ–scaled LOR

θ
L(ϕ)
ij (π) = F (π̃ij) + F (π̃i+1,j+1)− F (π̃i+1,j)− F (π̃i,j+1), (12)

with π̃ij =
πij

πi+π+j
, a term that underlines the comparison of πij to the corre-

sponding cell probability under the reference model of independence. For ϕ(x) =
x log x, (12) simplifies to the well-known log(θLij), and for the power divergence,
to

θ
L(λ)
ij (π) =

1

λ

(
π̃λij + π̃λi+1,j+1 − π̃λi+1,j − π̃λi,j+1

)
. (13)

Model (9) can then be expressed in terms of the ϕ–scaled LOR as

θ
L(ϕ)
ij (π) = φ(µi − µi+1)(νj − νj+1), i = 1, . . . , I − 1, j = 1, . . . , J − 1 , (14)
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and analogously model (10) in terms of (13).
Beyond the LOR, there is a variety of alternative types of odds ratios, capturing
other types of association than the local (s. Douglas et al., 1990), with probably
the most representative being the global odds ratios (GOR)

θGij(π) =
P (Y ≤ j|X ≤ i)/P (Y > j|X ≤ i)

P (Y ≤ j|X > i)/P (Y > j|X > i)
,

and the cumulative (with respect to the columns) odds ratios (COR)

θCij(π) =
P (Y ≤ j|X = i)/P (Y > j|X = i)

P (Y ≤ j|X = i+ 1)/P (Y > j|X = i+ 1)
,

for i = 1, . . . , I−1, j = 1, . . . , J −1. The families of AM discussed so far, they all
model the LOR. However, their structure can apply to other types of odds ratios
as well. Bartolucci and Forcina (2002) extended the RC model for generalized
odds ratios while Forcina and Kateri (2021) for the general RCϕ(M) model (11),
defining and modelling ϕ–scaled extensions of generalized odds ratios.
Here, we focus on the simple uniform association structure imposed on the gener-
alised LOR (13) through the family of models (10), as well as the power divergence
scaled generalisations of the global and cumulative odds ratios, i.e., considering
model (14) for the corresponding generalised θ

G(λ)
ij and θ

C(λ)
ij .

3 Examples

Here, we focus on the simple uniform association structure imposed on (13)
through the family of models (10), as well as the power divergence scaled general-

isations of GOR and COR (i.e., θ
G(λ)
ij and θ

C(λ)
ij ) and the corresponding uniform

association models UGλ and UCλ . We implement these models on two contingency
tables, provided in Tables 1 and 2. The values of the likelihood ratio statistic G2

for varying λ are pictured in Figure 1. We observe that the type of odds ratio that
best describes the underlying association is the LOR for Table 1 and the COR for
Table 2. Though the best fit is achieved by models UL−0.04 (λ = −0.04) and UC−1.1

(λ = −1.1), since the corresponding standard models UL and UC (i.e., based on
the KL divergence, λ → 0) fit also the data very well, we finally propose them,
due to their simplicity of interpretation. In particular we have G2(UL) = 1.469
(p-value=0.917) for Table 1 and G2(UC) = 2.394 (p-value=0.495) for Table 2.
The maximum likelihood estimates (MLEs) under these models are provided in
parentheses in the respective tables. The estimated common LOR value under
UL for Table 1 is 2.23 while the common COR value under UC for Table 2 is
estimated as 2.03. It is further worth to note the inadequacy of the correlation
model (λ = 1) for the data in Table 1.

4 Other generalized classes of models

Beyond the association models discussed above, we shall see how other well-
known models can be generalized to ϕ–scaled classes of models. In particular,
the quasi symmetry (QS) model for square contingency tables is (under some
conditions) the closest in terms of the KL divergence to the model of complete
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TABLE 1. Students’ survey about cannabis use at the University of Ioannina,
Greece (1995). The MLEs of the expected cell frequencies under the uniform
local AM (UL) are given in parentheses.

Alcohol consumption
I tried cannabis

never once or twice more often total

at most once/month 204 (204.4) 6 (5.7) 1 (0.9) 211
twice/month 211 (211.4) 13 (13.1) 5 (4.5) 229
twice/week 357 (352.8) 44 (48.8) 38 (37.4) 439
more often 92 (95.3) 34 (29.4) 49 (50.3) 175

total 864 97 93 1054

TABLE 2. Cross-classification of variables PARTYID (political party identifica-
tion) and GRNEXAGG (opinion about whether environmental threats are exag-
gerated) from the 2010 General Social Survey (GSS). The MLEs of the expected
cell frequencies under the uniform local AM (UC) are given in parentheses.

Political Environmental Threats are Exaggerated

Party Agree Neutral Disagree

Republican 172 (167.2) 57 (59.7) 82 (84.1)
Independent 178 (189.5) 115 (107.3) 227 (223.2)
Democrat 111 (104.0) 78 (82.9) 283 (285.2)
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FIGURE 1. Likelihood ratio statistic (G2) values for models ULλ (red line), UGλ
(dashed blue line), and UCλ (dotted green line) as a function of λ, fitted on the
data of Table 1 (left) and Table 2 (right).

symmetry. Based on this property, ϕ–scaled QS models have been defined (Kateri
and Papaioannou, 1997; Kateri and Agresti, 2007). Analogously, the ϕ–scaled
binary regression model is a flexible extension of the logistic regression (Kateri
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and Agresti, 2010). Finally, the ϕ–scaled Mallows model is discussed, highlighting
the flexibility it offers in modelling rank data (Kateri and Nikolov, 2022).

5 Discussion

A statistical model can be characterized by the property of being the closest,
under certain conditions, to a simple reference model. This property provides
a new perspective for interpretation that allows a deeper understanding of the
model’s nature. Moreover, it enables its generalisation to a family of models by
controlling the divergence used to measure this closeness, a fact that increases
modelling options and may lead to parsimonious models by controlling the scale
at which closeness is measured. Though we discuss scaled models for selected
common setups, the concept is also applicable to other type of models.

Acknowledgments: I would like to express my sincerely thanks to the organ-
isers of IWSM 2024 for inviting me to give this talk.
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Abstract: Joint models for longitudinal and time-to-event data are often em-
ployed to calculate dynamic individualized predictions used in numerous appli-
cations of precision medicine. In this work, we use the concept of super learning
to specify a weighted combination of the dynamic predictions calculated from a
library of joint models with different specifications. The weights are selected to
optimize a predictive accuracy metric using V-fold cross-validation. We use as
predictive accuracy measure the expected predictive cross-entropy. All proposed
methodology is implemented in the freely available R package JMbayes2.

Keywords: Cross-entropy; Precision medicine; Time-varying covariates.

1 Introduction

Joint models for longitudinal and time-to-event data have been established as
a versatile tool for calculating dynamic predictions for longitudinal and survival
outcomes (Taylor et al., 2005; Rizopoulos, 2011; Taylor et al., 2013). The advan-
tageous feature of these predictions is that they are updated over time as extra
information becomes available. As a result, they have found numerous applica-
tions in precision medicine, including cancer and cardiovascular diseases.
The motivation for our research comes from prostate cancer patients who, af-
ter diagnosis, underwent surgical removal of the prostate gland (radical prosta-
tectomy). The treating physicians closely monitor the prostate-specific antigen
(PSA) levels of these patients to determine the risk of recurrence and metastasis.
Increasing PSA values suggest the cancer may be regrowing, although it is gen-
erally not yet detectable on imaging. After the initial surgery, PSA levels drop to
near zero; however, PSA may rise again for some patients, leading the treating
physicians to recommend salvage therapy to reduce their risk of metastasis. Af-
ter salvage therapy, PSA levels nearly always drop, sometimes substantially, but
typically rise again if metastasis is going to occur.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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Optimizing the accuracy of dynamic predictions from joint models is a difficult
task. In particular, previous research has shown that two aspects are important.
First, the time trend specification in the mixed-effects models, and second, the
functional form that specify how the longitudinal history is linked to the hazard
of the event. Previous applications of joint models have considered a single model
for obtaining dynamic predictions. However, due to the aforementioned complex-
ities, finding a well-specified model can be challenging, especially when multiple
longitudinal outcomes are considered. Moreover, due to the dynamic nature of
these predictions, different models may provide different levels of predictive ac-
curacy at different follow-up times.
In this work we will use the concept of super learning (SL) to optimize the accu-
racy of dynamic predictions (Naimi and Balzer, 2018; Phillips et al., 2023). SL is
an ensemble method that allows researchers to combine several different predic-
tion algorithms into one where the candidate algorithms can be quite different.
It uses V -fold cross-validation to build the optimally weighted combination of
predictions from a library of candidate algorithms. Optimality is defined by a
user-specified objective function, such as minimizing the mean squared error or
maximizing the area under the receiver operating characteristic curve. We con-
sider a library of joint models with different specifications and present appropriate
objective functions for optimizing the accuracy of dynamic predictions. In par-
ticular, we focus on different formulations of the time effect for the longitudinal
outcome and different functional forms to link this outcome with the event pro-
cess. We measure the dynamic predictions’ accuracy using the expected predictive
cross-entropy and show how this is formulated under the SL framework.

2 Joint models

We start with a general definition of the joint modeling framework for longitudinal
and time-to-event data (Rizopoulos, 2012). Let Dn = {Ti, δi,yi; i = 1, . . . , n}
denote a sample from the target population, where T ∗

i denotes the true event time
for the i-th subject, Ci the censoring time, Ti = min(T ∗

i , Ci) the corresponding
observed event time, and δi = I(T ∗

i ≤ Ci) the event indicator, with I(·) being
the indicator function that takes the value 1 when T ∗

i ≤ Ci, and 0 otherwise.
In addition, we let yi denote the ni × 1 longitudinal response vector for the i-th
subject, with element yil denoting the value of the longitudinal outcome taken
at time point til, l = 1, . . . , ni.
To accommodate different types of longitudinal responses in a unified framework,
we postulate that the response vector yi conditional on the vector of unobserved
random effects bi has a distribution Fψ parameterized by the vector ψ. This
more general formulation allows for distributions not covered by the exponential
family. The mean of the distribution of the longitudinal outcome conditional on
the random effects has the form

g
[
E{yi(t) | bi}

]
= ηi(t) = xT

i (t)β + zT
i (t)bi,

where g(·) denotes a known one-to-one monotonic link function, and yi(t) denotes
the value of the longitudinal outcome for the i-th subject at time point t, xi(t)
and zi(t) denote the time-dependent design vectors for the fixed-effects β and
for the random effects bi, respectively. We let ϕ denote the scale parameter of
Fψ, i.e., ψT = (βT, ϕ). The random effects are assumed to follow a multivariate
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normal distribution with mean zero and variance-covariance matrix D. For the
survival process, we assume that the risk of an event depends on a function of the
subject-specific linear predictor ηi(t) and the random effects. More specifically,
we have

hi{t | Hi(t),wi} = lim
s→0

Pr{t ≤ T ∗
i < t+ s | T ∗

i ≥ t,Hi(t),wi}
/
s

= h0(t) exp
[
γTwi + f{ηi(t),bi, α}

]
, t > 0,

where Hi(t) = {ηi(s), 0 ≤ s < t} denotes the history of the underlying longitu-
dinal process up to t, h0(·) denotes the baseline hazard function, wi is a vector
of baseline covariates with corresponding regression coefficients γ. Finally, the
baseline hazard function h0(·) is modeled flexibly using a B-splines approach,
i.e.,

log h0(t) =

P∑
p=1

γh0,pBp(t, λ),

where Bp(t, λ) denotes the p-th basis function of a B-spline with knots λ1, . . . , λP
and γh0 the vector of spline coefficients.
The function f(·), parameterized by vector α, specifies which features of the
longitudinal outcome process are included in the linear predictor of the relative
risk model. Some examples are:

f{Hi(t),bi, α} =



αηi(t),

αη′i(t), with η′i(t) =
dηi(t)
dt

,

αη′′i (t), with η′′i (t) =
d2
ηi(t)

dt2
,

α
1

v

∫ t

t−v
ηi(s) ds, 0 < v ≤ t,

αTbi.

These formulations of f(·) postulate that the hazard of an event at time t is
associated with the underlying level of the biomarker at the same time point,
the slope/velocity of the biomarker at t, the acceleration of the biomarker at
t, the average biomarker level in the period (t − v, t), or the random effects
alone. Combinations of these functional forms and their interactions with baseline
covariates are also often considered.

3 Optimizing predictions via super learning

3.1 Model weights

The basic idea behind super learning is to derive model weights that optimize the
cross-validated predictions. More specifically, we consider a library with L models
denoted by L = {M1, . . . ,ML}. There are no restrictions to the models included
in this library, and actually, it is recommended to consider a wide range of possible
models. Among others, these joint models differ in the specification of the time
trend in the longitudinal submodels (e.g., linear or nonlinear trajectories), the
functional form for the longitudinal outcome in the event submodel, and the
functional form of the other covariates (e.g., interactions and nonlinear terms) in
both submodels.
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We split the original dataset Dn in V folds. The choice of V will depend on the
size and number of events in Dn. In particular, for each fold, we need to have
a sufficient number of events to robustly quantify the predictive performance.
Using the cross-validation method, we fit the L models in the combined v − 1
folds, and we will calculate predictions for the v-th fold that was left out. Due
to the dynamic nature of the predictions, we want to derive optimal weights
at different follow-up times. More specifically, we consider the sequence of time
points t1, . . . , tQ. The number and placing of these time points should again
consider the available event information in Dn. For example, we should have at
least 10-15 events per time interval (tq−1, tq), with q = 1, . . . , Q, and t0 = 0.
For any tq ∈ {t1, . . . , tQ}, we define R(tq, v) to denote the subjects at risk at
time tq that belong to the v-th fold. For all subjects in R(tq, v), we calculate
the cross-validated predictions (conditioning on the covariates wi, xi and zi is
assumed in the following expressions but omitted to simplify notation),

π̂
(v)
i (tq +∆t | tq,Ml) = Pr{T ∗

i < tq +∆t | T ∗
i > tq,Hi(t),Ml,D(−v)

n }.

These predictions are calculated based on model Ml in library L that was fitted
in the dataset D(−v)

n that excludes the subjects in the v-th fold. The calculation is
based on a Monte Carlo approach (Rizopoulos, 2011). We define ˆ̃πvi (tq +∆t | tq)
to denote the convex combination of the L predictions, i.e.,

ˆ̃πvi (tq +∆t | tq) =
L∑
l=1

ϖl(tq)π̂
(v)
i (tq +∆t | tq,Ml), for all v ∈ 1, . . . , V ,

with ϖl(tq) > 0, for l = 1, . . . , L, and
∑
lϖl(tq) = 1. Note that the weights

ϖl(·) are time-varying, i.e., at different follow-up times, different combinations of
the L models may yield more accurate predictions. The weighted combination of
the predictions from the L models is typically called the ensemble super learner
(eSL). The model with the best cross-validated prediction metric is called the
discrete super learner (dSL). Most often, but not always, this is the model with
the largest weight ϖl(·).

3.2 Measuring predictive performance

For the ensemble super learner and for any time t, we will select the weights
{ϖl(t); l = 1, . . . , L} that optimize the predictive performance of the combined
cross-validated predictions. As a scoring rule in the interval (t, t+∆t] we consider
an adaptation of the expected predictive cross-entropy proposed by Commenges
et al. (2012):

EPCE(t+∆t, t) = E

{
− log

[
p
{
T ∗
i | t < T ∗

i ≤ t+∆t,Yi(t),Dn
}]}

,

where the expectation is taken with respect to {T ∗
i | T ∗

i > t,Yi(t)} under the
true model. An estimate of EPCE(t + ∆t, t) that accounts for censoring can be
obtained using the sample at hand,

EP̂CE(t+∆t, t) =
1

nt

∑
i:Ti>t

− log
[
p
{
T̃i, δ̃i | Ti > t,Yi(t),Dn

}]
,
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where T̃i = min(Ti, t +∆t) and δ̃i = δiI(t < Ti ≤ t +∆t). The EPCE(t +∆t, t)
assumes that T ∗

i || Ci | Yi(t),wi.
To use the EPCE for obtaining the super-learning model-specific weights, we
need to formulate it as a function of the dynamic predictions from a joint model.
It is convenient to redefine πi(u | t,Ml) as the dynamic subject-specific survival
probabilities, i.e.,

πi(u | t,Ml) = Pr{T ∗
i > u | T ∗

i > t,Yi(t),Dn,Ml}, u > t.

Then we write the conditional predictive log-likelihood as (conditioning on Ml is
assumed but is omitted from the following expressions for exposition):

log
[
p
{
T̃i, δ̃i | Ti > t,Yi(t),Dn

}]
=

δ̃i log[hi{T̃i | Yi(t),Dn}] + log
Pr{T ∗

i > T̃i | Yi(t),Dn}
Pr{T ∗

i > t | Yi(t),Dn}
.

The second term is log{πi(T̃i | t)}. For the first term, we write the hazard function
as

hi{T̃i | Yi(t),Dn} = −
d
dt

Pr{T ∗
i > t | Yi(t),Dn}

∣∣∣
t=T̃i

Pr{T ∗
i > T̃i | Yi(t),Dn}

,

and we approximate the derivative with a forward difference, i.e.,

hi{T̃i | Yi(t),Dn} ≈

−Pr{T ∗
i > T̃i + ϵ | Yi(t),Dn} − Pr{T ∗

i > T̃i | Yi(t),Dn}
ϵPr{T ∗

i > T̃i | Yi(t),Dn}

=
1− πi(T̃i + ϵ | T̃i)

ϵ
, ϵ→ 0.

Combining these two terms, we get the final expression:

EP̂CE(t+∆t, t) =

− 1

nt

∑
i:Ti>t

δ̃i
[
log{1− πi(T̃i + ϵ | T̃i)} − log(ϵ)

]
+ log{πi(T̃i | t)}.

In practice, we can compute EP̂CE(t + ∆t, t) using a small value for ϵ, e.g.,
ϵ = 0.001. Numerical experiments we performed showed that the EPCE values
are minimally affected by the value of ϵ.
In our context, EPCE(t+∆t, t) is calculated using the convex combination of the
cross-validated predictions ˆ̃πvi (t+∆t | t). In particular, using the super-learning
procedure, we obtain the weights ϖ̂l(t) that maximize the EPCE(t + ∆t, t)) of
the cross-validated predictions,

ϖ̂l(t) = argminϖ

[ V∑
v=1

S
{ L∑
l=1

ϖlπ̂
(v)
i (t+∆t | t,Ml), Ti, δi

}]
,

under the constraints ϖl(t) > 0, for l = 1, . . . , L, and
∑
lϖl(t) = 1. We can

transform to an unconstrained optimization problem using the logistic transfor-
mation and use a general-purpose minimization algorithm (e.g., using functions
optim() or nlminb() in R). The vignette ‘Combined Dynamic Predictions via
Super Learning’ (available at
https://drizopoulos.github.io/JMbayes2/) describes how the super learning
procedure is implemented in package JMbayes2.
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4 University of Michigan prostatectomy data analysis

We return to our motivating University of Michigan Prostatectomy Data. We
considered four versions of the linear mixed-effects model for the log(PSA + 1)
longitudinal outcome. In the first model, we specified linear subject-specific time
trends for log(PSA + 1) that change after the first salvage therapy. The second
model considers the same specification as the previous model, but we additionally
include the baseline covariates age at surgery, Charlson’s index, Gleason score,
and baseline PSA. These covariates are allowed to have a different effect after
salvage. The third model considers nonlinear subject-specific time trends before
salvage and linear subject-specific time trends after salvage. The final fourth
model has the same specification for the time trends as the third one, but we
again include the same covariates as in the second model. Using each of these
linear mixed models, we fitted three joint models with different specifications
of the hazard submodel for metastasis. In each hazard model, we include the
covariates mentioned in the second and fourth linear mixed models above and a
time-varying component. Each hazard submodel has a different specification of
the time-varying component. In the first specification, we consider the current
value of log(PSA + 1); in the second one, the current value and the velocity of
log(PSA + 1); and in the third one, the mean log(PSA + 1) from the start of
the follow-up. Each of these specifications has two branches, one before and one
after salvage therapy. Hence, in total, we consider twelve joint models.
We split the UMP data into five folds and fitted the twelve joint models, holding
out a fold each time. We calculated the cross-validated predictions from these
models for the fold not used when fitting them. We aim to evaluate the predictive
performance of the twelve models in two medically relevant time intervals (t, t+
∆t], namely, (4, 7] and (6, 9]. At follow-up year 4, 2514 patients were still at risk,
and 28 patients had metastasis in the interval (4, 7]. At follow-up year 6, 1914
patients were still at risk, and 16 patients had metastasis in the interval (6, 9].
We calculated the EPCE for each model using its cross-validated predictions. We
also obtained the super learning weights that combined the dynamic predictions
from these models to optimize the EPCE using the weighted predictions. Table 1
presents the results. The expected predictive cross-entropy seems sensitive in
quantifying differences in the predictive performance of the different models. This
also results in smaller super learning estimates of the EPCE than in each of the
twelve models, and for both time intervals. In the (4, 7] interval the nonlinear joint
models with no covariates and the slope and mean functional form dominate the
weights. In the (6, 9] interval the weights are distributed among almost all models.

5 Discussion

In this paper, we presented an adaptation of the super learning framework for op-
timizing dynamic predictions from joint models for longitudinal and time-to-event
data. We considered the expected predictive cross-entropy as a predictive accu-
racy metric and compared two super learning versions. Namely, the discrete super
learner selects the model with the best cross-validated prediction metric among
the candidate models, and the ensemble super learner specifies an optimal convex
combination of the predictions from all candidate models. In the University of
Michigan Prostatectomy Data, the ensemble super learner performed better than
the discrete one.
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TABLE 1. Expected predictive cross-entropy (EPCE) for the University of Michi-
gan Prostatectomy Data under the twelve joint models, and their combination
using super learning. Results are based on 5-fold cross-validation.

(t, t+∆t] = (4, 7] (t, t+∆t] = (6, 9]
EPCE weights EPCE weights

SL 0.07208 0.05166
linear-noCov-value 0.07347 0.00026 0.05543 0.03259
linear-noCov-slope 0.07299 0.00004 0.05471 0.15417
linear-noCov-mean 0.07476 0.00235 0.05365 0.01329

linear-Cov-value 0.07338 0.00000 0.05506 0.02167
linear-Cov-slope 0.07298 0.00006 0.05455 0.09639
linear-Cov-mean 0.07484 0.00274 0.05353 0.02836

nonlinear-noCov-value 0.07324 0.00000 0.05376 0.01562
nonlinear-noCov-slope 0.07242 0.79539 0.05436 0.00317
nonlinear-noCov-mean 0.07457 0.18346 0.05303 0.02524

nonlinear-Cov-value 0.07316 0.00000 0.05337 0.10840
nonlinear-Cov-slope 0.07265 0.00121 0.05283 0.08131
nonlinear-Cov-mean 0.07454 0.01448 0.05284 0.41979
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Abstract: A standard assumption of multilevel models is that all the random
effects at a given level in the data structure are independent for different units.
We develop multilevel models for grouped data structures where correlations are
allowed between pairs of random effects for units in the same group, and within-
group random effect correlations may depend on covariates that characterise the
relationship between pairs of units. Constrained MCMC estimation is used to
ensure that the group-specific correlation matrices are positive definite. The re-
search is motivated by the study of household effects in longitudinal studies where
household membership may change over time. Household random effects are al-
lowed to be correlated within clusters of households that share individuals over
time, with correlations depending on covariates that describe the connections be-
tween household pairs. The proposed model is applied in analyses of household
and area effects on self-rated health in the UK.

Keywords: Correlated random effects; Correlation model; Joint mean-covariance
model.

1 Introduction

There is a long history of joint mean-covariance models that allow correlations
among observations to depend on covariates. Much of this research has focused on
longitudinal data where within-individual covariance (or correlation) matrices are
modeled as functions of time (e.g. Pourahmadi 1999). Outside the longitudinal
setting, models have been proposed for covariances in high-dimensional multi-
variate data where the number of correlated responses p is large and the number
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of observations n small (Zou et al. 2022). Zhang et al. (2023) also consider the
multivariate case, but for small p and large n, where correlations among a set of
individual-specific latent variables measured by multivariate binary items depend
on covariates.

In this paper, we build on this previous research to relax standard assumptions
about the covariance structure of random effects in multilevel models. While
it is common practice to allow for correlation between different random effects
for the same unit, for example in ‘random slopes’ multilevel models between
the random intercept and the random coefficients of the predictor variables, the
random effects for different units (e.g. their random intercepts) are assumed to be
drawn independently. To address this, we develop models for grouped multilevel
data structures in which correlations are allowed between the random effects for
different units in the same group, and within-group random effect correlations
may depend on covariates that characterise the relationship between pairs of
units.

The proposed model is motivated by the study of household effects in longitudinal
studies which is complicated by changes in household membership over time. We
specify a multilevel model with time-varying household-specific random effects
defined for each unique combination of coresidents. These household effects are
allowed to be correlated within clusters of households that share individuals over
time, with correlations depending on covariates that describe the connections be-
tween household pairs. The application of this ‘grouped’ random effects model
is illustrated in analyses of household and area effects on physical and mental
health in the UK. More generally, the proposed approach can be applied in situa-
tions where random effects are grouped and the dependence of their within-group
correlations on covariates is of interest. One potential application is to longitu-
dinal data on individuals who are clustered, for example in families, schools or
workplaces which are fixed over time, and the within-cluster correlations between
pairs of individual random effects depends on pair-specific covariates.

2 Motivating application

There is considerable interest among health researchers in the degree of correla-
tion in coresidents’ health-related attitudes, behaviours and outcomes. Household
effects have been found in measures of general health, physical health function-
ing, mental health and wellbeing. However, the estimation of household effects
with longitudinal data presents a major methodological challenge because, while a
household can be defined cross-sectionally as a group of individuals who share ac-
commodation, it is difficult to define households in a longitudinal sense because
of changes in household composition over time. As a result, most longitudinal
analyses have ignored household effects and considered only individual effects.
Apart from missing a potentially important component of variation that is of
substantive interest, omitting household effects may lead to underestimation of
standard errors of coefficients of household-level covariates and misleading infer-
ences regarding the relative contributions of omitted variables at the individual
and higher levels of aggregation (e.g. areas).

Most previous studies have sidestepped the problem of changing household mem-
bership by examining household effects at a cross-section. The few studies that
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have attempted to estimate household effects in a longitudinal analysis have taken
one of three approaches. The simplest of these, usually applied to couple data,
is to restrict analysis to those who remain coresident throughout the observation
period, resulting in a highly selective sample. The other two approaches explic-
itly allow for changes in household composition. The first is a multiple member-
ship random effects model (Goldstein et al. 2000) which includes a time-varying
household effect specified as a weighted sum of independent random effects for
the households that an individual belongs to over the observation period, but
this imposes an overly restrictive and unrealistic association structure among
coresidents (Steele et al. 2019). Steele et al. instead propose a flexible marginal
modelling approach that allows for correlation within clusters containing all ob-
servations from individuals who have lived together, or have mutual coresidents,
during the observation period. They propose a joint model comprising a marginal
model for the mean of each outcome and a model for the within-cluster correla-
tions which may both depend on covariates. While the marginal model provides
substantively interesting information about the within and between individual
association structure, however, researchers are often interested in estimating the
relative contributions of omitted individual and household characteristics. More-
over, its flexibility does not extend to allowing for area effects, or other forms of
higher-level clustering.

To address these limitations, we propose a random effects model that allows for
changes in household composition and in area of residence over time, without the
restrictive assumptions on the covariance structure of the multiple membership
model. The model is used to estimate the relative contributions of unmeasured
individual, household and area characteristics to individuals’ self-rated mental
and physical health using annual household panel data.

3 Multilevel model with correlated household
random effects

We describe the proposed model in terms of its application to the study of house-
hold and area effects on repeated measures of a continuous response. Denote by
Yti the response for individual i at wave t and xti a vector of potentially time-
varying individual and household covariates with coefficient vector β. We consider
a multilevel linear model of the form

Yti = β′xti + ui + vh(ti) + wa(ti) + eti (1)

where wa(ti) ∼ N(0, σ2
a) is an area effect associated with the area of residence of

individual i at wave t, ui ∼ N(0, σ2
u) is an individual effect and eti ∼ N(0, σ2

e)
is a time-varying residual. The household effect is vh(ti) where h(ti) denotes the
household of individual i at wave t, and thus the effect of household changes
whenever there is a change in an individual’s coresidents.

To allow for possible overlap in the membership of pairs of households, we allow
for correlation among vh(ti). A key component of the correlation model specifica-
tion, also employed in the marginal modelling approach of Steele et al. (2019), is
the “superhousehold” cluster constructed to contain outcomes from individuals
who are connected through coresidence, either directly or indirectly through a
mutual coresident.
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Suppose there are K superhouseholds and let ms be the number of households
in superhousehold s ∈ {1, . . . ,K}. Labelling households consecutively within su-
perhouseholds as 1, . . . ,ms, let vs = (v1, . . . , vms). We assume vs ∼ N(0,Ωvs)
where Ωvs = σ2

vRvs, var(vh) = σ2
v for h = 1, . . . ,ms and Rvs is a correlation

matrix. Denote by s(h) the superhousehold of household h, s(h) ∈ {1, . . . ,K}.
The elements of Rvs are modelled as linear functions of covariates z

cor(vh, vh′) = γ′zh,h′ for h, h′ = 1, . . . ,ms; h ̸= h′; s(h) = s(h′) (2)

where zh,h′ includes variables that characterise the connection between house-
holds h and h′, for example the number of individuals (if any) in both h and h′

and their relationship, and γ is a vector of coefficients. We assume cor(vh, vh′) = 0
when s(h) ̸= s(h′).

We propose a block-wise Gibbs sampling procedure in which individual, (grouped)
household and area-level random effects are sampled in turn followed in the fi-
nal stage by the fixed parameters of the multilevel model including those of the
linear model for the household-group correlations. The sampling of the corre-
lation parameters in the final step must be constrained to ensure the between-
household correlation matrix for each superhousehold remains positive definite.
This is achieved by extending the constrained correlation Metropolis-Hastings
sampler developed by Zhang et al. (2023) for a fixed 4× 4 correlation matrix (in
their case for latent variables capturing the dimensions of reciprocal giving and
receiving) to one with common parameters for each of K correlation matrices for
the superhouseholds where the dimension of each varies between superhouseholds.

4 Data analysis

The joint mean-correlation model of eq. (1) and (2) was applied to annual data
from the UK Household Longitudinal Survey for the period 2009–2020. The re-
sponse variables are separate continuous scales for everyday physical and mental
functioning, based on the widely-used SF-12 instrument. We focus on selected
results from the correlation model where the covariates zh,h′ in (2) describe the
connection between the members of households h and h′. As we expect that corre-
lations between household effects on health would be highest for households that
share closely related individuals, we focus on indicators of whether households
share partners (past, current or future) and whether a member of one household
is the parent of a member of the other. Such partnership and parent-child links
account for 91% of all pairs, with the remainder contributed mainly by unrelated
sharers. In addition we include the proportion of the total number of individuals
across the two households who are in both households.

To aid interpretation, the parameter estimates from the correlation model are
used to calculate predicted correlations for each pair of households. The mean
predictions are then computed for each possible combination of the indicators of
partnership and parent-child links. Table 1 shows the mean predicted correlations
for the five most frequent combinations, conditional on individual and household
covariates in the mean model. The predicted correlations provide insights into the
demographic events leading to change in household membership that are associ-
ated with the largest changes in unmeasured household influences on health: a low
predicted correlation between a pair of households in the same superhousehold
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suggests that the two households have largely distinct unmeasured characteris-
tics. The most common type of household pair results from an adult child either
leaving or entering their parental household (type 1). Pairs of this type have both
a partnership link (as they share a couple) and a parent-child link, and on aver-
age 65% of their members are in both households. For both physical and mental
health, the correlation is highest for these pairs, and higher than the correlation
for pairs comprising a couple before and after the birth of a(nother) child (type
3). Even when the households have no one in common, as in the case of separate
parent and child households (type 2), there is a moderate correlation between the
household random effects, possibly due to shared lifestyle or genetic factors that
persist after coresidence ends. Following a partnership breakdown (type 4), there
is a moderate correlation between the household effects for the couple household
and the household containing one of the ex-partners (and possibly a new part-
ner or other coresidents). The majority of the remaining household pairs (type
5) contain unrelated adults; the two households have neither a partnership nor
parent-child link, but nevertheless have individuals in common and therefore a
positive correlation.

TABLE 1. Mean predicted between-household random effect correlations and
proportion overlap of household members by type of connection between house-
holds h1 and h2. Results for most frequent patterns on indicators of partnership
and parent-child links.

Connection between h1 and h2 Cor(vh1 , vh2) Overlap %

Physical Mental
1. Child and parent-child hhs 0.737 0.700 0.653 14.2
i.e. adult child leaves/enters parent hh

2. Separate parent and child hhs 0.439 0.439 0 12.6

3. Parent and parent-child hhs 0.633 0.598 0.688 11.8
i.e. couple hh before and after birth

4. Couple in h1, 1 partner after split in h2 0.366 0.331 0.477 11.2

5. Adult sharers, ≥ 1 person moves in/out 0.413 0.447 0.249 8.9
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Abstract: Many automatic monitoring systems generate big dynamic network
data, also called relational data: from invasive species diffusion across the globe
(10-100K), bike-sharing rides between bike stations (100K-1M) to patent citations
of novel technologies (10M-100M). The aim in analysing these data is typically
to discover what drives the interactions to find effective strategies, respectively,
to control invasive species, to predict bike sharing at any location at any time,
to develop technological innovation.
This short introduction explores the advancements in relational event modelling
(REM) within the context of time-stamped relational data, commonly generated
by email exchanges and social media interactions, but covering also the applica-
tions mentioned above. In a short introduction to REMs, we make the connection
to generalized linear models. The GLM connection allows easy generalizations to
mixed effect additive REMs, demonstrating how to integrate non-linear specifi-
cations and time-varying covariate influences. I will show how emergence effects,
such as reciprocity and triadic effects, can be modelled via temporal counter-parts
of traditional network statistics. Global covariates, previously challenging in tra-
ditional REMs, are addressed, allowing the inclusion of factors such as weather
or time-of-day. We derive goodness-of-fit statistics and apply the framework to
several interesting and challenging studies.
My overall aim is to show a simple, but rich framework for modelling dynamic
networks using techniques that are highly familiar in the statistical modelling
community.

Keywords: Relational events; Dynamic network; Event history model; Nested
case control sampling; Generalized additive mixed modelling.

1 Introduction

Statistical models for social and other networks are receiving increased attention
not only in specialized social science and methodological statistical journals, but
also in prominent interdisciplinary science journals such as Science and PNAS.
The increasing availability of time-stamped data resulting from innovation in

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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TABLE 1. Notation in Relational Event Model

Notation Meaning

(t, s, r) relational event: sender s interacts with receiver r at time t
λsr(t) Rate/hazard at which sender s contacts receiver r at time t
Ht History of process up until time t

L, LP Likelihood and partial likelihood
R(t) Risk set at time t

R̃(t) Sampled risk set at time t
xsr(t) Dyadic covariate(s) with corresponding effect(s) β
zsr(t) Dyadic covariate(s) with corresponding random effect(s) γ
a Alter, i.e., an individual different from sender or receiver

data production, collection, storage and retrieval technologies has shown that
network data samples collected at fixed time intervals are likely to miss fun-
damental differences in the time scales over which relational processes unfold.
Computer-mediated communication, sociometric badges, electronic trading plat-
forms, on-line interaction logs, and video recordings, are just some of the new
data-generating technologies capable of producing large quantities of relational
event data connecting sender and receiver units.
Since its introduction, the REM has been significantly refined and adapted to
an ever-increasing diversity and sophistication of emerging empirical problems
(Butts et al., 2023). This overview provides an introduction to relational event
modeling in the broader context of statistical models for network science, and as-
sess contemporary methodological, computational, and inferential developments
in this class of statistical models for directed social interaction.

2 Specifications of relational event models

The units of analysis in the REM are the edges connecting individual pairs of
senders and receivers. Those edges are typically stored in tuples (t, s, r), where s
is the sender, r is the receiver, and t is the time of the relational event connecting
s to r. At its core, the REM is defined as a point process for directed pairwise
interactions that, in turn, are modeled through their rate function λ. The model
assumes that λ may depend upon sender, receiver, past event history, and/or
exogenous covariates.

2.1 Types of relational event models

We consider a fixed time interval [0, T ], with 0 < T <∞, in which events occur.
Events are defined as time-stamped interactions between senders and receivers.
Both the set of senders S and receivers R are assumed to be finite. For one-mode
networks the set of senders and receivers overlap, S = R, whereas for two-mode
or bipartite networks they are distinct. The relational event process is a marked
point process for event history sequences {(ti, si, ri) : i ≥ 1, si ⊂ S, ri ⊂ R}, and
defined on a probability space (Ω,F , P ) adapted to the filtration Ht, consisting
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of the history of proces. In principle, the marks (s, r) can be individuals or sets
of senders and receivers.
Associated with this marked point process, we define a multivariate counting
process N , whose components Nsr record the number of directed interactions
between s and r,

Nsr(t) =
∑
i≥1

1{ti≤t; si=s; ri=r}.

According to the Doob–Meyer decomposition theorem, there exists a predictable
process Λsr and a residual martingale processMsr, such that the counting process
can be written as Nsr(t) = Λsr(t) +Msr(t). The aim of the REM is to describe
the structure of the predictable cumulative hazard process Λsr. By assuming
that the counting process is an inhomogeneous Poisson process, we can write the
cumulative hazard as

Λsr(t) =

∫ t

0

λsr(τ) dτ,

where λsr is the hazard function of the relational event (s, r). The general REM
is defined as

λsr(t) = 1{(s,r)∈R(t)} λ0(t) exp
{
β⊤xsr(t) + γ⊤zsr(t)

}
,

where λsr(t) is only non-zero if the event (s, r) is contained in the risk set R(t)
of possible events at time t, λ0(t) is the baseline hazard function unrelated to
(s, r), xsr(t) and zsr(t) are the Ht measurable set of endogenous and exogenous
(possibly) time-varying variables, and β(t) are the effect sizes, whereas γ captures
the inherent heterogeneity in the system.

Endogenous vs Exogenous Covariates In statistical models for networks,
covariates are endogenous to the extent that they depend on past interaction.
Covariates are exogenous when they depend on characteristic of single nodes
(monadic covariates) or pairs or nodes (dyadic covariates). One example of en-
dogenous covariate is reciprocity, while gender and geographical distance are ex-
ogenous covariates, representing monadic and dyadic characteristics, respectively.
An additional consideration refers to the hierarchy principle, whereby lower-order
interaction terms should always be included in the presence of higher-order in-
teraction terms. In the REM, for example, failing to account for heterogeneity
of the senders and receivers may result in incorrect detection of triadic effects
(Juozaitiene and Wit, 2024).

Heterogeneity Many social processes possess a large amount of heterogene-
ity or latent extrinsic variation. This type of heterogeneity in the REM can be
captured by means of random effects. Juozaitiene and Wit (2024) and Uzaheta
et al. (2023) proposed mixed effect extensions of the REM. Estimation of the
random effects variance can be done via Expectation Maximization or Laplace
approximations of the likelihood, or in certain cases via a penalized zero order
spline approach (Wood, 2017). More recently, in an analysis of a communication
network Juozaitiene and Wit (2024) showed that incorporating random effects
for both the sender and receiver enhances the model fit compared to model spec-
ifications that solely rely on endogenous degree-based statistics. Therefore, the
inherent differences between individuals in the network drives part of the hetero-
geneity in the interactions.
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Stratification Conceptually, stratification can be introduced either to model
event streams in multiplex networks or to account for heterogeneity by spec-
ifying different baseline intensity functions for individual sets of dyads. Perry
and Wolfe (2023) and Bianchi and Lomi (2022), for example, use sender-based
stratification, effectively allowing each sender to have its own individual baseline
hazard. Receiver-based stratification usually occurs when there is heterogeneity
in those nodes that are repeatedly targeted as receivers. In citation networks, for
example, groundbreaking articles or patents have very distinct, individual cita-
tion profiles, which makes a receiver-based baseline hazards an attractive option,
given that they not have to be estimated individually (Filippi-Mazzola, 2023).
Juozaitiene and Wit (2022) proposed a stratified version of the REM, in which
distinct baseline hazards are associated with distinct families of temporal network
effects, such as reciprocity in its direct and generalized forms. Subsequent baseline
hazard estimation reveals the tendency of some endogenous covariates to have
very specific temporal effect-profiles.

3 Estimation and computation

The fundamental information about a sequence of relational events {(ti, si, ri) :
i = 1, . . . , n} is contained in its likelihood function. For a REM, this function
can be expressed as the product of the conditional generalized exponential event
time densities and their associated multinomial relational event probabilities. Es-
timating the parameters of REMs by maximizing the full likelihood poses several
challenges. The likelihood function is indeed a complex object that involves ex-
plicit integration across the unknown hazard function and sums over large risk
sets. In this section, we will explore computational alternatives proposed to over-
come the complexity of the full likelihood approach.

3.1 Partial likelihood estimation

The Cox model offers an attractive alternative to fully parametric models due
to its absence of distributional assumptions regarding activity rates, which are
then treated as nuisance parameters. It offers an effective simplification of the full
REM likelihood through the application of the partial likelihood LP to counting
processes on network edges, which only involves multinomial event probabili-
ties.This eliminates the unknown baseline hazard, resulting in a more adaptive
representation of the underlying network dynamics, while being able to estimate
the parameters in a straightforward way by maximizing LP (β). The partial likeli-
hood corresponds to the full likelihood when only the event orderings are known,
but not the exact timings. However, the partial likelihood approach faces a lim-
itation in large networks, as the risk set in its denominator tends to expand
quadratically with the number of nodes.

3.2 Risk set sampling

The computational bottleneck in the partial likelihood is the sum over the risk
set in the denominator. Vu et al. (2015) initially introduced a nested-case control
sampling strategy (Borgan and Keogh, 2015) to mitigate the computational com-
plexity involved in estimating the partial likelihood. Nested case-control sampling
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consists of sampling from the current risk set R(t) according to some probability
π{· | R(t)} a set of non-events, or controls, for each event, or case. The sampled

non-events together with the events are called the sampled risk set R̃(t). Borgan

et al. (1995) show that the sampled partial likelihood L̃P , accounting for the
sampling probabilities is a valid likelihood. When this probability is assumed to
be random, i.e., π{· | R(t)} = 1/|R(t)−1|, L̃P (β) reduces to the simplified form,
i.e.,

L̃P (β) =

n∏
i=1

(
exp{β⊤xsiri(ti)}∑

(s,r)∈R̃(t) exp {β⊤xsr(ti)}

)
,

where R̃(t) is the sampled risk set. Lerner and Lomi (2020) employed nested
case-control sampling to empirically showcase the efficiency of estimates on large
networks, even when a limited number of non-events is sampled.

4 Conclusions

Relational event models are currently undergoing an explosion in development.
From the re-definition of the effects, including both time-varying and non-linear
formulations, as well as new inferential and computational techniques, REMs
have become a flexible tool for analyzing all time of dynamic network processes.
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Abstract: We propose stochastic differential equations (SDEs) with state-swit-
ching coefficients to model narwhal diving behaviour using high-resolution track-
ing data. For each dive, a non-homogeneous, N -state Markov chain selects which
of N possible SDE models determines the depth observations through that dive.
Using the proposed model, we show that narwhals exhibit two distinct dive types,
namely deep, wiggly and shallow, smooth dives. By modelling the transition prob-
abilities of the Markov chain as smooth functions of sound exposure we further
show that, when being exposed to noise, narwhals are less likely to exhibit for-
aging behaviour.

Keywords: Hidden Markov models; Statistical ecology; Stochastic differential
equations, Time series modelling.

1 Introduction

Stochastic differential equations (SDEs) with varying coefficients are popular
tools for uncovering mechanistic relationships underlying time series (Michelot
et al., 2021). Here, we propose SDEs with state-switching coefficients to model
narwhal diving behaviour. Narwhals where outfitted with GPS- and dive-loggers
off the Greenlandic coast and tracked through 15,660 dives, which resulted in
3,431,335 1-second observations of their depth. To investigate how narwhals re-
spond to human disturbances, they were exposed to noise generated by a research
vessel equipped with an underwater airgun during some dives, where the distance
between the narwhals and the research vessel at the beginning of each dive were

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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FIGURE 1. Illustration of the study design.

obtained from the GPS loggers. The study design, which is explained in detail in
Heide-Jørgensen et al. (2021), is illustrated in Figure 1.

2 Methods

State-switching SDEs comprise two stochastic processes, one of which is hidden
and the other is observed:

• a hidden state process {Bd}d=1,...,D, which depends on covariates zd, where
d is a dive index and D denotes the number of dives observed;

• an observed state-dependent process {Yd,t}d=1,...,D,t=1,...,Td , which depends
on covariates xd,t, where t is the t-th observation within the d-th dive and
Td denotes the number of observations.

The hidden process is modelled by a non-homogeneous, N -state Markov chain
with initial distribution δ = (δi), δi = Pr(B1 = i), i = 1, . . . , N , and covariate-
dependent transition probability matrix (t.p.m.) Γd = (γi,j(zd)), γi,j(zd) =
Pr(Bd+1 = j|Bd = i, zd), i, j = 1, . . . , N . The observed process is modelled by

Brownian motion with state- and covariate-dependent drift r
(bd)
d,t and diffusion

s
(bd)
d,t , where

r
(bd)
d,t = β

(bd)
0,r + f (bd)

r (xd,t);

log
(
s
(bd)
d,t

)
= β

(bd)
0,s + f (bd)

s (xd,t),

with f
(bd)
r and f

(bd)
s being (potentially) smooth functions of the covariates. The

drift can be interpreted as the average change of the process over some small time
interval, whereas the diffusion can be interpreted as its average variability. The
dependence structure is illustrated in Figure 2. Model fitting is carried out by nu-
merical likelihood maximisation using some Newton-Raphson-type optimisation
routine, where the likelihood is evaluated using the forward algorithm (Zucchini
et al., 2016), where

L(θ|y) = δP(y1)

D∏
d=2

ΓdP(yd)1,
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FIGURE 2. Dependence structure in state-switching SDEs.

with P(yd) = diag(f(yd|Bd = 1), . . . , f(yd|Bd = N)) and f(yd|Bd = i) being
the transition density of all depth observations within the d-th dive under the
i-th SDE model. For Brownian motion, the transition density is given by

f(yd|Bd = i) =

Td∏
t=2

 1

s
(i)
d,t

√
2π

exp

−1

2

(
yd,t − r

(i)
d,t

s
(i)
d,t

)2
 .

In principle, it would also be possible to consider other processes than Brownian
motion (e.g., Ornstein-Uhlenbeck processes). Then, the above transition density
has to be replaced by the corresponding transition density of that process.

3 Results

To model the narwhals’ depth through a dive, we model drift and diffusion as
smooth functions of the proportion of time through that dive (i.e., Dive propd,t).
The transition probabilities of the Markov chain are modelled as smooth functions
of the exposure level, which is defined as Exposure leveld = 1/Distance to noised
(i.e., the closer the research vessel, the higher the exposure level).
The estimated drift and diffusion for all individuals are displayed in Figure 3.
State 1 (blue) is associated with deep, wiggly dives, which can be interpreted as
foraging behaviour. State 2 (red) is associated with shallow, smooth dives, which
is associated with resting or travelling behaviour.
The t.p.m.s for one individual and three different exposure levels (i.e., 0, 0.1, and
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FIGURE 3. Estimated drift and diffusion through a dive.

0.2) were estimated as

Γ̂d =

(
0.495 0.505
0.148 0.852

)
︸ ︷︷ ︸

Exposure leveld =0

; Γ̂d =

(
0.142 0.858
0.078 0.922

)
︸ ︷︷ ︸

Exposure leveld =0.1

; Γ̂d =

(
0.027 0.973
0.042 0.958

)
︸ ︷︷ ︸

Exposure leveld =0.2

.

The stationary distributions (0.227, 0.743), (0.084, 0.916), and (0.041, 0.959) in-
dicate that, without being exposed to noise, the narwhal spends, on average, 22.7
% of the dives in state 1 (i.e., foraging). When the research vessel is 10 km (5
km) away, then this figure drops to 8.4 % (4.1 %).

4 Discussion

We proposed SDEs with state-switching coefficients to model narwhal diving
behaviour using high-resolution tracking data. Using the proposed mo- del, we
showed that narwhals exhibit two distinct dive types, namely deep, wiggly and
shallow, smooth dives, and that they are less likely to exhibit foraging behaviour
when being exposed to noise, indicating that human disturbances can have severe
ecological consequences.
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Abstract: Motivated by a clinical study on cystic fibrosis, we propose a Bayesian
shared-parameter joint model that simultaneously accommodates multiple (pos-
sibly bounded) longitudinal markers, a recurrent event process, and competing
risks. The model allows for various forms of association, discontinuous risk inter-
vals, and both gap and calendar timescales. We analyse the US Cystic Fibrosis
Foundation Patient Registry to study the associations between lung function
decline (ppFEV1), cumulative changes in BMI, and the risk of recurrent pul-
monary exacerbations, while accounting for the competing risks of death and
lung transplantation. Acknowledging ppFEV1 as a bounded marker, we use the
beta distribution to prevent biologically implausible values without sacrificing the
interpretability of its associations, whereas BMI is modelled using the Gaussian
distribution. Our efficient implementation allows fast fitting of the model despite
its complexity and the large sample size. Our comprehensive approach provides
new insights into cystic fibrosis progression by quantifying the relationship be-
tween the most important clinical markers and events more precisely than has
been possible before. The model is available in the R package JMbayes2.

Keywords: Bounded outcomes; Competing risks; Joint model; Multivariate lon-
gitudinal data; Recurrent events.

1 Introduction

Joint models have become a popular framework in health research for studying
longitudinal markers and their association with clinical events. However, inte-
grating recurrent events and competing risks into a unified model remains a
challenge, leading researchers to omit important information from their analyses.
Additionally, most existing frameworks rely on Gaussian distributions to model

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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continuous markers. An important aspect of joint modelling is the appropriate
parameterization of longitudinal submodels to ensure accurate extrapolation of
unobserved marker evolution up to the event time. A Gaussian parameterization
can be problematic for a bounded marker with many observations close to the
boundaries, as it can cause the model to yield biologically implausible values,
resulting in biased estimates of the marker evolution and its associations.
Cystic fibrosis (CF) is a severe genetic disorder that primarily affects the lungs
and digestive system, and is characterized by recurrent pulmonary exacerbations
(PEx) that can lead to permanent lung damage and increased risks of death or
lung transplantation. The body mass index (BMI) and the percentage of pre-
dicted forced expiratory volume in one second (ppFEV1) are routinely measured
to monitor disease progression. CF care teams are interested in understanding
the associations between ppFEV1 decline, BMI changes, recurrent PEx, and the
competing risks of death and lung transplantation using the US Cystic Fibrosis
Foundation Patient Registry (CFFPR). The lack of an appropriate framework
has hampered previous studies that aimed to investigate such associations using
joint models. For example, Andrinopoulou et al. (2020) limited their analysis to
the period up to the first PEx event, disregarding subsequent occurrences and
informative censoring due to transplantation or death. Moreover, existing CF
studies have modelled ppFEV1 exclusively using a Gaussian distribution, result-
ing in predictions outside the feasible range (see Figure 1).
To overcome these challenges, we propose a comprehensive joint modelling frame-
work capable of (i) accommodating competing risk and recurrent event pro-
cesses alongside multiple longitudinal outcomes, and (ii) appropriately modelling
bounded longitudinal markers using a beta distribution.

2 Methods

We propose the following shared-parameter joint model:

logit {µ1,i(t)} = η1,i(t) = x1,i(t)
Tβ + z1,i(t)

Tb1,i ppFEV1

y2,i(t) = µ2,i(t) + εi(t) = η2,i(t) + εi(t) = x2,i(t)
Tβ + z2,i(t)

Tb2,i + εi(t) BMI

h1,i(t) = h0,1(t) exp
[
wT

1,iγ1 +
d
dt
µ1,i(t)α1,1 +

1
t

∫ t
0
η2,i(s) ds α1,2 + υi

]
PEx

h2,i(t) = h0,2(t) exp
[
wT

2,iγ2 +
d
dt
µ1,i(t)α2,1 +

1
t

∫ t
0
η2,i(s) ds α2,2 + υi α2,υ

]
Transp.

h3,i(t) = h0,3(t) exp
[
wT

3,iγ3 +
d
dt
µ1,i(t)α3,1 +

1
t

∫ t
0
η2,i(s) ds α3,2 + υi α3,υ

]
Death

where i = 1, . . . , n represent individuals, and (b1,i, b2,i), εi, and υi are Gaussian
random variables assumed independent of each other. To describe the individual-
specific time evolution of ppFEV1 and BMI, we specify two linear mixed-effects
models with a beta and a Gaussian distribution, respectively. The beta distribu-
tion ensures that the ppFEV1 value is bounded. The terms x·,i(t) and zj,i(t) are
the design vectors for the fixed effects β· and the random effects bj,i. We assume
a non-linear evolution over time for both markers, modelled using natural cubic
splines. The longitudinal outcomes are associated through the covariance matrix
D.
For the event processes, we rely on three proportional hazard risk models. We use
penalized B-splines to define flexible baseline hazards h0,k (t). The design vector
wk,i is the parameter vector of measured characteristics with a corresponding
vector of regression coefficients γk.
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Our model allows the specification of various functional forms to link the longitu-
dinal and event processes. In particular, we include the rate of change of ppFEV1

evaluated at its original scale (rather than the linear predictor scale), dµ1,i(t)/dt,
where µ1,i(t) = 1/ [1 + exp {−η1,i(t)}], and the standardized cumulative effect of
BMI’s underlying value, 1

t

∫ t
0
η2,i(s) ds. The recurrent and terminal processes are

correlated through the common frailty term υi. The magnitude of the associa-
tion between each pair of processes is quantified by αk,j and αk,υ. Regarding
the recurrent event process, our model accommodates both gap and calendar
timescales, as well as the non-risk period during the occurrence of a PEx.
The model has been made available in the CRAN R package JMbayes2 (Rizopou-
los et al., 2023). The full implementation of the Markov chain Monte Carlo al-
gorithms in C++ allows for fast fitting of the model despite its complexity and
the CFFPR’s large sample size. The computational expense of model fitting has
been a major problem in previous analyses.

3 Results

Figure 1 shows the estimated evolution of BMI and ppFEV1 with age. The es-
timates in Table 1 suggest that both ppFEV1 and BMI are associated with the
risks of experiencing PEx, transplantation, and death. A ten-unit increase in
the rate of ppFEV1 decline increases the hazard of PEx by 14.69% (95% CI
13.09–14.69%). A one-unit increase in the standardized cumulative effect of BMI
increases the hazard of PEx by 13.80% (95% CI 13.05–14.41%). The incidence
of PEx is positively associated with transplantation and death. Frailer individu-
als are at a higher risk of PEx and are more likely to receive a lung transplant
or die. A one-SD frailty increase raises the hazard of transplantation and death
by 290.74% (95% CI 264.96–317.43%) and 229.95% (95% CI 211.98–247.93%),
respectively.
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FIGURE 1. Left: estimated BMI evolution with age, with associated 95% credible
interval. Right: estimated ppFEV1 evolution with age, with associated 95% credi-
ble interval, when assuming either a beta or Gaussian distribution. For a Gaussian
distribution, the model generates non-feasible negative values. The ppFEV1 val-
ues begin at age six due to the difficulty of obtaining accurate measurements in
young children.
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TABLE 1. Estimated posterior means and 95% credible intervals for the associ-
ation parameters in the proposed joint model.

Risk model log HR Mean 95% CI

Recurrent PEx ppFEV1, α1,1 −2.38 (−2.66,−2.10)
BMI, α1,2 0.13 (0.12, 0.13)

Transplantation ppFEV1, α2,1 −1.94 (−3.78,−0.06)
BMI, α2,2 0.04 (0.01, 0.07)
PEx, α2,υ 1.25 (1.18, 1.31)

Death ppFEV1, α3,1 −5.88 (−7.20,−4.52)
BMI, α3,2 0.04 (0.01, 0.06)
PEx, α3,υ 1.09 (1.04, 1.14)

CI: credible interval; HR: hazard ratio; PEx: pulmonary exacer-

bation.

4 Conclusion

Our findings shed new light on the progression of CF, and we hope they will con-
tribute to the effective management of PEx, reducing the frequency and severity
of episodes. By making our model publicly available in JMbayes2, we hope to
assist others in performing joint analyses of longitudinal and time-to-event data
in other complex settings.
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Abstract: Primary health care system in Catalonia (Spain) aims to be the ref-
erence system for detecting gender-based violence cases. A remarkable effort has
been done in the last years in order to train professionals to improve their profi-
ciency in detecting cases. However, some specific subpopulations seem to be more
difficult to reach for different reasons, one of them being the youngest women
(under 20 years old) victims of gender-based violence, who are still reluctant to
seeking professional health after suffering an assault. This work suggests that this
is the case by comparing the different impact of age in the probability of suffering
gender-based violence on the basis of data sources from primary care attention
and from the general population.
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1 Introduction

Gender-based violence (GBV), that is, violence directed against a person because
of their gender or violence that affects persons of a particular gender dispropor-
tionately, can take various forms, including, most notoriously, domestic violence.
According to the United Nations, GBV refers to harmful acts directed at an
individual based on their gender. It is rooted in gender inequality, and might
adopt different forms: physical, sexual, emotional, financial or structural, and
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Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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the victim can require medical assistance after an episode of GBV or not. Here,
we are concerned specifically with physical or sexual violence directed against
adult women, who are, jointly with girls, the main victims of GBV. According
to the World Health Organization (WHO), 30% of women worldwide have suf-
fered either physical and/or sexual violence at some point in their lives (WHO,
2018), and tackling this issue is one of the specific development goals of their 2030
agenda. It is clearly also a significant healthcare policy concern, as victims of sex-
ual and physical GBV are more likely to require health services than the general
population to address the physical, gynecological and psychological consequences
of the aggressions suffered (in Catalonia, the average number of Primary Care
visits of women who haven’t suffered GBV is 8 for 13 among GBV victims as re-
ported in Generalitat de Catalunya (2019)). In this work, we will focus on GBV
cases in which the victims required assistance from the public health primary
care system in one of the most populated areas in Catalonia, Spain, in the period
2009-2019.
The hypothesis is that the age distribution among GBV victims detected in the
primary care system is different than the distribution of age among GBV victims
identified through two surveys conducted by the Spanish government in 2015 and
2019. One of the most relevant differences is that the anonymous surveys reveal
a relevant number of GBV victims between 16 and 25 years old, while a very
small proportion of these victims seek medical attention. The reasons behind
these differences are many, from the self perception of younger population about
their maturity on the decision-making process regarding their health and well-
being in general, to the feeling of lack of support from police, judicial statements
and health professionals. These reasons are additional to the denial of sexual
violence related to guilt often experienced by GBV victims (Toledo-Vásquez and
Pineda-Lorenzo, 2016).
Combating GBV and promoting gender equality remain critical priorities on the
policy agendas of both the Spanish and Catalan governments. Since the early
2000s, Spain has launched comprehensive initiatives to tackle GBV, which in-
clude conducting awareness campaigns, establishing a Ministry for Equality, and
creating specialized courts for GBV cases as described in Garćıa-Hombrados and
Mart́ınez-Matute (2022). Furthermore, under Spanish Organic Law 1/2004 on In-
tegrated Protection Measures against Gender Violence, healthcare professionals
are mandated to be vigilant for signs of GBV during patient interactions (Otero-
Garćıa et al., 2018). Primary healthcare providers are encouraged to handle these
situations with due diligence and collaborate across multiple disciplines, ensuring
a coordinated response with various agencies and sectors. The significant role of
healthcare workers in combating GBV is underscored by their direct and frequent
contact with patients.

2 Methods

Our study draws on three sources of data:

• A random sample of 6,556 women aged 16 or over assigned to Àmbit
Metropolità Nord of the Barcelona health region, of which 3,484 had a
diagnosis of GBV from the Primary Care system between January 2010
and December 2021. These data include information on age, nationality
and number of children.
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• Survey on violence against women conducted by the Spanish Ministry of
Equality in 2015. The main objective of this survey was to determine the
percentage of women aged 16 or over residing in Spain that have been
the victims of any type of GBV. The interviews were conducted with a
representative sample of 10,171 women.

• Survey on violence against women conducted by the Spanish Ministry of
Equality in 2019. The interviews were conducted with a representative
sample of 9,568 women.

Three supervised learning classification methods are considered in this work: Ran-
dom forest, support vector machine and neural network. In each case, the binary
outcome having suffered physical or sexual gender-based violence is modelled us-
ing age of the victim, nationality (Spanish or foreign) and children (having any or
not) as features. The contribution of age in the estimated probability of suffering
GBV in each data source is estimated by means of partial dependence (PD) plots
(Friedman, 2001), which allow to visualize global feature effects by visualizing
how model predictions change on average when varying the values of a given
feature of interest. The results of the three considered methods were similar, so
only results corresponding to random forests are reported here, as this was the
method that showed a higher accuracy.

3 Results

As can be seen in Table 1, the characteristics of the samples from primary care
and from the surveys are very similar except for an overrepresentation of foreign
women in primary care data.

TABLE 1. Median (IQR) or percentage of features by data source (surveys 2015
and 2019 and primary care data (PC)).

Source Feature Global Victim No victim

Surv. 2015

Age 47 (29) 43 (24) 48 (30)
Children (Yes) 73.8% 71.1% 74.5%
Spanish 92.9% 88.7% 94.0%
Women 9,952 2,128 7,824

Surv. 2019

Age 49 (48) 44 (26) 51 (50)
Children (Yes) 72.2% 67.9% 73.7%
Spanish 91.8% 89.2% 92.6%
Women 9,568 2,412 7,156

PC

Age 45 (27) 43 (22) 50 (31)
Children (Yes) 72.9% 73.6% 71.4%
Spanish 71.7% 66.3% 80.0%
Women 5,792 3,119 2,673

Both 2015 and 2019 surveys suggest that the higher probability of suffering GBV
is between 16 and almost 50, as displayed in Figure 1. However, in the primary
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(a) (b)

(c)

FIGURE 1. Partial dependence plots for age impact on the probability of suffer-
ing GBV in each of the available data sources: (a) primary care data, (b) survey
2015 and (c) survey 2019.

care data, this probability is increasing from 16 to 25 and then nearly constant
until 50. These different profiles suggest a remarkable underdetection of GBV
cases in youngest women in the primary care data that could be even larger than
among the general population where this issuee is indeed very perturbing, as
discussed in Moriña et al (2024).

4 Discussion

The primary health care systems in developed countries should take a central role
in identifying cases of GBV, as nearly all women interact with these systems at
some point for sexual and reproductive health care. However, despite this, they
are often not where GBV is most frequently detected (Muñoz-Sellés et al., 2023).
This oversight is due to multiple factors, including personal issues such as shame,
fear of retaliation, and economic dependence, as well as societal factors like gender
power imbalances, the sanctity of family privacy, and attitudes that blame the
victim (Gracia, 2004). These elements are deeply stigmatized and are often rooted
in longstanding cultural and religious traditions. A particular concern is the rising
incidence of GBV among younger women, with research indicating that the age
at which women experience victimization is dropping, and that young people are
increasingly subjected to violence in romantic relationships (Racionero-Plaza et
al., 2021). The present study advocates for targeted measures to facilitate access
for young GBV victims to primary health care services. Despite the age-related
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findings of various supervised learning methods showing a higher estimated GBV
risk between ages 16 and 45, actual detection rates for those aged 16-25 in primary
care are notably low. Therefore, there is a clear need to develop specific strategies
to improve access and enhance detection capabilities within primary health care
for the youngest victims of GBV.
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Abstract: We introduce a novel methodology for estimating the distribution of
viruses in Severe Acute Respiratory Syndrome (SARS) patients in Brazil, ad-
dressing significant challenges for data in that country, such as data delays and
the absence of negative test results. By employing a probabilistic classifier, our
approach offers precise, adaptable estimates across various demographic char-
acteristics and regions of the country without the need for predefined groups.
Comparative analyses demonstrate the effectiveness of the model. This method-
ology significantly contributes to public health by enhancing disease monitoring
and supporting targeted prevention strategies.

Keywords: Severe acute respiratory syndrome; Epidemiological modeling; Ma-
chine learning; Virus distribution; Public health surveillance.

Full paper

This manuscript is available as part of the Springer volume Developments in
Statistical Modelling using the direct link provided on the conference main page.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).

https://link.springer.com/book/9783031657221
https://link.springer.com/book/9783031657221
https://maths.dur.ac.uk/iwsm2024/


Empirical study of the Sardex network
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Abstract: Sardex is a regional currency designed to facilitate economic devel-
opment and social innovation. Businesses and companies that trade in Sardex
form an economic network that favours the development of local activity and
enables companies to use a credit line guaranteed by the network. Our aim is
to explore how this network is structured and how it grows. We have collected
a comprehensive 10-year dataset that gives us many opportunities to conduct
an empirical study of the network. We will see how the network becomes more
densely connected as it welcomes new members. Beyond providing us the ability
to increase our understanding of Sardex, the study opens up new perspective to
conduct future modelling analyses.

Keywords: Social network; Growth; Directed Graph, Undirected Graph.

1 Introduction

Regional currencies are perceived as an alternative way to promote local busi-
nesses. Our study will focus on a pioneering network named Sardex, initially
started in Sardinia in 2010 but which rapidly seeded similar initiatives through-
out Italy. Sardex is both a complementary currency and a network that was
developed to encourage companies to trade with local businesses. The commu-
nity currency concept is based on an idea originally proposed by Steve Gesell
(1862-1930) which seeded several experiments in Europe after that time.
Sardex aims to enable businesses to exchange goods and services through a cen-
trally managed compensation platform that allocates an initial balance to its
members. This balance is then updated given all the transactions taking place
between its members. By design, Sardex is restricted to Sardinia which makes it
a local network, favouring local businesses. Among the main differences between
Sardex and a cryptocurrency is that its conversion ratio is fixed and is pegged to
the official currency (euro) and is centrally administered. Moreover, when open-
ing an account with Sardex, the client company is awarded a credit line based on
its revenue, allowing the company to spend some units even before having sold

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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any goods or services. If the negative balance of the Sardex account exceeds its
limit, the company will not be able to buy more goods, but instead needs to sell
in order to pay down the balance.
As such, Sardex plays a mixed role between a marketplace and a credit institution
and since, contrary to cryptocurrencies, there is no exchange rate, it eliminates
risk for business owners. Due to its special position, the Sardex network is of
economic interest because of the role it plays within the local Sardinian economy,
but it also motivates interesting questions in network theory. We can consider
Sardex as a collection of nodes, represented by businesses that initiated at least
one transaction, and edges, which are represented by the transactions between
members. This network features longitudinal, weighted edges, with new nodes
joining the network throughout.
From an economic standpoint, as Sardex is a zero sum network, the credit lines
allowed to companies correspond to the total amount of cash accumulated by the
companies with a positive balance. This is one of the main reasons why Sardex
has been so successful as shown by the dataset. It also raises questions regarding
how key characteristics of the network have changed as it grows over time.

2 Dataset and network growth

We analyse a full 10-year dataset of the Sardex network recording all interactions
since the inception of the network in 2010 until 2020. Because all transactions are
centrally managed and registered, the Sardex dataset offers a great perspective
to study the relationships among its members and how the network evolves over
time. Beginning in 2010, the network gathers a total of 5,373 nodes by 2020. Over
the 10 year period, the number of transactions amounts to 650,242, representing
a global exchanged amount close to 162 million Euros.
If we consider Sardex as a directed network where a transaction between two
nodes represents an edge and a reverse transaction constitutes another edge, the
transactions observed between 2010 and 2020 initiated 122,451 directed edges. On
the contrary, if we consider Sardex as an undirected graph (a single transaction
creates an edge, no matter which node is the buyer or the seller) the network
totals 109,867 edges.
Figure 1 shows the increase in the number of nodes per month in the Sardex
network (Fig 1.a) during this time frame and gives an indication of the significant
growth that the network has witnessed over time.

3 Methodology

We describe the behaviour of the Sardex network using several metrics. Each met-
ric describes specific aspects of the network, and collectively represent a broader
understanding of network behaviour. Unless otherwise stated, larger values for
these metrics indicate more highly connected networks. Selected metrics were
calculated using custom python classes, based on the Networkx python package.
We applied the following metrics to an undirected representation of the Sardex
graphs: average directed path length, which represents the average length of the
sequence of pair-wise directed ties between any two nodes, where larger values
indicate less well connected networks; average degree, where the degree of a node
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FIGURE 1. Nodes (1.a) and average degree (1.b) per month (2010 – 2020).

is defined as the total number of edges connected to it, and the average degree of
the network is then simply the total number of edges in the network divided by
its number of members; network diameter, which is the longest path existing be-
tween two members of the network, assuming that the network is connected; and
clustering coefficient, which represents the number of existing triads (or three-way
relationship) among all possible triads at the graph level.

4 Results

To give a few examples, as of Jan 2020, the average degree per Sardex mem-
ber was equal to 40.76. The average directed path length was approximately 3.5
(median=3; s.d.=0.9) . The diameter of the network is at 10. In Jan 2020, the
clustering coefficient is 0,19. The Average Degree Centrality represents the av-
erage of the fraction of the existing nodes a specific node is connected to and is
7.6 10−3.
Following the study led by Iosifidis (2018) where Sardex was analysed between
2013 and 2014, we can make comparisons with the latest data we have for certain
metrics as shown in Table 1.

TABLE 1. Compared metrics (2014 – 2020)

Type 2014 2020

Average directed path length 3.50 2.90
Average degree 18.60 40.76
Diameter 10 10
Clustering coefficient 0.14 0.19
Average degree centrality 8.5 10−3 7.6 10−3

These numbers show that, even though it is gaining a significant number of
new members, the network is becoming more connected over time as shown on
Fig1.b. This probably reflects the ability of the network to create bonds between
its members.
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5 Future work and conclusion

We have presented a descriptive analysis of the Sardex network. Due to its depth
and the fact that it covers a 10 year period, this dataset motivates a number of
interesting future analyses across several fields of research. Among many possible
models which could be applied to this data, the stochastic blockmodel and is of
considerable future interest. This model has the capacity to identify key features
of study, such as communities of Sardex members with similar behaviour char-
acteristics, key members who engage in the highest levels of trading, or with the
widest number of network members. It would also be interesting to model how
key parameters, such as relative community sizes, or network interactions, change
as the network evolves.
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Abstract: The generalized lasso is a popular model for ranking competitors, as
it allows for implicit grouping of estimated abilities. In this work, we present an
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regression using conic programming principles. This approach is flexible, robust,
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Abstract: Regression analysis with missing data is a common problem in statis-
tical modelling. Majority of the available methods use point imputation strategy
to get rid of the missing entries. However, such methods rely on different ob-
servational assumptions. In this paper, we propose a novel approach based on
interval imputation, that is, instead of a single value imputation, we replace the
missing entries with the range of the variables obtained from the observational
data. This way, we avoid any distributional assumption on the data and formu-
late our model based only on the information in hand. For estimation, we rely on
the interval matrix algebra. We also introduce regularisation terms with Bayesian
analysis which also allows us to incorporate our subjective belief and avoid sin-
gularity in the estimation process similar to ridge regression. We evaluate the
maximum a posteriori estimates of these regression coefficients to obtain the ap-
proximate posterior bounds. Once we have these posterior bounds, we use cross
validation to obtain mixing parameters between the lower and upper bounds of
the posterior estimates for model fitting. Finally, we illustrate our method with
real-life dataset and compare with other state of the art methods to showcase
our methods applicability.

Keywords: Bayesian analysis, Linear regression, Missing data, Interval arith-
metic.

Full paper

This manuscript is available as part of the Springer volume Developments in
Statistical Modelling using the direct link provided on the conference main page.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).

https://link.springer.com/book/9783031657221
https://link.springer.com/book/9783031657221
https://maths.dur.ac.uk/iwsm2024/


Modeling and predicting injuries in soccer
with machine learning and conventional
statistical approaches

Ina-Marie Berendes1, Alexander Gerharz1,2, Andreas Groll1,
Mathias Kolodziej2

1 Department of Statistics, TU Dortmund University, Germany
2 Department of Sport Science, Borussia Dortmund, Germany

E-mail for correspondence: ina-marie.berendes@tu-dortmund.de

Abstract: To prevent injuries in professional soccer, the use of statistical ap-
proaches is on the rise. We compare conventional statistical methods and machine
learning algorithms regarding their ability to predict the binary injury status of
young professional soccer players. For modeling, we consider basic soccer-related
features and physical covariates derived from tests of postural control, strength,
and movement. Lasso-regularized logistic regression, naive Bayes, linear discrimi-
nant analysis, k-nearest neighbors, classification trees, random forests, XGBoost,
and support vector machines are used for injury probability prediction and subse-
quent binary classification in a cross-validated procedure. Prediction results are
assessed via several quality measures. The best results are obtained by a post
Lasso logistic regression model with a reduced penalty.
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1 Introduction

The injury incidence in professional soccer is high, for young players even more
than for adults (Pfirrmann et al., 2016). Injured players may miss trainings or
matches, and a connection between aspects like injury incidence or injury burden
in teams and a negative performance in domestic and international competitions
has been found (Hägglund et al., 2013). Injuries in a team can lead to worries and
uncertainty in other members and negative emotions can also be transmitted be-
tween players by the social contagion phenomenon (Hurley, 2016). Moreover, the
club loses substantial amounts of money when team members are unable to play
(Ekstrand, 2013). There are increasing efforts to prevent injuries by understand-
ing their cause and predicting them with conventional statistical methods and
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machine learning. Popular modeling approaches include logistic regression, linear
discriminant analysis (LDA), k-nearest neighbors (KNN), naive Bayes classifiers,
trees, random forests, extreme gradient boosting, and support vector machines
(SVMs; Rossi et al., 2022).
Using the groundwork of Kolodziej et al. (2023) of different Lasso-penalized logis-
tic regression models (Friedman et al., 2010) to predict the binary injury status
of young professional soccer players, we compare additional machine learning and
conventional statistical modeling approaches on the same data. All models are
assessed fairly in a parallel cross-validation (CV) procedure via several prediction
quality measures. We search for a model that uses basic soccer-related as well as
physical covariates and achieves a high prediction quality even on unseen data.
Moreover, we want to identify the essential covariates for injury prediction in the
best models.

2 Data

We use data of 56 young professional male soccer players from three youth teams
(under 16, under 17, under 19) from two German professional soccer clubs. Co-
variate data was collected via a questionnaire and physical testing before the
season start. The players underwent 3D motion analysis and force plate mea-
surements during the execution of a single-leg drop landing (SLDL) task and
an unanticipated side-step cutting (USSC) task. Moreover, their postural control
under different conditions and their lower body strength in different movements
were tested. The details of the testing procedure and all obtained covariates are
described in Kolodziej et al. (2021) and Kolodziej et al. (2022). After the testing,
any time-loss non-contact lower body injuries of the players were documented for
the remaining ten months of the season, where time-loss refers to at least one
day of absence in training or matches after the occurrence of the injury.

3 Methods and implementation

We use the occurrence of an injury as our binary response variable with the en-
coding 0 = no injury and 1 = injury. The response is then modeled using four
different Lasso-regularized logistic regression models, the naive Bayes method,
LDA, KNN, a classification tree, a random forest, the XGBoost method, an SVM,
and two featureless constant benchmark learners. The Lasso models are either
regularized with an optimal penalty λopt, or with a slightly smaller penalty λ1se

within one standard error of λopt (see also Kolodziej et al., 2023). This weaker
regularization usually leads to a model with a slightly larger set of selected co-
variates. Moreover, the regression coefficients are either shrunk via the penalty
or re-estimated without shrinkage using post Lasso (Meinshausen, 2007).
All methods except for the constant learners undergo a parallel leave-one-out CV
procedure where the injury probability of the left out player is predicted using a
model fitted on all other observations. The constant learners use the proportion
of injured players in the whole data set as a predicted injury probability. Hyper-
parameters are tuned in an inner 15-fold CV with identical folds for all methods
in the process to ensure comparability. After all 56 probabilities are predicted,
an optimal threshold for converting them into a binary injury status prediction is
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chosen separately for each method, namely the respective one which maximizes
Youden’s index (Youden, 1950), the sum of the sensitivity and the specificity
minus 1.
In the end, the prediction results of all methods are assessed calculating the
prediction accuracy, the sensitivity, the specificity, Youden’s index, the AUC, the
predictive Bernoulli likelihood, and the Brier score.

4 Results

The resulting quality measure values from the CV procedure are shown in Table 1.
The two thresholds −∞ and ∞ lead to two best constant learners. One predicts
the class 1 = injury for all players, while the other always predicts the class
0 = no injury.
The largest accuracy of 0.661 is reached by the XGBoost model; it predicts the
injury status of 37 out of 56 players correctly. Its sensitivity of 0.500 and specificity
of 0.765 lead to the third largest value of Youden’s index of 0.265. Moreover, the
model shows an AUC value of 0.549, a predictive Bernoulli likelihood of 0.509,
and a Brier score of 0.253. In the two latter measures, it is dominated by the
constant benchmark learners. The probability threshold for the XGBoost model
is 0.491.
The post Lasso model with the smaller penalty λ1se has the largest value of 0.302
for Youden’s index, resulting from a sensitivity of 0.773 and a specificity of 0.529.
The model also shows the largest AUC of 0.672, the largest predictive Bernoulli
likelihood of 0.593, and the smallest Brier score of 0.228. Its accuracy value is
0.625. The model dominates the two constant learners in all measures. Its best
probability threshold with regard to Youden’s index is 0.270.

TABLE 1. Quality measure results (prediction accuracy, sensitivity, specificity,
Youden’s index, AUC, predictive Bernoulli likelihood, Brier score) on external
test data via a LOO CV approach of all models (best model in bold fontbold fontbold font)

Acc Sens Spec Youd AUC Pr L Brier

Lasso λopt 0.625 0.727 0.559 0.286 0.586 0.532 0.238
Lasso λ1se 0.482 0.864 0.235 0.099 0.508 0.527 0.257
Post Lasso λopt 0.554 0.9550.9550.955 0.294 0.249 0.638 0.577 0.239
Post Lasso λ1se 0.625 0.773 0.529 0.3020.3020.302 0.6720.6720.672 0.5930.5930.593 0.2280.2280.228
Naive Bayes 0.643 0.273 0.882 0.155 0.515 0.536 0.420
LDA 0.607 0.136 0.9120.9120.912 0.048 0.370 0.440 0.510
KNN 0.643 0.364 0.824 0.187 0.549 0.546 0.252
Tree 0.625 0.364 0.794 0.158 0.473 0.508 0.424
Random Forest 0.571 0.455 0.647 0.102 0.449 0.509 0.258
XGBoost 0.6610.6610.661 0.500 0.765 0.265 0.549 0.509 0.253
SVM 0.518 0.9550.9550.955 0.235 0.190 0.434 0.542 0.232
Constant 1 0.393 0.500 0.523 0.239
Constant 0 0.607 0.500 0.523 0.239
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We fit both the above best post Lasso model with λ1se and the XGBoost model
again on all observations with re-tuned hyperparameters. The resulting Lasso
model contains three covariates. The one with the largest absolute coefficient
value is the center of pressure (COP) sway of a force plate which was used in a
test of the players’ postural control under static conditions. The model associates
a larger COP sway with a larger probability to be injured. The XGBoost model
assigns the largest variable importance value to the COP sway as well.
Both Lasso and XGBoost model also share the same second most important co-
variate, namely the concentric knee extension torque. A larger value is associated
with a lower injury probability in the Lasso model.
The third covariate in the Lasso model is the hip external and internal rotation
moment in the single-leg drop landing task. The model links an increased value
to a smaller injury probability. The XGBoost model, on the other hand, places
the third largest importance on the hip adduction and abduction moment in the
unanticipated side-step cutting task.

5 Discussion

We approach the challenge of binary injury status prediction for youth players in
professional soccer. Based on the research by Kolodziej et al. (2023), we search
for a model with a high prediction capacity that takes into account soccer-related
as well as physical covariates.
No newly regarded model outperforms the previous ones by a substantial amount
or in most quality measures. The resulting best model is again a post Lasso
logistic regression model with a reduced penalty, reaching the best values for
Youden’s index, AUC, predictive likelihood, and Brier score. The XGBoost model
obtains the largest accuracy. These two models agree on the two most important
covariates for injury prediction.
Predicting soccer injuries with high precision still remains difficult. The investi-
gated models provide a reasonable improvement in comparison to the benchmark
models, but more benefit is desirable.

Acknowledgments: Special thanks to the participating youth academies, coaches,
players, and the test team.
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Abstract: Cumulative regression is the most frequently used tool for modelling
ordinal outcomes. If data come in clusters the model needs to consider possi-
ble heterogeneity between measurement units. Additionally, differing variability
within clusters might appear in the data. A cumulative model with random ef-
fects is introduced that accounts for both issues. Building on this, we propose
a penalized maximum likelihood estimation procedure that allows for variable
selection separately in the location and dispersion component of the model pre-
dictor. The new approach is illustrated using data of the Survey of Health, Ageing
and Retirement in Europe.
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1 Mixed-effects models for ordinal data

Let the data be given by (yij ,xij), for i = 1, . . . , n and j = 1, . . . , Ni, where
yij ∈ {1, . . . , k} denotes the ordinal outcome of observation j in cluster i and xij
is a vector of covariates. There are n clusters for which the number of observa-
tions N1, . . . , Nn may vary. The covariates xij may be constant or vary across
measurements of one cluster. A popular tool for the analysis of ordinal outcome
variables is the class of cumulative models (McCullagh, 1980; Tutz, 2012). In-
cluding a cluster-specific random intercept bi, the basic form of the mixed-effects
cumulative model (Hedeker and Gibbons, 1994) is given by

P (yij ≤ r|xij) = F (ηijr) = F
(
β0r − x⊤

ijβ − bi
)
, r = 1, . . . , k − 1 , (1)

where F (·) is a distribution function, β⊤ = (β1, . . . , βp) is the vector of regression
coefficients and −∞ < β01 < . . . < β0,k−1 < ∞ are category-specific intercepts

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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that need to be strictly increasing. The random intercepts are assumed to be nor-
mally distributed with zero mean and variance σ2, bi ∼ N(0, σ2). Presence of the
random intercepts means that the category-specific thresholds are simultaneously
shifted yielding the cluster-specific thresholds β01−bi, . . . , β0,k−1−bi. A widely ap-
plied choice for F (·) is the logistic distribution function F (·) = exp(·)/(1+exp(·)).
The latter yields the logistic regression model for cumulative probabilities, namely
proportional odds model, if the parallel assumption is taken into account. The use
of the logistic distribution greatly simplifies the interpretation of the regression
coefficients and offers interesting properties with regard to robustness (Scalera et
al., 2021; Iannario, 2023).

2 Extended model for variance heterogeneity

If the fit of model (1) is unsatisfactory one frequently uses a more complex non-
proportional odds model with category-specific parameters. A lack-of-fit, how-
ever, can also be caused by differing variability in subgroups of the population,
by so-called dispersion effects. One way to introduce differing variability is to
model it explicitly by a scaling component depending on covariates (McCullagh,
1980). An alternative cumulative type model that accounts for varying disper-
sion is the location-shift model, which was proposed by Tutz and Berger (2017)
for ungrouped data and extended by Schauberger and Tutz (2022) for multivari-
ate ordinal outcomes. The variant of the location-shift model with cluster-specific
random intercepts, which is considered here, has the form

ηijr = β0r − x⊤
ijβ − bi,ℓ + (r − k/2)

(
z⊤
ijα+ bi,d

)
, (2)

where zij is an additional vector of covariates. The two random intercepts bi,ℓ
and bi,d are assumed to be normally distributed with zero mean and variance-
covariance matrix Σb. The predictor in (2) contains the familiar location term,
which reflects the tendency to low or high categories, and a scaled dispersion term
δij = (r− k/2)

(
z⊤
ijα+ bi,d

)
with random intercept bi,d, which shifts the thresh-

olds and reflects the tendency to the middle or extreme categories. As in the
simple model (1), the random intercept in the location term represents between-
cluster variability, while the dispersion term δij represents within-cluster variabil-
ity. Hence, the new predictor (2) allows for the possible variance heterogeneity of
respondents to be taken into account. Furthermore, presence of random effects
in the dispersion term means that the within-cluster variance is allowed to differ
across clusters. In the case k = 4 the dispersion terms result to −z⊤

ijα − bi,d
(r = 1), 0 (r = 2) and z⊤

ijα+ bi,d (r = 3), which means that the middle thresh-
old remains fixed, but the lower and upper thresholds are shifted. This example
illustrates that if δij > 0 the intervals defined by the thresholds are widened,
indicating weaker dispersion and therefore more concentration in the middle. If
δij < 0 the intervals are shrunk, indicating stronger dispersion and therefore more
concentration in the extreme categories. Asymptotically, if bi,d → ∞ (all other
model components fixed) one obtains P (yij = 2|xij ,zij)+P (yij = 3|xij ,zij) = 1
with the whole probability mass in the middle categories.
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3 Penalized marginal likelihood estimation

The predictor in (2) contains two different sets of covariates, the vector xij de-
termining the location and the vector zij determining the dispersion (potential
variance heterogeneity in clusters of respondents). In applications, however, there
is only one set of covariates and it is typically not known which variables have
an impact on which of the two components. This calls for a tailored variable
selection strategy within the fitting procedure.
Estimates of the location-shift model, whose predictor is in (2), can be obtained
by maximization of the marginal likelihood expressed as an integral over the
likelihood of the form

Li(β,α,Σb) =

∫ ∫ Ni∏
j=1

k∏
r=1

P (yij = r|β,α,Σb)
∆ijr

× f(bi,ℓ, bi,d) dbi,ℓ dbi,d , (3)

where ∆ijr = 1 if yij = r and yijr = 0, otherwise, and f(·) denotes the two-
dimensional normal density function. Gauß-Hermite quadrature can be applied
to approximate the integral over the random-effects distribution (for details, see
McCulloch and Searle, 2001). To obtain a sparse representation and in particular
variable selection with regard to the location and the dispersion term, we consider
a penalized marginal log-likelihood of the form

ℓp(β,α,Σb) = ℓ(β,α,Σb)− Jλℓ,λd(α,β) , (4)

where ℓ(β,α,Σb) denotes the raw marginal log-likelihood and Jλℓ,λd(α,β) rep-
resents a penalty term that depends on the scalar tuning parameters λℓ and λd.
To allow for a different degree of regularization in the two model components, we
propose to use two separate LASSO-type penalties, one on the location parame-
ters β and one on the dispersion parameters α, which is given by

Jλℓ,λd(α,β) = λℓ ∥β∥1 + λd ∥α∥1 . (5)

The optimal tuning parameters λℓ and λd can be chosen by subsampling, e.g. by
cross-validation using the predictive log-likelihood as the criterion to be cross-
validated. In our implementation, we make use of the SAS PROC NLMIXED,
which offers a general framework for fitting nonlinear mixed-effects models. For
optimization, PROC NLMIXED performs a quasi-newton algorithm, which also
involves computing the first-order derivatives of the quadrature approximation.

4 Application to SHARE

We consider data from the seventh wave of the Survey of Health, Ageing and
Retirement in Europe, in short SHARE, collected in 2017 (see Börsch-Supan et
al., 2013, for methodological details). SHARE is a panel survey collecting de-
tailed cross-national information on the health, socio-economic status and family
networks of people aged 50 and over from a large group of European countries.
The sample analysed consists of 3,430 respondents living in 27 countries. It is
mainly characterised by female respondents (58%), with an average age of 67.9
years (SD = 9.7 years). In addition to standard demographics, data collection
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TABLE 1. Analysis of the SHARE data. Coefficient estimates obtained from fit-
ting the proposed penalized mixed-effects model with country-specific random
intercepts. According to the predictive performance, the optimal tuning param-
eters were λl = 0.0041 and λd = 0.0015.

Covariate Location effect Dispersion effect Random effects

β̂ exp(β̂) α̂ exp(α̂) Σb

Age 0.031 1.032 0.011 1.012 σ̂l 0.361
Gender -0.442 0.643 0.165 1.179 σ̂d 0.074
BMI 0.069 1.071 0.011 1.011 σ̂l,d 0.091
Years of education -0.040 0.960 — —
ADL index 0.324 1.383 — —
IADL index 0.277 1.319 0.011 1.011
Life satisfaction -0.317 0.728 -0.040 0.961
Hand grip -0.029 0.972 0.010 1.010

comprised measurements on socio-economic information (e.g. employment sta-
tus) and health-related aspects (e.g. chronic diseases). For the present analysis,
we will focus on the perception of one’s health status measured on an ordinal
scale from 1 (excellent) to 5 (poor).
In our analysis we include the following eight covariates: age, gender (0: male,
1: female), body mass index (BMI), years of education, ADL index (number of
limitations with activities of daily living), IADL index (number of limitations in
instrumental activities of everyday life), life satisfaction (0: completely dissatisfied
to 10: completely satisfied), and hand grip (which is a measure of physical health).
The results from fitting the proposed model with predictor (2) are given in Ta-
ble 1. The estimated variance-covariance matrix, with σ̂l = 0.361, shows that
country-specific effects should not be ignored. While all eight covariates were se-
lected in the location term, years of education and ADL index were excluded from
the dispersion term by the penalized fitting procedure. From an interpretative
point of view, the coefficient estimates for gender indicate that women perceive
their state of health to be better than men (β̂ = −0.442) with a stronger tendency
to the middle category (α̂ = 0.165). Comparing women to men (all other model
components fixed), the cumulative odds P (yij ≤ r|xij ,zij)/P (yij > r|xij ,zij)
increase by the factor 1.215 (r = 1), 1.433 (r = 2), 1.690 (r = 3) and 1.993
(r = 4), which reflects the difference in the location and in the dispersion. Ac-
cording to the estimates for IADL index, respondents with a higher number of
limitations in instrumental activities report a poorer health status (β̂ = 0.277)
with a tendency to the middle category (α̂ = 0.011).

5 Outlook

When fitting the proposed model to the SHARE data, we treated all eight covari-
ates as metrically scaled variables. For life satisfaction (measured on a 11-point
scale) it might, however, be more appropriate to encode it as an ordinal variable,
in particular, if the points on the scale can not be interpreted as equally spaced.
In this case the LASSO-type penalty as defined in (5) should be replaced by a
more complex group LASSO or fusion penalty (Tutz and Gertheiss, 2016), which
enforces sparsity of groups and within each group. These extensions will be the
subject of in-depth study and future work.
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Börsch-Supan, A., Brandt, M., Hunkler, C., Kneip, T., Korbmacher, J., Malter,
F., Schaan, B. and Stuck, S. (2013). Data resource profile: the Survey of
Health, Ageing and Retirement in Europe (SHARE). International Journal
of Epidemiology, 42, 992 – 1001.

Hedeker, D. and Gibbons, R.D. (2006). A random-effects ordinal regression model
for multilevel analysis. Biometrics, 50, 933 – 944.

Iannaria, M. (2023). Robust regression modelling for ordinal categorical data.
Proceedings of the 37th International Workshop on Statistical Modelling,
Dortmund, Germany, Volume II, 28 – 38.

McCullagh, P. (1980) Regression models for ordinal data (with discussion). Jour-
nal of the Royal Statistical Society B, 42, 109 – 142.

McCulloch, C. and Searle, S. (2001).Generalized, Linear, and Mixed Models. New
York: Wiley.

Scalera, V., Iannario, M. and Monti, A.C. (2021). Robust link functions. Statis-
tics, 55, 963 – 977.

Schauberger, G. and Tutz, G. (2022). Multivariate ordinal random effects mod-
els including subject and group specific response style effects. Statistical
Modelling, 22, 409 – 429.

Tutz, G. and Berger, M. (2017). Separating location and dispersion in ordinal
regression models. Econometrics and Statistics, 2, 131 – 148.

Tutz, G. and Gertheiss, J. (2016). Regularized regression for categorical data.
Statistical Modelling, 16. 161 – 200.

Tutz, G. (2012). Regression for Categorical Data, Cambridge: University Press.



A comparison of methods for oil production
forecasting of the Santos Basin

Herlisson Bezerra1, Luis F. B. de Messis1, Cibele Russo2,
Thomas Peron2

1 Interinstitutional Graduate Program in Statistics UFSCar-USP (PIPGEs), Fed-
eral University of São Carlos and University of São Paulo, Brazil

2 Institute of Mathematical and Computer Sciences, University of São Paulo,
Brazil

E-mail for correspondence: herlissonmaciel@hotmail.com

Abstract: Despite the current global eagerness to complete the transition of the
energy matrix to clean and renewable sources, oil is undoubtedly one of the most
important commodities in the global economy. In Brazil, the Santos Basin stands
out as one of the largest oil producers in the country in recent years. Therefore,
predicting the production of each field within it is of great importance for the
development of business strategies. In this context, the goal of the presented
study is to compare the performance of several methods of time series forecasting
for the oil production in fields within the Santos Basin using open data from
the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP)
on monthly production. The results showed that, among 20 fields, MiniRocket
outperformed the other models in 7 fields, Theta model did it in 4 fields, Long-
Short Term Memory in 3 fields, MultiRocket in 2 fields, Multilayer Perceptron in
2 fields, Rocket and Gated Recurrent Unit in 1 field.

Keywords: Oil production forecasting; Time series forecasting; Statistical Learn-
ing.

1 Introduction

The technological advancement of electric vehicles and renewable energy sources
is undeniable. However, in the current global economic scenario, oil remains one
of the most important commodity. In this context, Brazil is among the top ten
oil producers worldwide. The Brazilian production is mainly derived from off-
shore extraction, while most other countries have onshore production. Brazilian
offshore production is primarily extracted from the Santos Basin. It is located
in the southeast region of the Brazilian coast and was responsible for produc-
ing approximately 74% of all Brazilian oil in 2023. Besides being the basin with

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
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the highest production, it is also estimated to have a pre-salt region reserve of
over 100 billion barrels of oil. Due to its importance, for decision-making and
the adoption of business strategies, this work proposes the comparison of the
predictions of time series for oil production, corresponding to the period of the
series’ onset between 2010 and 2020, taking into account the peculiarities of each
analyzed production period. The predictions for each series of the fields within
the Santos Basin were made using the proposed models: Random Convolutional
Kernel Transform (Rocket), Minimally Random Convolutional Kernel Transform
(MiniRocket), Multi Random Convolutional Kernel Transform (MultiRocket).
They are explained in details in section 2. Additionally, for camparison, it is pro-
posed the methods: Autoregressive Integrated Moving Average (ARIMA), Theta
method, Artificial Neural Networks (ANNs) Multilayer Perceptron (MLP), ANN
Long-Short Term Memory (LSTM) and ANN Gated Recurrent Unit (GRU). In
section 3, the proposed models are compared with each other to observe which of
them had the best fit to the studied data through the mean squared error metric.

2 Methodology

2.1 Dataset

The dataset was obtained from the Public Data Query portal of the Brazilian
National Agency of Petroleum, Natural Gas and Biofuels (ANP). The website
provides monthly hydrocarbon production data, categorized by monthly periods
and by basin and production field.

2.2 Rocket, MiniRocket and MultiRocket

The Rocket method applies a transformation to time series data by utilizing
numerous random convolutional kernels. These kernels have random characteris-
tics such as length, weights, bias, dilation, and padding. The resulting features
undergo training with a linear regressor. The MiniRocket method differs from
Rocket by using a fixed-size set of 84 kernels that are applied as transformers
to the time series resulting in a vector of extracted features that has a smaller
computational cost. The set of kernels was proposed by a selection scheme based
on combinatorial optimization. The Multirocket variant also uses the same set of
kernel as MiniRocket but it has a step that increases the diversity of the time
series features through adding multiple pooling operators.
Furthermore, in practical applications, especially for datasets of moderate size,
like the studied, it is opted for a ridge regressor fed with the exctrated features
with Rocket. This choice offers the advantage of quick cross-validation for the
regularization hyperparameter without the need for other hyperparameters.

3 Results

For the analysis of model fitting, each of the 20 series was divided into 80% for
training and 20% for testing, ensuring that the observations of the series were
divided in a contiguous manner. The machine learning models were fitted only
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once with the data from the training set, and for each predicted point, only one-
step-ahead forecasts were used. In contrast, the statistical models, ARIMA and
Theta Method, utilized previous predicted points for forecasts with a horizon
greater than one observation. The Mean Squared Error (MSE) metric was used
to assess the quality of the fit for each trained model and the results of the tests
are in Figure 1. The lower the MSE, the better is the fitted model.
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FIGURE 1. Metrics of the fitted models for each field by model. The yellow
rectangles indicate the lowest MSE value in the row.

It is possible to notice in the Figure 1 that in the test dataset, the Minirocket
outperformed the other models in 7 fields, Theta model did it in 4 fields, LSTM
in 3 fields, Multirocket in 2 fields, MLP in 2 fields, Rocket and GRU in 1 field.

4 Conclusion

From the comparison among the methods used to predict the production of the
20 oil fields in the Santos Basin, it is concluded that: the MiniRocket method
achieved the lowest MSE in the test set in 7 fields; the Theta method had the
best performance in 4 fields; the LSTM method had the best performance in 3
fields; the MultiRocket method had the best performance in 2 fields; the MLP
method had the best perfomance in 2 fields; the Rocket and GRU methods had
the best performance in only 1 field. The ARIMA method did not achieve the
lowest MSE in any field. It is important to emphasize that the main methods used
are among the most current and tend to achieve good performance. However, for
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future work, other methods can be employed with the aim of discovering other
approaches that yield the lowest possible prediction error.

Acknowledgments: Special Thanks to the Brazilian Foundation, CAPES,
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273/2023-00.

Appendix A: All scripts written to fit the models and the datasets are available
in github.com/HerlissonMB/iwsm2024.
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Abstract: The invasion of alien species into non-native environments is a critical
issue due to its potential harm to biodiversity, economies, and human health. We
propose an additive relational event model (REM) to analyze invasions of plants
and insects that occurred between 1880 and 2005. Our proposed REM includes
smooth and interpretable time-varying effects to explain the invasion rates. Our
inference approach employs a case-control sampling technique, enabling efficient
computation. Since the goodness of fit of REMs is an ongoing research challenge,
especially for REMs that involve smooth terms, we propose to evaluate the ade-
quacy of the model using cumulative weighted martingale residuals. We employ
a Kolmogorov-Smirnov type test to determine if covariates are properly modeled.
Implementation is performed through the R package mgcv.

Keywords: Relational event model; Alien species invasions; Generalized addi-
tive models; Goodness-of-fit.

1 Introduction

Each year, alien species disperse from their native habitats to new regions, of-
ten facilitated by, potentially human, vectors. While not all introduced species
become invasive, the widespread nature of this phenomenon poses a significant
threat due to environmental changes and associated costs. Various modeling ap-
proaches have been employed to elucidate these mechanisms, but they are either
computationally complex or consider only one covariate at the time.
To address this, we present a smooth relational event model that incorporates
a flexible time-varying specification of effects. This enhancement aims to im-
prove the interpretability of the impact of various drivers on the risk of alien
species invasions. Additionally, our proposed case-control partial likelihood in-
ference technique allows for a significant reduction in computational costs. We
consider 13094 invasions between 1880 to 2005 involving vascular plants and
insects species across 275 areas as part of the alien species First Record (FR)
Database (Seebens et al., 2017). Existing literature suggests that the spread of

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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plants is notably influenced by certain insects (Richardson et al., 2000). Our aim
is to unravel the various components and their relative importance in driving
plant and insect dispersion. In particular, we will focus on geographic distance,
climatic similarity, trade, land coverage and the presence of colonial ties.

2 Relational event additive model

A relational event is an interaction at time t starting from a sender s towards
a receiver r. It will be denoted as a triplet (s, r, t), where t varies in [0, τ ]. In the
species invasion context, we aim to model an event sequence E of n = 13094 FRs,
where the invading species is the sender s and the invaded region is the receiver r.
Relational events may be thought as the realizations of a marked point process,
{(tk, (sk, rk)); k ≥ 1}, where at time tk (point) when the interaction sk → rk
(mark) occurs. A counting process Nsr(t) may be associated to the process above,
counting, for each mark (s, r), the number of occurred interactions s→ r in [0, t].
Under standard assumptions, Nsr is a continuous time sub-martingale and, as
such, we can decompose it according to the Doob-Meyer theorem,

Nsr(t) =Msr(t) + Λsr(t) =Msr(t) +

∫ t

0

λsr(u)du (1)

whereMsr is a zero-mean martingale. Conditional on the filtrationH = {Ht}t≥1880,
where Ht incorporates information on occurred events up to t, Λsr is the pre-
dictable part of the counting process Nsr. A relational event model (REM)
is defined by modelling the intensity function λsr(t) = d

dt
Λsr(t). We consider a

non-linear formulation,

λsr(t|Ht− ;β0(t)) = λ0(t) exp
[
β0(t)

Txsr(t)
]

(2)

where λ0(t) represents the baseline hazard, x are time-varying covariates, and β0

are non-linear, time-varying effects of linearly associated covariates.

2.1 Case-control partial likelihood via GAMs

The estimation procedure for REMs is normally based on partial likelihood (Perry
& Wolfe, 2013). Due to the computational challenges associated with the denom-
inator of the partial likelihood for large dynamic networks, nested case-control
(NCC) sampling (Borgan et al., 1995) has been adapted for REMs (Vu et al.,
2015). This involves evaluating, at each time point, a sample of individuals at
risk, termed the sampled risk set SR. When at random a single non-event is sam-
pled, then the partial likelihood reduces to the likelihood of an additive logistic
regression, β̂ is found by maximizing:

LPS(β|E) =
n∏
k=1

{
1 + exp

[
−
(
β(tk)

T∆skrkx
)]}−1

(3)

where ∆skrkx = xskrk (tk)−xs∗
k
r∗
k
(t), where (sk, rk) is the dyad observed in event

k, and (s∗k, r
∗
k) is the associated sampled non-event.
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FIGURE 1. Smooth effect of distance on species invasions dynamics and GOF
process for distance covariate.

2.2 Checking the goodness of fit

Evaluating the fit of REMs is challenging. While some methods have been pro-
posed, they are either computationally expensive (Brandenberger, 2019) or are
more exploratory (Juozaitienė et al., 2023). Our proposal consists of the evalua-
tion of a martingale-residual type process (Marzec & Marzec, 1998). The process
of interest, denoted as G[β̂] follows,

G[β̂, u|E ] =
∑

k≤⌊nu⌋

ϕskrk (tk)− ∑
(s,r)∈SR

ϕsr(tk) · πsr(β̂)


defined on n equally spaced points u ∈ [0, 1]. ϕsr is any statistic of interest and
πsr(β̂) is the fitted multinomial probability of the event.
We consider testing for the goodness-of-fit (GOF) of covariates, ϕsr = xsr. In
that case, the expression for G coincides with the scaled components of the score
vector. The statistical test of the Kolmogorov-Smirnov (KS) type is defined
as follows:

KSq = sup
u∈[0,1]

∥Ŵ [β̂, u]∥2 = sup
u∈[0,1]

∥Ĵ− 1
2

G[β̂]
× n− 1

2 ×G[β̂, u|E ]∥2 (4)

where Ĵ
− 1

2

G[β̂]
= n−1 ×

∑n
k=1 Gk[β̂, tk]Gk[β̂, tk]

T , Gk[β̂, tk] being the individual

contribution to process G[β̂, ·]. Under the assumption of adequacy of the model
formulation, Ŵ [β̂, u] converges to a vector of q independent Brownian bridges
and p-value of KS test can be simulated empirically (Hjort & Koning, 2002).

3 Modelling plant and insect invasions

We fitted and computed the corresponding AIC for 728 model formulations, en-
compassing all possible combinations of available covariates, with both fixed and
time-varying effects. The best model , according to corrected AIC, includes dis-
tance, trade, colonial ties, climatic dissimilarity, and urban land-coverage, mod-
eled with time-varying effects. Figure 1 Left shows the estimated smooth time-
varying effects of distance. Its estimated negative effect confirms the rarity of
long-distance natural invasion occurrences (Juozaitienė et al., 2023). Figure 1
Right shows that the effect of distance seems accurately estimated by this model.
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Abstract: We propose a flexible distributional copula regression model for
right-censored bivariate time-to-event data. The joint survival function is con-
structed using parametric copulas, allowing for separate specification of the de-
pendence structure between the margins and their respective distributions, which
are modelled via well-known parametric distributions such as the log-normal, log-
logistic or Weibull. Following the generalised additive models for location, scale
and shape (GAMLSS) approach, possibly all parameters may be modelled in an
additive fashion through semi-parametric predictors. Estimation is carried out
via component-wise gradient boosting, leading to data-driven variable selection,
an extremely helpful feature in such a complex model class, especially in high-
dimensional (p≫ n) settings. Our method is implemented as an add-on function
of the R package gamboostLSS, ensuring transparent and reproducible research.

Keywords: Dependence modelling; GAMLSS; Shrinkage; Survival analysis; Vari-
able selection.

1 Progression time of AMD in left and right eyes

According to the National Eye Institute, age-related macular degeneration (AMD)
is the leading cause of blindness in England and the United States (The AREDS
Group, 1999). Traditional statistical techniques often rely on specifying a model
for a univariate response with a dummy-variable indicating a patient’s left or
right eye. Modelling the survival function of patient’s time to progression in the
left and right eyes jointly using a distributional regression approach could pro-
vide new insights of AMD progression time, the role clinical characteristics play
in said times as well as their dependence. Moreover, we are interested in uncover-
ing which covariates affect certain aspects of the joint survival function as well as
estimating their functional form in a data-driven manner, while also keeping in-
dividual models for the progression time in each organ. Consequently, we propose

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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a distributional copula regression modelling approach where estimation is carried
out using component-wise gradient boosting in order to obtain an interpretable
statistical model for the entire bivariate survival function.

2 Methodology

Let Tvi, v = 1, 2, i = 1, . . . , n, denote the true event-time and T̃vi an indepen-
dent (of Tvi), random, non-informative censoring time. In practice one observes

Yvi = min{Tvi, T̃vi} accompanied by the censoring indicator δvi = 1{Tvi ≤ T̃vi}.
Within the framework of GAMLSS (Rigby and Stasinopoulos, 2005), the i-th
observation of a response is assumed to follow a parametric distribution with
density f and survival function S = 1 − F , where F is the cumulative distri-
bution function (CDF). For bivariate time-to-event responses, the joint survival
function of (Y1i, Y2i)

T is written as

S1,2(y1i, y2i;ϑi) = C
(
S1

(
y1i ; ϑ

(1)
i

)
, S2

(
y2i ; ϑ

(2)
i

)
;ϑ

(c)
i

)
, (1)

where C(·, ·) : [0, 1]2 → [0, 1] is the CDF of a bivariate parametric copula function

with parameter ϑ
(c)
i that determines association’s strength between the marginal

responses (Nelsen, 2006) and S1 (·), S2 (·) denote the univariate marginal survival

functions. The K = K1+K2+1 dimensional vector ϑi =
(
ϑ

(1)
i ,ϑ

(2)
i , ϑ

(c)
i

)T

con-

tains the sub-vectors of margin-specific parameters and the copula dependence
parameter. Each component of ϑi is allowed to depend on covariates by means of
structured additive predictors and suitable link functions g(·) with corresponding
inverse or response functions h(·) ≡ g−1(·) that enforce parameter space restric-
tions:

g
(•)
k

(
ϑ
(•)
ik

)
= η

(•)
ik = β

(•)
0k +

P
(•)
k∑
r=1

s
(•)
rk (xir), k = 1, . . . ,K•, • ∈ {1, 2, c}, (2)

where β
(•)
0k are parameter-specific intercepts and s

(•)
rk (·) are smooth functions that

can accommodate a wide range of functional forms of the covariates. The sum-

mation limit P
(•)
k from Equation (2) emphasises that the individual parameters

ϑ
(•)
ik do not necessarily have to be modelled using the same subset of covari-

ates. A major issue of distributional regression models is the determination of a
suitable subset of covariates for each parameter. Hence, we resort to component-
wise gradient-boosting to estimate the model coefficients. Instead of using the
approach proposed by Hans et al. (2023), we conduct estimation in a two-step
fashion using the R package gamboostLSS: First we boost each margin separately

using a loss function for univariate right-censored responses and compute Ŝ•,

f̂•, • = 1, 2. In a second step we boost the loss corresponding to the following
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FIGURE 1. Estimated non-linear effect of age across distribution parameters.

log-likelihood function:

ℓi = δ1iδ2i
[
log(c(S1(y1i), S2(y2i))) + log(f1(y1i)) + log(f2(y2i))

]
+

δ1i(1− δ2i)

[
log

(
∂C(S1(y1i), S2(y2i))

∂S1(y1i)

)
+ log(f1(y1i))

]
+

(1− δ1i)δ2i

[
log

(
∂C(S1(y1i), S2(y2i))

∂S2(y2i)

)
+ log(f2(y2i))

]
+

(1− δ1i)(1− δ2i)
[
log
(
C(S1(y1i), S2(y2i))

)]
, (3)

with Ŝ•, f̂• plugged-in, which depends only on the association parameter ϑ(c).
Note that c(·, ·) denotes the copula density. The number of fitting iterations is
optimised by means of the out-of-bag risk (Hans et al., 2023).

3 Results

The data we analysed consisted of n = 629 observations and three clinical co-
variates: An eye-specific severity score (Severity), the patient’s age at study
enrolment as well as a genetic covariate (RS2284665) encoded as a factor. The
censoring rates were 46.7% and 44.5% for the AMD progression times for the
left and right eye, respectively. We first determined the best-fitting margins by
means of the log-score, which led to the log-normal distribution being selected
for both margins. This preliminary result already suggests some symmetry re-
garding the statistical behaviour of the organs’ AMD progression time. Using
the optimal marginal fits, we compared different copula specifications (Gaussian,
Frank, Clayton, Gumbel, Joe, as well as 90°, 180° and 270° rotations of the latter
three) and based on the log-score we found the Clayton copula to provide the
best predictive performance. See Table 1 for the estimated linear coefficients of
the final model as well as the optimal number of fitting iterations of each of the
five parameters of the joint survival function. The boosting algorithm did not
include the highest Severity score level of each respective eye in the sub-model

of the parameter ϑ
(•)
2 . Additionally, the algorithm excluded the Severity score 5

from ϑ
(1)
2 ’s sub-model. Figure 1 depicts the estimated non-linear effect of age on

the parameters of the joint survival function. It can be observed that age was not
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TABLE 1. Estimated coefficients of the Clayton copula model.
Left eye Right eye Dependence

log-normal log-normal Clayton

ϑ
(1)
1 ϑ

(1)
2 ϑ

(2)
1 ϑ

(2)
2 ϑ(c)

Fitting iterations 312 156 106 58 7

Intercept 3.184 0.311 3.330 0.352 0.231
Severity 1: 5 −0.262 −0.050 − − 0

6 −0.510 −0.077 − − 0
7 −1.171 −0.093 − − 0
8 −1.824 0 − − −0.037

Severity 2: 5 − − 0 −0.069 0
6 − − −0.366 −0.367 0
7 − − −0.972 −0.171 0
8 − − −1.431 0 −0.023

RS2284665: GT −0.150 −0.154 −0.209 −0.098 0
TT −0.306 0.026 −0.353 −0.152 0

Censoring rates: 46.7% (left), 44.5% (right), n = 629.

selected for the dependence model, whereas a similar shaped, downward-sloping
effect of age can be seen on the parameter ϑ

(•)
1 , • = 1, 2. The effect of age on the

parameter ϑ
(•)
2 , • = 1, 2 showed different forms depending on the margin. The

estimated dependence in terms of Kendall’s τ lies within τ̂ ∈ [0.392; 0.401], in-
dicating a considerably strong dependence between the progression times of the
eyes. Moreover, another important dependence measure obtained from our model
is the estimated lower-tail dependence coefficient λ̂U ∈ [0.584; 0.596], indicating
that the margins have a strong dependence in the lower tail. In other words,
progression times of AMD in the left and right eyes exhibit stronger dependence
over time (i.e. at very low survival probabilities, since the survival function is
monotonic decreasing in time). Note that the genetic covariate RS2284665 and
Severity scores below level 8 of each eye were excluded from the sub-model of the
dependence parameter ϑ(c). Figure 2 displays nine estimated joint survival func-
tions according to Equation (1), based on the fitted Clayton copula model with
log-normal margins for an hypothetical individual of median age (69.8 years),
baseline expression of RS2284665 and a combination of three levels of eye-specific
Severity scores.
Panel (a) corresponds to both eyes having the lowest level of the Severity score
(Left: 4 Right: 4), showing an optimistic progression prognosis (joint survival
function is close to 1). Drops in the joint survival function are not as pronounced
if only one eye deteriorates (Severity increases), see e.g. panels (b), (c), (d) or
(g). The aforementioned panels show that a relatively high survival probability
can still be expected from the healthy eye (larger extension of brighter color along
one axis). In contrast, Figure 2 panel (i) shows a bleak prognosis for a patient
whose left and right eyes have a Severity score of 8, compare for example the
values of the estimated joint survival function at 5 years for both eyes in panels
(d) or (e) against (i).
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FIGURE 2. Estimated joint survival functions of AMD progression for an indi-
vidual of median age (69.8 years), baseline expression of RS2284665 and different
combinations of Severity scores in the left and right eyes, respectively.

4 Discussion

We proposed a boosting algorithm to conduct data-driven variable selection for
dependent bivariate right-censored time-to-event responses modelled using dis-
tributional copula regression techniques. Although not shown here, simulation
studies indicate that our boosting estimation approach based on two-steps leads
to better performance compared to that proposed by Hans et al. (2023), which
resulted in independent margins in most scenarios. Our method exhibits a strong
shrinkage effect on the dependence parameter ϑ(c) relative to the parameters of
the marginal survival functions, particularly given a large number of covariates.
The shrinkage effect on all model coefficients was also affected by the censoring
rate in the margins, thus higher censoring rates led to a stronger shrinkage effect.
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Despite the fact that the data considered here was low-dimensional (in the num-
ber of covariates), we demonstrated how our proposed approach streamlined the
model-building process. Potential avenues of future research involve modelling
of cure fractions as well as the development of an implementation for general
censoring schemes (left, right and interval) akin to Petti et al. (2022) in order to
extend the applicability of our approach.

Acknowledgments: The work on this article was supported by the Ger-
man research foundation (DFG) through the grants KL3037/2-1, MA7304/1-1
(428239776).
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Abstract: In this paper, we consider modelling approaches for social interaction
data generated by participants (players) in the VIAPPL (Virtual Interaction
APPLication) game environment. We make use of agent-based models to generate
null distributions of interest, and also consider multinomial regression modelling.
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1 VIAPPL environment

In the field of psychology, it is of interest to study the emergence of social norms
and group structure shaped by social interactions. The VIAPPL environment
records the social interactions of participants (players) over a series of rounds in
a controlled (virtual) game. Within a VIAPPL game, players interact with each
other by exchanging “tokens”. Each player starts with a set number of tokens,
and, within each round, they select a player to whom they give a token (and
they may select themselves). See Fennell et al (2023), upon which this conference
paper is based.

Figure 1 displays the start (left panel) and end (right panel) of one round of a
VIAPPL game. Each player is represented as a node, where the node with the
thick border denotes the player on their own screen, i.e., Figure 1 displays the
screen of a player who is located at the bottom of the on-screen diagram. At the
start of a round, a player selects another player to whom they give a token. At
this point, they can only see their own selection. Once all players have made their
selections, all of these selections are revealed at the end of the round in a network
diagram. Having gained this knowledge (of all exchanges), players then enter the
next round. Note that players are allocated (randomly) to groups identified by
the purple and green node colours.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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FIGURE 1. VIAPPL game: (left panel) a player selects another player to whom
they give a token; (right panel) at the end of a round, all selections are revealed
in a network diagram. (Figure adapted from Fennell et al (2023).)

2 Linear token exchange model

Let Yij denote the number of tokens player i has received from player j over the
whole course of the game. Then, assume the linear model

Yij = α+ ρ Yji + γGij i ̸= j (1)

such that the number of tokens that player i receives from player j (i.e., Yij) is
related to the number of tokens given to player j (i.e., Yji), and also whether
or not they are in the same group via the binary indicator Gij (where Gij = 1
means that they are not in the same group). This is a model for the weighted
directed edges of the network formed by all token exchanges, where the edge
directed from node j to node i is described by the edge directed from node i to
j in combination with a group effect.

From the above model, ρ represents the level of reciprocity in the game, i.e.,
players giving and receiving tokens in pairs. In particular, if ρ is positive, this
indicates the presence of reciprocal behaviour. Behaviour towards players in the
opposite group is represented by γ, where a negative value indicates fewer token
exchanges with this group, i.e., a preference for the player’s own group.

3 Hypothesis testing via synthetic agent-based games

Equation (1) represents a somewhat non-standard statistical model for several
reasons: the Yij counts play a role as both a response and as a covariate; there
are constraints on these counts since each player has a fixed number of tokens,
exchanging 1 per round, over a fixed number of rounds; we expect there to be
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high connectivity (dependence) between a small number of players within the
same game.

Taken together, these features make it difficult to specify a reasonable likelihood
function, and hence conduct inference. Therefore, we propose numerically gener-
ating the distribution of estimated parameters under a specified null hypothesis
based on the results of an underlying agent-based model. Specifically, we sim-
ulate data with the same constraints as the original game (number of players,
token exchanges per round, and rounds), where we set up some null behaviour
within the simulated agents. A key behaviour of interest in this application area
is “agents giving at random” (i.e., ρ = γ = 0), where player decisions are not
influenced by tokens given to them or by the group assignment in the game.

Our setup is as follows.

1. Run an agent-based game, thereby generating synthetic counts Y ∗
ij under

some condition such as agents giving at random.

2. Fit model (1) to the synthetic data using least squares, producing estimates
ρ∗ and γ∗ from the null distribution.

3. Repeat steps 1 and 2 a large number of times (e.g., 10,000) to construct
the null distribution numerically.

4. Fit model (1) to the real data, producing estimates ρ̂ and γ̂ to be compared
with the null distribution.

4 Results

We consider modelling data from 4 VIAPPL games spanning 40 rounds, where
there are 14 different players in each of these games, and each player starts with
20 tokens. We apply the approach described in the previous section, leading to
the table of estimates in Table 1.
We can see that the coefficients are numerically very close across games 1, 2, and 4,
in each of which both the reciprocity and group effects are statistically significant
(compared to a giving-at-random game). In these games, the reciprocity effects
are positive and group effects are negative, meaning that players tend to develop
reciprocal bonds and give more often to players in their own group.

TABLE 1. Estimated model parameters.

Game 1 Game 2 Game 3 Game 4

Est. p-val. Est. p-val. Est. p-val. Est. p-val.
Intercept α 2.96 (0.78) 3.01 (0.66) 0.60 (<0.01) 2.77 (0.76)

Reciprocity ρ 0.31 (<0.01) 0.29 (<0.01) 0.87 (<0.01) 0.37 (<0.01)
Group γ -1.95 (<0.01) -1.96 (<0.01) -0.42 (0.11) -1.99 (<0.01)

Est. = estimate from the real data using least squares, p-val = p-value computed
by comparing the estimates to the reference null distribution generated from the
agent-based games.

The effects in game 3 differ from the other games, with a stronger reciprocity
effect and a weaker group effect. This can largely be explained by two particular
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players from different groups who formed an unusually strong reciprocal bond.
More generally, we have developed an approach for identifying influential players
based on comparing the difference in estimated model coefficients upon replacing
a player with a random-giving agent (similar to the classical “dfbeta” approach
used throughout statistical modelling). Further details on this, and network vi-
sualisations of the results, can be found in Fennell et al (2023).

5 Another VIAPPL game and the multinomial model

We have also considered data from another VIAPPL experiment where players
first agree/disagree with 4 different topics (rather than being placed in groups),
and then, in one go (rather than over rounds) distribute their tokens. For these
experiments, we have developed a multinomial regression model where the prob-
ability that player i gives a token to player j is proportional to exp(α + βAij)
where Aij ∈ {0, 1, 2, 3, 4} is the number of topics on which the players agree. This
alternative VIAPPL setup and model is omitted for brevity, but will be discussed
further in the presentation.
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Abstract: In order to analyze the potential damage to the human body caused
by exposure to ionizing radiation, one needs to have an estimation of the dose of
radiation received by the individual. In the context of a protein-based biomarker
for radiation exposure, we present here a new method that, unlike the approaches
that produce the estimation with data collected at a predetermined time after
exposure, allows us to estimate the dose at any time within a reasonable time in-
terval after exposure, as well as determine the time of exposure if needed. Namely,
we take existing calibration curves and generalize them using the decay mecha-
nism of γ-H2AX foci to build a model that describes the functional relationship
between the count of γ-H2AX foci in exposed blood cells and the time and dose
of exposure. This model is illustrated using both real and simulated data.
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Abstract: Multistate models are an appropriate choice when analysing part-
nership trajectories over time. Building a correct model for these trajectories
involves a series of non-trivial modelling decisions which can be automated in a
data-driven way by using statistical boosting. Here, we use boosted multistate
models to study partnership trajectories in Germany.
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1 Introduction

Partnership trajectories involve a series of transitions between states like dat-
ing, cohabiting, marrying or separating. Understanding the complexity of these
trajectories, and what differentiates individuals who break up their relationships
from those who successfully advance the partnership are relevant questions in
contemporary family demography research. An appropriate model to analyse
partnership trajectories is a multistate model where individuals in a romantic
relationship move across different states of the partnership over time. To investi-
gate individual heterogeneity in transitions between these states, a suitable set of
covariates is usually identified from the relevant literature and the available data.
Usually, studies tend to focus on specific classes of predictors to avoid overfitting
and collinearity issues, such as demographic variables, socio-economic factors or
variables measuring relationships’ quality.
Building a multistate model for such a complex process is not an easy task.
On the one hand, the analyst aims to select a model that is simple enough to
provide interpretable and general results, on the other hand, by doing so, some
important predictors of the transitions of interest may be overlooked. Additional
choices need to be made such as the choice of the time scale(s) to be used (clock-
forward or clock-reset approach), the linear or non-linear effect of covariates, if
any interaction between covariates should be considered, and whether some of

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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the covariates share the same effect on more than one transition, referred to as
cross-transition-type effects.
Statistical boosting, combines the predictive power of machine learning approaches
with interpretable statistical modelling techniques. It also provides a robust solu-
tion to multicollinearity issues (Mayr and Hofner, 2018). Hence, boosting might
offer a clever solution to some of the problems that arise from building a complex
multistate model. The idea of combining statistical boosting and multistate mod-
els was introduced by Reulen and Kneib in 2016. In a boosted multistate model
cross-transitions-type effects, as well as non-linear effects, are selected automati-
cally in a data-driven way. Here, we apply this boosting approach to multistate
model to identify the best predictors of transitions between states of a partnership
of young individuals in Germany.

1.1 Model specification

The transition rates in a multistate model can be formulated as:

λq(t) = λ0,q(t) exp(η) , (1)

where t is the time scale, q = 1, . . . , Q indicates the specific transition, λ0 is the
baseline rate and η is a linear predictor built from covariates and their effects.
The baseline hazard is estimated non-parametrically and the linear predictor is
estimated through minimization of the negative log-stratified-partial likelihood
w.r.t. η. Reulen and Kneib (2016) show that the negative log-statified partial
likelihood is a valuable choice as loss function for the gradient boosting algorithm.
We indicate with xp.q,i = xp,i · Itransi=q the transition-specific value of covariate
xp for individual i and transition q. In case only transition-specific covariates are
included in the linear predictor η in an additive way, for individual i:

ηi =

P∑
p=1

(
Q∑
q=1

fxp.q (xp.q,i)

)
, (2)

where fxp.q is a function of the transition-specific covariate xp for transition q. The
boosting algorithm fits η at the same time as it selects the best fxp.q . Continuous
covariates can be fitted with non-linear effect by decomposing fxp.q (xp.q,i) as the
sum of a linear part and a smooth deviation from linearity:

fxp.q (xp.q,i) = f linear
xp.q (xp.q,i) + f smooth

xp.q (xp.q,i) (3)

by ensuring that the covariates are centered before fitting and that the degrees
of freedom of the base learners are set equal to 1.

2 A boosted model for partnerships trajectories

We model partnership trajectories of young women and men living in Germany.
We specify the multistate model in Figure 1.
There are three transient states, one absorbing state and 5 possible transitions
in this model, identified by the edges in Figure 1. The model is non-reversible, as
each relationship is only allowed to move forward, and it can end either by union
dissolution or as censored observation. Multiple relationships per individual are
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Dating Cohabitation Marriage

Union 
dissolution

1 2 3

4

1 3

2

4

5

FIGURE 1. Multistate model of partnership trajectories.

allowed, and individuals can enter the model in any of the states dating, cohabi-
tation and marriage. We excluded direct transitions from the state dating to the
state marriage (without passing through the intermediate state of cohabitation)
because they are extremely rare in our data.
We use data from the German family panel (pairfam) (Huinink et al, 2011), which
is a longitudinal survey providing detailed information on romantic relationships
of German individuals sampled from four different cohorts. At each wave, respon-
dents and their partner are asked a set of questions concerning their relationship,
their values, their satisfaction and fertility plans, as well as updated information
on their relationship status and socio-economic status.
Such rich data provides the perfect opportunity to study predictors of transitions
between partnership states and investigate heterogeneity in these transitions. In
order to do so, we fit a boosted multistate model using the R-package mboost

(Hofner et al. (2014)) and specifying family = multistate() from the add-on-
package gamboostMSM (Reulen (2022)).
We consider 307 base-learners of transitions-specific covariates and let the algo-
rithm select the set of best predictors for each transition.
Our preliminary results, presented in Figure 2 and in Table 1, show that the
set of predictors selected by the boosting algorithm is rather small. In total,
the algorithm selected 31 transition-specific covariates, of which 16 continuous
or numerical covariates represented in Figure 2 (two with both linear and non-
linear effect, two with only non-linear effects and the other 12 with linear effect
only), and 15 dummy variables shown in Table 1. The estimated effects of the
numerical variables are all in the expected direction. For example, increasing
levels of satisfaction with the relationship are associated with decreasing risk
of union dissolution. Similarly, the presence of children is associated with lower
risk of dissolving a cohabitation or a marriage, while higher importance of being
in a partnership is associated with increasing risk of moving to a cohabitation.
Among the stronger estimated effects there is having definite plans for moving-in
together and having marriage plans, which increase the risk of experiencing both
events respectively, while not having any plans is associated with lower risk of
both events. Being infertile (or missing information on infertility) are associated
with negative partnership’s transitions, while higher education level of both the
respondent and the partner is associated with positive transitions.
In the next steps of our analysis, we will use consider different cross-transition-
type effects, non-linear effect of continuous variables, possibly time-varying effects
and interactions effects. We will also refine the initial choices of the base-learners
and the tuning of the model. Finally, we plan to estimate the standard errors
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FIGURE 2. Selected continuous predictors of partnership transitions, with linear
and non-linear effects. The title of each plot indicates the transition for which
the predictor has been selected.
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TABLE 1. Transition-specific covariate’s effects.

Covariate D→C D→UD C→M C→UD

infertile/incomplete -0.108 0.017 0.118
education: high 0.036 -0.032
partner’s educ.: high 0.005 -0.021
partner’s educ.: missing -0.359
plans for coh.: yes 1.25 -0.047
plans for coh.: no -0.05
plans for mar.: yes 0.875 -0.117
plans for mar.: no -0.653
household inc.: 2000+ -0.201

via bootstrapping, which would also correct for extra heterogeneity introduced
by observing multiple relationships per individual.

Acknowledgments: We are incredibly grateful to Guillermo Briseno-Sanchez
for the help with navigating the treacherous waters of statistical boosting and
the helpful comments to this abstract.
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Abstract: We propose a novel Bayesian model for inferring about the intensity
of observations in the joint tail over time, and for assessing if two stochastic
processes are asymptotically dependent. To model the intensity of observations
exceeding a high threshold, we develop a Bayesian nonparametric approach that
defines a prior on the space of what we define as EDI (Extremal Dependence
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dynamics of their combined losses over time.
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1 Introduction

Record-breaking extreme events—such as stock market crashes, widespread flood-
ing, wildfires and heatwaves—call for a better understanding and quantification
of their risk. Extreme value theory offers a sound probabilistic and statistical
setup for dealing with those challenges, given its ability to extrapolate into the
tails of a distribution (e.g., Coles, 2001). In a multivariate context, the degree of
association between the extreme observations of a random vector with common
margins, (X,Y ), is often evaluated by,

χ = lim
z→∞

P (X > z | Y > z). (1)

The measure χ quantifies the probability of X being extreme, given that Y is
extreme. If 0 < χ ≤ 1 the variables are asymptotically dependent (AD), whereas
if χ = 0 they are said to be asymptotically independent (AI).

In this paper we develop a Bayesian model for learning about the intensity
of extreme observations of a random vector over time, as well as for assessing

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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if two stochastic processes are asymptotically dependent. As it will be shown
below, our methods have links with a time-varying version of (1) (i.e., χ(t) =
limz→∞ P (Xt > z | Yt > z)).

2 Modeling time-changing joint extremes

Framework. Let {(Xt, Yt)}t∈[0,T ] be a sequence of independent random vectors,
and following standard practice in extreme value theory suppose that {Xt} and
{Yt} are unit Fréchet distributed, i.e., P (Xt < z) = P (Yt < z) = exp(−1/z),
with z > 0 for all t.

For AD processes, their degree of dependence can be characterized by what
we will refer to as the EDI (Extremal Dependence Intensity) function,

f(t) =
χ(t)∫ T

0
χ(τ) dτ

=
limz→∞ P (Zt > z)∫ T

0
limz→∞ P (Zτ > z) dτ

, (2)

where Zt = min(Xt, Yt). The EDI carries information on the intensity of obser-
vations in the joint tail over time, A = [u,∞)2 × [0, t] for u large. This follows
from the fact that for a sufficiently large u,

f(t) ∝ lim
z→∞

P (Zt > z) ≈ P (Zt > u) =
dΛ(A)

dt
, (3)

since the intensity measure

Λ(A) = E

(∫ t

0

Jτ dτ

)
=

∫ t

0

P (Zτ > u) dτ,

as Jτ = 1{Zτ>u} ∼ Bern{P (Zτ > u)}, where 1 is the indicator function.
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FIGURE 1. Left: Simulated data above threshold from a time-varying Gumbel
copula. Middle: Rug of times of exceedances of Zt = min(Xt, Yt) above threshold
and corresponding exceedances. Right: EDI.

A flat EDI, f(t) ∝ 1, indicates a constant intensity of joint extremes over time,
whereas a peaking EDI signals higher intensity in that period. See Fig. 1 an
illustration.

Learning from data. Bayesian inference for the EDI function involves defining
a prior over the space of EDI functions. Our prior consists of a mixture of finite
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Polya trees (Hanson, 2006). A Polya tree of level J can be regarded as an extension
of a parametric model; see Fig. 2 for an illustration.

Let I = {t/T : Zt > u} = {τ1, . . . , τk} be the standardized times of k = o(T )
joint observations exceeding a high threshold. The hierarchical representation of
our model for the EDI is as follows

I | F ∼ F, F ∼ PTJ(α, F0,θ), θ ∼ p(θ). (4)

Here, PTJ(α, F0,θ) is a Polya tree with two parameters: A centering cumulative
EDI (F0,θ(t)); a precision parameter (α > 0). The parameter α controls how
much deviations from the centering are allowed, in the sense that the smaller the
α the more one allows for deviations from the centering.
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FIGURE 2. Example of Polya tree densities centred at a Beta(5, 2) density over
stages 1–3; the third stage also shows a mixture of Polya trees mixing over
a ∼ LN(log 2, .05) and b ∼ LN(log 5, .05). The dashed line represents the quan-
tiles defining the bins.

3 Data illustration

We now apply the proposed methods to track the dynamics governing extreme
joint losses of FAANG (Meta’s Facebook, Apple, Amazon, Netflix and Alpha-
bet’s Google) stocks. These stocks have attracted retail investors, money man-
agers, and other professional stakeholders. Since our focus is on extreme losses,
we use weekly negative returns as a unit of analysis.

As can be seen from Fig. 3, most EDIs tend to peak around 2016–19, thus
indicating that extreme joint losses have occurred mostly around that time. From
a financial outlook the dynamics portrayed by the EDI in Fig. 3 may look surpris-
ing at first, keeping in mind that the 2020 pandemic crisis has led to some sharp
sell-offs worldwide. And in fact economists have painted a doomsday scenario for
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the real economy in the short-run since early 2020. Yet, Fig. 3 simply claims that
the relative frequency of extreme joint losses has been higher over 2016–2019,
than over the 2020 pandemic outbreak. Many geopolitical issues (e.g., US–China
trade war) and US policy issues (e.g., former President Trump impeachment)
may have been the drivers for some of these joint sell-offs over 2016–19.
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FIGURE 3. Pairwise EDI for FAANG stocks: Posterior mean of EDI based on
a mixture of finite Polya trees along with pointwise credible bands.
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Abstract: Fitting spatial models with a Gaussian random field as spatial random
effect poses computational challenges for Markov Chain Monte Carlo (MCMC)
methods, primarily due to two factors: computational speed and convergence of
chains for the hyperparameters. To deal with this, a Gaussian random field can
be approximated by a Gaussian Markov random field using stochastic partial
differential equations. This methodology is commonly used in “latent Gaussian
models”, where the inference is done by the Integrated Nested Laplace Approx-
imations, but rarely used in an MCMC method. In this contribution, we eval-
uated different parameterizations of the approximated Gaussian random field,
specifically using the Hamiltonian Monte Carlo algorithm of the Stan software.
A simulation study demonstrated that models using the hyperparameters ρ and
σu were better able to estimate the values used to simulate the spatial random
field. Their speed computation were faster compared to models parameterized
with κ and τ . In real data application, the index of relative abundance estimated
for Pollock indicates similar trends for the six models proposed. However, mod-
els incorporating ρ and σu demonstrated faster computation compared to those
utilizing κ and τ , corroborating the results found in the simulation. Even more
important, none of these models encountered convergence issues, as indicated by
the Rhat statistic.
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Abstract: Linearly combining the elements of a vector of covariates to get a
scalar-valued feature is common practice in regression modelling. In this work,
we propose a novel approach to integrate single index effects in Generalised Addi-
tive Models (GAMs). In particular, model fitting and inference are performed by
exploiting the efficient methods proposed in Wood et al (2016) [JASA 111, 1548-
1563]. We consider an application to daily electricity load consumption data,
demonstrating improved predictive performance relative to traditional GAMs.
This integrated approach provides a valuable tool to capture complex relation-
ships in real-world applications, while preserving interpretability.
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Abstract: The area under the receiver operating characteristic curve (AUC) is
a useful tool for evaluating the ability of a diagnostic test to distinguish between
two groups or classes. In practice, multiple diagnostic tests or biomarkers are often
combined to improve diagnostic accuracy. This paper utilises principal component
analysis (PCA) to identify the best linear combination of multiple biomarkers to
enhance diagnostic accuracy, specifically by maximising the AUC.

Keywords: Diagnostic accuracy; Combining biomarkers; AUC; PCA.

1 Introduction

Measuring the accuracy of diagnostic tests is crucial in many application areas,
including medicine, machine learning and credit scoring. The receiver operating
characteristic (ROC) curve is a useful tool for assessing the ability of a diagnos-
tic test to discriminate between two classes. However, one diagnostic test may
not be enough to draw a useful decision; thus, in practice, multiple biomarkers
may be combined to improve diagnostic accuracy (Pepe and Thompson, 2000).
This paper uses PCA to improve diagnostic accuracy by identifying the best
linear combination of biomarkers to maximise AUC. PCA is a statistical tech-
nique used for data visualisation and dimensionality reduction in various fields,
including machine learning and signal processing. Suppose that X is a contin-
uous random quantity of a diagnostic test result and that larger values of X
are considered more indicative of disease. X1 and X0 are used to refer to test
results for the disease and non-disease groups, respectively. The ROC curve is
defined as {(FPF(c),TPF(c)), c ∈ (−∞,∞)}, where FPF(c) = P (X0 > c) and
TPF(c) = P (X1 > c). The area under the ROC curve, AUC, is a useful summary
that measures the overall performance of a diagnostic test. Higher values indicate
more accurate tests, with AUC = 1 for perfect tests and AUC = 0.5 for uninfor-
mative tests. Consider test data from the disease group {x11, . . . , x1n1

} and from
the non-disease group {x01, . . . , x0n0

}, with the two groups fully independent.Thus,

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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the empirical AUC is given by

ÂUC =
1

n1n0

n0∑
j=1

n1∑
i=1

[
1
{
x1i > x0j

}
+

1

2
1
{
x1i = x0j

}]
.

2 Methods

A practical question that often arises is how to effectively combine information
from multiple biomarkers to accurately differentiate between diseased and non-
diseased groups. The concept of linearly combining biomarkers to improve diag-
nostic accuracy by maximising the AUC has been explored by Su and Liu (1993)
under the assumption of normality, while others have proposed distribution-
free approaches, e.g., Pepe and Thompson (2000) and Coolen-Maturi (2017).
Consider a set of p biomarkers, X1, X2, . . . , Xp, with their linear combination
Y = α1X1 + α2X2 + . . . + αpXp. The goal is to find optimal values for α =
(α1, α2, . . . , αp)

T to maximise the AUC and, consequently, enhance the diagnos-
tic accuracy. To this end, we search for the best α = (α1, α2, . . . , αp)

T values by
evaluating the AUC for the combined test

∑
j αjXj across 101 equally spaced

values for each αj ∈ [0, 1], j = 1, . . . , p such that
∑
j αj = 1. Various meth-

ods have been proposed in the literature to determine the optimal values with
different restrictions, e.g., Pepe and Thompson (2000). However, Coolen-Maturi
(2017) has shown that when dealing with uncorrelated or weakly correlated tests,
implementing the above restriction when combining biomarkers leads to greater
improvement compared to other restrictions. This makes it suitable for combin-
ing biomarkers using PCA, as all principal components are uncorrelated from
one another. More discussion about the use of this restriction and its advantages
is given in Coolen-Maturi (2017). The principal components can be written as
linear combinations of X1, X2, . . . , Xp (j = 1, . . . , p) as

PCj = aj1X1 + aj2X2 + . . .+ ajpXp

The first principal component is the linear combination of X1, X2, . . . , Xp that
has maximum variance (among all linear combinations); that is, it accounts for as
much variation in the data as possible. These coefficients for the first component
are obtained to maximise its variance, subject to

∑p
j=1 a

2
1j = 1. The second

principal component has the second maximum variance, and so on. So the aim
of this paper is to find the optimal γ = (γ1, γ2, . . . , γq)

T , that maximises the
empirical AUC, where γj ∈ [0, 1], and

∑q
j=1 γj = 1, q ≤ p, that is

T = γ1PC1 + γ2PC2 + . . .+ γpPCq

To combine multiple biomarkers, the biomarker measurements should be compa-
rable, or some form of normalisation should be conducted.

3 Application

In a study, blood samples were collected from 120 patients, with 82 normal and
38 carriers, to screen carriers of a genetic disorder. Four measurements, M1,
M2, M3, M4, were taken, transformed to a logarithmic scale, and standardised
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(Cox et al., 1982). The empirical AUC for these biomarkers are ÂUC1 = 0.9034,

ÂUC2 = 0.7526, ÂUC3 = 0.8232, and ÂUC4 = 0.8789. So, M1 outperformed
other biomarkers, followed byM4, thenM3, andM2.M1 has a strong correlation
withM3 andM4 (r = 0.64), andM3 has a strong correlation withM4 (r = 0.56),
whereasM2 has weak correlation (r < 0.3) with other measurements. After PCA,
the extracted loadings are:

PC1 = 0.56M1 + 0.26M2 + 0.55M3 + 0.56M4

PC2 = −0.30M1 + 0.94M2 − 0.13M3 − 0.01M4

PC3 = 0.07M1 − 0.07M2 − 0.73M3 + 0.68M4

PC4 = 0.77M1 + 0.19M2 − 0.39M3 − 0.47M4
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FIGURE 1. Scree plot of the components (left) and Biplot of the biomarkers
with respect to the principal components (right).

It seems thatM1,M3, andM4 tend to move together, contributing positively and
similarly to PC1. PC2 is primarily influenced positively by M2 and negatively
by M1 to a lesser extent. M3 and M4 have weaker contributions to PC2. M3

and M4 have similar projections onto PC3 but with opposite signs. Finally, PC4

is primarily influenced positively by M1 and, to some extent, negatively by M3

and M4. Figure 1 indicates that PC1 alone explains 58.2% of the variance, and
together with PC2, they explain 81.5%. In Table 1, we used different combinations
of these PCs to find the optimal values that maximise the empirical AUC. Using

PC1 alone yields ÂUC = 0.9445, higher than any other biomarker alone. When
considering two PCs together, adding PC1 improves performance over using it
alone; however, the best improvement is achieved by combining PC1 and PC4

(ÂUC = 0.9564), followed by PC1 and PC2 (ÂUC = 0.9506). Similarly, when
considering three PCs, the best performance is achieved by combining PC1, PC2

and PC4 (ÂUC = 0.9615). Combining all PCs results in a minor improvement

(ÂUC = 0.9618), with more weights on PC1 and PC4.
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TABLE 1. Blood samples data set, combining biomarkers through PCA

Principal Components γ̂opt ÂUC

PC1 (1, 0, 0, 0) 0.9445
PC2 (0, 1, 0, 0) 0.5257
PC3 (0, 0, 1, 0) 0.5273
PC4 (0, 0, 0, 1) 0.5870

PC1 + PC2 (0.78, 0.22, 0, 0) 0.9506
PC1 + PC3 (0.95, 0, 0.05, 0) 0.9464
PC1 + PC4 (0.68, 0, 0, 0.32) 0.9564
PC2 + PC3 (0, 0.52, 0.48, 0) 0.5597
PC2 + PC4 (0, 0.11, 0, 0.89) 0.5931
PC3 + PC4 (0, 0, 0.26, 0.74) 0.6088

PC1 + PC2 + PC3 (0.76, 0.20, 0.04, 0) 0.9519
PC1 + PC2 + PC4 (0.47, 0.15, 0, 0.38) 0.9615
PC1 + PC3 + PC4 (0.59, 0, 0.08, 0.33) 0.9586
PC2 + PC3 + PC4 (0, 0.21, 0.29, 0.59) 0.6178

PC1 + PC2 + PC3 + PC4 (0.51, 0.10, 0.10, 0.29) 0.9618
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Abstract: Mixed-effects models for survival, known as frailty models, can be
used to capture individual or cluster-specific unobserved heterogeneity. A com-
mon choice is assuming the random effects follow a parametric distribution,
e.g. a normal distribution. However, computing the marginal likelihood can be
computationally expensive and infeasible in a high-dimension setting. Alterna-
tively, a non-parametric approach avoids the normality assumption for random
effects and can be less computationally demanding. The data used are from the
Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. The aim
is to model prostate cancer progression to evaluate screening strategies, consid-
ering the PSA longitudinal biomarker, accounting for unobserved heterogeneity,
interval-censored, left-truncation, and right-censored data.
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Abstract: We introduce a new species sampling model to account for species
misidentification. The assumption is that each sampled individual or specimen
has an unknown probability of being misclassified. Misclassified units constitute
fictitious cases that artificially inflate the number of species observed only once.
We consider standard parametric models for the true number of occurrences of
each species, and present a Gibbs sampler algorithm to perform Bayesian infer-
ence. The proposed model is applied to a real-world microbial diversity dataset.

Keywords: Capture-recapture models; Species richness problem; Bayesian in-
ference; Thinned processes.

1 Introduction

Consider a sample of individuals from a population, and a procedure classifying
each individual into distinct “species”. The problem of the estimation of the total
number N of distinct species in the population based on such a sample is often
termed the “species sampling problem” and it is commonly tackled by assuming
that the classification procedure is error-free. In this framework, let X∗

i , for i =
1, . . . , N , be the number of sampled individuals belonging to the i − th species.
Unobserved species correspond to X∗

i = 0. Let n∗
j =

∑N
i=1 I(X

∗
i = j) be the

number of species with j sampled occurrences. Then, n∗
0 represents the number

of unobserved species that must be estimated to obtain N = n∗
0 +

∑
j≥1 n

∗
j .

Inference can be conducted by specifying a model for the random variable X∗
i

for i = 1, . . . , N , and standard assumptions are that X∗
i , for i = 1, . . . , N , are

independent and identically distributed observations from a Poisson, or more
realistically, a mixed-Poisson distribution (see, for instance, Bunge et al. (2014)).
Misidentification of units has not been commonly addressed in species sampling
problems although the problem has received some attention in the similar frame-
work of capture-recapture. In animal abundance estimation, errors in identifica-
tion have been studied in different areas. For example, abundance estimates based

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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on photo–identification heavily depend on the photographic quality and distinc-
tiveness of markings on the body of the animals. In genotype-based identification,
animal samples are collected in an area and analyzed to extract DNA. It is com-
monly assumed that genotyping errors lead to fictitious genotypes that cannot
be associated to other existing cases, thus erroneously increasing the number of
single captures, which lead to an overestimation of the population size.
The latter assumptions are adopted in the so-calledMt,α capture-recapture model,
(see Link et al (2010)). This model generalizes the classicalMt model by assuming
that unit misidentification occurs independently and with the same probability
α at the different sampling occasions. In addition, misidentified units cannot be
confused with other population units with the effect of creating a ghost (i.e.,
fictitious) capture history with precisely one capture.

2 The missing link model

In this Section, we outline our model for the species sampling problem with
misidentification. We assume that the quantities X∗

i for i = 1, . . . , N represent
the latent number of captures in our sample for a certain species i we would
have observed without identification errors. Let f∗(·; θ) be the baseline distri-
bution of the error-free captures, i.e. f∗(j; θ) = P (X∗

i = j). The generating
mechanism of our model is the following: for each species i with X∗

i captured
individuals/specimens, we have a latent number Mi, (Mi ≤ X∗

i ) of unidentified
individuals (missing links) such that we erroneously count Xi = (X∗

i −Mi) occur-
rences for species i. The observed data are represented by the vector (n1, n2, . . .)
where

n1 =

N∑
i=1

I(Xi = 1) +

N∑
i=1

Mi nj =

N∑
i=1

I(Xi = j) j ≥ 2.

Notice that we implicitly assume that each time an individual is not correctly
identified, this creates a new non-existing species observed exactly once.
To complete the model we assume that Mi|X∗

i = x∗i is Binomial(x∗i , µ) so that
the marginal distribution of Xi can be generally written as

f̃(j; θ, µ) = P (Xi = j | θ, µ) =
∞∑

mi=0

(
j +mi

mi

)
µmi(1− µ)jf∗(j +mi; θ) j ≥ 0.

Straightforward calculations show that assuming for f∗ a Poisson(λ) distribution,
the resulting distribution f̃ is Poisson(λ(1− µ)) and Mi is Poisson(µλ) and it is
independent onXi. Similarly, taking for f∗ a Negative Binomial(r, p) distribution,
the resulting distribution f̃ is Negative Binomial(r, p/(1−µ(1−p))) andMi|Xi =
xi is Negative Binomial(xi + r, 1− µ(1− p)).

2.1 Bayesian inference

In the following, we show how to perform Bayesian inference under the missing
link model when the baseline distribution f∗ is Poisson(λ). Let n be the observed
data vector (n1, ..., nj , ...) and let ñ be the vector (ñ0, ñ1, ..., ñj , ...), where ñj =∑N
i=1 I(Xi = j) is the number of species with j identified occurrences. Note that
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N =
∑
j≥0 ñj and nj = ñj for j ≥ 2. We can exploit a Gibbs sampler algorithm

to simulate from the posterior distribution

p(ñ0, ñ1, λ, µ|n) ∝ p(n1|ñ, λ, µ)p(ñ|λ, µ)p(λ)p(µ). (1)

Note that, given ñ, we know that there are N =
∑∞
j=0 ñj species. Moreover, since

n1 = ñ1 +M , where M =
∑N
i=1Mi, and each Mi is Poisson(µλ) independently

on ñ, we have that
n1|ñ, λ, µ ∼ ñ1 + Poisson(Nλµ).

As for the second factor of the right hand side of (1), we have:

p(ñ|λ, µ) =

(
N

ñ0, ñ1, . . . , ñj , . . .

)
∞∏
j=0

(
e−λ(1−µ)(λ(1− µ))j

j!

)ñj

p(N).

We adopt a Gamma(a, b) prior for λ, a Beta(f, g) prior for µ, and p(N) ∝ 1/N as
a prior for N . Then, the full conditional for λ, is a Gamma(s+ a,N + b), where
s is the total number of captures

∑
j>0 jnj . The full conditional distribution of

µ is Beta(n1 − ñ1 + f, s− (n1 − ñ1)+ g). Setting n2+ =
∑∞
j=2 nj , the probability

mass function of the full conditional distribution for ñ0 is given by

p(ñ0| · · · ) ∝ e−µλ(ñ0+ñ1)(ñ0 + ñ1 + n2)
n1−ñ1

(ñ0 + ñ1 + n2+)!

ñ0!(ñ0 + ñ1 + n2+)
(e−λ(1−µ))ñ0

where ñ0 ≥ 0. The full conditional distribution for ñ1 is given by

p(ñ1| · · · ) ∝ e−µλ(ñ0+ñ1)(ñ0 + ñ1 + n2)
n1−ñ1

(n1 − ñ1)!

(ñ0 + ñ1 + n2+)!

ñ1!(ñ0 + ñ1 + n2+)

× (e−λ(1−µ)λ(1− µ))ñ1

where 0 ≤ ñ1 ≤ n1.

3 Microbial diversity application

In this Section, we apply the missing link model to a real-world dataset of marine
microbial diversity study. The data summarized in Figure 1 (top-left panel), were
analyzed in Hong et al. (2006). The detected number of singletons species is 381,
which constitutes 74% of the observed species and 39% of the observed specimens.
Since both the sequencing process and the clustering process utilized to construct
the data might have been subject to errors, the proposed missing link model
represents a valuable option for analyzing these data. To highlight the potentiality
of our approach, in Figure 1 we report the posterior distribution of N (top-right
panel) and the posterior distribution of µ (bottom-left panel) obtained with the
Gibbs sampler scheme described in the previous Section. Finally, we also show the

posterior distribution of Shannon’s diversity index E = exp
(
−
∑
j≥1 n

∗
j
j
s
ln j

s

)
(bottom right panel).
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FIGURE 1. Microbial diversity application: data set and posterior distributions
for N , µ and the Shannon’s diversity index.

4 Conclusions

We have considered several other parametric families as baseline for our model,
e.g. the lognormal Poisson distribution, Bulmer (1974), the inverse Gaussian Pois-
son distribution, Ord and Whitmore (1986), the Poisson-Lindley distribution,
Pathak et al. (2024), the Consul’s generalized Poisson and Conway-Maxwell-
Poisson distributions, Anan et al (2017). However, it is not just as easy to adapt
our algorithm to other parametric choices. In fact, in our MCMC scheme we take
advantage of the simple form of the distribution of the thinned counts Xi, and of
the conditional distribution of Mi|Xi given their sum, and it appears that those
variables do not have a simple distribution under the aforementioned cases. Of
course, it is possible to adopt different algorithms, such as those based on the
approximate Bayesian computation (ABC) techniques, as illustrated in Di Cecco
and Tancredi (2024).
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Abstract: Flow cytometry is a high-throughput single-cell analysis technique for
immunological research. Manual gating has traditionally been used to identify cell
populations in cytometry. Data clustering algorithms have also been developed for
this purpose. We present a semi-supervised decision tree algorithm which utilises
user-provided information to implement population-specific variable selection,
outlier removal, and pruning. We apply our algorithm to a flow cytometry data set
and show that it can outperform state-of-the-art cytometry clustering algorithms.
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1 Introduction

Flow cytometry allows an immunological researcher to indirectly measure the
expression level of a range of protein markers for every cell in a tissue sample.
The identification of cell populations in cytometry data is crucial as it facilitates
downstream analysis of how specific cell types differ between subjects from differ-
ent experimental groups. Population identification has traditionally been carried
out using a manual approach called gating.

To perform manual gating, a researcher selects a pair of variables on which to view
a scatterplot of the data, and then uses software to draw a polygonal boundary
around the population of interest. Often, boundaries differentiate between cells
with high or low values for one or both of these variables. The subset within the
boundary can be further refined by repeating the process with another pair of
variables. This process is carried out for every cell population in the data set.
Manual gating is time-consuming and is becoming increasingly infeasible as the

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
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number of variables which can be analysed by modern cytometers continues to
grow. Manually drawing boundaries can also lead to reproducibility issues.

2 Method

Algorithm 1: Tree Construction

P := Cell populations, X := Individual cells, V := Variables.
T (p, v) ∈ {−1, 0, +1} := Table value
xv := Value of cell x for variable v.
(lv, uv) := Lower and upper cutoff values for variable v.
for p in 1 to |P|

s← 0; p′ ← p; P(0)
p ← P

V(0)
p ← {v ∈ V : T (q, v) ̸= 0 ∀ q ∈ P}
X (0)

p ← {x ∈ X : xv ∈ (lv, uv) ∀ v ∈ V(0)
p }

W(0)
p ← {}

while p′ = p

Select a split variable, v∗ ∈ V
(s)
p , and a split location, y∗.

W(s+1)
p ←W(s)

p ∪ {v∗}
if the split selection algorithm is successful

Remove populations with conflicting descriptions:

P(s+1)
p ← {q ∈ P(s)

p : T (q, v∗) = T (p, v∗)}
Identify new variables for which these populations are defined:

V(s+1)
p ← {v ∈ V : T (q, v) ̸= 0 ∀ q ∈ P(s+1)

p } \W(s+1)
p

Remove cells which are on the wrong side of y∗:

X (s+1)
p ← {x ∈ X (s)

p : sign(xv∗ − y∗) = T (p, v∗)}
Remove cells which are outside the cutoffs:

X (s+1)
p ← {x ∈ X (s+1)

p : xv ∈ (lv, uv) ∀ v ∈ V(s+1)
p }

s← s+ 1
else

p′ ← p+ 1
end if else

end while

Pp ← P(s)
p ; Xp ← X (s)

p

end for
The unique elements of {Xp : p ∈ P} are the final clusters.
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Algorithm 2: Split Selection

for v in V(s)
p

f̂v := Kernel density estimate of X (s)
p for variable v.

peak(v) := Global maximum of f̂v.

peak(v, 1), . . . ,peak(v,M) := Other local maxima of f̂v.

valley(v,m) := Minimum of f̂v between peak(v) and peak(v,m).
depth(v,m) := (peak(v,m)− valley(v,m))× 100

peak(v)

m∗ ←argmax
m {depth(v,m)}

valley(v)← valley(v,m∗); depth(v)← depth(v,m∗)
end for
if max

v {depth(v)} > minimum depth
v∗ ←argmax

v {depth(v)} ; y∗ ← valley(v∗)
else

for v in V(s)
p

boundary(v, 1), . . . ,boundary(v,R)← regularly spaced points.
BIC(v, r) := BIC of a two-component univariate GMM with
components defined by boundary(v, r).

BIC(v) := BIC of a one-component univariate GMM.

diff(v, r)← (BIC(v, r)− BIC(v))
/ (

2 log
∣∣∣X (s)

p

∣∣∣)
r∗ ←argmax

r {diff(v, r)}
boundary(v)← boundary(v, r∗); diff(v)← diff(v, r∗)

end for
if max

v {diff(v)} > minimum diff
v∗ ←argmax

v {diff(v)} ; y∗ ← boundary(v∗)
else

Split variable, v∗, and split location, y∗, not identified.
end if else

end if else

To apply the gateTree algorithm, the user must describe a set of cell populations
of interest as positive, negative, or neutral / undefined for a selection of variables.
We refer to a population as positive (negative) for a given variable if it has a high
(low) expression level. The algorithm recursively partitions the cells based on
whether their values for one of the selected variables are higher or lower than
the threshold constructed by the algorithm to optimally split that variable. In
particular, the sequence in which the variables are split is designed to identify
the described populations.

gateTree partitions a selected variable either at the deepest density valley of
a univariate kernel density estimate or at the optimal boundary between two
univariate Normal distributions, according to BIC. If several of the variables
which gateTree is trying to split have viable density valleys, then the variable
whose valley has the greatest depth is chosen. If none of these variables have viable
density valleys, then the algorithm attempts to use mixture model boundaries
instead. If several of these variables have viable mixture models, then it chooses
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the one with the best BIC score.

A detailed description of the procedure followed by gateTree is provided in Algo-
rithm 1 and Algorithm 2. It is implemented in an open-source R package available
at https://github.com/UltanPDoherty/gateTree.

We refer to gateTree as a semi-supervised clustering algorithm because it uses
minimal descriptions of the populations to be identified. However, the term semi-
supervised is often used to refer to algorithms which use a subset of true class
labels as training data. gateTree does not require any of the observations to be
labelled and does not require any training data.
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FIGURE 1. Left: Tree diagram showing how gateTree partitioned the data for
the Monocyte pathway of the haemodialysis data set. Right: A CD14 vs CD16
scatterplot of the haemodialysis data set coloured according to the manual gating
for the Monocyte pathway. The CD16 and CD14 splits constructed by gateTree
for this pathway are also displayed.

We will use the Monocyte gating pathway from the haemodialysis data set dis-
cussed in Section 3 as an illustrative example. The user information for this path-
way described three populations of monocytes: Classical (CD16-CD14+), Inter-
mediate (CD16+CD14+), and Non-Classical (CD16+CD14-CD56-CD8-). CD16,
CD14, CD56, and CD8 are variables in the data set. The Classical Monocytes are
described as CD16-CD14+ because they have negative and positive expression
levels for CD16 and CD14, respectively.

The tree diagram in Figure 1 illustrates how gateTree partitions the haemodialy-
sis data for the Monocyte pathway. Based on the user-provided information, the
first split has to be on either CD16 or CD14, as these are the variables which
the descriptions of the three populations have in common. Any observations with
extreme values for the CD16 or CD14 variables, according to user-provided cut-
off thresholds, were automatically allocated to the “Unassigned” subset. After
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this first split, the Classical Monocytes (CD16-CD14+) lie on the CD16- branch,
while the Intermediate (CD16+CD14+) and Non-Classical (CD16+CD14-CD56-
CD8-) Monocytes lie on the CD16+ branch. Since the only population on the
CD16- branch is the Classical Monocytes (CD16-CD14+) and it is only described
with respect to CD16 and CD14, the next split for this branch must be on CD14.
The resulting CD16-CD14- branch is immediately pruned because there are no
user-described populations lying on it. All observations on the pruned branch are
moved to the “Unassigned” subset. Meanwhile, the CD16-CD14+ branch cannot
be split further without subdividing the Classical Monocytes. We can now asso-
ciate the observations on this branch with the Classical Monocyte population.
The process used to identify this subset of observations featured user-informed
and population-specific variable selection, outlier removal, and pruning.

3 Application and results

To demonstrate gateTree’s performance, we applied it to a flow cytometry data
set from a haemodialysis study. We only included the pre-gated single-cell sub-
set of 32,624 observations and the 9 fluorescence channels. We also applied two
publicly available population identification algorithms: cytometree (Commenges
et al., 2018) and FlowSOM (van Gassen et al., 2015). For cytometree’s AIC pa-
rameter, we ran t = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and 1. For FlowSOM’s number
of metaclusters parameter, we ran nClus = 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30,
and 50.

The manual gating consisted of four gating pathways with gates from different
pathways allowed to overlap. The user information utilised for the Monocyte
pathway is described in Section 2. Each of the other three pathways consisted
of two populations with similar user descriptions. For every pathway, we ran cy-
tometree and FlowSOM both on the full data set and on the subset of variables
which featured in that pathway’s manual gating. For every pathway, the perfor-
mance of each algorithm was evaluated using the unweighted mean F1 measure
with respect to the manual gating.

TABLE 1. Maximum unweighted mean F1 values per pathway for each algorithm.

B & CD8+ γ-δ Monocyte NK

gateTree 0.984 0.991 0.864 0.938
cytometree (All) 0.976 0.281 0.775 0.511
cytometree (Selected) 0.980 0.025 0.876 0.866
FlowSOM (All) 0.955 0.924 0.584 0.685
FlowSOM (Selected) 0.975 0.988 0.627 0.852

Table 1 shows that, for each of the four pathways, a single clustering solution con-
structed by gateTree was able to compete with or outperform the best-performing
clustering solution from each other algorithm. This is true even when some of the
information that gateTree utilises was provided to the other algorithms via vari-
able selection.
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4 Conclusion

Our user-informed tree algorithm outperformed two state-of-the-art population
identification algorithms. gateTree achieved this strong performance by using a
tree structure to mimic manual gating’s sequential subsetting approach and by
utilising information about the populations of interest.
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tentially non-linear effects, as well as residual spatio-temporal correlation, which
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1 Introduction

Surveys in the field of community ecology collect large datasets on the abundance
of different species at certain locations and time points. Multiple factors are be-
lieved to influence abundance patterns. Species distribution models (SDM) are
often expressed as generalized linear mixed models (GLMM) with fixed effects
for the abiotic factors and random effects capturing the residual spatio-temporal
correlation, reflecting the so-called biotic phenomena (e.g. predator-prey abun-
dance cycles, species’ spatial segregation, symbiotic or competitive relationships).
Further complexity arises in a joint SDM framework, where several approaches
to model between-species correlation structures have been proposed including la-
tent variable models (Tikhonov et al. (2020)) and spatio-temporal basis functions
(Hui et al. (2023)). All these approaches involve richly-parametrized GLMMs that
require regularization to avoid overfitting.
Regardless of the chosen approach, it is often the case that ecologists have prior
insight into the relative importance of each factor in explaining the response. As
a consequence, a Bayesian approach would be particularly beneficial in these ap-
plications to impose a regularization based on prior information. We argue that
thinking in terms of quantities like proportions of variance due to the individ-
ual model components is more intuitive than considering the original variance

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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parameters. This can be achieved using variance partitioning (VP)-based pri-
ors (Franco-Villoria et al. (2022), Fuglstad et al. (2020)) which make use of a
reparametrization of the variance parameters of a mixed model into a total vari-
ance and a simplex vector containing the proportional contributions to the total
variance from each model component.
The common advantage of VP priors consists in the fact that it is much easier to
introduce prior information in the model using these new parameters. One can
easily implement very different types of prior knowledge on the variance contri-
butions of the different model components, based on what is known about the
case study at hand. As an example, assuming a Uniform distribution on the sim-
plex would reflect ignorance a priori about the relative importance of each term,
while a Dirichlet inducing sparsity on the proportions of variance would pro-
vide a suitable solution to perform variable selection in sparse linear regression.
Furthermore, a hierarchical decomposition of the total variance through subse-
quent splits can be chosen to favour shrinkage towards simpler model structures
(Franco-Villoria et al. (2022), Fuglstad et al. (2020)).
The VP-based priors proposed so far only deal with specific effects, e.g. stationary
or linear effects. Challenges arise in their extension to complex models, such as
SDMs which often contain smooth effects of continuous covariates as well as
Intrinsic Gaussian Markov random fields (IGMRFs) for spatial and time effects.
The goal of this paper is to develop a unified VP framework applicable to more
complex settings, such as SDMs.

2 Proposal

Consider the following SDM in which the linear predictor of a generic abun-
dance response can be written as an additive model of P linear effects for the
X1, . . . , XP covariates, a smooth effect over spatial coordinates (S1, S2), and an-
other smooth effect for time T . The smooth effects are both expressed using a
finite-dimensional basis, BS(·) and BT (·), and a corresponding set of coefficients,
u and v respectively:

η = µ+

P∑
p=1

Xpβp +BS(S1, S2)
Tu+BT (T )

Tv. (1)

A latent Gaussian model is assumed on all coefficient sets, i.e. they are spec-
ified as Normally distributed with 0 mean and fixed precision matrix condi-
tional upon a single scale parameter: βp|σ2

p ∼ N(0, σ2
p) p = 1, . . . , P , u|σ2

S ∼
N(0, σ2

SQ
−1
S ),v|σ2

T ∼ N(0, σ2
TQ

−1
T ). The VP parameters can then be defined as:

V =

P∑
p=1

σ2
p + σ2

S + σ2
T ω =

[
σ2
1

V
, . . . ,

σ2
P

V
,
σ2
S

V
,
σ2
T

V

]
(2)

The great advantage of VP-based priors comes from the possibility of assigning
priors directly on the total variance in the linear predictor (i.e. V ) and the set of
proportions of variance due to each effect (i.e. ω). However, it is not guaranteed
that these intuitive interpretations actually match the VP parameters in (2).
This only occurs if all model components in (1) are processes on a comparable,
standardized scale so that the elements of ω actually represent the corresponding
variance contributions.
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For linear effects, it is sufficient to use the standardized version of Xp for p =
1, ..., P . However, it is not as simple for effects defined using a generic basis matrix,
e.g. the spatial and temporal effects in this model. We propose a scaling procedure
inspired by the work of Sørbye and Rue (2014) on IGMRFs that guarantees that
the parameter of V and ω match their intuitive interpretation. This is achieved
by scaling each of the bases in the model by the square root of a term-specific
constant C defined as the variance of the corresponding process conditional on
σ2 = 1 and marginalizing over the covariates’ distribution. For example, the
constant for the temporal effect is defined as:

CT =

∫
t∈T

BT (t)
TQ−1

T BT (t) · π(t) dt (3)

where T is the support of interest for variable T and π(t) is its probability distri-
bution. CS is analogously defined using a given S support and π(s1, s2) density.
This scaling procedure can be viewed as a generalization of the standardization
procedure used for linear effect, as C simplifies to the variance of the correspond-
ing covariate in this case. We argue that VP-based priors can be safely employed
only after scaling each term in the model according to this procedure. An advan-
tage of the scaling procedure lies in the possibility of immediately evaluating the
variance partition structure of the model considering the posterior distribution
of the ω vector. This is possible because after scaling each entry will represent
the proportional contribution of a model component to the response variability.
A challenging aspect in the scaling constant definition in Equation 3 is that it
requires the choice of a distribution π(·) for the corresponding covariate. While it
is reasonable to assume a Uniform distribution over the spatio-temporal support,
this becomes a non-trivial choice in the case in which the procedure must be
applied to other types of effects, such as smooth effects of continuous covariates.

3 Application

3.1 Data

The model defined in Equation (1) is applied to the NOAA-NEFSC fall bot-
tom trawl survey dataset, studied in Hui et al. (2023) and publicly available at:
https://github.com/fhui28/CBFM. The survey contains presence/absence data
for 39 fish species from N = 5892 different space-time locations in the North-
West Atlantic region, spanning a 20-year period. Figure 1 shows the study region
with the number of species found in each location. Information about 5 envi-
ronmental covariates is also available: surface temperature and salinity, bottom
temperature and salinity, depth. A binary variable indicating the type of vessel
collecting the data at each location can be used as an additional covariate.

3.2 Model and results

The model of Equation 1 is applied to each of the 39 species from the survey
to illustrate how the proposed method provides a simple and intuitive way to
study the contributions of different factors on the variability of an occurrence
response. A logistic model is chosen to link the linear predictor to the binary
presence-absence response for each species. The five environmental covariates
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FIGURE 1. Number of different species, i.e. richness, detected in each of the
locations from the survey.

and the vessel dummy are entered into the model with linear effects, following
standardization. A 2-dimensional B-Spline basis with an Intrinsic CAR model
(Besag et al. (1991)) precision matrix is used for the spatial effect, whose knots
are equally spaced on a grid of 50x50km cells. A B-Spline with 20 basis functions
is chosen for the temporal effect, with a 1st order random walk prior on the
coefficients. A Uniform distribution is assumed over the observed spatio-temporal
support for the computation of the scaling constants CS and CT .
In this case study, the VP-based prior approach is used to reflect the assumption
that not all effects are likely to affect the abundance of each species, but rather
a few (species-specific) factors are assumed to be responsible for most of the
variability. This assumption can be introduced through the choice of a symmetric
Dirichlet prior on the vector of proportions: ω ∼ Dir(0.5). The marginal prior
induced on each of the ω elements is represented as a solid black line in the left
panel of Figure 2: as we can see, this prior assigns most probability mass near 0
indicating that ωj = 0 (no effect) is favoured a priori. The prior specification is
completed by a vague prior on the intercept µ and a Jeffreys on V .
The models are fitted using the R-INLA software. Thanks to scaling, the poste-
rior distribution of ω can directly answers questions about variance partitioning
without further transformations. The left panel of Figure 2 shows the marginal
posterior distributions of the proportions of variance ω entries for a single species
(Weakfish). The plot shows how the prior choice helps in the identification of the
most important factors affecting occurrence as most factors are shrunk towards
0. The right panel shows the posterior median of ω for six different species. Along
with conclusions about individual species, this plot can help assess the variance
partitioning for the community as a whole: for example, the spatial component
appears to be a relevant term for all the species in this subset.

4 Discussion

This work proposes a new way to analyze SDMs that can incorporate prior knowl-
edge about the relative importance of different factors affecting species abundance
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FIGURE 2. Left panel: comparison between the prior distribution on each ωj
(solid black line) and their posterior density for the Weakfish species. Right panel:
posterior median of each ωj for six different species.

and give immediate and intuitive posterior outputs about variance partitioning.
The class of models of Equation 1 represents just an illustration of a larger the-
oretical framework developed to correctly apply VP-based priors to a broader
class of SDMs, which can include for example smooth effects of abiotic factors,
among others. Future challenges include exploring the application of VP-based
priors in the context of joint species distribution models.

Acknowledgments: This work was funded by the European Union under the
NextGeneration EU Programme within the Plan “PNRR - Missione 4 “Istruzione
e Ricerca” - Componente C2 Investimento 1.1 “Fondo per il Programma Nazionale
di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN)” by the Ital-
ian Ministry of University and Research (MUR), Project title: “METAbarcod-
ing for METAcommunities: towards a genetic approach to community ecology
(META2)”, Project code: 2022PA3BS2 (CUP E53D23007580006), MUR D.D.
financing decree n. 1015 of 07/07/2023.

References
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Abstract: In physiology, organ functions can be modelled as networks with
individual regulatory mechanisms, forming a broader system through continuous
interactions. The system not only interacts with itself, but can also respond to
outside impulses. The paper proposes a functional graphical regression model to
describe interconnected brain activities partly in response to other organs. The
analysis focuses on the conditional independence structure of brain waves given
the RR interval of the electrocardiographic waveform, the respiration amplitude
and the blood volume pulse.
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Abstract: Statistical models of quasi-reaction systems are typically described by
constant reaction rates. This assumption is too restrictive in many applications,
as rates may vary dynamically, spatially or within groups of the population. In
this paper, we capture this heterogeneity with the inclusion of covariates in the
dynamic model. In particular, we propose an extension of a recently developed
latent event history model, by allowing log-reaction rates to be linearly depen-
dent on a vector of covariates. We describe an inferential approach for parameter
estimation of the resulting model and evaluate its performance via a simulation
study. Finally, we show an illustration on COVID-19 data, where the approach
is able to measure the effect of environmental factors and governmental interven-
tions on the disease spreading and severity.
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Abstract: Recently, there has been an increasing interest in using longitudinal
biomarkers to characterize the occurrence of an event, such as death. In this con-
text, two outcomes from the same subject are simultaneously observed: repeated
measures and time-to-event. The inherent association between them has brought
the joint modelling framework. Furthermore, there is a growing priority on plac-
ing patients at the centre of healthcare research. In this context, patient-reported
outcomes (PROs) are helpful tools for informing clinicians about patients’ health
status and quality of life. We propose a joint modelling Bayesian approach for
longitudinal PRO measurements and survival data that includes adequate distri-
butional fits of PRO by considering its nature and characteristics.

Keywords: Beta-binomial distribution; Chronic obstructive pulmonary disease;
Joint models; Patient-reported outcome.

1 Motivation

Patient-reported outcomes (PROs) are helpful tools that provide reports about
patient’s health status considering their health, quality of life, or functional sta-
tus associated with the health care or treatment they received. They are now
widely utilized for routine monitoring and assessment of care outcomes in adult
patients. Its use is strongly recommended, especially in chronic illnesses. PROs
come directly from the patient, without any intervention from a clinician, and are
frequently collected by supplying validated questionnaires. Thus, PROs are often
built as a sum of responses to several questionnaire items, so they can be consid-
ered discrete and bounded random variables that are usually overdispersed due
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to subject-specific characteristics. The Beta-Binomial distribution (BB) is pro-
posed in the literature as an adequate distribution to fit overdispersed discrete
and bounded outcomes, particularly in PRO analysis (Arostegui et al. (2007)).
The question of whether an association exists between the survival data and
longitudinal PROs is widely extended. However, the BB does not belong to the
exponential family of distributions, which makes its inclusion into the joint mod-
elling framework not straightforward. Therefore, the inclusion of BB into the joint
modelling methodology has yet to be thoroughly investigated. In this work, we
propose a Bayesian joint modelling approach for longitudinal PRO measurements
and survival data that includes adequate distributional fit of PRO by considering
its nature and characteristics.

2 Model definition

Our joint model formulation uses two submodels, one for the longitudinal and
another one for the survival that share the same random effects. The complete
set of parameters is jointly estimated by means of a full likelihood approach. For
each subject i the following data is considered:

• For survival outcome (Ti, δi), indicates the time-to-event and status.

• For longitudinal outcome Yi = (yi1, . . . , yini), indicates the vector of mea-
surements taken at (ti1, . . . , tini) times.

The key assumption of this methodology is full conditional independence, i.e., it
is assumed that conditional to random effects ui, time-to-event and longitudinal
outcomes are independent, as well as the different measurements for the same
subject (Rizopolous (2012)). Then, the joint posterior distribution can be written
as:

f(θ, ui|Ti, δi, Yi) ∝

[∏
j

f(yij |ui, θy)

]
f(Ti, δi|ui, θy, θt)f(ui|θu)π(θ)

where θ = (θy, θt, θu). We propose the use of BB in the longitudinal model
when dealing with PROs. To that aim, following a Beta-Binomial mixed effect
model (Najera-Zuloaga et al. (2019)), we have yij |ui ∼ BB(m, pij , ϕ) with bound
m, probability parameter pij , and dispersion parameter ϕ. The BB density is
described as:

f(yij |ui) =
(
m
yij

) Γ

(
1

ϕ

)
Γ

(
1

ϕ
+ pij

) Γ

(
pij
ϕ

+ yij

)
Γ

(
pij
ϕ

) Γ

(
1− pij
ϕ

+m− yij

)
Γ

(
1− pij
ϕ

) ,

where the probability parameter and the subject linear tendency are connected
through the logit function. Particularly, for subject i at time t it is denoted as:

logit(pit) = (β0 + ui0) + (β1 + ui1)t.

According to this longitudinal model setting, θy = (β0, β1, ϕ).
The density function for the time-to-event outcome is defined in terms of the
hazard function:

f(Ti, δi | ui; θt) = λi(Ti)
δi exp

{
−
∫ Ti

0

λi(s)ds

}
,
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which, assuming the proportional hazards model, is defined as:

λi(t) = λ0(t) exp(αwit) with wit = mpit,

where wit is the true and unobserved value of the longitudinal outcome at time
t, according to the previously specified longitudinal model. Thus, the set of pa-
rameters for the survival model is θt = (α, θλ0), where the parameters for the
baseline function will vary according to its definition.
Finally, the random parameters distribution is assumed as a multivariate normal
density with zero mean and variance-covariance matrix D. Thus, the parameter
vector for random effects distribution is θu = (σu0 , σu1).
To overcome the computational complexities, we proceed by using a Bayesian
approach. The parameter estimation is performed using the Hamilton Monte
Carlo algorithm through rstan R-package (Stan Development Team (2024)).

3 Application

We assessed data from a 5-year follow-up study of 543 patients with chronic
obstructive pulmonary disease (COPD) from Galdakao-Usansolo Hospital. COPD
is one of the major causes of mortality world-wide and its overall impact on the
subject is multifaceted, and more than clinical biomarkers are needed to assess
its evolution. In this sense, the COPD study considered survival data and one
to four Health-Related Quality of Live (HRQoL) measurements per individual
collected during the follow-up period. Two questionnaires were used to evaluate
the HRQoL: Short-Form 36, and St. George’s Respiratory Questionnaire.
We applied our methodology to measure the impact on the questionnaires’ scores
into the patients’ risk of death. Noticing that HRQoL is considered an important
outcome itself and a predictor of mortality in COPD patients.

4 Simulation study

A simulation study was carried out to assess the performance of the methodol-
ogy. The overall scenario settings are mainly based on COPD study, considering
the same maximum number of measurements per patient, different entry times,
measurement times, follow-up period, and censoring.
We set two main scenarios for the model parameters based on previously devel-
oped work by Galán-Arcicollar et al. (2024). The first one considers a positive
association parameter, while the second is negative. Different bounds are also
considered for the longitudinal model. Table 1 shows these two main parameter
setting.

β0 β1 σu0 σu1 m α

Scenario 1 -0.19 0.03 1.2 0.05 24 > 0
Scenario 2 0.40 -0.15 1.5 0.3 8 < 0

TABLE 1. Setting the true parameter values for two main scenarios.

To offer a variety of simulation scenes, we varied the strength of the association
parameter and also the dispersion parameter of the longitudinal measurements.
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These scenario variations allow us to evaluate the performance when there is
almost no, moderate and strong association between the outcomes and to con-
template different shapes of the longitudinal distribution. Furthermore, a Weibull
baseline hazard was considered for both scenarios:

λ0(t) = νtν−1 exp(γ),

whose parameters where fixed as (ν, γ) = (1.6,−2.3).
Next figures 1 and 2 show the bias results for the association parameter according
to the scenarios set in Table 1 respectively, as well as and well as the sub-scenarios
for association and dispersion parameter variations.

FIGURE 1. Bias boxplot for the α estimation when applying the proposed
model according to Scenario 1. Different sub-scenarios are shown according to
ϕ ∈ {0.05, 0.5, 1} and α ∈ {0.01, 0.05, 0.10}.

FIGURE 2. Bias boxplot for the α estimation when applying the proposed
model according to Scenario 2. Different sub-scenarios are shown according to
ϕ ∈ {0.05, 0.5, 1} and α ∈ {−0.05,−0.10,−0.15}.

It is noticed in Scenario 1 that according to the set bound for the longitudinal
outcome, the increment in the association parameter strength leads to biased
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results. This fact is mainly based on the early occurrence of events and, according
to the low number of longitudinal measurements generated. Nevertheless, the
other sub-scenarios showed low bias, even leading to unbiased results as shown
in figure 2.

5 Concluding remarks

The modelling framework presented provides a suitable way to consider the na-
ture and characteristics of PRO longitudinal data into the joint modelling frame.
Furthermore, it presents easy results interpretation in terms of odds and hazard
ratio. The validity of the approach was supported by the simulation study and
applied to COPD data. In the case study, we got that COPD patients’s percep-
tion on their health and functional status could lead to an impact in their risk of
death, specially for their physical status.
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Abstract: Markov-switching models are attractive for analysing time series
that exhibit different stochastic processes along different periods, and where the
regime-switching is controlled by an unobservable Markovian process. Model flex-
ibility can be enhanced considering regime-specific distributions, whose distribu-
tional parameters may be modelled using smooth functions of covariates. Here,
we propose a two-state Markov-switching model using full Bayesian inference and
accounting for extreme value modelling. The proposal is illustrated by analysing
energy prices.
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Abstract: In this work we adapt recent findings from statistical boosting in
order to construct an estimation approach for distributional regression including
random effects. The algorithm is applied to registry data provided by the German
Cystic Fibrosis Registry where the subject-specific evolution of each patients lung
function and its corresponding distributional parameters are modelled.

Keywords: Statistical boosting; Distributional regression; Random effects.

Full paper

This manuscript is available as part of the Springer volume Developments in
Statistical Modelling using the direct link provided on the conference main page.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).

https://link.springer.com/book/9783031657221
https://link.springer.com/book/9783031657221
https://maths.dur.ac.uk/iwsm2024/


Statistical modeling of UEFA EURO soccer
matches with focus on player market value
and other hybrid variables

Jacob Grytzka1, Andreas Groll1

1 TU Dortmund University, Germany

E-mail for correspondence: jacob.grytzka@tu-dortmund.de

Abstract: We analyze the UEFA EUROs 2004 to 2020 to find the best feature
set for predicting future UEFA EUROs. We use 21 features covering the economic
strength of the country and the sporting performance of each national team. In
addition, three so-called hybrid features are included, which are based on separate
statistical models. These are based on historical match data, bookmakers’ odds
and a special player ranking. We create 31 different feature sets and compare them
on seven different performance measures using two cross validation approaches.
We found the feature set consisting only of the bookmaker odds and the special
player ranking to perform best. For this feature set, we finally took a closer look
at the effect of the features.

Keywords: Random forest; Cross validation; Feature set; UEFA EURO; Soccer.

1 Introduction

When a big soccer tournament like the UEFA EURO takes place, many experts
try to predict the winning team. Statistical learning models are a good way to
do this. At UEFA EURO 2020, Groll et al. (2021) compared the performance of
different statistical models and found the Conditional Random Forest (cforest;
Hothorn et al., 2006) to be a good choice. To better predict the winner of the
next UEFA EURO, the cforest is used in this study to find the best feature set.
We consider economic and sporting factors as well as three hybrid characteristics
based on separate statistical models.

2 Dataset and statistical methods

We have a total of 21 features at our disposal. We look at economic factors
such as gross domestic product (GDP) and the population of a country. We also
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remains with the author(s). Permission to reproduce or extract any parts of this
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regard features relating to sporting success, such as the FIFA world ranking,
points in the UEFA five-year ranking and the resulting number of starting places
in international competitions. We also examine the team structure based on the
average age of the squad, the number of players playing abroad and the number
of Champions League and Europa League players in the squad. We also look at
the groups of players within a squad who also play together at the club. Two
further features relate to the coach. We use the age of the coach and a feature
that indicates whether the coach is from the respective country. In addition,
the home advantage and the tournament phase of each match are taken into
account. Special focus is on the market value of the teams and the so-called
hybrid variables, which were extracted from separate statistical models and are
presented below. A detailed description of these features can be found in Groll
et al. (2021).

Abilities
According to a comparison by Ley et al. (2019), a bivariate Poisson model is well
suited for estimating team strength parameters based on historical match data.
Let n ∈ N be the number of teams and M ∈ N the number of matches. Let
Yijm be the random variable representing the number of goals scored by team i
against team j (i, j ∈ {1, . . . , n}, i ̸= j) in match m ∈ 1, . . . ,M . We assume that
Yijm and Yjim follow a bivariate Poisson-distribution (see Karlis and Ntzoufras,
2003). The expected goals λijm of a team are modeled using

log(λijm) =

{
β0 + (ri − rj) + h, if team i plays at home in match m,

β0 + (ri − rj), otherwise.

Here, β0 is the intercept, h the effect of the home advantage and ri the team-
specific strength parameters, which finally form the feature Abilities. For this
study, matches from the eight years preceding each UEFA EURO are utilized
to estimate the strength parameters. The n + 3 parameters of this model are
estimated using the maximum likelihood method. To ensure that the estimation
of the parameters is identified, the likelihood function is optimized under the
constraint

∑n
i=1 ri = 0. Individual matches are weighted differently depending

on how long ago they took place. For this purpose, we define a half-period H ∈ N,
which specifies after how many days a match is weighted only half as much. The
weight wm of match m, which took place tm days ago, is then given by

wm =

(
1

2

) tm
H

.

As in Ley et al. (2019), the half-period is set to three years, i.e. H = 1095 days.
There, a weighting is also made based on the importance of the match, which is
not used here, as in Groll et al. (2021).

Logability
One possibility to predict a UEFA EURO is based on the betting odds of various
bookmakers in relation to winning the respective tournament. Leitner et al. (2010)
used these to carry out an inverse tournament simulation. Let n be the number of
teams and B the number of bookmakers. The quoted oddsib indicate how large
the profit per staked Euro is for bookmaker b ∈ {1, . . . , B} in the case of a
successful bet on team i ∈ {1, . . . , n}. Similarly, the ”true” odds are denoted
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by oddsib. The parameter δb ∈ [0, 1] indicates the proportion of bets that are
actually paid out by bookmaker b. Thus, 1− δb corresponds to the profit margin
of bookmaker b. The following relationship is assumed:

quoted oddsib = oddsib · δb + 1.

The +1 is necessary because the invested stake is also paid out again if the bet is
successful. In Leitner et al. (2010) it is assumed that δb is the same for all teams in
a tournament. According to the equation, all odds are thus determined and then
logarithmized to obtain the log-odds. These are averaged over all bookmakers and
then converted into winning probabilities using the logit transformation. Finally,
these probabilities finally form the bookmakers’ consensus model.
The tournament to which the odds apply is then simulated several times. To
determine the winner in a single match, the probability of victory is calculated
as follows:

pij = P(Team i defeats Team j) =
si

si + sj
i ̸= j,

where si and sj (i, j ∈ {1, . . . , n}; i ̸= j) are strength parameters for team i
and team j. Since there is no probability of a draw in this model and also no
information about goals scored and thus goal difference, it may be necessary to
simulate additional matches in the group phase of a tournament in order to obtain
a clear ranking of the teams in a group.
The simulation of the tournament is carried out 100,000 times in Leitner et al.
(2010). In this way, a team’s probability of winning can be estimated on the
basis of its share of tournament victories. The strength parameters s1, . . . , sn are
chosen in such a way that the winning probabilities approximate those from the
bookmakers’ consensus model. These strength parameters finally form the feature
Logability.

Plus-Minus player rating
The third hybrid variable is based on the Plus-Minus player rating (PM) by
Hvattum (2019). In this approach, the strength of a team is not determined
directly, but with the help of the strength of its players in the squad. To estimate
the strength of a particular player j ∈ {1, . . . , S}, all the matches for both the
national team and his national club, in which the player has played actively, are
considered. The matches are divided into time periods, in each of which the same
players are on the pitch. The first period starts with the kick-off of the match.
When a player is substituted or sent off (e.g. by receiving a red or double-yellow
card), the current period ends and a new one begins. The last period ends with
the end of the match. For each period, the number of goals scored by the home
and away team is also recorded.
The basis of the plus-minus player score is a simple linear model for each time
period i ∈ {1, . . . , n} of the following form:

yi =

S∑
j=1

βjxij + εi.

The response variable of the linear models yi represents the goal difference from
the home team’s point of view with respect to all goals scored in time period i.
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εi is the error term and

xij =


1, if player j plays for the home team in time period i,

−1, if player j plays for the away team in time period i,

0, otherwise,

is an indicator for the presence of a player. The fitted β̂j represent the rating of the
players. Two features are extracted from the PM of each squad. First, MeanPM
denotes the average rating of all players in a squad. The second determined feature
XMissing indicates how many players were not in the squad of their country for
the respective tournament, although they played at least once for the national
team and, according to the PM, belong to the best 11 players of the national
team.

3 Study

We have divided the features into five groups. The market value feature and each
of the three models for the hybrid features form a group of features. The fifth
group contains the remaining basic features. We then built feature sets from the
31 combinations of these groups. We use the conditional random forest to model
the expected goals of a team. The expected goals of both teams can be used to
predict the outcome of the match. The 31 feature sets are compared via both
a classical 10-fold and a tournament-specific cross validation (CV) using seven
different performance measures. These were the mean squared error (MSE) and
mean absolute error (MAE), each in terms of goals scored by a team and goal dif-
ference in a match. In addition, three measures were calculated, which refer to the
specific match outcome (i.e. win, draw and defeat). The corresponding predictive
Multinomial Likelihood (PL) indicates which probability the prediction model
assigned to the actual outcome. The Classification Rate (CR) is the proportion
of correctly predicted results and the Rank Probability Score (RPS) is an error
measure that takes the ordinal structure of the results into account. In select-
ing the best feature set, the focus was primarily on the latter three performance
measures. Table 1 exemplarily shows the best results of both CVs. The feature
set containing only market value achieved the best CR in both CVs. Taking the
market value and the PM results in the best RPS in the leave one tournament
out CV. The best feature set with respect to PL and RPS consists of the two
groups Logability and PM.
We want to investigate the effect of the winning feature set in more detail. For
a fitted random forest this is not trivial and we need to employ methods from
the field of interpretable machine learning (see Molnar, 2023). Figure 1 shows a
Partial Dependence plot (PDP) for the feature Logability on the left side. The
graph exhibits a trend where higher values of the feature basically lead to more
goals, which seems plausible. However, the curve is only roughly monotonic. At
some points the effect is briefly and slightly decreasing, before the curve makes
a jump and continues the trend. The influence of MeanPM is not as clear as the
one for Logability. We can see an increasing trend, but local deviations are quite
strong. E.g., after an initial rise, the curve actually falls below the initial level.
The effect of Logability seems to be slightly more meaningful overall than the
one of MeanPM. While the left graph ranges from 0.75 to 1.75, and hence covers
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TABLE 1. Best settings for all PLs, CRs and RPSs with 10-fold CV (above) and
leave one tournament out CV (below)

.

Basic MW abilities Logability PM PL CR RPS

X X X X 0.3997 0.5171 0.1990
X X X 0.3959 0.5171 0.2007

X X X 0.4067 0.4971 0.1983
X 0.3808 0.5224 0.2052

X X X 0.4049 0.5021 0.1999
X X 0.4075 0.5018 0.1973

X X X 0.4070 0.5004 0.2004
X X 0.3919 0.5108 0.2039
X X 0.4059 0.5044 0.1996
X 0.3826 0.5276 0.2042

X X 0.4084 0.5018 0.2005
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FIGURE 1. Partial dependence plots showing the influence of two features on
the goals scored

a larger range of the response, the effect for MeanPM on the right is roughly
between 1.05 and 1.55.
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Abstract: We propose a new Bayesian method for Bayesian network structure
learning from ordinal data. Our Bayesian method is similar to a recently pro-
posed non-Bayesian method, referred to as the ordinal structural expectation
maximization (OSEM) method. Both methods assume that the ordinal variables
originate from Gaussian variables, which can only be observed in discretized
form, and that the dependencies in the unobserved latent Gaussian space can
be described in terms of Gaussian Bayesian networks. In our simulation stud-
ies the new Bayesian method yields significantly higher network reconstruction
accuracies than the OSEM method.
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Abstract: Days alive and out of hospital is recommended as a patient-centered
outcome in perioperative clinical studies. It is defined as the number of days,
out of the first M postoperative days, that the patient has been discharged from
hospital, or zero if the patient dies within M days of surgery. This composite
measure presents statistical challenges in its unusual distributional shape, and
its inability to distinguish between the qualitatively different outcomes of death,
and a hospital stay longer than M days. We propose a mixed binary-continuous
model that overcomes these difficulties, and illustrate its use on a clinical trial of
a drug administered in cardiac surgery.
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Abstract: This paper revisits the common problem of analysing counts recorded
over time through the modelling of the underlying rate, motivated by the analysis
of a cancer treatment related study. The baseline Poisson model is simply im-
plemented though the inclusion of an offset for the different exposure/recording
times and the underlying Poisson process gives other nice well-known properties.
We consider how this approach can be extended to models for overdispersed data.
The use of a simple offset with a negative binomial model is common practice
and we consider the appropriateness of this and the resulting implications. We
discuss how these ideas extend to more general mixed Poisson models, including
ZIP, to handle zero-inflation, and ZINB for zero-inflation and overdispersion. The
simple offset approach does not extend to other extended count models such as
the COM-Poisson and general weighted Poisson distributions.
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Abstract: The concordance correlation coefficient is a widely used standardized
index in agreement studies. We develop robust inference for the concordance
correlation coefficient for the case of repeated or clustered measurements data,
thus minimising the impact of outlying observations that otherwise may lead to
erroneous conclusions about the agreement between devices. Our methods are
illustrated in a study involving chronic obstructive pulmonary disease patients
and matched repeated respiratory rate observations.
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1 Introduction

Measurements are the basis for evaluation in almost all scientific disciplines,
among which the medical sciences are possibly the most prominent. Agreement
studies quantify the closeness of the measurements of the same variable made
by two different devices and are typically motivated when newer, less invasive,
and/or cheap devices become available and their agreement with the gold stan-
dard device needs to be evaluated. If the measurements generated by each device
are close together most of the time, we conclude that the devices agree and they
can be used interchangeably.
Several indices for assessing the agreement of continuous data have been pro-
posed in the literature, of which the concordance correlation coefficient (CCC)
is one of the most popular and widely used. When repeated measurements are
available, the CCC can be calculated via a linear mixed effects model. As we
shall see in the next section, the expression for the CCC is a function of the
variance components of the underlying mixed effects model. The usual assump-
tion behind a linear mixed effects model is that all variance components follow
a normal distribution. When there are outlying observations, either an outlying
measurement among the repeated measurements within an individual or/and an
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outlying invidual in the sample of subjects, the use of the normal linear mixed
effects model may lead to misleading conclusions about the agreement between
devices. Indeed, recently, Keu et al. (2021) have provided both theoretical and
empirical evidence that estimates of the variance components can be strongly
biased when the distribution of the random effects is misspecified.
To close this gap in the agreement literature, we propose to estimate the linear
mixed effects model that underlies the computation of the CCC based on robust
methods that mitigate the impact of outlier measurements. We are motivated by a
study involving chronic obstructive pulmonary disease (COPD) patients, where
respiratory rate measurements (in breaths per minute) from 21 subjects with
COPD were measured simultaneously by a new and a gold standard device, both
worn at the same time. Multiple time-matched respiratory rate measurements
were taken on each patient. Specifically, eleven different activities, ranging from
slow walking to climbing stairs, and which were chosen to be representative of the
activities encountered in daily life, were performed by participants. Not everyone
performed exactly the same number of activities because some tasks were too
difficult for some participants, with most activities having just one respiratory
rate reading per subject.

2 Induced robust estimation for the concordance
correlation coefficient

In the context of our COPD example, we assume the following linear mixed effects
model

yijlt = µ+ αi + βj + γl + (αβ)ij + (αγ)il + (βγ)jl + ϵijlt, (1)

where yijlt represents the respiratory rate measurement made on subject i by de-
vice j when performing activity l at time t, µ is the overall mean, αi ∼ N(0, σ2

α)
is the random subject effect, βj is the fixed effect of device j, and γ ∼ N(0, σ2

γ)
denotes the random activity effect. Further, (αβ)ij , (αγ)il, and (βγ)jl denote, re-
spectively, the random interaction between subject and device, between subject
and activity, and between device and activity and they all follow a normal dis-
tribution with mean zero and with variance σ2

αβ , σ
2
αγ , σ

2
βγ , respectively. Finally,

ϵijlt ∼ N(0, σ2
ϵ ) is the error. All random effects are assumed to be independent.

We justify these modelling choices as follows. We regard subjects as random
effects, therefore implicitly assuming they are a sample from a wider population
of COPD patients. We regard activity as a random effect as well, mainly so
that we can generalize the results to any activity from a wider ‘population’ of
activities performed by participants in daily life, but also so that activities with
small numbers of respiratory rate readings are not weighted too highly in the
model . All possible two-way interactions were included in the model and they
take into account the variability in subjects across devices, in subjects across
activities, and in devices across activities.
Based on (1), the CCC can be written as

ρCCC =
cov(yi1lt, yi2lt)

var(yijlt)
=

σ2
α + σ2

γ + σ2
αγ

σ2
α + ϕ2

β + σ2
γ + σ2

αγ + σ2
αβ + σ2

βγ + σ2
ϵ

,

where ϕ2
β =

∑2
j=1 β

2
j (to ensure identifiability we assume β1 + β2 = 0) which

accounts for the systematic differences between the two devices. The CCC can
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take values between −1 and 1, where 1 indicates perfect agreement and −1 in-
dicates perfect disagreement. The CCC, in this particular case, thus reflects the
proportion of the total overall variability explained by the subject and activity
effects (and their interaction) and a CCC of 1 implies that there is no variability
in the device across subjects and activities.
In order to mitigate the adverse effect of outlying measurements, either within
each participant or across participants, we follow the approach of Koller (2016),
implemented in the robustlmm R package, which robustifies the scoring equations
arising from Equation (1) by replacing the residuals and predicted random effects
with bounded functions, namely with Huber type of functions. Replacing terms by
bounded functions thereof downweights terms with a large absolute value. In the
robustness literature, these weights are called robustness weights. Observations
or random effects with low robustness weights are classified as outliers by the
robust method. Inference for the CCC is performed through a bootstrap scheme
by resampling at the patient level.

3 Application to COPD data: results

We begin by employing the non-robust linear mixed effects model and the CCC
was estimated to be 0.69, with a 95% bootstrap CI of (0.60, 0.74), based on 500
resamples. The normal quantile quantile plots for all variance components and
error term are presented in Figure 1. We can observe that for the random in-
teraction between subject and activity, some observations fall outside the 95%
simulation envelope. Additionally, the random error exhibits pronounced heavy-
tail behavior. This evidence calls into question the validity of the non-robust
linear mixed effects model and consequently, the computed value for the CCC.
Indeed, according to the robust linear mixed effects model, two observations for
the subject actvity interaction have a robust weight of less than 0.2, with the
number being 20 for the error term, thus indicating that these measurements
are potential outliers. The CCC estimate based on the robust approach is 0.77
(0.71, 0.82). Note that the non-robust CCC point estimate is not even included in
the robust 95% CI. Further, there is little overlap between the two intervals. Now
onto the conclusions based on the robust approach. A CCC of 0.77(0.71, 0.82)
shows moderate to good agreement between the new and the gold standard de-
vice. The variance components estimates for the subject and activity effects are
the highest according to the robust model and therefore are the main source of
diseagreement. In turn, the random interaction between subject and device is
estimated to be zero, indicating no evidence of a difference in the device effect
across subjects.
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FIGURE 1. Top (rows 1 and 2): normal QQ plots for the random effects. Bottom
(row 3): normal QQ plot of the conditional raw residuals.
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Abstract: Special statistical techniques are required to develop valid predic-
tion models for complex survey data. Recently, a weighted estimator has been
proposed to estimate the area under the receiver operating characteristic curve
in this context. However, the proposed estimator has shown an optimistic be-
haviour. Thus, the goal of this work is to analyze the performance of replicate
weights methods to correct for the optimism of the AUC in the context of complex
survey data.
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Abstract: The modelling of count data in real world scenarios often requires
models that address overdispersion. Within the generalized linear modeling frame-
work, various overdispersion models are available as extensions of the basic Pois-
son model. Graphical assessment of goodness-of-fit commonly involves half-normal
plots, for which a simulated envelope can be added to aid interpretation. The sim-
ulated envelope is such that, under a well-fitted model, the majority of points
should fall within its bounds. Nonetheless, closely related models tend to produce
very similar graphs. Here, we propose an objective statistic based on half-normal
plots with a simulated envelope to aid goodness-of-fit assessment.
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2 Università della Svizzera italiana, Switzerland

E-mail for correspondence: ruta.juozaitiene@vdu.lt

Abstract: Relational event models are event history models for dynamic net-
work interactions. Computational considerations have resulted in frequently used
simplified network statistics. This study explores the impact of diverse endoge-
nous effect definitions. Simulations and real-world studies focused on reciprocity
and transitivity effects emphasize the need for more complex effect definitions to
avoid possible contradictory interpretation of the results. We introduce a flexible
computational framework to infer such effects efficiently.
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1 Introduction

Endogenous network effects, such as reciprocity and triadic closure, encompass
social and temporal information within relational events, offering comprehensive
measures to describe social interactions. The scientific literature offers a variety
of exogenous effect definitions, ranging from simple binary indicators to intricate
formulations considering event timing. This research delves into a subset of qual-
itatively distinct effects, aiming to comprehend how these diverse definitions may
influence modelling outcomes.

2 The relational event model

Relational event models (REMs) offer a flexible framework for studying time-
ordered sequences of relational events (Butts, 2008). A relational event is defined
as a discrete event initiated at time t by a social actor, specifically a sender s,
directed towards a receiver r, represented as (s, r, t). The counting process Nsr(t)
of event (s, r) can be modelled by the conditional intensity function,

λsr(t) = λ0(t) exp
[
βTxsr(t) + fRsr(t) + fTsr(t) + bTzsr

]
,

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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where λ0(t) represents the baseline hazard function, xsr(t) is the set of endoge-
nous and exogenous variables, β denotes effect sizes, fRsr(t) and f

T
sr(t) represents

reciprocity and triadic closure effects, and b ∼ N (0,Σ(ϕ)) is a vector of random
effects.

2.1 Definition of exogenous effects

Two traditional definitions for reciprocity (see Table 1) involve a binary variable

r
(1)
sr (t), indicating whether sender s received a relational event from actor r up

to time t, or an exponential decay function with a half-life parameter T r
(2)
sr (t).

These definitions were proposed mainly for computational convenience. Instead,
we suggest modelling reciprocity as a smooth function of time r

(3)
sr (t), where the

time to reciprocity (∆tsr) is defined as the difference between t and the most
recent event r → s. In cases where r → s was not observed at all, ∆tsr = ∞. It
could be the reciprocity effect vanishes after the occurrence of the event s → r.
For example, in the context of repaying a debt, the debt disappears after being
settled. However, reciprocity might also exhibit a continuous nature, where the
effect persists once activated, as defined in r

(3c)
sr (t).

Analogous definitions are introduced for triad closure effect, including an addi-
tional definition t

(4)
sr (t), which enforces a strict order in the creation of a two-path.

In contrast, definition t
(3)
sr (t) posits that a two-path can be formed by placing the

link k → r before s → k. Although this paper primarily focuses on transitivity,
similar definitions can be derived for other triadic effects, such as cyclic closure
and sending/receiving balance.

2.2 Case-control partial likelihood inference via GAM

The vector of model parameters β in the conditional intensity function can be
estimated using the partial likelihood approach (Cox, 1972). Unfortunately, for

TABLE 1. Definitions of the exogenous network effects.
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(a) Reciprocity (b) Transitivity

FIGURE 1. Average estimates of the time-varying network effects according to
different definitions along with their confidence bands. It shows that the incorrect
definition (grey) can lead to misleading conclusions.

large networks its computation grows quadraticly with the number of nodes. To
address this computational complexity we employ nested case–control sampling
(Vu, D. et al., 2015). This approach reduces the risk set to the observed event and
one randomly sampled non-event (s∗i , r

∗
i , ti). The resulting sampled partial like-

lihood corresponds to the likelihood of a generalized linear mixed model without
an intercept for binary outcomes,

PLNCC(β, b) =

n∏
i=1

λsiri(ti)

λsiri(ti) + λs∗i r∗i (ti)
=

n∏
i=1

e
βT

[
xsiri (ti)−xs∗i r∗

i
(ti)

]
+

∑
k∈{R,T}

[
fksiri

(t)−fk
s∗
i
r∗
i
(t)

]
+bT

[
zsiri−zs∗i r∗

i

]

1 + e
βT

[
xsiri (ti)−xs∗i r∗

i
(ti)

]
+

∑
k∈{R,T}

[
fksiri

(t)−fk
s∗
i
r∗
i
(t)

]
+bT

[
zsiri−zs∗i r∗

i

] .

To estimate parameters, we employ a generalized additive model using the mgcv
package in R (Wood, 2017).

3 Misleading effect estimates in REMs

To show the importance of proper effect definition, we perform a simulation
study, simulating 10000 events among 20 nodes, and using REMs with various
reciprocal effects reveals conflicting patterns (Table 2). In parallel experiments
we explore the transitive effect, assuming the order of events is crucial. Results
from 20 simulations show conflicting conclusions based on different definitions
(Table 2). Moreover, Figure 1b highlights the crucial role of subtle details, such
as the ordering of two-path formation, in the estimation process.
Simulations reveal how different definitions of the same network effect can lead
to different conclusions, emphasising the need for a thorough consideration of the
appropriate definition in the efficient estimation of network effects.
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TABLE 2. Average values of the fixed effects estimates indicate that different
models suggest contradictory results.

Estimate(SE) AIC Interpretation

r
(1)
sr (t) 0.08(0.03) 13856 Reciprocal events have a higher rate

of occurrence

r
(3)
sr (t) -278.49(14.83) 13430 r sending events to s reduces the

likelihood of s responding with a
subsequent event

t
(1)
sr (t) -0.32(0.05) 13812 Transitive events have a lower rate

of occurrence

t
(2)
sr (t) 57.94(2.17) 13080 As past events from s to other nodes

contacting r increase, the rate of
events from s to r rises.
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Abstract: In a broad field of applications, high-dimensional problems occur,
i.e. problems where the number of parameters in a regression-type model is too
high compared to the sample size or can even exceed it. Especially in presence
of categorical explanatory variables (i.e. factors), such problems can occur easily
even if the number of candidate factors is moderate. While penalized regression
approaches enable a simultaneous variable selection and regression coefficients’ es-
timation, the implementation of further statistical inference procedures, e.g., like-
lihood ratio tests (LRT), is not straightforward, due to the high-dimensionality
of the problem. For this, we propose a two-stage penalized logistic regression
approach for a penalty function enforcing both factor selection and levels fusion
simultaneously. In particular, we extend the (multiple) sample splitting approach,
which is introduced for penalization methods performing only variable selection,
to a method performing factor selection as well as levels fusion. We specify and
adjust the regularity conditions for penalization methods of this type, consid-
ering two different approaches for multiplicity adjustments, i.e. the Benjamini-
Hochberg procedure and Bonferroni correction. We further investigate asymptotic
properties, such as type-I-error control, concluding that the proposed two-stage
approach is adequate for applications.

Keywords: High dimensional statistics; Likelihood ratio test; Sample splitting;
Logistic regression; Penalized regression.

1 Penalized logistic regression

Consider a logistic regression problem with a binary response variable Y and J ∈
N categorical explanatory variables (i.e. factors) X1, . . . ,XJ , each having pj + 1
levels, where pj ∈ N, j ∈ {1, . . . , J}. We code these levels as 0, . . . , pj and choose
zero as the reference category. For coding of the factors, we follow the commonly
used dummy-coding scheme introducing pj dummy variables Xj,1, . . . ,Xj,pj being
zero or one for each factor Xj , where Xj,k = 1 ⇔ Xj = k for k ∈ {1, . . . , pj}. We
define X := (1,X1,1, . . . ,X1,p1 , . . . ,XJ,1, . . . ,XJ,pJ ) as the vector of the dummy

This paper was presented at the 38th International Workshop on Statistical
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random variables and x ∈ Rp+1 as a realization of X . The underlying logistic
regression model is

E(Y |x) = exp(xβ)

1 + exp(xβ)
,

where β := (β0,β1, . . . ,βJ)
T ∈ Rp+1 is the vector of regression coefficients, with

β0 denoting the intercept and βj := (βj,1, . . . , βj,pj ) being the parameter sub-
vector corresponding to the j-th factor.
Given an observed sample of size n ∈ N, the general approach of penalized regres-
sion consists of the selection of a penalty function Pλ(β) and the minimization
of the objective function

Mpen(β) := −Ln(β) + Pλ(β),

where −Ln(β) denotes the negative log-likelihood function and λ is a tuning
parameter. There are approaches performing variable selection (e.g. Lasso) and
extensions performing factor selection (e.g. Group Lasso), where the latter ei-
ther includes or excludes a whole factor from the model. Furthermore, there exist
methods for levels fusion, i.e. merging levels of a factor having the same influ-
ence, which apply a penalization method to all (pairwise or adjacent) differences
of levels of a factor. Examples of such approaches are given by Gertheiss and Tutz
(2010) and Oelker et. al. (2014). For the purpose of performing both factor selec-
tion as well as levels fusion simultaneously, we introduced the L0-Fused Group
Lasso (L0-FGL) method in Kaufmann and Kateri (2022), that is, the penalty
function

Pλ(β) := λ1

J∑
j=1

√
pj ||βj ||2 + λ0

J∑
j=1

∑
0≤r<s≤pj

w
(j,rs)
0 ||βj,r − βj,s||0,

where λ := (λ1, λ0) ∈ R≥0 × R≥0 and w
(j,rs)
0 are optional weights for j ∈

{1, . . . , J}, r, s ∈ {0, . . . , pj}, r ̸= s. For details on tuning, as well as coefficient
paths, computational approaches, simulation studies and theoretical properties
we refer to Kaufmann and Kateri (2022).

2 Likelihood ratio tests

The next step is to investigate statistical inference analysis for the (eventually
merged) influential factors after the application of the regularization method.
To do so, we extend the sample splitting approach introduced by Wassermann
and Roeder (2009), as well as the multiple sample spliting approach introduced
by Meinshausen et. al. (2009), for the L0-FGL penalization method. The crucial
issue is to adjust (and ensure) the regularity conditions needed to guarantee
convenient properties of the likelihood ratio test statistic, e.g. its convergence to
a χ2 distribution, to ensure applicability in practice (see Section 2.2).

2.1 Sample splitting

We randomly split the dataset D of sample size n ∈ N into two different parts,
denoted by D1 and D2, of (approximately) equal size. On the first dataset D1 we
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fit our regularization method L0-FGL considering the full parameter space Ω1 :=
Rp+1 of dimension p+1. The resulting estimate β̂L0−FGL and the selected model S̃

induce a reduced parameter space Ω2, i.e. Ω2 := Rp
af+1, where paf :=

∑J
j=1 p

af
j

and pafj := dim(β̂L0−FGL
j ), with ’af’ standing for ’after fusion’. That is, pafj is the

dimension of the parameter sub-vector of factor j after (possible) fusion occurred
by L0-FGL and paf the dimension of the whole parameter vector, including all by
L0-FGL as influential evaluated factors. Then, we perform maximum likelihood
estimation (MLE) on D2 considering the reduced parameter space Ω2. In this
step, ensuring necessary regularity conditions, we can perform LRT, assign p-
values and so on. The procedure described above is called two-stage L0-FGL. For
a visualization we refer to Figure 2.1.

FIGURE 1. Visualization of two-stage L0-FGL with single sample splitting.

2.2 Regularity conditions and details on the tests

To ensure convenient theoretical properties of the MLE/LRT framework, we need,
amongst other things, to ensure that the truth β∗ is an interior point of the pa-
rameter space Ω2 (Casella and Berger, Section 10.6.2). We introduce and analyze
screening properties for fusion and factor selection (being extensions of known
screening properties for variable selection) to guarantee the latter. Further, we
consider how we can ensure that the dimension of the parameter space Ω2 does not
exceed the sample size of D2. These conditions need to be discussed in detail to
ensure that this method can be applied in practice. Going through all influential
factors after L0-FGL regularization, we test the nested modelsM(j)

0 (factor j non-

influential) against M(j)
1 (factor j influential). Since we execute these tests for all

influential factors, we consider two multiplicity adjustments: Bonferrroni correc-
tion and Benjamini-Hochberg correction (Benjamini and Hochberg (1995)). For
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the first approach in the single split, we show that we can asymptotically bound
the type-I-error, whereas we show similar results for the Benjamini-Hochberg
procedure. Model selection consistency results for two-stage L0-FGL are also
investigated. Further, we consider the multiple split case, where the procedure
above is executed a pre-fixed number of times B ∈ N aggregating the resulting
p-values of each split.
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Oelker, M.-R., Pößnecker, W. and Tutz, G. (2014). Selection and fusion of cat-
egorical predictors with L0-type penalties. Statistical Modelling: An Inter-
national Journal, 15, 389 – 410.

Wasserman, L. and Roeder, K. (2009). High-dimensional variable selection. The
Annals of Statistics, 37, 2178 – 2201.



Bias-reducing adjustments for generalised
additive models

Oliver Kemp1, Ioannis Kosmidis1

1 Department of Statistics, University of Warwick, UK

E-mail for correspondence: Oliver.Kemp@warwick.ac.uk

Abstract: We derive an expression for the asymptotic bias of parameter es-
timators of generalised additive models, under the assumption that smoothing
parameters are O(1). The asymptotic bias decomposes into a term due to penal-
isation to prevent overfitting of functional components, and a term that mimics
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to the estimating functions is proposed that eliminates the leading term of the
bias expansion. A simulation study on a binomial generalised additive model
illustrates the improved properties of the new estimators.
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1 Introduction

Consider a generalised additive model (GAM), Wood (2017), with

g(µi) =

nk∑
k=1

αkzik +

p∑
j=1

fj(xij) (i = 1, . . . , n),

with µi = E(Yi), where Yi is a response variable with an exponential family
distribution, Yi ∼ EF (µi, ϕ), and Y1, . . . , Yn are independent conditionally of the
covariance vectors z1, . . . , zn, x1, . . . , xn with zi ∈ Rnk , xi ∈ Rp. The functions
fj are smooth, each typically represented by a basis expansion. This leads to a
generalised linear model (GLM) structure

g(µi) = Xiθ, Yi ∼ EF (µi, ϕ),

with full parameter vector θ and i-th row of a complete design matrix X. Max-
imising the likelihood l(θ) for this model would typically lead to overfitting, so
parameter estimation is by maximising a penalised likelihood

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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lP (θ) = l(θ)− 1

2ϕ
θTSθ, (1)

with S =
∑
j λjSj , where Sj is a penalty matrix for function fj , and λj is a

smoothing parameter to control the trade off between how well fj fits the data,
and its smoothness. In practice, this maximisation is achieved through a penalised
iteratively reweighted least squares (PIRLS) procedure, illustrated for example
in Wood (2017).
The aim of this work is to provide a framework for reducing the asymptotic bias
of parameters in generalised additive models, in particular the linear parameters
which are biased by the penalty term in (1), as well as finite sample bias.
Firth (1993) showed that applying an appropriate adjustment A(θ) to the score
∇θl(θ), and solving the adjusted score equations ∇θl(θ)+A(θ) = 0p results in an
estimator of θ with asymptotically reduced bias compared to the maximum likeli-
hood estimator. In the above, ∇θ denotes gradient with respect to the parameter
θ, and 0p denotes a p-vector of zeros.
However, the difficulty of GAMs is that the estimating equations are not unbiased
due to the presence of the functional penalty term, meaning the adjustments of
Firth (1993) can not be directly applied. Therefore, we derive a similar approach
in order to obtain bias-reduced estimators of parameters in GAMs.

2 Bias-reducing GAM adjustment

To consider the bias of estimated parameters in a generalised additive model,
suppose that θ̃ is a consistent solution of the equations ∇lP (θ) = {lPr (θ)} = 0.
Assuming that λ = O(1), an expansion of lPr (θ̃) about θ using a similar approach
to Pace and Salvan (1997) gives that the bias of θ̃ is

E(θ̃ − θ)r = −1

2
jrsjtu(νs,tu + νs,t,u)︸ ︷︷ ︸

Bias from the GLM part

−λjrsSstθt︸ ︷︷ ︸
Bias from smoothing penalty

+ O(n−3/2).
(2)

The above expression employs index notation with Einstein’s summation con-
vention, and jrs is the inverse of jrs = E(lPrs), Sstθt is the s-th element of
the vector Sθ, νs,tu = E(lsltu) and νs,t,u = E(lsltlu). We have for example
lrs = ∂2l(θ)/∂θs∂θr for the unpenalised part of the likelihood, with the same
notation for the full penalised likelihood lP . Suppose that estimation is per-
formed by solving lPr + Ar = 0, where Ar = O(1). By choosing Ar = {A(θ)}r
appropriately, we obtain a vector of bias-reducing adjustments that eliminates
the leading term of bias expansion (2) by setting

E(Ar) = irs

{
jrs
(
1

2
jtu(νs,tu + νs,t,u) + λSstθ

t

)}
+O(n−1/2), (3)

where irs is the inverse of irs = E(lrs).
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3 Simulation study

We conduct a simulation study to investigate the properties of the reduced-bias
estimators, using the model Yi ∼ Binomial(10, ψi), where

log

(
ψi

1− ψi

)
= α0 +

10∑
k=1

αkxik + f(xi11).

We use the covariate setup described in Šinkovec et al. (2019) by generating 10
independent standard Gaussian random variables, then applying the listed trans-
formations to obtain a mixture of binary, ordinal and continuous covariates. We
examine two cases, first setting the generated Gaussian variables to be uncor-
related, then setting the Gaussian variables to have correlation matrix elements
described in Table 1. Continuous covariates are truncated at their third quartile
plus five times their interquartile range. The functional covariate xi11 is a uni-
form random variable in [0, 1], and f(x) = 2 sin(πx). The true parameters are
set to log(4) for binary covariates, log(2) for ordinal covariates, log(

√
2) for α7,

0 for α8 and α9, and finally − log(
√
2) for α10. The intercept α0 was estimated

numerically in order to ensure that E(Yi) = 4 approximately.

TABLE 1. Structure of linear covariates to be used in the simulation study, as
used in Šinkovec et al. (2019). I(·) is the indicator function, [.] is a truncation
function, removing the decimal part of a number.
Gaussian variable Correlation of zik Transformation E(xik)

zi1 zi2(0.6), zi3(0.5), zi7(0.5) xi1 = I(zi1 < 0.84) 0.8
zi2 zi1(0.6) xi2 = I(zi2 < −0.35) 0.36
zi3 zi1(0.5), zi4(−0.5), zi5(−0.3) xi3 = I(zi3 < 0) 0.5
zi4 zi3(−0.5), zi5(0.5), zi7(0.3), zi8(0.5), zi9(0.3) xi4 = I(zi4 < 0) 0.5
zi5 zi3(−0.3), zi4(0.5), zi8(0.3), zi9(0.3) xi5 = I(zi5 ≥ −1.2) + I(zi5 ≥ 0.75) 1.11
zi6 zi7(−0.3), zi8(0.3) xi6 = I(zi6 ≥ 0.5) + I(zi6 ≥ 1.5) 0.37
zi7 zi1(0.5), zi4(0.3), zi6(−0.3) xi7 = [10zi7 + 55] 54.5
zi8 zi4(0.5), zi5(0.3), zi6(0.3), zi9(0.5) xi8 = [max(0, 100 exp(zi8)− 20)] 138.58
zi9 zi4(0.3), zi5(0.3), zi8(0.5) xi9 = [max(0, 80 exp(zi9)− 20)] 106.97
zi10 - xi10 = [10zi10 + 55] 54.5

For n = 100 and k = 10 knots used with a first order P-spline, 1000 datasets
were generated using the above covariates for each of the uncorrelated and cor-
related cases. Parameters were estimated by solving ∇θl

P (θ) = 0, and by using
adjustments (3), using the nleqslv package in R version 4.3.2. The smoothing
parameter λ was set to each of {0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4}, as well as a run
where the smoothing parameter was estimated using mgcv::gam(). Estimated
biases and MSEs for the scalar parameters are plotted in Figures 1 and 2 be-
low. The average bias and MSE for the parameters when we use mgcv estimated
smoothing parameters are plotted as horizontal dotted lines. We observe a general
reduction in bias for the linear parameters in both the fixed smoothing parameter
and mgcv selected smoothing parameter cases, particularly for the uncorrelated
covariates. The biases for parameters α2 and α3 increase in the correlated case
for the larger smoothing parameter values, but other parameters still obtain bias
reduction. We also observe MSE remaining similar or slightly smaller when using
the bias-reducing adjustments.
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FIGURE 1. Estimated biases and MSEs when solving ∇θl
P (θ) = 0 (penalised

likelihood), and when applying bias-reducing adjustments; uncorrelated case.
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FIGURE 2. Estimated biases and MSEs when solving ∇θl
P (θ) = 0 (penalised

likelihood), and when applying bias-reducing adjustments; correlated case.
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Ongoing work involves developing bias reduction methods when λ = O(n1/2). A
seamless smoothing parameter selection when using this method is also a current
point of research.
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Abstract: In polygenic risk modelling, finding prediction models that yield com-
petitive performance across different ancestry groups remains one of the great-
est challenges. Anchor regression is a recent regression technique that combines
ideas from causal inference and predictive modelling to achieve robust predic-
tions also in unseen environments. In this work, we investigate the potential
of anchor regression to reduce the gap in transferability in genetic prediction
models. Specifically, we incorporate anchor regression in the statistical boosting
framework snpboost, which enables the computationally efficient derivation of
multivariable, sparse polygenic risk models from individual-level genotype data.
As a proxy for ancestry, we use the first ten genetic principal components as
anchors to derive prediction models that are robust against perturbations across
different populations. We then apply anchor regression to large-scale BMI data
from the UK Biobank and analyse the prediction performance.
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1 Introduction

Polygenic risk scores (PRS) capture the genetic predisposition to a specific trait
(e.g., a disease or phenotype) based on common genetic variants, so-called sin-
gle nucleotide polymorphisms (SNPs). PRS are most often derived from large
cohort studies like the UK Biobank, which are often biased towards European

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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ancestry in their population structure. The predictive accuracy of PRS that were
derived from individuals with a shared ancestry (e.g., European) tends to be
strongly decreased in individuals from other ancestries (e.g., African or Asian).
To overcome this issue of lacking PRS transferability, there is a strong need for
more diverse biobanks, as well as for methods that effectively include different
ancestries to achieve more robust predictions across out-of-target populations or
admixed individuals.
The ancestry of an individual can be estimated from their genetic principal com-
ponents (PCs). Therefore, genetic PCs are often used as covariates in PRS anal-
yses to account for different population structures. Tanigawa and Kellis (2023)
observed that including non-European individuals in the training data of PRS
considerably improved the prediction performance on non-European populations
without reducing the performance on the European population. However, it is
unclear how to best account for the ancestry in the training of the PRS model.
Therefore, in a first analysis, we tested whether it is crucial to include the PCs
before deriving the PRS or if it is sufficient to correct for them in the subsequent
analysis. We did not observe a consistent pattern here; however, in some cases
and particularly when only training on European samples, including the PCs as
simple covariates in a linear regression even decreased transferability.
In previous works, we have introduced snpboost, a statistical boosting frame-
work to infer PRS directly from individual-level genotype data (Klink-hammer
et al., 2023). Within snpboost, a specific regression task is solved by iteratively
fitting simple linear base-learners, each base-learner corresponding to one ge-
netic variant. The regression task is defined by the chosen loss function; so far,
the snpboost framework incorporates targeted loss functions for linear and lo-
gistic regression, as well as for quantile regression. Furthermore, it is possible
to adequately model time-to-event and count data by using corresponding loss
functions. In Klinkhammer et al. (2023), we found that snpboost, when applied
to European data, yields sparser models with competitive or better prediction
performance compared to multivariable approaches (e.g., snpnet, BayesR) and
approaches based on summary statistics from genome-wide association studies
(e.g., PRScs, LDpred). However, none of the incorporated loss functions specifi-
cally targets the gap in transferability to different populations.
Anchor regression is a regression technique that aims to provide robust predic-
tions across out-of-target environments (Rothenhäusler et al., 2021). The envi-
ronments are represented by so-called anchors and account for shift perturbations
in the covariates as well as the outcome. In this work, we extend the statistical
boosting framework snpboost to include anchor regression by incorporating the
corresponding loss function. The aim is to derive sparse polygenic risk scores that
are potentially more transferable to out-of-target populations. To increase robust-
ness with respect to an individual’s ancestry, we use the genetic PCs as anchors.
We apply anchor regression on data from the UK Biobank, a large cohort study
with extensive phenotypic and genotypic information. In particular, we examine
the influence of the tuning parameter γ, which determines the strength of the
anchors’ influence.

2 Boosting polygenic risk scores via anchor regression

Anchor regression transfers ideas from causal inference into predictive modelling
(Rothenhäusler et al., 2021). It assumes a situation where we are interested in
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the effects of some covariates X on an outcome Y , but the distribution of X
is perturbed in different environments, represented by some anchors A. It then
aims to estimate the effects such that the prediction performance is more robust
across different environments including even unobserved ones.
In the context of genetic prediction models, for n individuals and a continuous
outcome Y , let y ∈ Rn be the vector of observations and X ∈ [0, 2]n×p the
observed genotype matrix. Its j-th column xj corresponds to the j-th variant
which is encoded as xi,j = 0 if individual i has no mutation in variant j compared
to the reference genome and xi,j = 1 and xi,j = 2 in case of heterozygous and
homozygous mutations, respectively. Furthermore, let µ = Xβ with β ∈ Rp be
some linear predictor of y. Moreover, for k anchors, let A ∈ Rn×k be the anchor
matrix. Then, for a tuning parameter γ ≥ 0, the loss function of anchor regression
is given by

ρ(y,µ) = ∥(I−ΠA)(y − µ)∥22 + γ∥ΠA(y − µ)∥22,

where ΠA = A(ATA)−1AT is the projection matrix onto the column space of
A and I is the identity matrix. For γ = 1, the loss function equals the L2-loss,
i.e., in this case anchor regression coincides with ordinary least squares regression
without taking the anchors into account. For γ = 0, anchor regression yields the
same estimator as regressing both y and X on A first and then only considering
the residuals in an ordinary least squares regression. On the other extreme, for
γ → ∞, and under instrumental variable assumptions, anchor regression corre-
sponds to two-stage least squares regression, a technique to estimate causal ef-
fects. Anchor regression interpolates between those edge cases and offers a flexible
range of models under less assumptions than the classical instrumental variable
set-up (Rothenhäusler et al., 2021).
To incorporate anchor regression in the snpboost framework, we implemented
ρ(·, ·) as a loss function and added γ as an additional input parameter. Further-
more, to include the special case γ = ∞, we implemented the loss function

ρIV(y,µ) = ∥ΠA(y − µ)∥22.

The choice of anchors depends on the kind of perturbations that should be ac-
counted for. As we aim for robust predictions across different ancestry popula-
tions, we use the first ten genetic PCs as anchors. The genetic PCs reflect the
individual ancestry and are often incorporated in polygenic risk modelling to
account for population structure. Unlike a categorical variable encoding an in-
dividual’s ancestry to a population or ethnic group, PCs can portray ancestry
more adequately as a continuum and therefore also capture admixed individuals.
In anchor regression, the choice of the tuning parameter γ is crucial. Rothen-
häusler et al. (2021) suggest that this parameter could be determined based on
the expected strength of perturbations on future data relative to the training set.
Building up on this, in our work we particularly investigate the impact of γ on
the prediction performance across different ancestries.

3 Analysis of large-scale UK Biobank data

We applied the new anchor regression via snpboost approach on BMI data from
the UK Biobank (under application number 81202). The genotyped data com-
prised p = 619,773 genetic variants. For varying γ, models were trained on
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FIGURE 1. Results of anchor regression for BMI data from the UK Biobank
via snpboost for varying γ. Models were trained on individuals of European
(EUR) ancestry and tested on independent individuals of European (EUR),
African (AFR), East Asian (EAS) and South Asian (SAS) ancestry, respectively.
RMSEP± SE on the test data are shown.

ntrain = 191,036 individuals of European ancestry and the stopping iteration
of snpboost was tuned on nval = 64,193 individuals of European ancestry. The
resulting models were then applied on ntest,EUR = 63,639 individuals of European
ancestry, ntest,AFR = 5,397 individuals of African ancestry, ntest,EAS = 1,924 indi-
viduals of East Asian ancestry and ntest,SAS = 6,781 individuals of South Asian
ancestry, respectively. Prediction performance was assessed via the root mean
squared error of prediction (RMSEP) on the test sets.
Results on the prediction performance are shown in Figure 1. For individuals
of South Asian ancestry, the prediction performance hardly differed for varying
values of γ, while for the other ancestries the RMSEP increased with increasing
γ. Overall, the prediction performance was quite stable in all ancestries for small
to medium-sized γ. Noteworthy, the optimal γ differs dependent on the ancestry
of interest. On another note, the resulting PRS models tended to be sparser
for larger values of γ (Figure 2). For γ → ∞, the final model only includes 21
SNPs but also yields the highest RMSEP for all ancestries. On the other hand,
the edge case γ = 0 includes 19,011 variants but yields a comparable prediction
performance to e.g. the model corresponding to γ = 5, incorporating almost half
as many variants.
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FIGURE 2. Number of included genetic variants (sparsity) of PRS models for
BMI fitted on European data from the UK Biobank via anchor regression within
the snpboost framework. Numbers on top of the bars indicate the number of
variables that form the final model.

4 Discussion

We were able to show that the proposed anchor regression approach can be ef-
ficiently applied to derive PRS on large-scale genotype data via the snpboost
framework. Our first analysis on UK Biobank indicates stable prediction perfor-
mance of anchor regression for small to medium-sized γ, while the performance
is still varying between ancestry groups and further work on exploring the po-
tential is needed. Specifically, future work should focus on the choice of anchors
and investigate whether the results are sensitive to the number of included PCs,
or if other anchors (e.g., categorical coding of ancestry) would be more suitable.
Additionally, it is of interest to analyse the effect of including individuals with
non-European ancestry in the training of the PRS (cf., Tanigawa and Kellis,
2023). As the final prediction models tend to be sparser for larger values of γ
with still competitive prediction performance, it may be of particular interest to
use anchor regression as a variable selection technique to identify relevant genetic
variants with “stable” effects for different populations and potentially integrate
a refitting step to optimize prediction performance. Furthermore, we plan to
investigate the chosen variants in more detail, e.g., examine if less variants in
LD are chosen in the sparser models. With the help of simulated genotype and
phenotype data, we will also analyse if increasing the parameter γ and therefore
yielding sparser models could reduce the false positive rate. If this was the case,
anchor regression might help detecting potentially causal variants and simplify
biological downstream analysis.
Besides increasing transferability across ancestries, with the choice of adequate
anchors, anchor regression could also help to account for environmental changes,
e.g., for combined data from different studies. Noteworthy, for predictions on new
test data, the values of the anchors are not needed. Therefore, anchor regression
offers the opportunity to account for covariates that are observed in the training
data but might be unknown in future test data.
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Abstract: Collinearity between covariates and spatial effects can lead to a bias in
the corresponding fixed effects’ estimates known as spatial confounding. Recently,
the Spatial+ approach suggests to regress out the spatial effect in the covariate
first, before estimating the model of interest. Drastic spatial confounding is ob-
served in gradient boosting due to its step-wise procedure. In this contribution we
apply the suggested two-step approach and confirm its ability to correct spatial
confounding for gradient boosting as well.
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Abstract: An automated method to detect Basal Cell Carcinoma (BCC) relies
on Autofluorescence (AF) imaging guiding Raman microscopy to obtain bio-
chemical information for tissue classification. The guidance is provided via an
image segmentation technique aiming to reduce the risk of missing cancer. We
present evidence that shape of an AF segment may be useful for ‘trimming’
6-8% of non-BCC segments in an essentially coordinate free manner, without
compromising BCC detection. By allowing the AF-Raman method to direct the
more time consuming Raman analysis toward more relevant regions, the pro-
posed trimming of unnecessary segments should ultimately improve the overall
accuracy. The presented shape analysis uses the recently introduced Weighted
Euler Curve Transform (WECT). WECT embeds segments in a space of real
matrices of fixed dimensions, where a shape is an equivalence class of segments
with WECTs matching under a cyclic permutation of columns. The induced ro-
tation invariant distance is non-Hilbertian, which requires special care in using it
with kernel methods (e.g. Kernel PCA, Kernel LDA, SVMs). Our currently best
results are achieved by L1 SVMs based on the Laplace ‘kernel’.
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Abstract: State processes of hidden Markov models with periodic components
are a special case of inhomogeneous Markov chains. The cyclic patterns exhibited
by such chains can be utilised to infer the time-varying unconditional stationary
distribution and the overall state dwell-time distribution. We model data from
movement ecology to show that the previously used approximation of the true
stationary distribution can be biased and that the unrealistic consequence of
geometrically distributed state dwell times vanishes for HMMs with periodicity.
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1 Introduction

The capability to incorporate periodic trends into hidden Markov models (HMMs)
is of tremendous significance in certain application domains. For instance, it en-
ables modelling the volatility of financial market based on seasonal variations or
animal behaviour patterns depending on the time of day. An essential aspect in
the subsequent interpretation of the effects lies in the state distribution. In inho-
mogeneous Markov chains, this distribution is non-stationary and thus challeng-
ing to depict accurately. In this contribution, we derive properties of periodically
inhomogeneous HMMs and utilise elephant movement data to demonstrate the
necessity of the elaborated inferential tools.

2 Periodic variation in hidden Markov models

An HMM consists of two processes: one state-dependent process {Xt}t∈N (where
Xt can be a vector) and one latent state process {St}t∈N, where St ∈ {1, . . . , N}
selects from which of the N state-dependent distributions Xt is generated. The
unobserved state process {St} is assumed to be Markovian of order one and
fully characterised by its initial distribution and the (potentially time-varying)
transition probability matrix (t.p.m.)

Γ(t) = (γ
(t)
ij ), with γ

(t)
ij = Pr(St+1 = j|St = i), t ∈ N.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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Figure 2: Example visualization of periodic stationarity with L = 3. The thinned

Markov chain St, St+3, St+6, . . . has constant t.p.m. Γ̃t.

(Ge et al., 2006; Kargapolova and Ogorodnikov, 2012; Touron, 2019). For large N or large

L, it will typically be most convenient to calculate δ(t) recursively for t = 1, . . . , L (see

Supplementary Material (S.2)). If the initial state distribution of the actual state process

is the stationary distribution of the thinned Markov chain active at the start of the time

series, then each of the thinned Markov chains is stationary, such that δ(t) is the state

distribution at any time t = 1, . . . , L of interest. We refer to such a process {St}t∈N as

a periodically stationary Markov chain. Otherwise, provided aperiodicity, the solution to

Equation (3) will typically be a good approximation to the unconditional distribution of

states at time t, as each of the L thinned Markov chains — i.e. {St+kL}k∈N for t = 1, . . . , L

— converges to its respective stationary distribution δ(t). Therefore, we interchangeably

use the terms (periodically) stationary distribution and unconditional state distribution.

2.3 State dwell-time distribution of periodically inhomogeneous

Markov chains

In this section we derive the distribution of the state dwell times implied by a periodically

stationary Markov chain. We first focus on the time-varying state dwell-time distribution,

i.e. the distribution of the duration of a stay in state i beginning at time t, for each

t = 1, . . . , L and each i = 1, . . . , N .

8

FIGURE 1. Example visualisation of periodic stationarity with L = 3. The
thinned Markov chain St, St+3, St+6, . . . has constant t.p.m. Γ̃t.

In contrast, the observations Xt, t ∈ N, are assumed to be conditionally indepen-
dent of each other, given the current states.
In many settings, modelling variation over time in the state process is deemed
necessary. For instance, in ecological applications, St proxies the behavioural
mode of an animal at time t, such as resting, foraging or travelling, which cru-
cially depends on the time of the day. When accounting for diel rhythms, it is
straightforward to see that Γ(t) = Γ(t+L), for t ∈ N, with L denoting the length
of a cycle.
However, in general, interpreting these transition probabilities with respect to the
time is not straightforward, especially not for N > 2. One way to circumvent this
problem is to consider the hypothetical stationary distribution that the Markov
chain would converge to if the process followed Γ(t) constant over time (for given
t), i.e. the solution to

ρ(t) = ρ(t)Γ(t)

for each t = 1, . . . , L, subject to
∑N
i=1 ρ

(t)
i = 1 (Patterson et al., 2009). How-

ever, this assumption will lead to biased estimates of the true unconditional
distribution of the state process as the preceding dynamics of the state-switching
probability matrix are neglected. Fortunately, in case of periodicity, we can use
that Γ(t) = Γ(t+L) and consider the thinned Markov chain {St+kL}k∈N, for fixed
t, which is homogeneous with a constant t.p.m.

Γ̃t = Γ(t)Γ(t+1) . . .Γ(t+L−1),

see Figure 1 for a visual representation. This thinned Markov chain (given it is
irreducible) has a unique stationary distribution δ(t) (Kargapolova and Ogorod-
nikov, 2012) being the solution to

δ(t) = δ(t)Γ̃t.

In addition to the stationary distribution, we want to obtain an overall state
dwell-time distribution as a simpler inference tool describing the distribution of
the dwell-time in each state. Thus, we derive the probability mass function of
the overall dwell-time distribution in state i for a periodically stationary Markov
chain defined by Γ(t), t = 1, . . . , L, as

di(r) =

L∑
t=1

w
(t)
i d

(t)
i (r), r ∈ N,
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where w
(t)
i denote mixture weights depending on the previously derived periodi-

cally stationary distribution and transition probabilities and

d
(t)
i (r) =

(
1− γ

(t+r−1)
ii

) r−1∏
j=1

γ
(t+j−1)
ii , r ∈ N.

3 Application to elephant data
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FIGURE 2. Periodically stationary distribution in the elephant example.

In the following case study, we use a dataset of a movement track of an ele-
phant from the Ivory Coast consisting of 12,170 observations of longitude and
latitude, recorded at 2-hour intervals. The data is accessible via the Movebank
for animal tracking data (Movebank-ID: 2736765655). These observations were
then converted into step lengths and turning angles to model them by gamma
and van Mises distributions, respectively, in a 2-state HMM where the transition
probabilities were modelled via trigonometric functions comprising one sine and
one cosine term to account for the cyclic nature. Applying the inferential tools
developed in Section 2, Figure 2 displays the time-dependent unconditional state
distributions as well as its approximation. It reveals the aforementioned bias in
the latter one as the correct stationary distribution is shifted, caused by the
ignoration of the preceding dynamics in the approximative version.
Additionally, Figure 3 demonstrates the overall dwell-time distribution in both
states. It can easily be seen that the arising distribution substantially deviates
from a geometric distribution, which is the standard case implied by the Markov
property in HMMs with homogeneous transition probabilities. Thus, this unde-
sirable consequence of the Markov property can be avoided by including periodic
components in the state process.

4 Discussion

This paper derives important properties of hidden Markov models in cases of
periodic variation. Specifically, we demonstrated that for state processes includ-
ing cyclic components, the periodic structure present in the inhomogeneity can
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FIGURE 3. Visualisation of the overall dwell-time distribution in both states.

be exploited to derive the periodically varying unconditional state distribution.
Based on this, an overall dwell-time distribution can also obtained which can
— implied by the periodicity — deviate rather substantially from a geometric
distribution. However, this only holds true for periodic HMMs. To circumvent
this problem also in cases without periodicity, hidden semi-Markov models are a
natural alternative. Elaborating more on this model class constitutes an exciting
path for future research.
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Abstract: Fact-checking can be done in crowd-sourcing mode by aggregating
judgments provided by many workers. We propose a Bayesian approach to carry
out this aggregation, considering the truthfulness of the statements as a latent
variable that underlies the ratings. We illustrate this approach and test it against
alternative methods using a publicly available dataset.
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1 Introduction

Fact-checking is crucial to improve the quality of public discussions. In the inter-
net age, statements and claims flow in at overwhelming rates, but only a handful
of experts will check them. One possibility is to surrogate each expert judgment
with an aggregation of many workers’ judgments; this is called crowd-sourcing.
Considering the truthfulness of the statements as a latent variable to be as-
sessed and the ratings given by workers as repeated measurements of the latent
construct, these data can be analyzed within the framework of Item Response
Theory (IRT; van der Linden, 2016). An ordinal regression model can include
worker-specific parameters to account for their personal scaling. Here, we present
a Bayesian ordinal regression to do fact-checking in crowd-sourcing mode and
compare it with some alternative methods. We illustrate the methodology with
the SIGIR data presented by Roitero et al. (2020).

2 Proposal

Let there be n statements indexed by i = 1, . . . , n and m workers indexed by
j = 1, . . . ,m. An expert may rate the i-th statement as Yi, while the j-th worker
may rate it independently as Xij . The aim is to surrogate the Y ’s via the X’s so

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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that, after suitable training, it is possible to rate statements via crowds instead
of experts.
We assume that the Y ’s and X’s are on an ordinal scale with K levels indexed by
h = 1, . . . ,K. In the ordinal regression framework, it is natural to assume that Yi
and Xij have latent continuous counterparts Y ∗

i and X∗
ij . Then, the observation

model is
Yi = h ⇐⇒ Y ∗

i ∈ IYh , Xij = h ⇐⇒ X∗
ij ∈ IXh ,

depending on two partitions of R into intervals IZh =]γZh−1, γ
Z
h ] with ordered

cut-points γZh constrained as γZ0 = −∞, γZK = +∞, for Z = X,Y .
Let ξi ∼ N (0, 1) denote the latent truthfulness value of the i-th statement; as-
suming a standardized distribution is common in the IRT framework. The expert
ratings are modelled as

Y ∗
i = σξξi + ϵi , ϵi ∼ N (0, 1) ,

where σξ > 0 implies the expert’s reliability ρ = σ2
ξ/(1 + σ2

ξ). Workers’ rating
behaviour is described by parameters αj ∼ N (0, σ2

α) and βj ∼ N (0, σ2
β) according

to the following model

X∗
ij = αj + βjξi + ηij , ηij ∼ N (0, 1) . (1)

Treating αj , βj , and ξi like latent variables allows for correlation within workers
and within statements. The training of the model relies crucially on statements
already rated by the expert: for these statements, information is available on ξi
and, when the j-th worker rates them, some information is gathered on their αj
and βj . The same worker can then help provide ratings on statements for which
the expert rating is missing.
The model in Equation (1) can help classify the rating behaviour of workers.
In the long run, workers may turn out to be spammers, with βj < 0, if they
systematically disagree with the expert; they may simply give random answers,
if βj ≈ 0; however, hopefully, workers may be capable to discern and communicate
the truthfulness of statements, since βj > 0. Apart from this distinction, it is still
possible to be generally in favour of (αj > 0) or against (αj < 0) the statements.
The model may be estimated more naturally within the Bayesian framework.
One can efficiently simulate draws from the posterior distribution with available
software, such as the R interface to the Stan probabilistic programming language
(Stan Development Team, 2024).
The Bayesian approach has some advantages since it allows the smooth handling
of several latent variables. The prior is crucial to ensure identifiability and regu-
larization, which are also central in IRT. We adopt an informative prior for σ2

ξ ,
one that allows us to achieve experts’ reliability ρ ≈ 99%. The prior on the other
parameters, namely, αj and βj , should instead be weakly informative (see, for
instance, Gelman et al., 2013, Ch. 5) as it is potentially unknown whether a new
worker can be relied upon. In practical crowd-sourcing, one may delegate rating
tasks over online platforms where a wide variety of people can participate in many
projects, but reliability reports from previous participations may be unavailable.

3 Comparison with alternative methods

The proposed model can be compared with other methods, which seem natural for
this field of applications, based on the predictions it provides on new statements.
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We surrogate this assessment via Leave-One(-Yi)-Out cross-validation (LOO),
which involves hiding the expert rating for the generic i-th statement and estimate
the distribution of Yi only based on Y−i and all the Xij . For ease of assessment,
our Bayesian model is such that all the Yi’s are conditionally independent given
the parameters, so the conditions set by Vehtari et al. (2017) are satisfied, which
allows to approximate LOO with a single fit of the model based on the full
dataset. We thus approximate LOO via Pareto-smoothed importance sampling,
which only needs the likelihood terms Pr(Yi = yi | θ) as additional quantities
during the model fitting step.
Maximum a posteriori is a common way to summarize predictive distributions,
so it was chosen as a prediction to be compared across methods. Alternatives
to our proposal include the median and Naive Bayes (NB, Hastie et al., 2009).
The median prediction uses the sample medians of workers’ ratings within each
statement as surrogates for the expert’s ratings. Naive Bayes may be stratified by
workers or their covariates. The median accounts properly for the ordinal nature
of Y , while NB treats all variables as categorical. Our proposal constitutes an
improvement over both these methods, as it incorporates information on Y and
assumes some structure for the workers’ rating behaviour.
For each method, we compare the LOO prediction with the observed values of
Y , which implies a misclassification matrix. These matrices can be summarized
further, based on a few metrics: the mean absolute error (MAE), the root mean
square error (RMSE), and weighted kappas with linear (κ1) and quadratic weights
(κ2; Lin et al., 2012), the misclassification rate (MR) and a variant that tolerates
errors up to one rank (MR2). Kappas are actually a natural method to assess
the agreement between raters, while rates are popular in machine learning and
artificial intelligence applications. The optimum is achieved when all the kappas
are high and all the other metrics are low.

4 Analysis

For illustration, we present the method based on the SIGIR data, the most chal-
lenging dataset available at the following repository:
https://github.com/KevinRoitero/crowdsourcingTruthfulness

The SIGIR data contain n = 122 statements made by American politicians.
Each statement was rated independently by the American fact-checking agency
PolitiFact, which serves as the expert, and by 10 out of m = 200 crowd workers.
Truthfulness is rated on an ordinal scale with K = 6 levels, encoded by PolitiFact
as

1 = pants on fire < false < mostly false < half true < mostly true < true = 6 .

The baseline methods have a low computational footprint, while the Bayesian
estimation of our model is more demanding. However, the prediction performance
outweighs the costs, as shown in the following.
Figure 1 reports the misclassification matrices for each method, with different
observed and predicted values for each row and column, respectively. The median
provides predictions that look shrunk too much towards the middle of the scale,
as extensively pointed out by Roitero et al. (2020).
Naive Bayes was tested in three variants, one using a single misclassification
matrix to predict Y , and the other two assuming a distinct matrix for each group
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FIGURE 1. LOO misclassification probabilities (%); rows sum to 100.

1.287
1.706
0.721
0.385
0.195
0.298

1.402
1.961
0.672
0.385
0.293
0.365

1.443
1.946
0.721
0.410
0.256
0.347

1.023
1.684
0.465
0.302
0.473
0.512

0.943
1.198
0.713
0.213
0.535
0.774

median NB NB by views NB by worker proposal

κ2
κ1
MR2
MR
RMSE
MAE

TABLE 1. Performance metrics; darker highlights are better, bold for best.

of workers, based on their self-declared political views (liberal, conservative, etc),
or a distinct matrix for each worker. Such matrices can be rather sparse, so
all the counts of events are augmented by a small constant, in order to avoid
zero-probability estimates. Based on the misclassification matrices, NB works
best when assuming distinct misclassification matrices for each worker, which is
cumbersome and still makes coarse prediction errors, so it can be improved upon.
Our model is an improvement over the median and NB, both from a modelling
standpoint and in terms of performance. The model may miss the target more
frequently than the alternatives, but the prediction error is much more under
control in the case of misclassification. The model would not label a pants-on-fire
statement as true, as the other methods can still do. This fact can be appre-
ciated in terms of metrics, which are reported in Table 1. The proposal is the
best performer according to all metrics but MR. However, such a metric is rather
questionable in this case, as some levels in the response scale are hardly distin-
guishable, such as pants on fire and false.

5 Final remarks

To sum up, when surrogating expert fact-checking with crowd-sourced judgments,
it is crucial to account for the workers’ misclassification behaviour. Our model
assumes a reasonable and intelligible structure over this behaviour, so it is more
parsimonious in this sense and scales better with the number of workers. Ana-
lyzing the predictive capabilities of the methods is crucial in choosing one that
does not contradict the expert excessively, as this may cast shadows over the
fact-checking service.
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Ongoing research includes testing our proposed solution in a plurality of cases. Fu-
ture work may address more than one dimension beyond the overall truthfulness
of statements, such as the relevance of claims, the perceived damage of trusting
the statements, and so on. Further advances may consist of replacing estimation
via MCMC with fast variational approximations (Gelman et al., 2013, Ch. 13).
Necessarily, reliable algorithms are needed for this possibility to be actively used
in practical applications.
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Abstract: Relative survival analysis deals with a competing risks survival model
where the cause of death is unknown. This lack of information occurs regularly in
population-based cancer studies. Non-parametric estimation of the net survival is
possible through the Pohar Perme estimator, taking other causes of mortality into
account. Derived similarly to Kaplan-Meier, it nevertheless relies on untestable in-
dependence assumptions. We propose here to relax these assumptions and provide
a generalized estimator that works for other dependence structures, by leveraging
the underlying counting process and martingales. Our approach provides a new
perspective on the Pohar Perme estimator and the acceptability of this assump-
tion. We showcase the difference between the two estimators on population-based
colorectal cancer registry, and discuss potential extensions of the methodology.

Keywords: Survival analysis; Net survival; Non-parametric estimators; Copulas.

1 Net survival analysis

Survival analysis produces valuable tools for prognosis of cancer patients. How-
ever, in population-based cancer studies, the cause of death – assumed binary,
studied cancer or not – is usually unreliable or unavailable. Relative survival
analysis takes this particularity into account to evaluate the excess mortality –
due to cancer – with respect to population life tables.
Let E,P and O = E ∧ P be random times to death from (resp) the Excess,
Population and Overall mortalities. Let X be a vector of covariates, C the time
to censorship, and denote T = O ∧ C and ∆ = 1 {T ≤ C}. Only (X, T,∆)
is observable. In particular, we do not observe a potential ordering indicatrix

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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1 {E ≥ P}. Alike standard approaches, we suppose the distribution of P |X known
from population life tables. To simplify our exposition, assume that the rest does
not depend on covariates.
Let (Xi, Ti,∆i)i=1,...,n be an observed n-sample and (Ω,A, {Ft, t ∈ R+} ,P) the
associated filtered probability space, with

Ft = σ {Xi, (Ti,∆i) : Ti ≥ t, ∀i ∈ 1, .., n} .

The mutual independence of (E,P,C) is a central assumption in survival litera-
ture (see e.g., Czado & Van Keilegom (2023) for recent discussion), even if the
epidemiological interpretation makes it hard to justify. We here suppose only in-
dependent censorship, which, denoting C the survival copula (see Nelsen (2006))
of the random vector (E,P ), writes:

(HC) : SP∧E(t) = C (SP (t), SE(t)) .

In particular, the standard independence assumption writes simply (HΠ) for
Π(u1, u2) = u1u2. There are a few standard non-parametric estimators under
(HΠ), from Ederer (1961), Hakulinen (1982), to more recently Pohar Perme &
al (2012), but none under (HC). If Adatorwovor & al (2023) provides paramet-
ric estimations under (HC), we propose here a non-parametric estimator that
generalizes the Pohar Perme estimator from (HΠ) to (HC).

2 Estimation of the net survival under (HC)

Let’s define the following stochastic processes:

N(t) = 1 {O ≤ t, O ≤ C} (Uncensored deaths process)

Y (t) = 1 {O ≥ t, C ≥ t} (At-risk process)

NE(t) = 1 {E ≤ t, E ≤ C} (Excess uncensored deaths process)

YE(t) = 1 {E ≥ t, C ≥ t} (Excess at-risk process)

Unfortunately, (NEi , YEi)i∈1,...,n are not observable, but we show that

∂NE(t) =
1

at
E (∂N(t)|E,C)− bt

atct
E (Y (t)|E,C) ,

YE(t) =
1

ct
E (Y (t)|E,C) ,

where at = P (P ≥ t|E = t), bt = P (P = t|E ≥ t) and ct = P (P ≥ t|E ≥ t).
Assuming that (P,E) is an absolutely continuous random vector, at, bt, ct can
be computed from partial derivatives Ci(u) = ∂C

∂ui
(u), i ∈ 1, 2 of C. Remark that

under (HΠ), at = ct = SP (t) and bt = −∂SP (t) do not depend on (unknown)
SE(t), while they generally do under (HC). However, like in classical survival
analysis, we show under (HC) that E (∂NE(t)) = E (YE(t)∂ΛE(t)), and moreover
that NEi −

∫ t
0
YEi∂ΛEi are Ft-martingales. A natural estimator for ∂ΛE(t) can

therefore be simply constructed as

∂Λ̂E(t) =
1
n

∑n
i=1 ∂NEi(t)

1
n

∑n
i=1 YEi(t)

.
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However, (∂NEi , YEi) are not directly observable and need to be estimated. For
that, replace first unobservable conditional expectations by their stochastic coun-
terpart: E (∂Ni(t)|Ei, Ci) by ∂Ni(t) and E (Yi(t)|Ei, Ci) by Yi(t). This plug-in is
enough to make the estimator computable under (HΠ) (it is the Pohar Perme
estimator), but not under (HC). We call generalized Pohar Perme estimator a
solution of the differential equation:

∂Λ̂E(t) =

∑n
i=1

1
âi,t

∂Ni(t)− b̂i,t
âi,tĉi,t

Yi(t)∑n
i=1

1
ĉi,t

Yi(t)
, (1)

where for all i ∈ 1, ..., n,

âi,t = C2

(
SPi(t), e

−Λ̂E(t)
)
,

b̂i,t = −C1

(
SPi(t), e

−Λ̂E(t)
)
∂SPi(t)e

Λ̂E(t),

ĉi,t = C(SPi(t), e
−Λ̂E(t))eΛ̂E(t).

Unfortunately, the differential equation 1 is now non-separable, and a non-linear
equation in ∂Λ̂E(t) needs to be solved at each time step. Alike previous estima-

tors under (HΠ), the obtained ∂Λ̂E process is piecewise continuous, with jumps at
event times T1, ..., Tn. It is moreover always negative, except at jump points, mak-
ing the produced survival curve increasing between jumps. The solving scheme
must therefore be performed on a very dense mesh t1, ..., tN that includes ob-
served times T1, ...Tn. These characteristics were already present under (HΠ).

3 Illustration

We use data on colorectal cancer patients extensively described in Wolski & al
(2020). Population is separated along the primary tumor location (left or right).
Using several dependence structures, we obtain net survival curves from Figure
1. If Wolski et al. (2020) found the overall survival to be significantly different
between left and right, net survival might not be if we take into account the
uncertainty in C. Further analysis to derive proper log-rank-type tests under
(HC) is possible.
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FIGURE 1. Obtained ŜE for several (HC). Data was split w.r.t. tumor location
(left or right) as in Wolski & al (2020), and several runs were done on several
copulas: Frank copulas on the top and Clayton copulas on the bottom, with
varying parameters θ. In both cases, θ = 0 ⇐⇒ C = Π, and this curve represents
the Pohar Perme estimator.
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Wolski, A., Grafféo, N., Giorgi, R. and the CENSUR working survival group
(2020). A permutation test based on the restricted mean survival time for
comparison of net survival distributions in non-proportional excess hazard
settings. Statistical Methods in Medical Research, 29, 1612 --1 623



Context matters: including global covariates
in relational event models
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Abstract: Relational event models have become popular in the network science
literature, as a number of phenomena in various applied fields, such as sociology,
ecology and finance, can be described via a network of entities interacting over
time. A relational event model allows to describe the formation of instantaneous
links over time and to identify its driving factors. Traditional inferential tech-
niques, involving Cox’s partial likelihood, can estimate the effects of covariates
that are node-specific, such as age or in-degree, or dyadic, such age difference
of pairs of nodes or reciprocity. However, the partial likelihood cannot account
for global covariates, i.e., factors that are constant for all pairs. Indeed, these
covariates, being only time-dependent, drop out from the partial likelihood. Nev-
ertheless, these factors, such as weather or time of the day, are often important
in capturing and explaining the temporal nature of the studied events. In this
paper, we address this challenge with the use of nested case-control sampling on
a time-shifted version of the event process. This will result in a partial likelihood
of a degenerate logistic generalized additive model from which we are able to
recover effects of all kinds of covariates, including global ones.

Keywords: Relational event model; Generalized additive model; Partial likeli-
hood; Risk set sampling; Dynamic network.

1 Relational event models with global covariates

In a relational event model, the events are directed interactions (s→ r) between
a sender s and a receiver r, occurring at specific points in time (Bianchi et al.
(2024)). In order to define the model, consider a multivariate counting process
N = {Nsr}(s,r)∈S×C , where Nsr(t) counts the number of occurrences of interac-
tion (s, r) in [0, t], and denote with Ht the history of the process. The underlying
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dynamics and driving factors of such a process are modelled through its stochastic
intensity process λsr, intuitively representing the probability of an event occur-
ring in an infinitesimal time interval [t, t+dt) conditioned on everything that has
been observed prior to t. This is modelled via a Cox proportional hazards model

λsr(t|Ht−) = Ysr(t)λ0(t)exp

{
q∑
l=1

fl

(
x(l)
sr (t)

)
+

w∑
l=1

gl

(
x(h)(t)

)}
, (1)

with λ0(t) an arbitrary non-negative baseline hazard and Ysr(t) a binary indicator
of whether the pair (s, r) is at risk of occurring at time t or not.
The parametric part of the model describes the effect of covariates on the forma-
tion of links over time. This includes the more traditional node-specific or edge
specific covariates, denoted with x

(l)
sr (t) and whose effect is expressed through

the arbitrary functions fl, as well as global covariates, which are constant for
all nodes and pairs. The latter are denoted with x(h)(t) and associated to arbi-
trary functions gl. The functions fl or gl can be taken either as linear or smooth
non-linear functions of the covariates.

2 Nested case-control sampling on a shifted process

The inclusion of global covariates in the model (1) adds an additional layer of
complexity in the estimation of their effects. Indeed, the terms involving these
variables, being only time-dependent, drop out from the traditional partial likeli-
hood (Cox (1975)), as they cancel out in the multinomial probabilities of observ-
ing a specific interaction against pairs of all interactions in the risk set at a same
time t. The same applies to the more efficient extensions of these methods based
on nested case-control sampling (Borgan et al. (1995)), where a certain number
of non-events is uniformly sampled from the risk set at a specific event time. In
this paper we propose a time-shifted version of the original counting process N,
from which we are able to estimate also the effects of global covariates.
To this end, let T = {Tsr}(s,r)∈S×C be a process such that Tsr ⊂ [0, τ ] is the
countable set of event times corresponding to the interaction (s → r). Consider
then another process H = {Hsr}(s,r)∈S×C , independent of T with Hsr ≥ 0. We
shift the event times of each interaction by the value of H for the corresponding
pair. Thus, we define T e = {Hsr + Tsr,k | ∀(s, r) ∈ S × C; k ≥ 1} as the set of
shifted event times, where Tsr,k ∈ Tsr is the k-th occurrence of the dyad (s, r).
In this way, we obtain a shifted marked point process Me = {(T ej , sj , rj)}j≥1

where T ej is the j-th order statistic of T e and the mark (sj , rj) represents the
specific interaction that occurred at that time. The risk set composition for Me

is inherited from N according to an indicator process Y esr(t), that is equal to
Ysr(t−Hsr) for t ∈ [Hsr, Hsr + τ ] and 0 outside this time interval.
We propose to perform nested case-control sampling on this shifted process. In
particular, at each shifted event time T ej , we sample a non-event pair (s∗j , r

∗
j ) ̸=

(sj , rj) among the pairs such that Y esr(T
e
j ) = 1. Then, having observed H and

using the independence between H and T, the probability of (sj , rj) occurring,
given that there is an event at T ej and that either (sj , rj) or (s∗j , r

∗
j ) could have

happened, follows a Binomial distribution that depends on the original intensity
process λsr evaluated at T ej −Hsr. Considering a realization of n events for the
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process Me, the resulting partial likelihood is therefore given by

L(λ0, f ,g) =

n∏
j=1

λsjrj (t
e
j − hsjrj )

λsjrj (t
e
j − hsjrj ) + λs∗j r∗j (t

e
j − hs∗j r∗j )

, (2)

with λ0, f and g the baseline hazard, dyadic and global functions in (1), respec-
tively. Crucially, the global terms g and λ0 do not cancel out in (2), as the event
and the sampled non-event will have received different shifts.
It can be shown that (2) is the likelihood of a degenerate logistic generalized
additive model with covariates given by the difference between the ones of the
event and the corresponding sampled non-event, respectively. We can then per-
form estimation using existing techniques for this class of models (Wood (2017)),
based on a spline approximation for the smooth terms and an optimization of a
penalized version of (2). These are implemented in the R package mgcv and return
estimates of all effects, including those from global covariates.

3 Bike sharing in Washington D.C.

We aim to use the proposed methodology on bike sharing data from Wash-
ington D.C., collected over the course of July 2023 and available at https:

//www.capitalbikeshare.com/system-data. The goal is to investigate how global
covariates, such as temperature or precipitation, as well as node-specific or dyadic
covariates, such as the distance between stations, affect the rate of bike sharing
in D.C.

1
5

2
0

2
5

3
0

3
5

Hours

T
e

m
p

e
ra

tu
re

0 6 12 18 24 30 36 42 48

FIGURE 1. Temperature over time,
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FIGURE 2. Closer stations experience
a larger number of simulated events.

In order to evaluate the proposed method, we consider a simple simulation study,
which mimics the setting just described. In particular, we generate data on bike
shares across two days among 20 bike stations selected from the real data. We
consider a rate of events that depends on the temperature, simulated as in Figure
1 and assumed to have a smooth quadratic effect on bike riding, with 23◦C as
the ideal temperature to ride. We also assume that the distance between stations
has a negative fixed effect (equal to −0.5) on the rate. Figure 2 shows that close-
by stations (represented through relative position of the nodes in the figure) are
associated to a higher number of simulated events among them (wider and darker
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links). We generate shifts from an exponential distribution of mean equal to the
average event time of the simulated process and apply our proposed method. The
results, based on 100 replications, show that the approach correctly recovers both
the smooth global effect associated with temperature (Figure 3) and the dyadic
fixed effect of the distance (Figure 4). Given the effectiveness shown by this small
example, we will next analyze the full dataset on bike sharing.
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Abstract: Traditional Gaussian Processes are limited in their application by
complex boundaries and intricately structured manifolds, such as when predicting
water quality in the Aral Sea. Intrinsic Gaussian Processes adequately accommo-
date these complex conditions. To address the computational complexity of In-
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Processes approach we propose offers effective prediction over such manifolds.
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Abstract: The number of jobs (as well as the number of careers) held up in career
history is an important feature of people’s labour market behaviour, reflecting
not only the economic situation and the attitudes of the population. At the same
time, it is changing very rapidly, with a significant increase in the number of jobs
over time and a successive decrease in the length of time spent in one job. This
paper examines the work history of a generation of European residents up to the
year of birth 1967, using data from the Job Episode Panel based on the SHARE
survey project for the modelling. Because of the data, work history to the age
of 50 is of interest. The aim is to assess the development of the number of jobs
over time and the convergence of values for EU members with and without a
communist history. The target population was aged over 23 in 1990. Mixtures of
two and three Poisson regressions were used to assess the effect of characteristics
on the target variable, and AIC was used to compare the models. For artificial
components found, the estimated (joint) membership tables are presented for
models with and without interactions and for two and three components are
presented.

Keywords: Job episodes panel; SHARE; Finite mixture of GLM; Poisson re-
gression.

1 Introduction

The European Survey of Health, Ageing and Retirement in Europe provides
a huge database of data connected to the European population aged over 50
(SHARE, 2023). The retrospective Job Episodes Panel (Brugiavini & all., 2019)
based on this project describes the whole life and working history of respondents
from their birth through education and active economic life to retirement to end
of life in a yearly panel data. The last year of observation is 2017 (for those alive
and not lost) or year of death. Respondents were at least 50 years old in 2017,
so their year of birth is 1967 or earlier. The aim is to model the number of jobs

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
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up to the age of 50 and to assess the differences between the original European
Union countries and European Union members with experience of communist
regimes. Information on gender, education (described by the number of years in
school) and children raised are used as additional independent variables. In order
to assess the convergence of the behaviour of respondents from both groups of
countries over time, a variable was constructed indicating the decade in which
the respondent turned 50.
The Poisson GLM regression is used to model the dependence between the num-
ber of jobs (not careers) and covariances. Our modelling aim is to find groups
of observations with similar regression coefficients and to identify more homoge-
neous subpopulations in the populations of interest - two subgroups of European
countries. In the model, not only main effects are included, but also interactions
are added to test for differences in the impact of independent variables on various
subpopulations.

2 Data, models and results

We have 5,813,133 years of life of respondents from all EU countries (excl. Malta
and Cyprus) and Switzerland in the database. This means 85,935 unique respon-
dents (44 % men and 56 % women), 36,046 still economically active respondents
(42 %) and 49,889 retired respondents (58 %).
Variables included in covariates x in the model ( (1) and (2), base categories in
italics):

• gender, x1 (male, female) years in school, x2

• oldEUcountry, x3 (yes, no) children, x4 (no, yes)

• year group 50, x5 (1980-, 1981-1990, 1991-2000, 2001-2010, 2011+)

The target variable Y is a number of jobs up to the age of 50. Only one job during
the study period is the mode for the empirical distributions of all populations
studied with mean number being between 2 and 4 jobs. The subpopulations differ
in the probability that the respondent has never worked (as expected, gender is
a strong predictor of this value, as is the year of birth). The maximum value in
the sample is 17 occupations. For such a data, normal regression model is not
suitable, for this reason, the Poisson regression is applied using a large spectrum
of methods and implementations for GLM models.
The Poisson GLM models (model 1 with (two-way) interactions for x1, x3, x5 and
a nested model 2 without interactions, where only main effects of x1 to x5 are
included) are of the form:

E(Y |x) = exp
{
βTx

}
, V ar(Y |x) = exp

{
βTx

}
. (1)

We further hypothesize that there are two or more (K) distinct, artificial un-
observed groups of respondents in the population that differ in their behaviour
in the labour market. Moreover, this approach enables us to fix problems with
overdispersion; zero value of our target variable refers to those, who have no job
in their life history.
Finite mixture model of K Poisson regressions (models (1) fitted to a selected
groups by the EM algorithm, see Faria, Rodrigues Gonçalves, 2013, Grün, Leisch,
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2008)

P (y;β1, ...,βK , π1, ..., πK−1) =

K∑
j=1

πjPj(y;βj), y = 0, 1, 2, ..., (2)

where K is the number of components (K=2 and 3 in this text), Pj j = 1, 2, ...,K
are Poisson probability functions from component Poisson regression models,
βj are parameters from (1), 0 < πj < 1, and

∑K
j=1 πj = 1. Package Flexmix

in the freeware R (R Core Team, 2021) was used, see (Grün, Leisch, 2008).
Three components seem to be a sufficient number, the analysis of the number
of components was unable to find larger number of identifiable components. Our
task is to find out homogenous subgroups, in this case large number of components
is not interpretable.
The AIC criterion was used to compare models. Due to large sample, all test are
very strict and almost all individual test of parameters are significant and even
a small decline in AIC is tested to be significant. For this reason, we prefer just
AIC for a descriptive comparison. We present AIC values of all models in Table
1 illustrating the decrease in AIC in both models and K =1, 2, 3.
We applied only models with up to 3 components, in case of more components
a too small components were found with weights under 1% and there have been
problems with identifiability of parameters. Estimated cluster membership (to-
gether with component weights) for both models (1 and 2) (Table 2) and 2 and
3 selected components (Table 3) are given to look whether the hidden subpopu-
lations are present, stable using impact of our covariates and similarly identified
by both models. We order components according to their estimated weights.
In order to estimate standard errors of estimated parameters, resampling was
applied (procedure included in the package Flexmix).

TABLE 1. Values of AIC criterion.

model 1 k = 2 k = 3 model 2 k = 2 k = 3

319,294 315,649 314,138 319,813 314,800 314,720

TABLE 2. Distribution of respondents in artificial components. Impact of inter-
actions in the model, comparison of results for model 1 and model 2.

models 1/ 2 1 2 1 2 3

weight 0.887 0.113 weight 0.470 0.445 0.085

1 0.828 79 811 1 298 0.779 51 181 29 284 589
2 0.172 1 841 2 985 0.153 1 039 2 1 700
3 - - - 0.068 2 8 2 130

In the case of the two components, both models found similar components in
terms of estimated weights and (estimated) component membership. For the three
component models, the components found by this model have been approximately
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TABLE 3. Distribution of respondents in artificial components. Joint member-
ship for 2 and 3 components.

model 1 1 2 3 model 2 1 2 3

weight 0.779 0.153 0.068 weight 0.470 0.445 0.085

1 0.828 79600 1033 476 0.887 51 986 29 294 372
2 0.172 1454 1708 1664 0.113 236 0 4 407

distributed to those in two components. If there are really unobserved homoge-
neous groups in the population, both models should approximately find them.
We consider the similarity in classification (not all analyses included in this text)
acceptable. By analysing the members of the subpopulations concerning coun-
try, gender and birth group, we can look at the representation of the observed
subpopulations. We compared a structure for categorical variables (main effects
only) and means for the quantitative variable years in school and signs of the
corresponding parameters.
In the main effects model 2, there are opposite signs in the estimated parameter
for years in school, resulting in different subgroup means of this variable and an
opposite direction of relationship. There is a similar difference in the dependence
on having children, with a higher representation of childless respondents than in
the whole dataset in the major component. In the model with three components,
the direction of the partial relationship differs also for gender.
In the complex model 1 with interactions, the opposite sign for the parameters is
again observed for years in school and children, with more differences appearing
for the effect of birth category. The differences are reflected in the parameter
estimates for the interactions.

3 Conclusion

The Poisson regression model is an acceptable description of the behaviour of the
respondents, the addition of the hidden component provides a decrease in the AIC
and an interesting look at the estimated component membership representing
homogeneous unobserved subgroups of respondents. It also allows a discussion of
the differences in the estimated parameters (their sign and magnitude) to identify
the source of the differences.
We can expect complete data on the respondents in the study within the next
ten or fifteen years. However, from the construction of samples at each wave,
additional samples are drawn to maintain or increase the size of the samples. To
model the number of jobs at retirement for the generation of EU residents born
before 1967 based on our data, it is possible to use a Poisson regression model
estimated from right-censored data.

Acknowledgments: This paper is supported by the long term institutional
support of research activities by the Faculty of Informatics and Statistics, Prague
University of Economics and Business.
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This paper uses data from the generated Job Episodes Panel (DOI: 10.6103/
SHARE.jep.600), see Brugiavini et al. (2013) and Antonova et al. (2014) for
methodological details. The Job Episodes Panel release 6.0.0 is based on SHARE
Waves 1, 2 and 3 (SHARELIFE) (DOIs: 10.6103/SHARE.w1.600,
10.6103/SHARE.w2.600, 10.6103/SHARE.w3.600).
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Abstract: Large stochastic fluctuations due to small death counts limit un-
derstanding the true extent of geographic differences in mortality between small
areas. We propose a model that borrows strength across age and space to produce
reasonable estimates of the age-specific mortality schedule in small populations.
We apply our model to mortality data for 50 Spanish provinces.
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1 Motivation

The quest to understand fine-grain mortality inequalities has spurred the creation
of models tailored for small areas. The challenge lies in estimating age-specific
death risks in small populations, given limited observed deaths leading to large
fluctuations in mortality rates, primarily due to stochastic factors rather than
substantial differences in mortality conditions. Despite this, genuine public health
differences, such as exposure to environmental hazards, may exist. While exist-
ing models use prior knowledge, they grapple with issues like selecting a standard
schedule, neglecting uncertainty in its choice, and not fully leveraging the spa-
tial structure of the data (see, Gonzaga and Schmertmann, 2016; Alexander et
al. 2017). In response, our proposed data-driven model for small areas avoids ex-
ternal standards, incorporating information across ages and space. This approach
results in a properly specified stochastic model, featuring a nonparametrically es-
timated standard schedule based on the data and incorporating details about the
total population.
To illustrate our results, we took age-specific death and popoulation data for 50
provinces of Spain (excluding the Canary Islands) from the Instituto Nacional de
Estad́ıstica (INE). We have deaths by single year of age up to age 110 and calcu-
lated population exposures by single year of age from the death and population
data for each province. We apply our model to males in the year 2019.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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2 The age-space model

Data for our model consists of twom×n matrices, Y (deaths) and E (exposures),
over age i and region j. To incorporate structure in the age-pattern, we include
total population data as the first region (resulting in n + 1 regions, adding the
sum of all regions as an additional row to Y and E). Spatial information is based
on the centroids of each territorial unit. We assume that yij is Poisson distributed
with expectation µijeij , where µij is the force of mortality we aim to model in a
log-scale.
We model each region as the sum of three components: a smooth standard age-
pattern (η0), a spatially varying smooth age deviation (δj), and a scalar allowing
for regional differences in mortality level that is not smoothed spatially (γj). To
ensure convergence and allow interpretability of each component, the standard
η0 is estimated from the mortality of the total population, and we add a ridge
penalty to the γj . Vectorizing the linear predictor our model is expressed as:

ln(µ) = η = Xθ =

 1n+1 ⊗Ba

0m,kas+n

Bs ⊗Ba

∣∣∣ In ⊗ 1m

 θ , (1)

where Ba is a m × ka B-spline basis over age modified in order to take into
account the sharp descent of the level of mortality after the first year of life
(Camarda, 2019). The matrix Bs captures the spatial dimension, constructed as
the row tensor product of bases for each individual spatial dimension. Let Blon

be a n× klon B-spline basis over the longitude coordinates of the centroids, and
Blat be a n× klat basis over the latitude coordinates. Then Bs is the n× klatklon
basis given by

Bs = Blat□Blon = (Blat ⊗ 1T
klon)⊙ (1T

klat ⊗Blon). (2)

Space interacts with ages by creating the mn × kas design matrix Bs ⊗ Ba.
The supplementary lower-right corner of matrix X corresponds to the regional
mortality level γj (the identity matrix is present since we do not consider spatial
structure here). The zeros in the top right of the matrix are present because the
total population has no spatial or region-specific components.
The coefficients vector θ can be seen as the combination of three sets of coeffi-
cients, denoted as θ = [α,β,γ]T, each with lengths ka, kas, and n, respectively.
As per (1), the mortality age-pattern for the total population serves as the stan-
dard for each region and it is concurrently estimated within the same framework:
η0 = Baα. The coefficients β are then estimated to characterize age-space in-
teraction, specifically, the age-regional specific deviation δj that varies across
space.
Following a P -splines approach, we ensure smoothness across age and space by
introducing a discrete penalty P to the likelihood associated with (1), that is
difference penalties on the parameters α and β, and a ridge penalty on γ.
We estimate the model using Iteratively Reweighted Least Squares within a
GLAM framework (Currie et al., 2006). Smoothing parameters associated with
the standard η0, each δj , the smooth variations of these deviations across space,
and the magnitude of the ridge penalty are optimized by minimizing the Bayesian
Information Criterion. Once the model is estimated, variance-covariance matrix
of the parameters can be evaluated, allowing us to quantify uncertainty regarding
each model component and the fitted age-regional-specific mortality patterns.
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3 Application to Spanish provinces

Figure 1 shows fitted mortality rates and observed counts for Soria and Madrid
provinces. We can observe that for the large population of Madrid where there
are very few counts the model fits closely the data, while for the small province of
Soria where there are zero deaths at almost every age before 30, the model is able
to reconstruct a reasonable mortality schedule at all ages. The confidence intervals
around the estimated rates do not contain most of the observed mortality rates,
especially for the smaller province of Soria. However, in contrast to prediction
intervals, we do not expect the observed rates to fall inside these confidence
bands. Figure 2 shows the values for δ averaged over age, and the values for
γ by province. We can observe that δ captures the spatial nature of mortality,
while the γ allow for smaller deviations that avoid imposing too rigid a smooth
structure.

Madrid Soria

0 25 50 75 100 0 25 50 75 100

−10.0

−7.5

−5.0

−2.5

Age

η

Legend

95% CI

Fitted values

Observed

FIGURE 1. Observed log-death rates and fitted values for Madrid and Soria.
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FIGURE 2. Average values of δ and values of γ by province.
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4 Conclusion

We introduce a model that expresses regional mortality as the sum of a standard,
age-specific deviations smooth in space, and unsmooth regional effects. Our model
borrows strength across age and space, with the flexibility that allows for breaks
from a perfectly smooth spatial pattern of mortality. We illustrate our model
with an application to provincial data, but our model could be also used at the
municipal or sub-municipal level.
Further improvements could include adding hierarchical structure to the model,
as small areas are often embedded in larger territorial units, and modeling overdis-
persion. We also plan to embed our model in a Composite Link Model framework,
since mortality data for small areas often comes in coarse age groups.
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Abstract: Rao’s score tests, although important member of classical statistical
testing procedures alongside likelihood ratio tests (LRT), are not commonly as-
sociated with multivariate and high-dimensional contexts. This paper presents a
Rao’s score test designed for testing a fixed correlation matrix, with a particular
focus on complete independence in normal data scenarios. An expression of the
test statistic and the corresponding (n, p)-asymptotic distribution is derived that
aligns with Schott’s (2005) results in high-dimensional contexts, albeit through a
distinct method. The proposed Rao’s test-statistic, while primarily intended for
normally distributed data, is extended to elliptical distributions. A simulation
study is conducted using observations following a normal scale mixture distribu-
tion (Muirhead and Waternaux, 1980) and comparing Rao’s score test and LRT
with different scenarios of sample and dimension sizes, n and p. We assess the
performance of the classical Rao’s score test for correlation matrices against the
traditional LRT (for scenarios where p < n) and other competitive tests in high-
dimensional environments (where p ≥ n). This study confirms that the classical
Rao’s score test is effective not only under the usual dimensional constraints of
p < n, but also in the more complex high-dimensional context where p ≥ n.

Keywords: Rao’s score test; High-dimensional data; Correlation matrix.

1 Introduction

We focus initially on a multivariate normal distribution, X ∼ Np(µ,Σ), where p
indicates the dimension for a positive definite matrix Σ, but the methodology is

later adapted to elliptical distributions. Denoting R = diag−
1
2 {Σ}Σdiag−

1
2 {Σ},

to study complete independence of p normal variables, i.e. for testing

H0 : R = Ip versus H1 : R ̸= Ip, (1)

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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we count with a random sample of n individuals, Xh, for h = 1, . . . , n. The
traditionally mostly used LRT is only valid as a n-asymptotical result when
the dimension p is smaller than the sample size n. When p is greater than or
equal to n, requiring an (n, p) asymptotical test-statistic, the p × p sample co-
variance matrix, represented by Sn,p = 1

n

∑n
h=1(Xh− X̄n,p)(Xh− X̄n,p)

⊤, with
X̄n,p = 1

n

∑n
h=1 Xh, is singular and this fact makes useless most of the LRT re-

lated methods. In particular, the traditional LRT for complete independence, (1),
becomes invalid. This paper addresses these issues by demonstrating the appli-
cability of Rao’s score tests. It is shown that the test of complete independence,
as proposed by Schott (2005), is in essence a Rao’s score test. We point out that
a modification of this test makes also possible to create a test for absence of
correlation in elliptical distributions.
The structure of this work begins with the presentation of results pertaining to
classical LRTs in Section 2. This is followed by the delineation of the paper’s
two primary objectives. The initial objective, elaborated in Section 3, is to il-
lustrate the use of Rao’s score test for the multivariate normal distribution in
assessing a fixed correlation structure when variances and means are not known.
This methodology is applicable in both traditional (p < n) and high-dimensional
(p ≥ n) settings, given that the prerequisites for employing Rao’s score test for
the multivariate normal distribution are met. The subsequent objective, outlined
in Section 4, seeks to broaden the previous one from multivariate normal to multi-
variate elliptical distribution. Lastly, a simulation study and real data application
is discussed in Section 5.

2 Difficulty of the LRT in high dimensional setting

It is well-known that the n-asymptotic distribution of the LRT for testing (1),
valid for p < n, is given under H0 by

−2 log λp(X1, . . . ,Xn) = −n log(det(Rn,p))
L−→

n→∞
χ2
d(p), (2)

where d(p) = 1
2
p(p− 1) and

Rn,p = diag−
1
2 {Sn,p}Sn,pdiag−

1
2 {Sn,p}.

The expression of the LRT is conformed as

λp(X1, . . . ,Xn) =
sup(µ,Σ)∈Θ0

L(X1, . . . ,Xn;µ,Σ)

sup(µ,Σ)∈Θ L(X1, . . . ,Xn;µ,Σ)
,

being Θ0 the parameter space under H0 and Θ the whole parameter space. If
p ≥ n then det(Sn,p) = 0 (a.s.), which means that the MLE (X̄n,p,Sn,p) is not
part (a.s.) of Θ compound by (µ,Σ) being Σ any p× p positive definite matrix.
Consequently, for p ≥ n, the LRT is inapplicable for conducting the test given in
(1).

3 Classical Rao’s score test in high dimension

Eliminating all strictly supradiagonal elements of Σ, i.e., the redundant elements,
vech(Σ) denotes the 1

2
p(p + 1)-th order vector that is obtained by stacking the
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columns one underneath the other. Let Gp denote the so-called duplication ma-
trix. For details about the explicit expression of Gp and its properties, the reader
is addressed to Magnus (1988, Chapter 4) and references therein. From McCul-
loch (1982), the score function with respect to θ = (µ⊤, vech⊤(Σ))⊤ is

sθ(x) =
∂ log fθ(x)

∂θ
=

[
Σ−1(x− µ)

1
2
G⊤
p

(
Σ−1 ⊗Σ−1

)
[(x− µ)⊗ (x− µ)− vec (Σ)]

]
,

and the Fisher information matrix,

IF (θ) = Eθ[sθ(X)s⊤
θ (X)] =

(
Σ−1 0

p× p(p+1)
2

0 p(p+1)
2

×p
1
2
G⊤
p

(
Σ−1 ⊗Σ−1

)
Gp

)
.

The estimating equations are given by θ under the whole parametric space, are
given by

Un,p (θ) =

[
Σ−1

(
X̄n,p − µ

)
1
2
G⊤
p

(
Σ−1 ⊗Σ−1

)
Gpvech(Sn,p(µ)−Σ)

]
It can be proven that the Rao’s score (or Lagrange multipliers) test statistic for

H0 : R = R0 vs. H1 : R ̸= R0, (3)

is given by

Ln,p(θ̃) = nU⊤
n,p(θ̃)I

−1
F (θ̃)Un,p(θ̃) =

n

2
tr
((

R−1
0 Rn,p − Ip

)2)
, (4)

with R0 being a completely known correlation matrix, θ̃ is denoting the estimator
of θ ∈ Θ0, i.e. under H0. Its n-asymptotic distribution, for a fixed value of p,
is χ2

d(p), with d(p) = 1
2
p(p − 1). In addition, if we assume that both, n and p

increase in such a way that p
n−1

tends to a fixed γ ∈ (0,+∞) and based on
similar arguments of Ledoit and Wolf (2002) we can obtain that both

Tn,p(θ̃) =

√
n+ 1

n− 2

d(p)

2

(
n− 1

n

Ln,p(θ̃)

d(p)
− 1

)
(5)

and
√

d(p)
2

(
Ln,p(θ̃)

d(p)
− 1
)
, have an (n, p)-asymptotic distribution given byN (0, 1).

In particular, for R0 = Ip, the test-statistic proposed by Schott (2005) is ob-
tained, where Ln,p(θ̃) = n

∑
i<j R

2
ij , with Rij being the (i, j)-th component of

Rn,p. It is important to take into account that in such a case, it holds E[Tn,p(θ̃)] =
0 and Var[Tn,p(θ̃)] = 1 for any value of (n, p), not only for large values.

4 Extension to elliptical distributions

Muirhead andWaternaux (1980) payed special attention on the ϵ-contaminated p-
variate elliptical normal distribution. Taking into account that this is a particular
case of a p-variate elliptical distribution X ∼ Ep(µ,Ω, g), it is considered the idea
of preserving the asymptotic distributions given in Section 3 through a correction
factor, 1 + κ or 1 + κ̃, related to the kurtosis parameter κ of X. For testing (3),
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having a non fully determined elliptical distribution, it is possible to use the same
three test statistics replacing Ln,p(θ̃) by Ln,p(θ̃, κ̃) = Ln,p(θ̃)/ (1 + κ̃), where

1 + κ̃ =
1

p(p+ 2)

1

n

n∑
i=1

(
∆̃2
p(X)

)2
, (6)

with ∆̃2
p(Xi) =

(
Xi − X̄n

)⊤
Σ̃−1

(
Xi − X̄n,p

)
and Σ̃ = diag

1
2 {Sn,p}R0

×diag
1
2 {Sn,p}.

5 Real data application and simulation study

To illustrate the proposed approach, we employ a subset of the biochemical data
presented in the work of Beerstecher et al. (1950). This dataset comprises 62
distinct measurements for each of the 12 subjects, with 8 serving as controls and
the remaining 4 identified as alcoholics. Our focus will be limited to a group of
8 measurements related to blood serum. For both groups, the control and the
alcoholic, we intend to examine the hypothesis of complete independence. It is
evident that we cannot apply the likelihood ratio test for either of the groups
due to the fact that p = 8 and n = 8 for the control group, while n = 4 for the
alcoholic group. In the case of the control group, we obtain that Ln=8,p=8(θ̃, κ̃) =
63.7245 and κ̃ = 0.1294. We obtain a value 3.4977 for eq. (5), which has a p-
value equals 0.0005. Under the assumption of p-variate ellipticity, this provides us
with substantial evidence of some correlation among the eight variables. Shifting
our focus to the alcoholic group, we find that Ln=4,p=8(θ̃, κ̃) = 47.2417 and
κ̃ = −0.1437, having a p-value equals 0.005 (from 2.8268 as the value for eq. (5)).
Thus, we found enough evidence to reject lack of correlation for both the alcoholic
group as well as for the control group. Such a result, under the assumption of
p-variate ellipticity, does not align with the one presented in Schott (2005) for
the same data, alcoholic group, under the assumption of normality, nor with the
one in Shi et al. (2024) under a mild distributional assumption, a continuous
p-variate random vector. In both papers, there is no clear evidence to reject the
hypothesis of no correlation, but the p-value is close to 0.05.

TABLE 1. Estimated significance levels for test-statistic (5) adapted for elliptical
distributions

n = 5 n = 9 n = 17 n = 33 n = 65 n = 129 n = 257

p = 4 0.0780 0.0597 0.0529 0.0474 0.0493 0.0481 0.0448
p = 8 0.0753 0.0534 0.0471 0.0408 0.0428 0.0449 0.0417
p = 16 0.0889 0.0578 0.0468 0.0423 0.0386 0.0440 0.0457
p = 32 0.1144 0.0670 0.0512 0.0408 0.0456 0.0458 0.0487
p = 64 0.1917 0.1078 0.0622 0.0490 0.0436 0.0432 0.0459
p = 128 0.2780 0.2456 0.1150 0.0630 0.0491 0.0466 0.0453
p = 256 0.2800 0.3885 0.2625 0.1283 0.0721 0.0511 0.0469

Though 10,000 replications we desire to study by simulation the estimated exact
significance levels with nominal level α = 0.05, when p, n−1 ∈ {4, 8, 16, 32, 64, 128, 256}.
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TABLE 2. Estimated significance levels for −n log(det(Rn,p))/ (1 + κ̃)

n = 5 n = 9 n = 17 n = 33 n = 65 n = 129 n = 257

p = 4 0.1602 0.0714 0.0588 0.0493 0.0508 0.0513 0.0475
p = 8 0.3478 0.0612 0.0414 0.0384 0.0447 0.0434
p = 16 0.5960 0.0376 0.0203 0.0265 0.0312
p = 32 0.7643 0.0132 0.0066 0.0099
p = 64 0.8935 0.0014 0.0000
p = 128 0.9710 0.0000
p = 256 0.9982

The simulation results, given in Tables 1 and 2, consider an ϵ-contaminated p-
variate elliptical distribution. This is achieved by simulating the p-variate stan-
dard normal distribution and contaminating a percentage of 5% of the data (i.e.,
ϵ = 0.05) with σ = 2. This implies that κ = 0.32. In an extended version of this
study, power estimates are also taken into account.
As expected, the observed significance levels approach the exact ones more pre-
cisely when increasing (n, p). The overall behavior is similar to the one shown
in Schott (2005) for the normal distribution. However, when the distribution is
extended to the whole family of elliptical distributions, the precision decreases.
The LRT adapted for elliptical distributions (see Table 2) performs poorly when
p = n− 1. For a fixed p, the approximation to the nominal level clearly improves
as n increases. However, for a fixed n, the improvement is not as clear when p
increases, particularly for low values of n.
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Abstract: This work presents the DGLMExtPois package, which allows the esti-
mation of hyper-Poisson and COM-Poisson regression models suitable for under-
dispersed count data. The package also includes functions for analysing these
regression models, as well as performing model diagnostics. To demonstrate the
practical utility of the package, it is applied to a real data set, showing its effec-
tiveness in modelling real-world scenarios.
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1 Introduction

The analysis of count data is usually performed using the Poisson or the negative
binomial distributions, which are not suitable when there is underdispersion.
Therefore, in recent years, models that do allow for underdispersion, such as
the hyper-Poisson model or the COM-Poisson model, have been considered and
used in regression analysis. This work presents the DGLMExtPois package of
R, which allows dealing with such regression models (Sáez-Castillo et al., 2022).
Such models can simultaneously consider overdispersion and underdispersion as
a function of the levels of the covariates.
To demonstrate the practical utility of the package, it is applied to a real-world
dataset. In this case, the number of primary schools per municipality in Andalu-
sia (Spain). The most appropriate hyper-Poisson model has been estimated by
performing a diagnosis of the model and comparing it with the COM-Poisson
model. It should be noted that there is no other package that offers the option
of fitting a hyper-Poisson model.

1.1 Hyper-Poisson regression model

Let us consider Y as a count variable of a hyper-Poisson distribution (hP ), which
has two parameters γ and λ (see details in Sáez-Castillo and Conde-Sánchez

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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(2013)). The parameter γ is known as the dispersion parameter because for γ > 1
the distribution is over-dispersed and for γ < 1 is under-dispersed (for γ = 1 we
have the Poisson distribution).
In a hPµ,γ GLM model, Y follows a hP distribution whose mean, µ, and disper-
sion parameter, γ, are functions of the covariates. Also, log-linear relationships
are always considered, i.e.,

µi =exp
(
x′
iβ
)

γi =exp
(
z′iδ
)

This allows for the possibility of over- and/or under-dispersion depending on the
values of the covariates. Also, the parameter λ is solution of

µ = exp(Xβ) =

∞∑
y=0

y × P [Y = y]. (1)

1.2 COM-Poisson regression model

The COM-Poisson distribution also has two parameters, θ and, ν (Huang, 2017).
Here, ν < 1 corresponds to over-dispersion and ν > 1 to under-dispersion. In
this distribution, θ is a location parameter with a similar role to λ for the hP
distribution.
In the regression model proposed by Huang (2017), CMPµ,ν , the covariates also
determine the mean and dispersion, unlike previous models, where the covariates
are introduced in expressions of the parameters (Sellers, 2010). In addition, the
parameter ν is solution of an equation similar to (1).

2 DGLMExtPois package

The R package DGLMExtPois allows the estimation of hPµ,γ and CMPµ,ν
regression models, as well as the diagnosis of the estimated models. This pack-
age uses a procedure for estimating the regression coefficients within the GLM
framework, through a gradient-based algorithm, solving a non-linear constrained
optimisation problem. DGLMExtPois has been created trying to reproduce the
syntax of GLM fits.
Thus, functions glm.hP and glm.CMP provide the corresponding fits for hPµ,γ and
CMPµ,ν , respectively. There are also print and summary functions to visualize
the fitted models and AIC, confint, predict, residuals and plot functions to
evaluate goodness of fit, obtain confidence intervals of β regression coefficients,
predictions, residuals and some associated plots, such as QQ-plots and simulated
envelopes, respectively. The package additionally incorporates expected, a func-
tion which calculates the marginal probabilities of the Y variable, and lrtest to
perform the likelihood ratio test in nested models. Other functions are provided,
for example, to work with probabilities of CMP and hP distributions. A brief
description of the main functions in the package is provided in Table 2.
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TABLE 1. Main functions in the DGLMExtPois package.

Function Description

glm.hP Fits a hPµ,γ model
glm.CMP Fits a CMPµ,ν model
summary Computes and returns a list of summary statistics
print Prints estimated model
lrtest Likelihood ratio chi-squared test
residuals Extracts model residuals (Pearson, response and quantile)
plot Plot of residuals against fitted values and a Q-Q plot
predict Predictions
confint Confidence intervals for β regression coefficients
AIC Returns AIC
hP expected Expected frequencies for hPµ,γ model
CMP expected Expected frequencies for CMPµ,ν model

3 Application

This work analyses the factors that influence the number of primary schools in
Andalusian municipalities (range: 0 to 94). Since this variable is a count variable,
the Poisson regression model has been considered, as well as the hP and CMP
regression models.
The factors considered are: population, average age, unemployment rate, number
of population centres, distance to the capital, and province, which is a categori-
cal variable with 8 provinces (Almeŕıa, Cádiz, Córdoba, Granada, Huelva, Jaén,
Málaga and Sevilla). The data are for the year 2021 (785 observations) and have
been collected from the Andalusian Institute of Statistics (IEA).
A hP model has been fitted (AIC = 1381), observing that there is underdisper-
sion and that its fit is much better than that obtained with the equivalent Poisson
(AIC = 1947) and CMP (AIC = 1476) models. The results are shown in the Ta-
ble 2, where we have eliminated those variables that are not significant: average
age and distance to the capital city. In addition, a logarithmic transformation of
the population has been considered, as well as its square and that of the variable
number of population centres. The provinces of Jaén and Córdoba, on the one
hand, and the rest of the provinces on the other (being the base category) have
been grouped, also considering the interaction with the population variable.
It has also been found that none of the factors analysed influences the dispersion
parameter, so that a model with constant dispersion has been considered (for the
hP model):

γ = exp (δ0)

The estimation of δ̂0 = −7.950 in the hP model leads to an underdispersed model,
since γ̂ = 0.000353 < 1 . The same is true for the COM-Poisson model (where
ν̂ > 1). The presence of under-dispersion in the distribution analysed indicates
that the variability is small once the factors that influence the behaviour of the
response variable have been considered.
It can be seen that the variable that has the greatest influence is population, with
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differences also being found between the two groups of provinces, so that in Jaén
and Córdoba the number of provincial centres is greater than in the rest of the
provinces, with this difference increasing as the population grows.

TABLE 2. Coefficient estimates and standard errors of CMP and hP fitted
model.

Mean model coefficients

CMP hP
Estimate Std. Error Estimate Std. Error

(Intercept) -0.78227 0.062679 *** -0.64151 0.079525 ***
P.Centers 0.02190 0.002496 *** 0.02920 0.004316 ***
P.Centers2 -0.00033 0.000054 *** -0.00046 0.000094 ***
log(Pob) 0.51252 0.023870 *** 0.46446 0.028276 ***
log(Pob)2 0.03785 0.003198 *** 0.04321 0.004595 ***
prov 0.28088 0.076718 *** 0.28151 0.052336 ***
Unemployment 0.01331 0.002295 *** 0.00932 0.003262 **
log(Pob)*prov -0.16373 0.062599 ** -0.19614 0.063656 **
log(Pob)2*prov 0.03069 0.012214 * 0.04094 0.015365 **

Dispersion model coefficients

(Intercept) 1.649 0.056 *** -7.950 1.156 ***

. p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

A diagnosis of the hP model has also been performed, through the residual plots
shown in Figure 1, which indicate that the diagnosis is satisfactory. In addition,
the observed and expected frequencies for the response variable (up to the value
20) have been compared and represented graphically by means of a barplot (Fig-
ure 2).

TABLE 3. Goodness-of-fit measures of CMP and hP fitted model.

CMP hP

AIC 1476 1381
Dif 235.8146 78.35461
χ2 155.3135 84.16762

On the other hand, the diagnosis of the CMP model is not as adequate, as the
QQ-plot of the Figure 3 shows. Also, the expected frequencies are much further
away from the observed frequencies (Figure 2). In fact, the difference in absolute
value of such frequencies (Dif statistic), as well as the squared differences between
these frequencies weighted by the expected frequencies (χ2 statistic) are much
higher than for the hP model (Table 3). In conclusion, the hP model is better
suited than the CMP model to fit these data.
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Abstract: The result of a football match in terms of Home–Win, Draw or Away–
Win can be modelled by considering the observed outcome as a realization of a
Multinomial random variable with three mutually exclusive events over a single
trial. Most applications consider the Dirichlet distribution to represent the prior
uncertainty about the Multinomial’s proportion parameters, mainly because of
conjugacy and the reduced number of parameters. As alternative we propose to
use the Logistic–Normal, a multivariate prior distribution for proportions but to
which little attention has been paid. This approach was motivated by the question
– Are women’s and men’s football leagues equally predictable? The models devel-
oped are applied to the main Portuguese women’s and men’s football leagues over
seven seasons, starting from 2016–2017 up to 2022–2023. The work also provides
estimates of latent team-specific strengths and addresses the variability between
and within seasons, along with insights of each team’s home advantage.
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Abstract: Industrial processes generate a massive amount of monitoring data
that can be exploited to uncover hidden time losses in the system, leading to
enhanced accuracy of maintenance policies and, consequently, increasing the ef-
fectiveness of the equipment. In this work, we propose a method for one-step
probabilistic multivariate forecasting of time variables based on a Hidden Markov
Model with covariates (IO-HMM). These covariates account for the correlation
of the predicted variables with their past values and additional process measure-
ments by means of a discrete model and a continuous model. The probabilities of
the former are updated using Bayesian principles, while the parameter estimates
for the latter are recursively computed through an adaptive algorithm that also
admits a Bayesian interpretation. This approach permits the integration of new
samples into the estimation of unknown parameters, computationally improving
the efficiency of the process. We evaluate the performance of the method using
a real data set obtained from a company in the food sector; however, it is a ver-
satile technique applicable to any other data set. The results show a consistent
improvement over a persistence model, which assumes that future values are the
same as current values, and over univariate versions of our model.

Keywords: Adaptive parameter estimates; Hidden Markov model; Industrial
processes; Probabilistic prediction.

1 Background and objectives

In industrial settings, production processes often face inefficiencies that lead
to time losses. These time losses can be broadly classified into four categories
(Muchiri and Pintelon, 2008): losses due to scheduled stops such as maintenance
or cleaning; losses due to unexpected stops such as setup, adjustment, failure,

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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or supply outage; losses due to low production speed and micro-stoppages; and
losses due to the production of defective units and rework. One can also derive
different production times by successively subtracting each time loss from the to-
tal length of the observation period, as well as some important efficiency indexes
as ratios of these production times.
In this work, we propose a novel approach to predict time losses by modelling the
production process carried out by the equipment as a multi-signal process, where
the signals characterize the equipment’s current operational mode. Furthermore,
the predictive model includes other process features that can have an impact
on the model parameters as covariates. To ensure continuous parameter updat-
ing using the latest data, we use an adaptive learning algorithm that admits a
Bayesian interpretation. The forecasting of time losses in production processes
can help to enhance the maintenance strategy’s accuracy by identifying areas for
improvement.

2 The model

We use an Input-Output Hidden Markov Model (IO-HMM) to model the pro-
duction process, see (Bengio and Frasconi, 1996) for full details of IO-HMMs.
Figure 1 illustrates an IO-HMM diagram. The process goes through K hidden
states according to an initial state probability distribution and a transition proba-
bility distribution between states. The hidden state of the n-th observation period
is denoted by cn and represents the condition of the production process during
that period. Each state gives rise to a different probability distribution of the
continuous responses yn.
In an IO-HMM, the model’s probability distributions are affected by an input
stream of covariates, denoted by xn. These covariates may include, among others,
calendar variables or the reference produced, and characterize the observation
period that is about to begin. Further, we introduce an autoregressive component
into the model by allowing the covariates to include past values of the response
variables. The covariates that influence the probabilities in the discrete part of
the model will be denoted by zn ⊆ xn, while the ones that impact the responses’
joint density will be denoted by wn ⊆ xn.

.... ....

....

p(cn+1|cn,zn+1)

Output stream (responses)

Hidden states

ynyn-1 yn+1

cn-1 cn cn+1

xn-1 xn xn+1Input stream (covariates)

....

.... ....

p(cn|cn-1,zn)

y1

c1

π(c1|z1)

x1

FIGURE 1. Input-Output HMM. Covariates xn affect both discrete and contin-
uous processes. Probabilities in the discrete process {cn}n≥1 are dependent on
covariates zn ⊆ xn and probabilities in the continuous process {yn}n≥1 are de-
pendent on covariates wn ⊆ xn.
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3 Parameter estimates

We consider that the discrete process {cn}n≥1 is a Markov chain with K different
states, cn ∈ {1, . . . ,K} , n ≥ 1. The probability distributions for the initial state
and the transitions between states are dependent on the covariates zn, which
take values in a discrete and finite set of S symbols. The unobserved next state
cn is categorical with parameters π(s) if n = 1 and zn = s, or p

(s)
k when n > 1

and zn = s. In turn, π(s) and p
(s)
k are Dirichlet with parameters - i.e., counts -

updated every time an observation period ends.
On the other hand, we split the responses’ joint density function into two condi-
tional Gaussian distributions, namely

yn|wn ∼ Nm(unHu,Σu)

yn|cn ∼ Nm(vnHv,Σv),

where un =
[
1 wT

n

]
, vn = v(cn) for a function v(·), Hu,Hv are coefficient ma-

trices and Σu,Σv are covariance matrices. As soon as a new sample yn be-
comes available, the estimators (Hu,n−1,Σu,n−1,Hv,n−1,Σv,n−1) are updated to
(Hu,n,Σu,n,Hv,n,Σv,n) through an adaptive algorithm described by the multi-
variate extension of the equations introduced by Alvarez et al. (2021)

Hu,n = Hu,n−1 +
Pu,n−1u

T
n

λu + unPu,n−1uTn
(yn − unHu,n−1)

Σu,n = Σu,n−1 −
1

γu,n

[
Σu,n−1 −

λ (yn − unHu,n−1)
T (yn − unHu,n−1)

λ+ unPu,n−1uTn

]
Pu,n =

1

λu

(
Pu,n−1 −

Pu,n−1u
T
nunPu,n−1

λu + unPu,n−1u,Tn

)
γu,n = 1 + λuγu,n−1,

where λu is a forgetting factor. The algorithm is initialized withHu,0 = 0, Σu,0 =
0, Pu,0 = I and γu,0 = 0. The same updating equations are applied to compute
Hv,n and Σv,n with the vector vn and the forgetting factor λv.

4 Forecasting

At this stage each distribution produces a forecast of the responses, which are
then combined using a minimum-variance criterion to obtain the final prediction.
In particular, once the parameters are updated at the n-th time step the model
computes the final prediction and a measure of its accuracy as

ŷn+1 = un+1Hu,nD+ vn+1Hv,n(I−D)

Σ̂n+1 = DΣu,nD+ (I−D)Σv,n(I−D),

where D = diag (δ1, . . . , δm), δj = σ2
v,j/

(
σ2
v,j + σ2

v,j

)
, j = 1, . . . ,m, and σ2

v,j

(respectively σ2
u,j) is the j-th element in the diagonal of Σv,n (respectively Σu,n).
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5 Real case study

The proposed model has been employed to predict time losses in the production
process of a company that operates in the food industry. To measure the predic-
tions’ quality we use the well-known metrics Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). The multivariate predictive model with an
autoregressive component in the covariates wn shows a consistent improvement
in the predictions’ quality against some benchmark models, including the per-
sistence model, which assumes that future values are the same as current values
(i.e., ŷn+1 = yn), the model with no autoregressive component and the respective
univariate versions of our model.
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Abstract: A common feature of much survival data is censoring due to incom-
pletely observed lifetimes. Survival analysis methods have been designed to take
account of this and provide appropriate relevant summaries, such as the Ka-
plan–Meier plot and the median is easily read off this plot. However, a single
summary is not really a relevant quantity for communication to an individual
patient, as it conveys no notion of variability and uncertainty. The aim of this
paper is to consider censored data as a form of missing data and impute them
using Bayesian methods. We introduce two novel parametric and non-parametric
Bayesian approaches for imputing right censored observations to be used as a
complement to formal inferential methods and to allow more interpretable dis-
plays to be made for physicians and patients.
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Abstract: In this work, we introduce a direct spatio-temporal extension of the
spatial conditional overdispersion models for binomially distributed response vari-
ables. This proposal incorporates a spatial term similar to the spatial lag of the
response variable for each time unit within the linear predictor. These models
effectively capture both spatial and temporal correlations inherent in the dataset
under study. Furthermore, we introduce temporally varying spatial lag coefficient
models, enabling for the possibility of introducing temporal changes in the spatial
term. In order to be able to assess the usefulness of our proposals, we apply them
to the analysis of low birth weight in Georgia, providing a comparative analysis
of the performance of our models to that of the commonly used Knorr-Held’s
models.
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Abstract: The primary goal of this study is to estimate the Theil index using
a unit-level Small Area Estimation (SAE) model. This has lead two primary
challenges in the unit-level SAE field: the identification of individual covariates
and the reduction of computational burden. We propose a unit-level Simplified
SAE model based on Generalized Additive Models for Location, Scale and Shape
(GAMLSS), which is specified without covariates and is able to reduce variability
in comparison with the direct estimator. The performance of the proposed model
used to estimate the Theil index is evaluated based on design-based simulations.
An application to the Italian Regions, distinguish between Urban, Peri-Urban
and Rural areas, conclude the paper.
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Abstract: We introduce the Segmented Quantile Regression Process framework
to model the entire quantile region of the conditional response distributions as
a segmented relationship with respect to the continuous covariate. Each model
parameter, including the breakpoint, is assumed to vary smoothly across the τ .
The framework is illustrated on the well-known dataset about maximal running
speed and weight in mammals.
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1 Introduction

Segmented quantile regression (segQR) postulates the quantile QY (τ |x) of the
conditional response distribution Y |xi depends on a continuous covariate via a
segmented or piecewise linear relationship. The regression equation isQYi(τ |xi) =
β0τ + β1τxi + δτ (xi − ψτ )+, where the subscript refers to the fixed probability
value of interest. At any value of τ ∈ (0, 1) the ‘left’ (i.e. when x ≤ ψ) slope is
β1τ , and the ‘right’, i.e. when x > ψ, slope is β1τ + δτ . Estimation of segmented
QR models at given τ has been discussed in Li et al. (2011) and Yan et al.
(2017), among others: the minimand objective ρτ (β0τ , β1τ , δτ , ψτ ) =

∑
i |yi −

QYi(τ |xi)|wiτ where the wiτ ’s are the usual weights equal to τ or 1−τ depending
on the sign of residuals.
However, while focus on a specified τ could be relevant in some examples, the en-
tire collection of quantile curves, the so-called Quantile Regression Process QRP,
is the big and worthwhile deal of QR analyses: one can estimate parameters more
efficiently and also gain insights on the entire response distributions, including
the tails where usually data are very sparse and estimates coming from single fits
are unstable.
Currently there are two main options to fit linear QRP
Via the LMS method within the GAMLSS tool (Stasinopoulos et al. 2017, chap-
ter 13), whereby: i) one chooses the conditional response distribution depending
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on several parameters (usually mean, dispersion, skew and kurtosis); ii) specifies
a (flexible, i.e. via splines) sub-regression model for each parameter; iii) fits the
model via maximum likelihood; iv) then obtains the quantile curves via the known
cumulative distribution function. The main drawback in the LMS/GAMLSS ap-
proach is that the model returns coefficients for the different sub-regression equa-
tions (mean/dispersion/skew) and it does not return the (meaningful) parameters
for the quantile regression, namely slopes and breakpoints.
Alternatively, the Frumento et al. (2016) proposal relies on the ‘pure’ QR frame-
work, namely they minimize the so-called integrated quantile loss function

∫
ρτ (·)dτ .

While the approach works well for linear models, it does not appear straight-
forward how to extend it for the breakpoint which is non separable from the
covariate.
In this paper we propose the Segmented Quantile Regression Process to extend
applicability and of the linear QRP. The rest of the paper is structured as follows:
section 2 describes methodology and the estimating algorithm to fit it; section 3
illustrates an example and the last section is devoted to conclusion and discussion.

2 The segmented regression quantile process model:
set-up and fitting

We define the segmented QRP, segQRP, via

QY (τ |xi) = β0(τ) + β1(τ)xi + δ(τ)(xi − ψ(τ))+, (1)

where the τ ’s in parentheses, rather than in the subscripts, stress that the overall
pattern of each model parameter across the whole probability range is of interest.
Interpretation of model parameters is the same of the simple segQR model: β1(τ)
represents the slope when xi ≤ ψ(τ), while β1(τ) + δ(τ) is the covariate effect
when xi > ψ(τ).
We remark the aforementioned segQRP has never been proposed. Its main and
most noteworthy feature is the breakpoint parameter ψ(τ) which represents a
τ -varying threshold: in fact it can be of scientific interest to estimate how the
possible threshold depends on the percentile of the conditional response distribu-
tion. But ψ(τ) is also the most painful point. It is not a trivial matter to fit the
segQRP model as the quantile loss function is nonsmooth and nonconvex with
respect to the change point which hinders the usual optimizations algorithms.
As also sketched in previous section, ψ(τ) cannot be separated by the covariate
which complicates further the settings.
A rough and simple strategy to gain information on the segQRP could be to fit
separate segQR models at different τs, but the approach can suffer from several
drawbacks, including crossing curves and unstable estimation of the breakpoints
with severe loss of efficiency, especially at extreme quantiles.
To fit the segQRP model we rely on the works of Muggeo (2003) to estimate
breakpoints in simple mean regression and Muggeo et (2021) which uses a dis-
crete approximation of the integrated loss

∫
ρτ (·)dτ to fit a linear QRP. Using a

simple Taylor expansion of the term (xi − ψ(τ)) we approximate the segmented
regression equation around a known value ψ̃(τ) into a linear model with coef-
ficients β0(τ), β1(τ), δ(τ), and ψ(τ). Then we fix K probability values to build
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the loss function
∑
τ

∑
i ρτ (yi − Qi(τ)), and express each model parameter via

proper B-splines,

β0(τ) = C(τ)θ0 β1(τ) = C(τ)θ1 δ(τ) = C(τ)θ2 ψ(τ) = C(τ)θ3,

where C(τ) is a, typically but not necessarily the same, B-spline basis on the
probability values. Expressing each model parameter via B-splines allows to get
smooth effects across the probability values and to achieve an overall loss objec-
tive as a function of the θ = (θ0, . . . , θ3)

T only. Such working linear QRP is fitted
as discussed in Muggeo et al. (2023) and the procedure is repeated iteratively till
convergence.

Remark

To prevent non-crossing proper inequality constraints can be set. For convenience,
but without losing generality, we first shift the covariate values in the range
[0,m]; then, starting from the usual condition to fulfil, ∂Q(τ)/∂τ ≥ 0, we end
up with proper constraints based on the first order differences of the θ’s. Such
noncrossing constraints translate into linear inequality constraints which can be
easily accommodated into optimization algorithms for L1 norm objectives.
Since the breakpoint is bounded in the covariate range (0,m) say, we re-parametrise
it via a logistic function

ψ(τ) =
m expκ(τ)

1 + expκ(τ)

where κ(τ) is unbounded and therefore it is straightforward to write κ(τ) =
C(τ)θ3, rather than ψ(τ).
The proposed algorithm can be also used if we want to fix the breakpoint, namely
ψ(τ) = ψ for each τ . It suffices to replace the basis C(τ) by a column of ones in
the formula for ψ(τ).

3 Application

The relationship between maximal running speed (MRS, Km/h) and size (mass,
Kg) in land mammals is often expressed by the allometric equation

MRC = exp (α)×massβ ↔ logMRC = α+ β log(mass)

.
Figure 1 portrays data, body mass (in Kg) and maximal running speed (Km/h)
of n = 107 land mammals (Garland, 1983); the dataset is named Mammals in
the R package quantreg. Data, reported on the log scales, suggest that a simple
linear relationship is not adequate, as the speed decreases as the mass exceeds
some breakpoint, at about e3.5 kg. However biologists may be interested in as-
sessing whether such threshold value holds constant both all land mammals, or
some difference exists between the slowest and fastest ones. Namely the research
question calls for using the segQRP in equation (1), and we fit the model using
K = 11 probability values with the noncrossing constraints Figure 1 portrays
the predictions of one hundred quantile curves with the red line emphasizing the
pattern of the τ -varying breakpoint ψ̂(τ).
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FIGURE 1. The Mammals dataset: data and fitted segQRP lines. The red curved
line joins the breakpoint estimates across the different quantile curves.

In Figure 2 we portray the smoothed coefficients of equation (1) along with the
estimates coming from the ‘naive’ fits obtained by assuming several values of τ
from time to time. Unsurprisingly, the naive estimates are more wiggly with some
abrupt changes which are unreasonable from a biological point of view.
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FIGURE 2. The Mammals dataset: Estimated τ -varying pattern of each model
parameter of the segQRP; on each panel the dotted points represent the estimates
coming from fitting separate model at different values of τ .
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4 Conclusion

We have introduced the segmented QRP which models the covariate effect on
the conditional quantile via segmented relationship, by returning the smoothed
pattern of the threshold parameter across the percentile values. Model fitting is
carried out within the recent framework of Muggeo et al (2023) which ensures
noncrossing quantile curves via a few linear inequalities. It should be stressed that
alternative approaches which could work for linear QRP, such as the GAMLSS
framework (Stasinopoulos et al. 2017) and the integrated quantile of Frumento
and Bottai (2016), here are not usable, as the τ -varying pattern of the breakpoint
cannot be modelled via the LMS regression equations and the breakpoints is not
separable from the design matrix.
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Abstract: In this paper a variety of spatio-temporal models to predict wind
speeds at unobserved locations are examined. Prediction of wind speeds at un-
observed locations is of importance in the wind energy industry to evaluate the
potential of new sites for wind farms, a growing source of electricity. These mod-
els will include novel non-stationary spatial models that incorporate information
from mechanistic physical models. Wind observations are often limited to sparse
weather stations, although they offer high temporal resolution. Presently, in or-
der to create wind maps at a high spatial resolution, mechanistic physical models
are applied to historical weather data. These datasets are known as reanalysis
data. These are still limited in spatial and temporal resolution and require large
computational resources. These can also contain biases. For the models presented
here, data from weather stations from Ireland’s Met Office is used, along with
information from mechanistic models to inform the model parameters.

Keywords: Spatio-temporal; SPDE; Wind; Reanalysis.

1 Background and datasets

To address climate change and enhance energy independence, nations are prior-
itizing the integration of renewable energy sources into their grids. In Ireland,
wind energy stands as the primary renewable source, providing 35% of the na-
tion’s electricity last year. The Irish government have set a target of 80% re-
newables by 2030. However, the variability of wind energy poses challenges in
both estimating resources and forecasting future values. Our research aims to
develop spatial models for creating higher-resolution wind maps to improve wind
resource estimation. These can also be generated in real-time from sparse ob-
servations. Existing wind speed data is typically sourced from synoptic weather
stations maintained by national Met services or reanalysis data such as ERA5
and MERRA5. While synoptic stations offer high temporal resolution, they are
spatially limited. Reanalysis data is when numerical weather models are applied
retrospectively, essentially using the actual observations from the past to force

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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the model results across a regular grid. Though higher in resolution, these still
faces limitations in temporal and spatial granularity. For example, ERA5, which
was seen as the most accurate reanalysis dataset in prior studies (see Doddy
Clarke, E. et al. (2021)) is at a 0.25◦ (∼ 20-30km) spatial grid and one hour time
resolution. Some previous efforts to create wind maps at sub-kilometre spatial
resolution include the European Wind Atlas and the Irish Wind Atlas from the
Sustainable Energy Authority Ireland. While high resolution these either provide
long term averages, or are not regularly maintained.

FIGURE 1. Images showing Met data (top left) and ERA (top right) data for a
single time point, as well as the New European Wind Atlas (bottom) long term
average wind speed.

2 Spatio-temporal models used

The first model introduced considers only data from met station. Later models
will describe how reanalysis data can be incorporated to improve the models.
The simplest spatio-temporal model is a stationary isotropic Gaussian process.
Denoting the wind speed as W , the wind speed is observed over time, with a
given time point denoted as t. The wind speed is assumed to be a continuous
process over some domain D, and we denote a given location as s ∈ D. The wind
speed at a given location and time is modelled as:

Wt,s = µ0 + f(t, s) + ϵ(t, s), (1)



Organ and Sweeney 221

where µ0 is a constant intercept term. f(t, s) is a stationary,isotropic and separa-
ble spatio-temporal Gaussian process. A Gaussian process is a stochastic process
where a finite collection of random variables from the process form a multivariate
Gaussian distribution. Assuming zero mean, it is fully described by a covariance
matrix Σ, which includes the covariance between observed and prediction loca-
tions. A separable process means the covariance between space and time can be
factored into a spatial covariance function and a temporal covariance function,
while stationary isotropic describes models where the covariance between loca-
tion and times depends only on distance between points (distance in time and
space) and not their locations or relative direction.

The covariance formula can be written as,

c(s, s′; t, t′) = c(s′ − s; t′ − t) (2)

= c(s′ − s) · c(t′ − t), (3)

where we model the covariance between location s at time t, and location s′

at time t′. Equation (3) means the covariance function has been factored into a
spatial and temporal component. It also means the covariance between points de-
pends only on the distance between them, and the parameters are constant across
the domain. For the models in this paper, the spatial model follows a Matérn co-
variance function, and the temporal covariance follows an autoregressive process
of order 1, denoted as (AR1).
The independent error term is assumed to be uncorrelated Gaussian noise, where
σ2 needs to be estimated.

ϵ(t, s) ∼ N (0, σ2) (4)

The first extension is to model the wind speed with a mean function dependent
on spatial covariates.

Instead of the mean being constant,

µ0 = β0 (5)

we instead model it as a linear combination of covariates:

µ = β0 +

n∑
i=1

βixi (6)

Where xi are covariates constant across time points but spatially varying. Ini-
tially we looked at including covariates that could be derived from open source
information, such as altitude, distance from the sea and land use. However the
relationship between land features and mean wind speeds is complex and non-
linear, we instead used the means taken from high resolution wind maps, as
discussed in section 1. Although these were produced several years ago, assuming
mean wind speeds have remained approximately the same we would expect this
to more accurately capture local trends.
The second extension I consider is dropping the assumption that the spatial field
is stationary, and modelling the covariance as a function of covariates. This can
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be achieved using the stochastic partial differential equation (SPDE) formula-
tion described in Krainski et al. (2018), which approximates the solution to the
Gaussian process across a mesh (see Figures 5 and 6 for examples meshes). This
allows the covariance parameters to be regressed on local covariates. The spatial
covariance function we use is the Matérn, which can be parameterised in terms of
the the spatial range, ρ, which denotes the distance at which the correlation goes
approximately below 0.1, and σ, the standard deviation of the spatial process.
See Figure 2 for an Matérn covariance function (on the left axis), and equivalent
correlation function (on the right axis), for ρ = 100 and σ = 2.

FIGURE 2. Matern covariance function with ρ = 100 and σ2 = 4.

In the SPDE approach, we can allow ρ and σ to be written as a function of
covariates:

• ln(ρ) = θ
(ρ)
0 +

∑n
i=1 θ

(ρ)
i b(s)

• ln(σ) = θ
(σ)
0 +

∑n
i=1 θ

(σ)
i b(s),

where each θi is 0 for the stationary case. Examples of covariates can be similar to
mean covariates for example the altitude or distance from the sea could affect how
correlated two locations are. For the model in the result section, one covariate
for each parameter is used, distance from the sea.
The results section contains results when tested at an hourly resolution. However
as these models can be predicted at the same resolution as Met station data, it
will allow for the creation of sub hourly, sub kilometre wind maps which current
datasets don’t contain, therefore allowing wind industry stakeholders to better
estimate the potential at prospective sites.

3 Results

In order to test the various models, a leave one out approach is used, where a
single met station is predicted from the remaining met stations. We apply this to
a month of data, January 2024, recorded at hourly time points. All the models are
fit using the INLA package in R. The accuracy of each model is compared using
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two metrics. The mean prediction is compared to the true observation using a
mean absolute error (MAE) metric. As INLA provides a prediction distribution,
we also include the percentage of true values that fall within the 95% prediction
interval. The results for each error metric is shown in the following table:

TABLE 1. Results in held out Met station.

Model MAE Contained in
95% prediction interval

Stationary 1.92 80%
Varying Mean 1.52 65%
Varying Mean and Covariance 1.80 93%

The wind map produced by the stationary spatio-temporal model is display in
Figure 3. We can observe from this that the prediction is overly smooth, as it does
not incorporate local topography. In Figure 4 the model produced by a spatially
varying mean is shown. This better captures local patterns.

FIGURE 3. Wind Map at a sin-
gle time point using stationary mean
and covariance.

FIGURE 4. Wind Map at a single
time point using spatially varying
mean.

FIGURE 5. The values of ρ, the spa-
tial range across the country.

FIGURE 6. The values of σ, the
spatial standard deviation across the
country.

For the spatially varying covariance function, the ρ and σ parameters that vary
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across the mesh as a function of distance from the sea are shown in Figures 5
and 6. From this we can see coastal areas have higher variance and lower spatial
range. That being said this model results in higher MAE, albeit with a larger
percentage of predictions in the 95% prediction interval. This would suggest it
better captures the uncertainty, especially in coastal areas, but perhaps causes
overfitting, which may need to be investigated further.
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Abstract: The difference in restricted mean survival time (dRMST) at a specific
time point is an appropriate measure to quantify the treatment effect between
two arms in randomized clinical trials (RCTs) when the proportional hazards
(PH) assumption does not hold. This situation is common with immuno-oncology
therapies. Several frequentist methods exist to estimate RMST adjusted on co-
variates based on modeling and integrating the survival function. A more natural
approach is to consider a regression model on the RMST directly using pseudo-
observations, which allows for a direct fit without modeling the survival function.
Only two Bayesian methods exist, and both model the survival function with a
nonparametric prior process. We developed a new Bayesian method based on
pseudo-observations and the generalized method of moments (GMM) that offers
RMST estimation adjusted on covariates without the need to model the survival
function, making it attractive compared to existing Bayesian methods. A sim-
ulation study of 2-arms RCTs with different time-dependent treatment effects
and covariates effects was conducted, showing that this new approach provides
consistent results with existing methods, and improved precision after covariates
adjustment. For illustration, the methods were applied to the Getug-AFU 15, a
phase 3 trial in non-castrate metastatic prostate cancer.
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1 Methods

Suppose that T̃i the time-to-event variable for the i-th subject, Zi a p-dimensional
baseline covariate vector, Ai the treatment allocation variable, and Ci a right
censoring random variable, independent of T̃i, Zi and Ai. We observe Ti =
min(T̃i, Ci) and ∆i = I(T̃i ≤ Ci) the event indicator. For a pre-specified time
point of interest τ , the τ -RMST is defined as

RMST(τ) = E(min(T̃ , τ)) =

∫ τ

0

S(t)dt.

To adjust the RMST estimation on covariates, the following regression model can
be considered

µi = E(min(T̃i, τ)|Ai, Zi) = g−1(α+ δAi + β1Zi1 + · · ·+ βpZip),

where g(·) is a monotone differentiable link function and
β = (α, δ, β1, . . . , βp)

T the vector of unknown parameters. With an identity link
function, the regression coefficient δ, can be interpreted as the dRMST between
the two arms of a RCT. In the frequentist framework, this model can be fitted
using estimating equations, while censoring must be handled, for example, by
using the pseudo-observations approach, see Andersen et al. (2004).
This paper extends the latter method to the Bayesian framework. Following An-
dersen et al. (2004), the i-th pseudo-observation is computed as

yτ,i = n

∫ τ

0

Ŝ(t)dt− (n− 1)

∫ τ

0

Ŝ−i(t)dt,

with n the sample size, Ŝ(t) the Kaplan-Meier (KM) estimator of the survival

probability, and Ŝ−i(t) the KM estimator excluding the i-th subject. Because
of the unbiasedness of pseudo-observations conditional on covariates proved in
Overgaard et al. (2017), we can replace the non-observed (due to censoring)
min(T̃i, τ) by yτ,i in the regression model.
The Bayesian generalized method of moments (GMM) is used to estimate the
posterior distribution p(β|yτ ) ∝ L̃(β|yτ )p(β) where the pseudo-likelihood L̃(β|yτ )
is defined following Yin (2009) as

L̃(β|yτ ) ∝ exp{−1

2
UT
n (β)Σ

−1
n (β)Un(β)},

where

Σn(β) =
1

n2

n∑
i=1

ui(β)u
T
i (β)−

1

n
Un(β)U

T
n (β)

is a (p+ 2)× (p+ 2) matrix with ui(β) =
∂µi
∂β

(yτ,i − µi) and

Un(β) =
1
n

∑n
i=1 ui(β).

2 Simulation study

A simulation study of 2-arms RCTs was conducted to assess the performance
of the Bayesian GMM with pseudo-observations, compare them with other fre-
quentist and Bayesian RSMT estimators (Andersen et al. (2004), and Zhang and
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Yin (2023)), and evaluate the impact of covariate adjustment. The event times
were simulated following a Weibull distribution, with scale and shape parameters
chosen to mimic different patterns of treatment effect (Figure 1: PH (scenario 1),
non-PH with early effect (scenarios 2 and 4), and delayed effect (scenarios 3 and
5), with additional covariates drawn from a uniform distribution (scenario 4) or
normal and binomial distributions (scenario 5). In all scenarios, 30% of censoring
was considered, drawn from a uniform distribution and an administrative cen-
soring at 8 years, the restriction time τ was set to 5 years, and 1000 replicates

were generated. Noninformative priors N(0,
√
10

2
) were specified for all parame-

ters of the Bayesian GMM with pseudo-observations, and a mixture of Dirichlet
processes prior was applied under an exponential base measure with Gamma
Γ(0.01, 0.01) mixing distribution for the method in Zhang and Yin (2023).
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FIGURE 1. Theoretical survival curves for each simulated scenario.

In all scenarios, the Bayesian GMM with pseudo-observations gave valid unad-
justed and adjusted dRMST estimations, with similar performance compared to
the other methods. The main results are dRMST estimations with covariates
adjustment, corresponding to Scenario 4 with n = 500 (Table 1). Methods allow-
ing for adjustment on covariates produced slightly more precise estimates after
adjustment. Similar results were observed with n = 200 with a relative gain in
precision from unadjusted to adjusted estimations of 4% (scenario 4) and 8%
(scenario 5) for the Bayesian GMM.

3 Real data application

For illustration, we analyzed the data from the Getug-AFU 15, a randomized
phase 3 trial comparing an androgen-deprivation therapy (ADT) alone (n = 193)
or with docetaxel (n = 192) in non-castrate metastatic prostate cancer. The me-
dian follow-up time was 4.2 years. We focused on the Prostate-Specific Antigen
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TABLE 1. Performance of frequentist and Bayesian methods for the estimation
of 5-dRMST (difference of 5-RMST between the 2 arms) for scenario 4 (n =
500) representing an early treatment effect on survival with a prognostic uniform
variable.

Methods Bias ASE1 ESE2 RMSE3 Cov.4

Frequentist
Kaplan-Meier estimator 0.0055 0.163 0.167 0.167 93.9
Andersen et al. (2004) 0.0055 0.163 0.167 0.167 93.9
Andersen et al. (2004)* 0.0037 0.156 0.159 0.159 94.9

Bayesian
Zhang and Yin (2023) 0.0056 0.162 0.167 0.167 93.9
GMM 0.0044 0.163 0.166 0.166 94.2
GMM* 0.0061 0.156 0.158 0.158 94.9

1 ASE: Average Standard Error, 2 ESE: Empirical Standard Error
3RMSE: Root Mean Square Error, 4 Cov.: 95% Coverage

* Model adjusted on the prognostic variable Z1 ∼ U([0, 2])

(PSA) progression-free survival endpoint for which the PH assumption was re-
jected (p = 0.00022, Grambsch and Therneau). Without covariates adjustment,
all methods yielded similar estimations of the 5-dRMST (data not shown). These
results are consistent with the simulation study. After adjustment on four vari-
ables (the Gleason score, European Cooperative Oncology Group performance
status, concentration of alkaline phosphatase, and presence of bone metastases)
with all methods allowing for covariates adjustment, an increase in precision was
observed. With the Bayesian GMM, the adjusted 5-dRMST was estimated to be
0.58 (95% CI 0.24 to 0.92) year, meaning that receiving docetaxel in addition to
ADT increases the lifetime without PSA progression during the next 5 years by
0.58 year, compared to receiving ADT alone.

4 Discussion

We developed a new Bayesian approach for analyzing RMST using the GMM
and pseudo-observations. This method does not require specifying the survival
function to estimate RMST adjusted on covariates, making it attractive compared
to the existing Bayesian methods. Caution must be taken with the potential
misspecification of the model. This method will be extended to the joint analysis
of RMST at multiple times.
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with community structures. This allowed us to estimate new quantities of inter-
est, such as the probability of reinforcing content to a community when it has
previously stopped spreading, which show good agrement with simulation results.
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1 Introduction

Online social networks such as Facebook, Instagram, TikTok, and the platform
formerly known as Twitter, serve as media for the spread of information among
their users, where the users both create and share content with each other. Under-
standing how information spreads on social networks is of paramount importance
for society (Keating et al. 2023). Given the ubiquitous use of such platforms for
the dissemination of information, understanding how information spreads and is
adopted is crucial. In this conference paper, we show how a Multitype Branching
Process model can be used to shed light on the interplay between community
structure and information spread. We model the diffusion of information using
the popular independent cascade model (ICM), where node infections occur in
discrete time. Nodes can be in three states: inactive, active, or removed. Active
nodes attempt to activate their network neighbours once, before becoming re-
moved themselves in the next time step. The process continues until there are
no active nodes to carry on the process. In this work, we will use probability-
generating functions (PGFs) to capture this stochastic process, where we focus on
the offspring distributions in each community and between communities. PGFs
are particularly useful in deriving expressions for the probability of extinction,
hazard function, and new quantities, such as the reintroduction probability, which
would be hard to analytically calculate otherwise.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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FIGURE 1. a) Schematic illustration of the model. The network consists of two
communities where we assume the degree of distribution inside and between the
communities is Poisson. The process starts with a single active node in community
one. b) Schematic representation of the multi-type branching process model.

2 The MTBP model for information spread

The goal is to construct a PGF for the random variable tracking the number
of nodes active in each community at time t, which we denote N(t). Let us
consider networks that correspond to the classic Stochastic Block Model (SBM)
for networks with communities. For simplicity, we assume that both communities
have the same statistical properties. For a sufficiently large network, the degree
of each node will be bivariate Poisson, where we assume the rate is λin and λout
for the degree inside and between the communities, respectively, with λin > λout.
A bivariate PGF allows us to write the probabilities as the coefficients of a power
series, i.e., GX(1)(s1, s2) =

∑∞
n,m=0 P [X

(1)
1 = n,X

(1)
2 = m]sn1 s

m
2 , where GX(1)

tracks the probability of having n and m activated offspring from a single node
in community 1, respectively. Usefully, the Poisson distribution has a closed-form
PGF. Additionally, assuming that each inactive neighbour of a node has an i.i.d
probability of being activated, ρ, we can derive simple expressions for the offspring
distribution for each community as

GX(1)(s1, s2) = eρλin(s1−1)eρλout(s2−1), and (1)

GX(2)(s1, s2) = eρλin(s2−1)eρλout(s1−1). (2)

Let N1(t) be the random variable for the number of active nodes in community
1 at generation t and N2(t) be the number of active nodes in community 2. We
introduce the probability generation function GN(t) for N(t) = (N1(t), N2(t)) as
the iteration:

GN(t)(s1, s2) = GN(t−1) (GX(1)(s1, s2), GX(2)(s1, s2)) . (3)

Setting the initial condition GN(0)(s1, s2) = (s1)
1(s2)

0 corresponding to a single
active individual in community one.

3 Estimating probabilities

Our PGF approach allows us to straightforwardly estimate common survival
analysis probabilities, such as the extinction probability and hazard functions,
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but also, as we will see, more complex quantities, such as the probability of
reintroducing an infection once it has ceased to spread in a community. This
is all accomplished by simple function iteration, and setting the values of s1
and s2 to particular values. Let us first calculate the extinction probability, the
probability that the process becomes extinct by generation t in a community.
We can find the probability of the process going extinct by generation t only in
community 1 as q1(t) = P [N1(t) = 0] = GN(t)(s1 = 0, s2 = 1). To see this, note
that setting s1 = 0 removes all probabilities associated with having a positive
number of active nodes in community 1 from the PGF, and s2 = 1 marginalizes
over all the probabilities associated with community 2.

FIGURE 2. a) Extinction probability for stochastic block model network; here
λin = 8, ;λout = 2 and ρ = 0.06; b) Probability of the spreading being rein-
troduced into a community once it has stopped spreading. 95% bootstrapped
confidence intervals from the simulations are included.

We can go further and calculate what we will call community-specific hazard func-
tions for community 1 and 2 as h̃1(t) and h̃2(t), respectively. They are hazard
functions specified for each community, i.e., h̃1(t) = P [N1(t) = 0|N1(t − 1) >
0, N2(t− 1) ≥ 0]. The PGF iteration required is a little more complex and omit-
ted for brevity. However, once we can calculate these community-specific hazard
rates, h1(t), they allow us to estimate crucial probabilities when studying stochas-
tic diffusion processes in the presence of community structure on networks. For
example, the probability of reintroducing a pathogen to a community once it has
ceased to spread in that community. We denote two new quantities, ri(t) (ci(t))
the reintroduction (recurrent extinction) probability for community i, which are
defined as

ri(t) = 1− P [Ni(t) = 0|Ni(t− 1) = 0] = 1− ci(t). (4)

If we note its relation to the extinction probability qi(t) = P [Ni(t) = 0], where
this can be written as P [Ni(t) = 0|Ni(t − 1) = 0]P [Ni(t − 1) = 0] + P [Ni(t) =
0|Ni(t−1) > 0]P [Ni(t−1) > 0], whose terms we have already encountered earlier
allowing us to rewrite it as ci(t)q2(t−1)+h̃i(t) [1− qi(t− 1)]. We can then isolate
the recurrent extinction probability as

ci(t) =
qi(t)− h̃(t) [1− qi(t− 1)]

qi(t− 1)
.



O’Sullivan et al. 233

Which is not only very compact but also allows us to calculate this via function
iteration and the appropriate marginalization.

4 Results and conclusions

We plot the theoretical estimated probability of extinction and reintroduction
against simulated values with 95% bootstrapped confidence intervals in Fig. 2.
We can see that we have excellent agreement compared to a simulated branching
process assuming the same network structure. We accomplished all this under
the assumption of a simple SBM for the community structure; it is also worth
noting that if we know the connectivity structure inside and between two commu-
nities, we can easily extend the analysis to capture much more realistic network
typologies.

Acknowledgments: Science Foundation Ireland [18/CRT/6049 to C.P.]. For
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licence to any Author Accepted Manuscript version arising from this submission.
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Abstract: Gene coexpression analysis poses unique challenges, particularly in
clustering normalized gene profiles where dedicated algorithms are lacking. Com-
positional in nature, normalized gene profiles find a fitting solution in the Dirichlet
Mixture Model (DMM). This study pioneers the application of DMM for cluster-
ing normalized gene profiles, recognizing the necessity for efficient model evalua-
tion. Central to this evaluation is the Kullback-Leibler (KL) Divergence, a critical
metric for DMMs. In addressing the computational challenges associated with KL
Divergence in DMMs, we introduce a novel variational approach. This method
provides a closed-form solution, markedly improving computational efficiency for
rapid model comparisons and robust estimation evaluations. Through validation
on real and simulated data, our approach demonstrates superior efficiency and
accuracy compared to traditional Monte Carlo-based methods. This innovation
opens new frontiers for expeditious exploration of diverse DMM models, pro-
pelling advancements in the statistical analysis of compositional gene expression
data.
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Abstract: Compositional data are drawing increasing interest for their ability to
depict interdependent and constrained observations. While time series analysis
has sometimes been employed for the study of individual compositional trajecto-
ries, little attention has been given to finding and modeling groups of trajectories.
Driven by a sustainable mobility motivation, we propose a model-based approach,
relying on a state space model representation and an Expectation-Maximization
algorithm, for clustering compositional trajectories according to their evolution in
the simplex. Trajectory covariates, not captured by the compositional represen-
tation, can be included in the component weights in a mixture of experts fashion.
The method is applied to urban movement data, where people’s movements are
represented in the simplex by the proportions of road types in their surroundings.
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Abstract:
We examine the binary classification problem in a challenging high-dimensional
setting with correlated predictors, where the coefficients in a logistic regression
model can vary from sparse to dense. In this work, we propose the use of a
data-driven random projection matrix to reduce the original feature space. The
random projection combines variables considering their respective effect on the
class response and such that the regression coefficient can still be recovered.
In a simulation exercise, we show that the proposed random projection produces
significantly better prediction results than conventional random projections, even
outperforming benchmarks such as glmnet’s logistic regression with elastic net
penalty.

Keywords: High-dimensional classification; Dimension reduction; Random pro-
jection.

1 Introduction

Over the last decades, rapid technological progress has contributed to a multitude
of classification tasks arising in high-dimensional data settings.
High-dimensional data, where the number of variables p exceeds the number of
observations n, i.e., where p > n or even p ≫ n, pose statistical challenges and
many traditional classification algorithms become impractical or are in need to
be adapted for the high-dimensional case.
In this work we address the problem of high-dimensional binary classification in a
logistic regression model. To deal with the curse of dimensionality, we propose a
method which relies on random projections of the data onto a lower-dimensional
space. More specifically, a data-informed sparse random projection (RP) is em-
ployed to reduce the dimension of the features and a logistic regression model is
fit to the resulting reduced predictors. The random projection combines variables

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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considering their respective effect on the class response and such that the coef-
ficient in the logistic regression can still be recovered by the reduced predictors
by using a quick approximate estimator of the coefficient.
The use of random projections for the high-dimensional classification problem has
also been proposed in Cannings and Samworth (2017), who propose a random
projection ensemble classifier for binary data, where a base classifier is applied
to many “well chosen” random projections of the data. Furthermore, Xie et al.
(2016) combine RP with other dimensionality reduction techniques such as PCA,
LDA and feature selection for a binary classification problem in gene expression
data and find that combining RP with feature selection provides superior results.
The proposed method in this paper extends the approach in Parzer et al. (2024),
which deals with the linear regression setting. The methodology is flexible and
can be extended to deal with other generalised linear models.

2 Method

We assume to have a binary response variable yi ∈ {0, 1}, related to p-dimensional
predictors xi ∈ Rp via a logistic regression model

P(yi = 1) =
exp(β0 + x⊤

i β)

1 + exp(β0 + x⊤
i β)

, i ∈ {1, . . . , n} =: [n], (1)

with the unknown coefficients β0 ∈ R,β ∈ Rp. In this section, we propose a new
random projection matrix Φ ∈ Rm×p with m ≪ p tailored to generalised linear
regression problems. As in Parzer et al. (2024), we let h : [p] → [m] be a random
map such that for each j ∈ [p] h(j) = hj is independently identically distributed
as Unif([m]). Then, we let B ∈ Rm×p be a binary matrix with Bhj ,j = 1 for all
j ∈ [p] and remaining entries 0, where we assume rank(B) = m. Finally, with a
diagonal matrix D ∈ Rp×p with entries dj ∼ Unif({−1, 1}), j ∈ [p], independent
of h, one can set Φ = BD to define a sparse random projection.
When using this random projection for the logistic regression problem (1), vari-
ables mapped to the same dimension k ∈ [m] should not have signs conflicting
their respective influence on the response, and, in general, we would wish for
β ∈ span(Φ⊤) such that the true coefficients β ∈ Rp can be recovered by the
reduced predictors zi = Φxi. Both can be accomplished by setting the diagonal
elements of D proportional to the coefficient β, instead of simply picking random
signs.
Parzer et al. (2024) show that in the regression setting the HOLP (High-Dimensional
Ordinary Least Squares Projection, Wang and Leng 2016) estimator is a viable
option to use as the diagonal elements. It is defined as the limit of the L2-penalised
least squares estimator for penalty λ→ 0 and has an explicit form.
We choose to take the same approach here and use the maximum arguments of
the L2-penalised log-likelihood for a small threshold λ > 0

β̂L2 := argmaxβ∈Rp

n∑
i=1

yix
⊤
i β + log

( 1

1 + exp(x⊤
i β)

)
+
λ

2

p∑
j=1

β2
j (2)

as the diagonal elements dj = β̂L2,j . In the high-dimensional setting p > n, β̂L2

might diverge for λ→ 0, contrary to the regression case. Therefore, some penali-
sation is necessary. In practice, we calculate β̂L2 with λ = 10 ·maxj(

∑n
i=1 yixij)
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FIGURE 1. Comparison of prediction performance of random forest, glmnet, dif-
ferent conventional projections and our proposed projection, for 100 replications
of the described setting with n = 200, p = 2000 and Σij = 0.9|i−j|.

(for standardised predictors), which is also the smallest λ used by the R-function
glmnet. Our proposed algorithm can be summarised as (i) compute β̂L2 , (ii)
compute Φ and reduced predictors zi = Φxi and (iii) estimate the model on the
reduced predictors, where we employ an elastic net penalty to ensure that the
model achieves a certain degree of sparsity and that the issue of separability is
taken care of.

3 Preliminary simulation results

In this section, we want to demonstrate the effectiveness of this adapted random
projection to improve prediction accuracy. We generate data from (1) with mul-
tivariate normal predictors xi ∼ N(0,Σ), where we choose n = 200, p = 2000,
and Σij = ρ|i−j| has an AR(1) structure with ρ = 0.9.
The coefficient β has a = n/2 + 2log(p) random entries bounded away from zero
at uniformly drawn positions and is scaled such that Var(x⊤

i β) = β⊤Σβ = 9,
which will determine the separation between the two classes. Finally, β0 is chosen
such that

∑n
i=1 P(yi = 1) = n/2.

We compare with random forests (RF, using the R-package randomForest),
glmnet, and our approach with the following three different random projection
matrices Φ. Firstly, we use a conventional random projection Φ with iid Gaussian
entries (RP Gaus), then we use the sparse version introduced above with random
sign diagonal elements (RP sparse) and, finally, our proposed version with the
adapted diagonal elements (RP beta).
Figure 1 shows the average accuracies for predicting 100 new test observations
over 100 replications. We can see that the two conventional random projections
RP Gaus and RP sparse are only slightly better than random guessing in this
challenging high-dimensional setting, but our proposed adapted random projec-
tion leads to a huge improvement in accuracy, even outperforming glmnet and
random forests.
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4 Discussion

We propose the use of a data-driven random projection in a logistic regression
problem. The random projection relies on a regularised estimator for β. We will
further investigate how the choice of this estimator influences the performance
of the method. As next steps, similar to Parzer et al. (2024) we analyse how
the performance of the proposed method changes when i) introducing a variable
screening step, ii) performing the analysis for a collection of random projection
and then averaging over this ensemble, and iii) introducing a threshold for sparsity
and variable selection.
Finally, further possible extensions include accommodating responses from any
generalised linear model in the proposed methodology.
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Abstract: We consider regression models for panel data, where regression ef-
fects and within subject dependence are allowed to vary over time. We adopt a
Bayesian approach with priors that allow shrinkage to constant and zero effects
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Abstract: The Piecewise Exponential Additive Mixed Model (PAMM) has be-
come a popular method for complex modelling of single-event survival data. Here,
we extend the framework and the relating R package pammtools to event-history
analysis, i.e. competing risks, recurrent events and multi-state settings.
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1 Introduction

Piecewise Exponential Additive Mixed Models (PAMMs) (Bender et al., 2018)
have gained popularity in various domains due to their ability to tackle a wide
variety of survival problems and their flexibility to model non-linear covariate ef-
fects, including time-varying effects and cumulative effects (Bender et al., 2019).
One advantage of such reduction techniques is that they do not require any spe-
cialised software for the estimation of the model parameters. Thus, in the case
of the PAMM, they can be conveniently estimated using generalized additive
mixed modeling methodology or, for example, respective boosting or deep learn-
ing based approaches (Bender et al., 2022). Nevertheless, their use in practice
requires pre-processing, which differs depending on the survival task at hand (e.g.
left-truncation, competing risks, etc.) and post-processing (e.g. transforming es-
timated parameters to useful quantities like survival or transition probabilities).
The R package pammtools facilitates the entire modeling process, so far, however,
only for single-event data. Here we extend the framework and package capabilities
to handle general multi-state models.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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2 Methods

We consider the general multistate setting with observed data

(yentryi,k,e , y
exit
i,k,e, δi,k,e,xi,k,e),

where yentryi,k,e is the entry time of subject i = 1, . . . , n into the risk set for transition

k = 1, . . . , q in episode e = 1, . . . ,m and yexiti,k,e the respective exit time, either due
to the transition occurring or censoring. Here, δi,k,e is the corresponding status
indicator and x⊤

i,k,e = (xi,k,e,1 · · ·xi,k,e,p) the covariate row-vector, which, besides
subject specific information, can contain information about the past (e.g. number
and timing of past transitions and number and timing of previous episodes). Note
that we need both indices, k and e, as, in the general case, some transitions could
occur more often, for example in case of recurrent events or back-transitions. The
transitions are modeled via log-hazard rates

log(hk,e(t|xi,k,e, ℓi)) = β0,k,e + f0,k,e(t) +

P∑
p=1

fp(xi,k,e,p, t) + bℓi . (1)

In Eq. (1) the log-baseline is given by log(h0,k,e(t)) = β0,k,e+f0,k,e(t), fp(xi,k,e,p, t)
are potentially non-linear, potentially time-varying effects of covariates and bℓi
potential random effects for cluster ℓ to which subject i belongs to. Eq. (1) could
be further extended to include stratification of the baseline hazard according
to subsets of subjects, interactions between different covariates (e.g. via tensor
products), cumulative effects of time-dependent covariates, and more complex
random-effect structures, but this is omitted here for simplicity.
Using PAMMs, we estimate Eq. (1) by splitting the follow-up into J intervals,
with intervals (κj−1, κj ], j = 1, . . . , J , transforming the raw-data accodringly
and estimating the interval-specific hazard rates hk,e(t|xi,k,e) = hk,e,j(xi,k,e),
for all t ∈ (κj−1, κj ]. Non-linear functions are parameterized as fp,k,e(xi,k,e,p) =∑G
g=1 γp,gBp,g(xi,k,e,p) with basis coefficients γp,g and suitable basis functions

Bp,g (e.g. B-splines). The respective parameters are estimated by maximizing
the corresponding penalized Poisson likelihood (Wood, 2020) or other suitable
estimation techniques. Note that a separate smooth baseline hazard is estimated
for each transition and episode, but could also be reduced to transition spe-
cific baseline hazard rates. Once the transition specific hazard rates in Eq. (1)
are estimated, the transition probabilities are obtained via the empirical tran-
sition probability matrix (Beyersmann et al., 2011). To calculate the empiri-
cal probability matrix, first, we discretize the time component t ∈ T , with
T = {T ∈ N : t1 < . . . < tT }, i.e. t stems from a grid of ordered time points.
Second, we integrate the specific hazard rates and obtain the cumulative transi-
tion hazards, i.e. Hk,e(t|x) =

∫ t
0
hk,e(u|x)du. Next, we define transition matrices,

which contain the transition probabilities. Let Q be the set of all states for each
transition k and Ql ⊆ Q, l ∈ Q the set of all possible states after transitioning
from l, then there exists a tuple (l, o) ∈ Q × Ql, describing the k-th transition
from state l to state o, which, in the following, is denoted by l → o. The tran-
sition matrix is then given by a finite matrix product over all event times t and
matrices I + dĤ(t|x), with entries dĤl→o,e(t|x) = Ĥl→o,e(t|x) − Ĥl→o,e(t − |x),
i.e. ∏

t∈T

(
I+ dĤ(t|x)

)
(2)
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Since the rows of probability matrices must sum up to one, the diagonal elements
of Ĥ(t|x), are defined to be Ĥl→l,e(t|x) = −

∑
o∈Q(l) Ĥl→o,e(t|x).

Using PAMMs, we estimate Eq. (2) by applying the same discretization and data
transformation for the interval- and transition-specific hazard rates Eq. (1) and
calculate

Hk,e(t|x) =
j(t)−1∑
l=1

hk,e,j(x)(κl − κl−1) · hk,e,j(t)(x)(t− κj(t)−1) (3)

where j(t) the index of the interval for which t ∈ (κj(t)−1, κj(t)].

3 Simulation

In this section, we illustrate the capabilities of the model via simulation studies.
While we focus on simple settings (e.g. to illustrate equivalence to Aalen-Johanson
estimator), the model class can be used in more complex settings.
In the first simulation study, we sample an illness-death multi-state setting with
200 subjects and constant transition-specific log-hazards h0→1 = 0.3, h0→2 = 0.6,
and h1→2 = 0.5. Using the functionalities of the mvga package, see (Allignol et al.,
2008), we calculate the Aalen-Johanson estimator for the simulated multi-state
model. Using PAMMs, we estimate the log-hazards and calculate the transition
probabilites. Figure 1 shows equivalence of the two approaches.
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FIGURE 1. Shown are the transition probabilities based on the Aalen-Johanson
estimator (solid, black) with confidence bands (dotted, black), and the estimation
using pammtools (solid, red).

In the second simulation study, we sample an illness-death multi-state setting
with non-linear covariate effects and time dependent transition-specific log-hazards
given by h0→1(t|(x)) = 0.5+0.25x3, h0→2(t|(x)) = 1

28·Γ(8)
t7e−t/2, and h1→2(t|(x)) =

0.4 − x2. Note that the hazards are by construction highly non-linear and also
time-dependent. The simulation is built on a data set with 1500 subjects, a co-
variate x, sampled uniformly from [−3, 3], and 100 repetitions. Using PAMMs, for
each repetition, we fitted a model with non-linear effects in x and t. Finally, we
calculated the average and compared the true curve with the average fit. Figure
2 shows that the average fit of the non-linear log-hazards (red) is close to the
pre-defined transition-specific log-hazards of the simulation setup.
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FIGURE 2. The first three facets depict the non-linear effect of x for each
transition. The last facet depicts the non-linear effect of t for 0 → 2. Results
from each iteration are grey, the average is red, and the true function is black.

4 Application

The presented PAMMs approach enables smooth effects to be used to estimate
cumulative hazards and transition probabilities. To illustrate the flexibility, we
used the pammtools package to analyze the mgus2 data set in the survival pack-
age, see (Kyle et al., 2002). The data set contains a classical illness-death setup
with possible transitions 0 → 1, i.e. progression to a plasma cell malignancy
(pcm), 0 → 2, i.e. death, or 1 → 2, i.e. progression from pcm to death. We es-
timated the hazards with a linear and a non-linear effect of hemoglobin (hgb).
Figure 3 visualizes the non-linear effect of hgb and the time tend on the loga-
rithmic hazard rates for the transition 0 → 2 and the transition probabilities for
the linear and non-linear model. As can be seen in the left facet of the figure, the
change of the amount of hgb within [11, 14] in [g/dl] has a stronger decreasing
effect on the hazard rates than for amounts within [9, 11) c.p. The overall fit and
the fact that the effective degrees of freedom are 4.65 > 1 undermine the need
of the more flexible smooth functions for modeling the effect of hgb. Figure 3
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FIGURE 3. For transitions into the death stage, the first facet depicts the non–
linear effect of hgb, the second depicts the non-linear effect of time, the third and
forth facets depict the transition probabilities depending on the time and hgb,
modelled with a linear effect (third facet) or a non-linear effect (fourth facet).

compares further the influence of the linearly (third facet) and the non-linearly
(right facet) modeled hazard rates on the transition probabilities. In the linear
case, the transition probabilities change equally over time and different levels of
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hgb. In the non-linear case, the transition probabilities change according to the
structure of the smooth functions in the first and second facet of Figure 3.

5 Discussion

This article illustrates a workflow for reducing complex multi-state tasks to more
standard regression tasks using the R package pammtools. All transition hazards
and probabilities, including their dependencies on covariates and time, can be es-
timated in one single model. The additive predictor used to define the transition
hazards can be very flexible, including non-linear terms, spatial effects, random
effects and their interactions. While this approach was illustrated mainly on non-
linearity with a focus on extending single-event survival models to multi-state
settings in Sections 3 and 4, the approach will be particularly useful when the
Markov assumption may be violated, i.e., when the hazard at time t depends on
the past. In this approach, one could model such dependencies by introducing
time-varying covariates like number of past transitions or time spent in previous
states into the restructured data set, which natively supports dependencies on
multiple timescales (Iacobelli et al., 2013). One disadvantage of the data trans-
formation, in particular in the multi-state setting, is the increase of the data set.
However, since the estimation problem is reduced to a Poisson regression task,
available techniques for efficient estimation in the big data context (Wood et. al.,
2017, Reulen et. al., 2015, Sennhenn-Reulen et. al., 2016) are applicable, such that
even models with millions of rows and complex predictors are estimable within
reasonable time and memory requirements. Nevertheless, further reduction of the
transformed data set size is desirable and could be addressed in future iterations
of the implementation.
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Abstract: The availability of proper selection criteria is of fundamental impor-
tance in the definition of latent class analysis models. When the data structure is
multilevel the selection procedure must be applied to each level of the model. In
the case of the multilevel cross-classified extension, we propose to apply a three
step procedure that takes into account the mutually dependence between the two
levels of the structure in the selection. The performances of the method are in-
vestigated through simulation studies in which different information criteria are
considered. The definition of these criteria are based on approximations of the
log-likelihood, which is intractable in such a cross-classified structure.
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1 Introduction

When performing a latent class (LC) analysis it is crucial to apply model selec-
tion criteria for determining the number of latent classes. The decision on that
number is affected by different factors (like the sample size and the level of sep-
aration between the classes) that must be taken into account in the definition of
selection measures. In case of multilevel data, the task of selection gets even more
complex as it concerns latent classes at all levels of the data structure. Indeed, the
extension of latent class models to multilevel data can be defined taking a set of
membership variables for each level. The problem of selection in the hierarchical
model has been exhaustively discussed in (Lukociene, Varriale, Vermunt 2010). In
this work we focus instead on the cross-classified case, introduced in (Columbu,
Piras, Vermunt 2023), in which units are simultaneously nested within two higher
level groups (for instance, children belonging to both schools and neighborhoods).
Therefore, the selection applies to the number of level-1 latent classes (L) and
the number of two separate sets of level-2 latent classes (H and R).

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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We propose to consider a three step approach similar to what done in the hierar-
chical frame. That is, in a first step we determine the number of lower level classes
as in a standard LC, ignoring the multilevel structure. Then we determine the
number of higher level classes, taking fixed the number of level-1 latent classes
selected at the previous step. Finally, we determine again the number of lower
level classes fixing the number of higher level classes at the values we obtained
from the second step.
The implementation of a three step procedure enables to take under consideration
the mutually dependence between the levels of the data structure. The selection of
latent classes at level-1 influences that of level-2, the reverse is also true, however
in the second direction the dependency is typically weaker.
In the LC framework, and more in general in mixture modeling, the problem of
choosing the right number of classes corresponds to a model selection problem.
In this context, information criteria (IC) based on some form of log-likelihood
penalization are usually considered. Such statistics are built as a weighted com-
bination between the fit of the model and its complexity, measured in terms of
number of free parameters involved. The missing data structure typical of LC,
with the presence of unknown membership variables to be estimated, requires
the introduction of a complete version of the likelihood. Therefore, the good-
ness of fit can be measured taking either the log-likelihood (logL) value or the
complete log-likelihood (CL). In the extension to the multilevel cross-classified
version the definition of IC gets more complex as both levels of the structure
must be considered and no finite expression of the data likelihood is available.
Indeed, the double missing data structure at the higher level makes the likelihood
untractable, implying that approximated versions of it can be computed. We will
consider multiple IC statistics by letting vary the penalization terms that are
computed considering the number of latent classes and/or the sample size (in
a BIC fashion). In addition, for each of them we take two versions, one based
on the logL and a second based on the CL. Given the presence of two levels in
the data, in the level-2 of the structure the sample size can be intended as the
total number of individuals (n) or the number of combinations of level-2 cross
classified units (K and Q) present in the data.

2 Three-step procedure

The procedure we consider consists of three steps, and is based on three criteria
for level-1 and their correspondent definition for the cross-classified level-2. For
each IC we consider also a version with CL, generally denoted as ICe, and for
what concerns the BIC we consider alternatives penalized by the number of level-
2 groups within which the observations are nested (BICg and BICeg). The steps
taken are:

1) Determine the number of lower level classes L fitting standard LC, without
taking into account the multilevel structure. Level-1 information criteria
used are:

BIC = −2 · logL+ ((L− 1) + npar) · log(n)
AIC = −2 · logL+ 2 · ((L− 1) + npar)

AIC3 = −2 · logL+ 3 · ((L− 1) + npar)
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npar =
∑I
i=1 L ·(Ci−1) is the number of free distribution parameters with

I categorical indicators of Ci categories. The lower the value of an IC, the
better the model.

2) Determine the number of higher level cross-classified classes H and R fix-
ing the number of lower level classes to that selected in step 1. Level-2
information criteria used are defined as:

BIC = −2 · logL+ ((R− 1) + (H − 1) + (H ·R · (L− 1)) + npar) · log(n)

AIC = −2 · logL+ 2 · ((R− 1) + (H − 1) + (H ·R · (L− 1)) + npar)

AIC3 = −2 · logL+ 3 · ((R− 1) + (H − 1) + (H ·R · (L− 1)) + npar)

the analogous definition taking CL instead of logL and substituting n with
the number of group combinations available in the data can be also con-
sidered.

3) Determine again the number of level-1 classes L, setting this time the
number of level-2 cross-classified classes to the value selected in step 2.
This third step allows to evaluate if the suitable number of lower level
classes can change after taking into account the multilevel structure. The
same criteria as in step 2 are applied.

TABLE 1. Number of replicates in which the investigated criteria, at step 2 and
3, estimated various combinations of level-1 and level-2 cross-classified latent
classes. The correct combination is (4, 3, 2).

Step 2 Step 3

IC nkq 4 2 2 4 3 2 4 2 3 4 3 3 3 3 2 4 3 2 5 3 2

BIC 6 5 33 50 12 0 100 0
8 0 20 55 24 0 100 0

BICg 6 1 32 50 17 0 100 0
8 0 14 56 30 0 100 0

AIC 6 0 23 47 30 0 100 0
8 0 4 48 48 0 100 0

AIC3 6 26 47 27 1 0 100 0
8 0 4 48 48 0 100 0

BICe 6 37 60 1 2 86 14 0
8 16 84 0 0 100 0 0

BICeg 6 29 66 1 4 78 22 0
8 8 92 0 0 100 0 0

AICe 6 13 72 1 14 78 22 0
8 0 88 0 12 100 0 0

AIC3e 6 14 73 1 12 78 22 0
8 0 92 0 8 100 0 0

2.1 Simulation results

To evaluate the performances of the criteria proposed and the three step pro-
cedure, we carried out simulations taking dataset with two different separation
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conditions, obtained setting different values of level-1 units within each k, q group
(nkq = {6, 8}). For each scenario we generated 100 datasets with six binary indi-
cators, and set K = 30, Q = 12, L = 4, H = 3 and R = 2.
The results of simulations are summarized in Table 1. We observe that at step 2
the versions of the IC based on the CL are those selecting in higher proportion the
right number of level-2 classes, keeping fixed the level-1 classes to the correct one
L = 4. For step 3, once fixed the number of cross-classified classes to the real one
(H = 3 and R = 2) the measures based on logL give always the correct selection.
In particular we highlight that at step 2 AIC3 performs better with lower sepa-
ration, while increasing the separation BICeg provides also good results. These
preliminary results are in line with what found in multilevel hierarchical latent
class models.
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cohort event history process with interval-censored transition times. The cohort
is included as a stratum variable when modeling each transition hazard, while
testing the compliance with the Markov property conditional on the prognostic
covariates. Whenever the Markovian assumption does not hold for a given tran-
sition, the time of entry into the current state is incorporated in the modeling
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Abstract: A joint model for longitudinal and time-to-event data is a well-
established estimation method in biostatistics because it exploits data richness,
handles endogenous covariates in survival models, and controls for non-random
dropout in longitudinal studies. However, this method is not yet part of the stan-
dard toolkit of social scientists even though the growing mass of longitudinal and
survival data sets requires appropriate analysis tools. Therefore, this contribution
provides a gentle introduction to the method of joint models and highlights its
advantages for social science research questions. We demonstrate its usage and
usefulness using an application on marriage dissolution and marital satisfaction
and compare the results with classical approaches. In addition to demonstrating
the method, our results suggest that shared household work in a marriage has no
direct effect on the risk of marital dissolution for women but for men. Further,
there is a strong indirect effect of shared household work on the risk of marriage
dissolution via marital satisfaction for both genders.
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1 Introduction

Research questions pointing to the timing of an event as well as respective data
sets are frequently found in social science research. Using time-varying covariates
(TVC) allows to model the impact of changing covariates over time in survival
models. Many social science research fields use some version of these time-to-
event data analysis such as family formation, educational attainment, recidivism
or reemployment.
However, the concept of a time-varying covariate assumes that it does not change
between the observation times and is exogenous. Especially for frequently chang-
ing, self-reported and person-related variables as they are common in social sci-
ences these assumptions are questionable.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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Both problems, endogeneity and missing data between observation times, are
tackled by the statistical concept of joint models for longitudinal and time-to-
event data (Wulfsohn & Tsiatis, 1997).
Besides their frequent usage in the field of biostatistics, Cremers et al. (2021)
marked that joint models are underused in social sciences. In order to increase
the usage of these models and to highlight the advantages and possible applica-
tions a low-threshold introduction on how to use these models is needed. Since a
joint model represents a useful tool to analyse complex social phenomena data,
we illustrate the application of it in the field of social sciences. Therefore this
contribution aims to provide an understandable introduction on how to use joint
models.
We apply the model to marriage data in order to analyse the relationship of
the trajectory of marital satisfaction (longitudinal) and the timing of marriage
dissolution (survival). The example is executed using the Software R.

2 Joint models for longitudinal and time-to-event
data

Joint Models are a class of statistical models that combine a longitudinal outcome
and a time-to-event outcome. Hereby, the former TVC is modelled via a linear
mixed model (LMM), allowing for intra-individual variance along the time axis
(t) captured by random intercepts (b0i) and possibly random slopes (b1i) for
each individual i. Joint models consist of two submodels: By incorporating the
predictions of a longitudinal model in a survival model, the two models are linked
and estimation for both submodels is performed simultaneously. The model can
be written as

h(t|Mi(t),xi) = h0(t) exp[γ
Txi,surv + αmi(t)]

with mi(t) = βTxi,long + bTi zi. Besides the classical baseline covariates xi,surv,
the estimated value of the TVC mi(t) enters the model and is equipped by a
coefficient α which is called the association parameter. Including a covariate in
both submodels its direct and indirect effect on the time to event can be sepa-
rated. By estimating a unique β̂k coefficient as well as a γ̂k coefficient and the
association parameter α̂ we decompose the total effect via: α̂β̂k + γ̂k. Estimation
of the coefficients can be done using different estimation strategies, which are
presented and compared by Rappl et al. (2021).

3 Data set on marriage satisfaction and time to
marriage dissolution

In order to demonstrate the use of joint models in sociology, the relationship be-
tween satisfaction with the marriage and the time to marriage dissolution in first
marriages is investigated. To the best of our knowledge, no one used a joint model
for longitudinal and time-to-event analysis in order to exploit the whole richness
of data, i.e. the longitudinal character of the data as well as the information of
timing of an event for this use case. As a data base the German pairfam (”Panel
Analysis of Intimate Relationships and Family Dynamics”) data set (Huinik et
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al., 2011) is selected. All available waves (2008/09 – 2021/22) are used and the
final sample consists of N = 3, 559 first marriages with at least three time-points
during the study. A share of approx. 7% stated an end of the relationship during
the observation period (number of events). We did not take the actual month
of divorce as event time but the stated end of relationship. The endogeneity of

FIGURE 1. Estimated average trajectory of relationship satisfaction of persons
by event status and gender. Non-linear smoother by gender (dark: male, light:
female).

relationship satisfaction when analysing the time of marriage dissolution is ob-
vious, as relationship satisfaction is highly influenced by the occurrence of the
event. Figure 1 is an indicator for state dependence (Kalbfleisch and Prentice,
2002) of marital satisfaction. It shows the smoothed average trajectory of per-
sons still in the relationship (left) and persons that ended their relationship to
their married partner (right). Since these trajectories (both, for men and women)
differ considerably between the two groups, it is necessary to employ a modelling
technique that addresses the issue of endogeneity appropriately. Additionally, it
is reasonable to assume that satisfaction with the marriage does not only change
at the time points of the interview but throughout the whole observation period.
The longitudinal model on satisfaction with the marriage will be modelled by an
LMM including a random intercept and a random slope term for the duration
of marriage (t). The time-to event model on time to marriage dissolution will
be modelled jointly with the longitudinal model, taking the estimated values of
satisfaction as a main covariate for the hazard of dissolution. Specifically, the
time-to-event model is chosen to be a Cox-proportional-hazards model with a
spline baseline approximation.
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4 Results

With our separate joint models by gender using the JM package (Rizopoulos, 2010)
we find the expected negative current value association for marital satisfaction
and the risk of marriage dissolution (see Table 1). This effect is highly statistically
significant for women (α̂ = −0.55) and men (α̂ = −0.47).

FIGURE 2. Predicted survival probability for a fictional person varying only
the marital satisfaction trajectory. Covariate values: female, part-time working,
2 children, at least one preschool child, premarital cohabitation, median values
(for females) for the other covariates.

Individual and dynamic survival predictions such as the one in Figure 2 can be
made with joint models. The illustration shows the advantage of the modelling
approach compared to a classical TVC approach, as all satisfaction trajectories
have the same last value but still result in different predicted survival curves for
the individual due to the fitting procedure.
Using a TVC model, the effect of marital satisfaction on the risk of marriage
dissolution is highly underestimated (women: γ̂ = −0.31, men: γ̂ = −0.28) and
a direct effect of the amount of shared household work on the risk of marriage
dissolution would be assigned. Applying the joint model we are able to decompose
the effect of shared household work into an insignificant direct effect and a highly
significant indirect effect via marital satisfaction for women. The decomposition
for men results in both effects being significant, i.e. that higher share of household
work for men is associated with a higher risk of marriage dissolution through both
pathways – directly and indirectly via marital satisfaction. The models control
for the standard socio-economic variables, premarital cohabitation, children as
well as for gender-role attitudes.
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longitudinal submodel time-to-event submodel
(marital satisfaction) (risk of marriage dissolution)

variable estimate Std. Err. p-value estimate Std. Err. p-value

women household work -0.1369 0.0191 0.0000 0.1136 0.0794 0.1527
mar. satisfaction -0.5469 0.0552 0.0000

men household work -0.0603 0.0267 0.0237 0.2400 0.1312 0.0673
mar. satisfaction -0.4693 0.0696 0.0000

TABLE 1. Joint model estimation results for women and men. Only selected
coefficients presented.

This application highlights the advantage of using a joint model in terms of
additional knowledge production via decomposing the covariate effects.

5 Summary and conclusion

This work aimed to introduce the method of a joint model for longitudinal and
time-to-event data in the field of social science research. We demonstrated its
usage and usefulness using pairfam data on marriage dissolution and marital
satisfaction. The results indicate that higher amount of shared household work
in a marriage done by the respondent has no direct effect on the risk of marital
dissolution for women but yet a strong indirect effect via marital satisfaction.
There is a vast amount of extensions of the rather basic application regarding
e.g. the number of longitudinal outcomes, association structures, distributions of
the longitudinal outcome and estimation methods.
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Abstract: The field of conflict research has moved towards predicting and un-
derstanding conflict at subnational levels. However, studies still oversimplify the
complex spatio-temporal dynamics of conflict. To address this, this paper in-
troduces a statistical model that captures both the spatial as well as the tem-
poral dimension of conflict diffusion. Using fine-grained conflict data on Africa,
we demonstrate that our fully-interpretable diffusion model outperforms models
typically employed in the field.
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1 Introduction

Predicting conflict and understanding its determinants has been the key focus
of conflict research for decades (Hegre et al., 2017). In recent years the field
has moved towards analyzing conflict in more fine-grained subnational areas, as
novel conflict event databases have become available. Paired with the emergence
of new data sources such as social media and remote sensing data, numerous new
studies have been published that analyze and/or try to forecast conflict on a local
level (Bazzi et al., 2022). With this, more advanced statistical models as well as
machine learning techniques are finding their way into the forefront of the field
(Vesco et al., 2022).
However, many of the utilized models still oversimplify the complex dynamics
of conflict and do not adequately account for its dependence over both time
and space. As a result, predictive models suffer performance losses, while models
studying the determinants of conflict may over- or underestimate the impact of
the predictors of interest (Cook et al., 2023).
Many subnational studies are conducted across Africa utilizing 0.5× 0.5 decimal
degree monthly grid cell observations. But they do not (fully) account for the
diffusion of armed conflict across this lattice grid. Schutte and Weidmann (2011)
have shown that armed conflict indeed exhibits patterns of spatial and temporal

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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diffusion, i.e., future conflict is influenced by past conflict within a grid cell but
also by past conflict in its (further-away) neighbours. However, including these
patterns into classical regression models poses a challenge. Hence, most studies
simply treat ”this dependence [...] as a nuisance” (Schutte and Weidmann, 2011,
p.152).
In this work we propose a regression model that is able to flexibly incorporate
both the spatial as well as temporal dimension of conflict diffusion, while all of its
effects remain fully and easily interpretable. More specifically, we design a gener-
alized additive model with a flexible non-parametric spatio-temporal smoothing
component over past conflict, to predict monthly conflict fatalities across grid
cells. We show that our proposed model captures the complex dynamics of armed
conflict across this lattice grid much better than models typically employed in
the field.

2 Data

We draw on conflict data from the widely known UCDP GED (Sundberg and
Melander, 2013), which reports events of organized violence. Each reported event
is assigned an approximate date, location, type of violence and an estimated
number of fatalities. We match these events to the commonly employed PRIO
grid cells of size 0.5 × 0.5 decimal degrees (∼ 55 × 55km at the equator). To
assess our approach, we investigate Africa, where many research studies have
been conducted in. We analyze conflict on a monthly basis, as a more fine-grained
temporal resolution becomes problematic due to imprecision in reported event
dates.
We focus on the monthly amount of battle-related fatalities in each cell from
2000 to 2020. This implies we have a total of 10,640 grid cells and 252 months,
resulting in 2,681,280 observations. Note, that armed conflicts are in most parts of
the world, including Africa, extremely rare events. Only 0.42% of all observations
exhibit one or more conflict fatalities.
Population has been shown to be one of the key predictors of armed conflict
(Raleigh and Hegre, 2009). Thus, we also draw on population data from the
WorldPop project (Tatem, 2017). Using satellite imagery, census data and vari-
ous other geospatial datasets, it estimates yearly population numbers across the
world. We employ the 1km resolution dataset and derive the total amount of
population for each cell for each year.

3 Method

Let Yt,s denote the number of conflict fatalities occurring in month t in cell
location s. We define s = (r, c)T as a bivariate location vector, where r refers to
the row, and c to the column of the respective location in the grid. As the number
of fatalities are count data we assume that Yt,s ∼ Poisson(λt,s). We define the
intensity as

λt,s = exp(xT
t,sβx + g(s) + γ(Ht,s)), (1)

where xt,s is a feature vector of intercept, cell size and the time-varying lagged
population of each cell. The component g(s) represents a smooth location effect,
for which we use thin plate regression splines (Wood, 2003). We denote γ(Ht,s)
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as our smooth diffusion effect of conflict. We use the notation Ht,s to express
that we are utilizing the history and neighbouring history H of a cell location
s at time point t in our spline representation. We define γ(Ht,s) = b(Ht,s)

Tu,
which we model as follows. Let τ > 0 be the maximum time lag and δ ≥ 0 the
maximum distance considered. We define our basis as

b(Ht,s) =

t−1∑
t̃=t−τ

∑
s̃∈Nδ(s)

a(t̃, t)⊗ o(s̃, s) log(Yt̃,s̃ + 1) (2)

where ⊗ is the Kronecker product of all basis vectors in time (a) and space
(o). We define the neighborhood of a location as Nδ(s) = {s̃ : ||s̃− s|| ≤ δ}. In
practice, this means we sum up our time-space basis vector (that results from
the Kronecker product) over all past time points for which t − t̃ ≤ τ and all
neighbouring cells for which ||s̃− s|| ≤ δ.
The individual basis functions in both time and space are exponential decay
functions, with f(x) = exp(−w x), where w > 0 is a pre-defined decay rate and
x ≥ 0. We scale them, such that f(xmin) = 1 ∀ w and f(xmax) = 0 ∀ w, where
xmin and xmax are the minimum and maximum values allowed for x. We define
the decay rates as wk = {w1, ..., wK} in time and vg = {v1, ..., vG} in space.
Hence, b(Ht,s) ∈ R(KG)×1. To guarantee smoothness of γ(Ht,s), we employ a
ridge penalty, i.e. we estimate the penalized log likelihood

lpen(θ,u, ρ) = l(θ,u)− 1

2
ρ uTu, (3)

where ℓ is the log-likelihood, ρ the penalty and θ the remaining parameter vector.
Following a Bayesian view, we can incorporate the estimation of this penalty as a

random effect (Kauermann, 2005), i.e. we assume ui
i.i.d.∼ N(0, ρ−1). This allows

us to integrate the smoothing into mixed model estimation routines such as the
well-known R package mgcv (Wood, 2017).
For our use case, we use a set of ten basis functions each. We set τ = 24 to consider
the past 24 lags in time, and set δ = 10 to consider all neighbouring cells up to a
distance of roughly 550 km from the source cell (horizontally this includes cells up
to the 10th-order neighbour), based on upper bounds identified in the literature
(Zhukov, 2012; Mueller et al., 2022). This gives us in total a combination of
10 × 10 = 100 basis functions that differ across time and/or space. As highest
decay rate we choose w = 5, resulting in a basis function that only captures the
first temporal lag respectively the cell itself (i.e. no spatial lag). As lowest decay
rate we choose w = 0.05, resulting in a basis function which is (almost) linear.
The remaining w are chosen such that there is a constant multiplicative increase
in their rate. To be specific, we choose wk = vg = {0.05, 0.0834, 0.1391, ..., 5}. We
visualize the set of spatial basis functions f(s) in Figure 1.
We fit our model on data from 2000-2018 and evaluate out-of-sample performance
on all observations from 2019 to 2020. Out-of-sample evaluation is necessary, as
predicting conflict has been shown to be a particularly difficult task, due to the
large amount of noise and no-conflict observations (Racek et al., 2024). To allow
for a model comparison both in- as well as out-of-sample, rooted in statistical
theory (Dunn et al., 2018), and to understand how well the models are performing
relatively compared to a null (intercept-only) model, we compute the explained
deviance defined as

Explained Deviance = Dexpl. = 1− D

D0
= 1− −2ℓ(θ̂)

−2ℓ(θ̂0)
, (4)
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FIGURE 1. Spatial basis functions.

where D denotes the deviance of the respective model and the 0-subscript the
null model. We fit a separate null-model on our out-of-sample observations to
better understand generalization behaviour. Additionally, we also look at in-
sample performance by comparing our models using the AIC.

4 Results

Table 1 provides a summary of our main results. For simplicity, we will refer to
baseline models employed in the literature as M0, and to our proposed diffusion
model as M1. Baseline M0-1 replaces the diffusion term γ(Ht,s) by temporal lags
only (no smoothing), M0-2 extends this to also include the lags of first-order
neighbours. Our proposed model (M1) outperforms the baselines both in- as well
as out-of-sample (higher AIC, higher explained deviance). Particularly out-of-
sample its performance excels, with an increase in 3.4 percentage points (+11.3%)
in explained deviance. Hence, we can conclude that our proposed diffusion model
has the superior generalization behaviour, and better captures the underlying
patterns of conflict diffusion.

TABLE 1. Comparison of proposed diffusion model (M1) with baselines (M0).
Lags refers to the number of temporal lags included in the respective baseline.
Best performance metrics are denoted in bold.

Model AIC Dexpl. In-sample Dexpl. Out-of-sample

M0-1, 12 Lags 1614475 0.3397 0.2655
M0-1, 24 Lags 1611291 0.3411 0.2630
M0-2, 12 Lags 1580450 0.3540 0.2984
M0-2, 24 Lags 1573515 0.3569 0.2957

M1 1553154 0.3654 0.3322

In Figure 2 we visualize the diffusion coefficients of γ(Ht,s) for the first four
temporal lags t on a spatial grid map with rows (r) and columns (c). Hence, these
coefficients capture the effect of one-unit increases in past logged fatalities on λt,s.
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The visualized diffusion effects are symmetrical, i.e. we can understand them as
the increase conflict in cell (0, 0) has on all surrounding cells, and, as the effect
conflict in all surrounding cells has on cell (0, 0). For illustration, the coefficient
for the first temporal lag at (0, 0) is 0.5483, hence 1 logged fatality in the past
month within the same grid cell increases the predicted fatalities by 73.03%.
Overall, naturally, the effect is largest in the origin (temporal diffusion only)
and decreases as the spatial distance increases (spatio-temporal diffusion). This
pattern holds for all monthly lags. Surprisingly, we notice two ring patterns that
still require further investigation. More generally, we observe an exponentially
decreasing effect over both time and space and the desired smooth effect.

FIGURE 2. Diffusion coefficients on spatial grid map (log colour scale). r refers
to the row, c to the column in the spatial grid. t refers to the respective time lag.
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Abstract: Optimising Information Retrieval (IR) models is vital for improved
performance. While various strategies, including parameter estimation and tun-
ing, can contribute to these improvements, our focus lies in utilising a statistical
modelling approach, particularly through residual analysis. This paper inves-
tigates the application of the Logistic Regression approach within Generalised
Linear Models (GLMs) to enhance BM25 IR models. Notably, the utilisation of
residual analysis and GLMs for IR model enhancement remains largely unex-
plored in the domain of Information Retrieval research.
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1 Introduction

The function of an information retrieval (IR) system is to provide a set of can-
didate documents that are predicted to be relevant to a provided query. In this
process, retrieval systems use an embedded retrieval model to provide a score to
each document reflecting its relevance to the query, where the greater the score,
the more likely the document is relevant. For this purpose, search engines in IR
systems have been designed to produce a ranked list of documents in a decreasing
order of relevance score.

Assessing the retrieval effectiveness is the method of evaluating the performance
known as precision of a retrieval model and it is computed by means of an eval-
uation function that is available in IR. Prior to use these evaluation functions,
each document in the ranked list should be marked as relevant or not relevant
by means of a manual relevant judgement process . These relevant judgments are
readily available for standard document collections that are published by Text
Retrieval Conference (TREC) [Donna Harman (1993)] in which they use a binary
system as 1 for relevant and 0 for non-relevant document.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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For example, Figure 1(a) shows the IR process with basic components and a
ranked list which contains 6 documents (d1, d2, ..., d6) with scores 11, 9, 6, 5, 4
and 2 respectively. The documents in this list are ranked by score, and we can
see there that in position 2 (document d2), the ranked score (9) is higher than
the score 6 in position 3 (document d3), but the document d2 in position 2 is not
relevant (first block in Figure 1(b)). This means that ranking and relevance judg-
ments are not in order and we say that it is not a perfect ranking. The model’s
performance improves when a greater number of relevant documents appear at
the top of the ranked list.

Let us say we equate the score of d2 to d3. The error in this case is 3. Similarly, we
add 4 to d4, which result in an error of 4 for d4. After making these adjustments,
the ranked scores become 11, 9, 6+3, 5+4, 4, and 2. This is shown in the second
block in Figure 1(b).

Instead, we can subtract from the scores as 11, 9-4, 6, 5, 4, and 2 to obtain the
perfect ranking where the error in this case is 4. This is shown in the third block
in Figure 1(b).

If we are trying to minimise the change in a score, the second method is better.
The adjustments we have discussed here represent the residuals in the ranking of
IR for achieving the perfect ranking.

This study aims to improve precision in the retrieval model by prioritising rele-
vant documents at the top of the ranked list. We investigate integrating Logistic
Regression [Hosmer and Lemesshow, (2000)] within Generalised Linear Models
[Nelder and McCullagh, (1989)] with the IR retrieval model BM25 to create
a mixed model. This integrated model is utilised for generating and optimis-
ing residuals to enhance IR model performance. The performance of IR models,
measured by accuracy or precision, is evaluated using Mean Average Precision
(MAP).

FIGURE 1. High Level IR process with ranked list. Vertical bar in black separates
figures (a) and (b). In (a), a ranked list is shown with 6 documents (d1, d2, ..., d6)
with scores. There are 3 blocks (left to right) in (b) and each shows three columns
representing documents, scores and relevant judgment assigned to each document.
First block shows how relevant judgment (Rel. Judgement) is assigned initially to
each document. In the second and third blocks, proposed adjustments to scores
are shown in red to push the relevant documents to the top of the list.
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2 Residuals, BM25 and MAP

Similar to residual analysis in regression modeling, we introduce predicted and
observed scores in Information Retrieval (IR). Optimising the difference between
these scores, termed residuals, improves model performance. While achieving a
perfect ranking is impossible, our goal is to elevate and identify the position of
most relevant documents in the ranked list.
The formula of the BM25 model is given below [Spärk Jones et al., (2000)]:

R(d,Q; k1, b) =
∑
t∈Q

 ft,d(k1 + 1)

ft,d + k1
(
1− b+ b ld

lavg

)
 log

(
N − dft + 0.5

dft + 0.5

)

where d is the document, Q is the set of query terms, ft,d is the count of term t in
document d, ld is the length (number of terms) in document d, lavg is the average
document length for the document collection, k1 and b are model parameters, N
is the number of documents in the collection, and dft is the number of documents
that contain term t in the collection.

If the set of relevant documents for a query qj ∈ Q is {d1,..dmj}, and rjk is
the set of ranked retrieval results from the top of the ranked list until we get to
document dk, then the Mean Average Precision (MAP)[Manning et al., (2008)]
is given as:

MAP (Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

Precision(rjk)

In this equation, Precision signifies the proportion of retrieved documents that
are relevant, while MAP ranges between 0 and 1, with higher scores indicating
increased model accuracy.

3 Methodology and results

3.1 Mapping IR residuals to logistic regression

To formalise our problem and define residuals in IR models, let’s introduce the
information available to us from a dataset using the following notation:

1. Q is the q×t matrix of query vectors, where Q represents a set of queries in
which q is a query and t is a term. Please note that “×” is the multiplication
symbol.

2. d is a document vector.

3. r is a vector of relevance judgement for document d across all queries in
Q, where r is binary (0,1).

Our goal is to model r = f(d,Q). We want to discover the function f , ideally,
r=Q×d. This is possible if the function (f) is linear, but it is not since r contains
0 (irrelevant) and 1 (relevant), and Q×d is real due to the discrete nature of
relevance variable r. To address this problem, let us define a new vector p as
the probability of relevance for document d over all queries in Q (p is like r but
contains probabilities). We can write the generalise equation:

logit(p) = log(p/(1− p)) = Q× d
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This has transformed into a logistic regression problem. We aim to maximise
the likelihood of p (to be the same as r) by setting the document weights d. The
problem of the logit equation is that the document weight d may overfit the given
query and not generalise to new queries. We address this problem by adding a
bias term to the logit equation shown above so that it becomes generalise to any
query. Thus, we rewrite our logit equation as:

logit(p) = log(p/(1− p)) = Q× (dBM25 + e)

where dBM25 are the document weights computed using BM25 and e is residuals.
We simplify it further and get:

logit(p) = Q× dBM25 +Q× e = o+Q× e

where o = Q × dBM25 is the score. Using this formula, we can fit e that will
generalise to new queries. Also, we could use regularisation, so the optimisation
becomes:

maximise ℓ(d)− α× ||dBM25 + e||
where ℓ(d) is the likelihood function of the logistic regression and α will control
how good the fit is. Instead of maximising, we minimise the negative of Log
Likelihood. Therefore, instead of ℓ(d), we introduce ℓℓ(d) which represents the
Log Likelihood. So, our loss function becomes:

minimise − ℓℓ(d) + α× ||dBM25 + e||
While estimating parameters, our models may overfit due to high variance in
some data, leading to an increase in sample error. Regularised regression, also
known as penalised models, is introduced to mitigate this overfitting.
So, the regularisation penalises high coefficients by adding the regularisation term
G(β) multiplied by the parameter λ(∈ R) to the objective function. We write the
negative Log Likelihood function (-ℓℓ), with the regularisation term (with control
parameter λ) and relevant judgments (rj), and the score sj , for a given query j,
as follows:

β̂ = min
β

−ℓℓ(β; rj , sj) + λG(β)

The λ parameter controls how much emphasis is given to the penalty term.
Initially, note that sj is Qj×(dBM25), and it is then updated with adjusted
score represented by Qj×(dBM25+ej). The residual for query j, ej is computed
by means of the binomial model of GLM. Now, we need to execute this integrated
function for each query against all the documents in our dataset, as describe next.

3.2 Implementation and results

To implement our integrated function for optimisation, we use glmnet package in
R on our data source known as “Cranfield dataset”. This data set contains 1398
documents with 4499 terms, 225 queries and the corresponding TREC relevance
judgments. Unlike in other large TREC collections [(Donna Harman (1993)], in
this data set, an exhaustive relevance judgments of all (query, document) pairs
have been conducted. From this collection, we have selected documents that have
more than one relevance judgement for each query because GLM application fails
to respond for documents that have one or zero relevant judgments. After exclud-
ing documents with one or zero relevant judgments for queries, our document set
has been reduced to 474. Additionally, we have limited our experiments to the
top 100 queries. So, in the end, our filtered data set contains 474 documents,
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FIGURE 2. MAP with Lambda values (left) and MAP with Square of Residuals
(right). Both used ridge model.

4370 terms and 97 queries.

We conducted preliminary experiments to determine a suitable range of λ values,
settling on 25 values ranging from 1 to 0.0001. In this paper, we present a segment
of our experiments, focusing on the results obtained for 25 λ values in the Ridge
Penalty model. We computed Mean Average Precision (MAP) for each λ, and for
residual sum of squares (RSS), and the results are shown in Figure 2. As expected,
for this specific dataset, MAP values approach 1 as λ decreases, reflecting the
reduced penalisation of residuals (see left graph). This suggests that a significant
number of relevant documents are consistently placed at the top of the ranked
list. Similarly, the graph in the right shows that MAP is approaching to 1 and
saturating with the increase of RSS. Additional analysis is currently ongoing.

4 Conclusion

In this study, we explored the application of residuals in Information Retrieval
through logistic regression and investigated the optimisation of IR models using
Generalized Linear Models. This is a largely unexplored area in the domain of IR
research. In this work, the BM25 model exhibited increased precision, particularly
for lower λ values. Our approach suggests a potential framework for evaluating
the precision of IR models via residuals, which may be validated and explored
further in future studies. The experiment and results are ongoing research, and
further analysis and modelling, are planned for potential enhancements.
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Abstract: In this abstract, we focus on illustrating the method which enables
us to estimate the length of stay, along with the number of entries and exits
observing only the occupancy and covariates. The application of this method is
particularly beneficial in data situations where we face missing response data.
Though this method can be used in a plethora of situations, we will showcase
two data sets in the conference poster. These are; first the number of incoming
and outgoing COVID-19 patients in the ICU, and second the number of bikes
rented and returned at bike stations in Vienna. For the purpose of this abstract,
we will present the method and its application to simulated data only.

Keywords: Stochastic EM algorithm; Skellam distribution; Imputation.

1 Method

We start with the definition outlined in Equation 1.

∆(i) ≡ O(i) −O(i−1) = I(i) −R(i) (1)

Here, ∆(i), is defined to be the difference in the observed occupancy, O(i), at
a given observation and the observed occupancy, O(i−1), immediately preceding
(i). This is equal to the number of entries during this period, I(i), minus the
number of exits during this period, R(i). Both I(i) and R(i) are unobserved. Since
the number of entries and exits are counting processes, it is reasonable to assume
that they are Poisson distributed. The difference between two Poisson-distributed
random variables follows a Skellam distribution, Skellam (1948).

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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I(i) ∼ Poisson(λI(i))

R(i) ∼ Poisson(λR(i))

∆(i) ≡ I(i) −R(i) ∼ Skellam(λI(i), λ
R
(i)), (2)

where λI(i) and λ
R
(i) are both the intensity parameters of the given Poisson distri-

butions but also the parameters of the Skellam distribution.
We can use the stochastic-expectation-maximization (stEM) to iteratively simu-
late from a Skellam distribution to obtain the number of entries and exits, use
this to estimate the intensity parameters, using two GAMs, which are then used
in the Skellam distribution in the simulation step, until convergence is reached.
Here, the exit rates were taken to be fixed and explained in detail in our first
paper, Rave et al. (2023).
The extension to the initial approach allows us to estimate the exit rates, as
well as the entries and exits, where the intensity parameters for the entries are
estimated using a generalized additive model. The functions for the intensity
parameters are shown in Equation 3.

λI(i) =exp
(
ηI(i)

)
,

λR(i) =exp
(
ηR(i)

)( τ∑
j=1

ωj Î(i−j)

)
, (3)

with ηI(i) and ηR(i) being the linear combinations of the covariates. ωj refers to

the exit rate at the jth lag. The jth lag is the jth time unit prior to the time of
observation, with maximum lag being τ , and the minimum lag being 1.
The intensity parameters for the exits, λR(i), are now estimated using a seesaw
algorithm as they are subject to constraints. The convergence of the methodology
is elaborated on by Spall (2012). Namely, the constraints are that the exit rates,
{ω1, . . . , ωτ}, must sum up to 1 and each must be larger or equal to 0. To achieve
this, we use an approximation to the log-likelihood given by Equation 4, shown
by, Lindstrom et al. (1990).

lRP (ω) ≈ lRP

(
ω̂(q)

)
+ sT

(
ω̂(q)

)(
ω − ω̂(q)

)
− 1

2

(
ω − ω̂(q)

)T
J
(
ω̂(q)

)(
ω − ω̂(q)

)
≈ [sT

(
ω̂(q)

)
+
(
ω̂(q)

)T
J
(
ω̂(q)

)
]ω − 1

2

(
ωTJ

(
ω̂(q)

)
ω
)
+K, (4)

where s(ω) and J(ω) are the score function, shown in Equation 6, and infor-
mation matrix, shown in Equation 7, respectively. Both are derived from the
log-likelihood function shown in Equation 5 and ω̂(q) are the estimated exit rates
at the qth iteration of the seesaw algorithm.

lRP (ω) =

N∑
i=1

R(i)log(
τ∑
j=1

ωj Î(i−j,d))− exp(βR0 )
τ∑
j=1

ωj Î(i−j,d). (5)

s(ωi) =
∂lRP (ω)

∂ωs
=

N∑
i=1

R(i)

( Î(i−s) − Î(i−τ)∑τ
j=1 ωj Î(i−j)

)
− exp(βR0 )(Î(i−s) − Î(i−τ)). (6)

J[s,k](ω) = −∂l
R
P (ω)2

∂ωs∂ωk
=

N∑
i=1

R(i)

(Î(i−s) − Î(i−τ))(Î(i−k) − Î(i−τ))

(
∑τ
j=1 ωj Î(i−j))

2
, (7)
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with [s, k] being the sth row entry and kth column entry of the information matrix.

2 Simulation study

Simulated Data We simulate ten simple data sets in which the entries are
generated from a Poisson distribution with intensity parameter, λsimI = 10, as
shown in Equation 8.

Isim(i,j) ∼ Pois(λsimI ),

∀i ∈ {1, . . . , 300} and j ∈ {1, . . . , 200}. (8)

Equation 9 shows how the number of exits are generated. The exit rates, P (lag =
t) = ωt are randomly chosen to be (ω1 = 0.5, ω2 = 0.2, ω3 = 0.2, ω4 = 0.1), thus
50% of entries exit after one unit of time following the date of observation, 20%
of entries exist two units of time following the day of entry, and so forth. The
maximum lag, Tmax = 4, is also randomly chosen. From this probability mass
function, we simulate the length of stay for each entry; (1, . . . , I(i,j)).

Isim(i,j)(lag = t) =

Isim(i,j)∑
l=1

I(l = t),

Rsim(i,j) =

Tmax∑
z=1

Isim(i,j)(lag = z), (9)

with I(l = t) being an indicator function, which takes the value of 1, if the
simulated length of stay, l, is equal to the tth lag, at time point, i, for a given
group, j, and 0 otherwise.

Results The results of the very simplified version of these applications are illus-
trated for one of the simulated data sets. We observe that indeed the simulated
data are estimated by the method reasonably well, as seen in Figure 1. Further
results are going to be presented in the final poster.

FIGURE 1. Simulated vs estimated entries and exits.
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Abstract: Multi-omics datasets pose significant challenges due to their struc-
tured nature, where highly correlated variables are grouped within a complex,
high-dimensional framework. Traditional Lasso methods encounter limitations in
handling correlated features within these groups effectively. To address this issue,
we propose using Exclusive Lasso, focusing on inducing sparsity at the intra-group
level. Additionally, we introduce an efficient algorithm for solving the related op-
timization problem. By prioritizing feature selection robustness within correlated
group structures, our proposed methodology offers a promising solution to the
challenges inherent in analyzing biological datasets. This advancement enhances
our ability to extract meaningful insights from multi-omics data, thus facilitating
deeper understanding and exploration of complex biological systems.
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Abstract: A popular and successful method of obtaining regression models us-
ing decision tree learners is XGBoost. However, the method implicitly assumes
conditional independence of the predictions given the data and is not statistically
efficient for autocorrelated data, as arises in spatial statistics. GPBoost incorpo-
rates a Gaussian process in a mixed effects model, and is demonstrated for our
remote sensing model to reduce the generalisation error dramatically.
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Abstract: The usual equation employed to estimate a person’s blood alcohol
concentration after consuming alcoholic drinks assumes zero-order kinetics in
the ethanol elimination phase. This implies that the elimination process occurs
in the body at a uniform rate as a function of the ethyl-oxidation constant.
The model, formulated by Widmark, does not consider the phase of increase in
concentration, and approximates the phase of elimination in a linear way, which
may be insufficient if the tests are carried out in the first phases of alcohol intake.
A new model addressing alcohol absorbtion and elimination phases in the human
body is proposed, which has several advantages over other models existing in
literature. Optimal designs are computed for different types of drinking subjects.
Furthermore, the case of several alcohol incorporations, not very much treated
in literature, is analyzed and a convenient model is proposed as well. Finally, aA
proposal for constructing design that are quasi-optimal with little computational
effort is presented, which could be used to create tables of optimal designs from
a very easy way.

Keywords: Absorbtion phase; Alcohol model; Elimination phase; Optimal de-
signs; Widmark equation.

1 Introduction

Alcohol is probably the most extended legal drug. In the human body, most of
the ingested alcohol (90-98%) is processed in the liver, with the remaining 2-10%
eliminated unchanged by breath, perspiration, and urine.
There are several equations that can be used to model the pharmacokinetics of
ethanol and thus the Blood Alcohol Concentration (BAC) in the body, but it
has traditionally been modelled making use of the Widmark equation, which was

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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first developed in the 1930s (Watson, 1981). In these equation, it is assumed that
the BAC decreases at a constant rate per a unit time, i.e. zero-order elimination
rate. Although BAC is the most reliable indicator of alcoholic drunkenness, police
frequently use a Breath Alcohol Concentrarion (BrAC) estimate obtained with a
breathalyzer, which is a less intrusive and more practical tool and, therefore, the
Widmark equation has been adapted for these type of tests. In order to match the
estimates of blood and breath concentration temporal patterns, a blood/breath
alcohol ratio of 2,300:1 is commonly advised.
Since the main metabolizing enzyme is saturated at low blood alcohol concentra-
tions, ethanol is a good example of a drug that usually displays dose-dependent or
saturation kinetics and, for questions arising in forensic science and legal medicine
(BAC of 50-500 mg), zero-order kinetics is a reasonable assumption for charac-
terizing blood ethanol elimination. However, below a BAC of 5–10 mg% the
metabolizing enzymes are no longer saturated with substrate and first-order ki-
netics apply (Jones, 2019). The linear model relates to the one-compartment
model with zero-order elimination kinetic, leaving the absorption kinetics out of
the study. Thus, the traditional linear model may be ineffective at forecasting
BAC at various time points, as well as estimating the time when the maximum
is reached.
The Widmark model is the most used in forensic medicine and by traffic officers,
due to its simplicity and because it adjusts quite well the alcohol elimination
phase. However, in some situations the interest is not in estimating the level of
alcohol at the present time, but in past temporal points (e.g. forensic science try-
ing to estimate the level of alcohol of the driver at the exact time of a car accident
that happened some time ago: minutes, hours...). In this scenario, it would not
be reasonable to estimate the level of alcohol in the past by the decreasing linear
trend. The linear regression model works well in a local environment of the lab
test, but it does not when going backwards. As can be seen in the Figure 1, the
green point would represent the real alcohol concentration and the red point the
estimate made with the Widmark line. A non-linear trend model is needed, more
specifically, a hill-shaped function that could describe not only the clearance but
also the absorption phase of alcohol intake.

FIGURE 1. Widmark line versus blood alcohol concentration
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Regardless of the model used, usually the aim is to obtain good estimation of
the parameters, and for this reason it is important to take observations at the
moments that give more information, that is to use Optimal Design of Experi-
ments methodology. An experiment with a good design and a proper model not
only yields more information than an experiment with a worse design, but it also
makes it possible to provide the best conditions for the experiment. D-optimality
is the most used criterion to measure the goodness of a design, providing the time
points {t1, t2, ...} at which to take samples in order to get the best estimators of
the parameters of model, that is, the estimators with minimum variance. Nonlin-
ear models arise in scientific experiments in a variety of areas, such as pharmacol-
ogy, biology and agriculture. Determination of optimal designs for these models
is more tricky and it usually involves linearization.
As an alternative to different hill-shaped models found in literature, the simplified-
Gamma model is presented Mariñas-Collado et al (2023), which can capture all
the different phases of the BAC while remaining user-friendly. It can be expressed
as:

CSG(t) = stae−bt, (1)

with a, b > 0. This model has always a hill shape, and the maximum value
is attained at t∗ = a/b. The simplified model, just like the Gamma function,
enables the fitting of a wide range of hill-shape models. However, since the most
important fact is indeed this hilly shape, there is no need for the density-function
constraints; these can be removed to obtain a model that is easier to handle and
work with.

2 Optimal and quasi-optimal designs for
single/several alcohol intakes

Most of existing works in literature assume a single and instantaneous alcohol
intake, both of the assumptions not very realistic actually. However, sometimes
they may approximate the real situation. Mariñas-Collado et al (2023) use the
simplified-Gamma model to study the best designs were observations should be
taken in order to get a better estimation of the model, for different subject char-
acteristics (gender, body weight, quantity of alcohol ingested), proposing as well
equally-spaced designs with several points. This approach is quite popular among
practitioners, that usually prefer to take observations ’filling’ the design space in-
stead of taking the (usually few) samples asked by the optimal design.
However, in some situations the single intake is no longer valid, and models with
several intakes should be considered. When assuming a second intake at time m,
the intuitive approach is to fit a piecewise-defined model:

CSG2∗(t) =

{
stae−bt, t ≤ m,

s
(
tae−bt + (t−m)ae−b(t−m)

)
, t > m.

However, the main problems of this model are that it is not differentiable at m,
and has abrupt intake effects. An approximate model that avoids the first problem
and soften the second one will be proposed, and optimal designs will be computed
for different values ofm. Moreover, quasi-optimal designs will be proposed. To get
these designs for a specific set of subject characteristics (gender, body weight,...)
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and quantity of alcohol consumed, optimal designs should be computed just for
the two extreme values of m, and they can be used to get high-efficient designs
for the rest of the values of the second alcohol incorporation.
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Abstract: A quantitative Adverse Outcome Pathway (AOP) is a chemical ag-
nostic model predicting an adverse outcome given molecular initiating event.
A calibrated qAOP can be used to derive a point of departure when assessing
the health effects of chemicals under next generation risk assessment. We pro-
pose a way to test if a calibrated quantitative AOP is chemical agnostic, which
consider the trade-off between between chemical heterogeneity and predictive
performance. To do this, we formulate a statistical model for in vitro and in
vivo dose-response data on multiple key events in an AOP collected from several
chemicals. The performance of calibration and the proposed test is evaluated by
a simulation experiment.
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1 Introduction

1.1 qAOPs

Next Generation Risk Assessment relies on new approach methodologies involving
non-human non-animal data. An adverse outcome pathway (AOP) is according
to Villeneuve et al. (2014), a conceptual framework that organizes existing knowl-
edge concerning biologically plausible, and empirically supported, links between
molecular-level perturbation of a biological system (key events, KEs) and an ad-
verse outcome (AO) at a level of biological organization of regulatory relevance
(Figure 1).
An AOP is supposed to be chemical agnostic, i.e. given a level of the MIE, it
should not matter which chemical that is triggering the MIE.

1.2 Hazard Assessment

A quantitative AOP is a model that predict the AO given available information of
events in the AOP, at least the Molecular Initiating Event (MIE). The probability

This paper was presented at the 38th International Workshop on Statistical
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MIE KE1 KE2 AO

KER1 KER2 KER3

FIGURE 1. An AOP contains relationships between them (KERs), leading from
a molecular initiating event (MIE) triggered by a stressor to an adverse health
effect on the organism or population level (AO).

Pr(AO—MIE) can be understood as how certain we are that the AO will occur
given the MIE (Perkins et al. 2019). It has been suggested to use a calibrated
quantitative AOP together with a chemical specific dose-response model, as a
new method to derive a Point of Departure (PoD) in Human Health Hazard
Assessment (Conolly et al. 2017). The qAOP is calibrated for in vitro data or
for non-human data, and therefore, the reference point for the PoD, might have
to be informed by a extrapolation from in vitro to in vivo (qINVIVE), or the
internal in vitro exposure is linked to external exposure by a Physiologically
based pharmacokinetic modelling (PBPK) modelling.

qINV IV E︷ ︸︸ ︷
P (AOin vivo|AOin vitro) ·

qAOP︷ ︸︸ ︷
P (AOin vitro|MIE)︸ ︷︷ ︸

chemical agnostic

·

dose−response︷ ︸︸ ︷
P (MIE|dint expo) ·

PBPK︷ ︸︸ ︷
P (dint expo|dext expo)︸ ︷︷ ︸

chemical specific

1.3 Data to calibrate a qAOP

Quantitative AOPs are statistical models of the KERs calibrated by dose-response
data (Figure 2). The data for each KERs consists of in vitro or in vivo dose-
response data for different chemicals.

MIEt KE1,t KE2,t AOt

doset

FIGURE 2. In vitro or in vivo studies generate dose-response data measured
over time that can be used to calibrate a qAOP.

2 Aim

The aim is to
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1. formulate a statistical model for calibration of qAOP based on dose-response
data from multiple chemicals, and

2. propose a performance measure based on between chemical heterogeneity
to test if the calibrated qAOP is chemical agnostic

3 Method

3.1 Dose-response model

The functional form of the dose-response relationship for a response measured as
a proportion and thereby bounded in the unit interval was chosen to be:

H(t) = ν + (1− ν)
tβ

αβ + tβ

where 0 < ν < 1, α > 0, β > 0.
In our example, we consider in vitro data on the Key Event for chemical k
as provided for doses at different levels i, di,k, and the corresponding response
measured as the proportion of events xi,k with a standard error sei,k).
The statistical model proposed for a dose-relationship for chemical k is:

xi,k ∼ N(zi,k, sei,k)

zi,k = νk + (1− νk)
d
βk
i,k

α
βk
k + d

βk
i,k

The background response is assumed to be zero νk = 0. We use suitable priors
for the chemical specific parameters αk and βk for all k that ensure increasing
dose-response relationships within reasonable limits.

3.2 Response-response model

The functional form of the response-response model is specified by a modifica-
tion of the distribution function of the new power function distribution (NPFD)
defined by Iqbal et al. (2021)

G(t) = 1−
(

1− t

(δ − 1)t+ 1

)η
where 0 < t < 1, η > 0 and δ > 0.
Here, in vivo data on the Adverse Outcome is assumed to consist of doses at
different levels i for chemical k, di,k and the corresponding response measured as
the number of tumours yi,k and total number of individuals (often rats) ni,k).
The statistical model proposed for the response-response-relationship for is:

yi,k ∼ Bin(ni,k, πi,k)

πi,k = G(zi,k)

log(δk) ∼ N(µδ, σδ)

log(ηk) ∼ N(µη, ση)

Suitable priors for the parameters µδ, σδ, µη, ση are chosen to ensure conver-
gence when combining dose-response and response-response models for a set of
chemicals k = 1, . . . ,K.
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3.3 Performance measure

The performance of a calibrated qAOP is evaluated with respect to predictive
performance for all chemicals (jointly and separately), and the chemical hetero-
geneity in the model for the KER based on the parameters σδ and ση. The qAOP
is chemical agnostic if σδ and ση are small. We test if a qAOP is chemical agnos-
tic by evaluating the trade-off in predictive performance for a response-response
model with no chemical specific parameters.

3.4 Simulation study

We use a simulation study to

1. demonstrate how well the calibrated model is able to estimate the true
KERs, and

2. how well the proposed test can discriminate between qAOPs that are more
or less chemical agnostic
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Abstract: Typical models used for the analysis of the concentration of the active
pharmaceutical ingredient include fixed run effects model and random run effects
model, while both models assume homogenous random location and residual
effects. In this article we choose random run effects model, as it has more benefits
than fixed run effects model. Location and residual errors however do not have to
be necessarily i.i.d., which further requires population effect and random effect
parametrization. For parameter estimation Bayesian methods were used, using
brms package. Assuming hierarchical random effects model we provide results for
population residual and location-to-location variability among batches.
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1 Introduction

The uniformity of dosage units of oral solid dosage (i.e. tablets) refers to the
degree of variability of the content of the active pharmaceutical ingredient (API)
in the tablet. It is the critical quality attribute, as the amount of the API needs
to be tightly controlled in order to deliver to patient the required dose. Both un-
derdosing and overdosing can have severe implications for the patient. Further,
stratified content uniformity is often assessed during the process development for
a deeper understanding of the variability within the batch, separating location-to-
location variability and residual variability. The residual variability, i.e. variance
among tablets manufactured at nearly same timepoint, originates from micromix-
ing. This phenomenon refers to local variability within the blend, resulting in a
certain degree of variability in the content uniformity of the tablet cores sampled
at single sampling times. Variability between locations is rarely interesting in
batch processes, where lot of premixing is done at various stages, but becomes
a factor for continuous manufacturing (CM). CM of oral solid dosage continues
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to demonstrate has advantages in pharmaceutical manufacturing. In contrast to
traditional batch processes, CM provides reduced footprint, easier scale-up of pro-
duction and much faster product delivery and reaction to the market. The fast
production processes were enabled by the introduction of reliable fast measuring
techniques that allow real time assessment of the product quality during produc-
tion. The waiting time for the lab analysis has been main drawback of traditional
reference methods. Besides increased speed, process analytical technology (PAT),
often based on near-infrared spectroscopy (NIR), is much faster and cheaper to
implement individual measurements, resulting into considerably larger sample
size obtainable from the batch which further improves product quality evalua-
tion. The regular sampling is important part of CM, as variability on the feeders of
various components of tablets together with absence of extensive premixing may
lead to large variation in time, i.e. among the sampling locations. Additionally,
correct assessment of the within-location variability is also important, especially
during early development, from the perspective of early product quality evalua-
tion and determination of expected errors around the residence time distribution
(RTD). RTD estimates the average blend properties based on feeder performance,
but cannot reflect directly the variability at the tablets level, so it is important
to take residual error into account when establishing control limits. An assump-
tion of common variance among batches for both within- and between-locations
often holds during the late stages of development (such as process validation),
where the process is tightly controlled and few batches are explored. However,
such an assumption may not be valid during early development evaluation, when
process parameters settings and material properties may vary among batches,
having possibly considerable impact on the blending performance both in long-
term as well as directly impacting micro-mixing. In such cases, heteroscedasticity
should be considered, e.g. with separate residual error per batch and possibly as
well separate variance of between-location means. However, the actual value of
variance for a given batch would rarely be of interest. Instead, we would like to
know what we can say about the population of batches regarding their residual
and location-to-location variability.

2 Methods

2.1 Data description

For confidentiality reasons we provide only simulated data based on the real-life
values. The data consist of 600 observations of concentration of API, generated in
3 samples. In each sample, we measure the concentration in 10 runs and within
each run in 20 locations. The simulated data are plotted in Figure 1. We can
see, that for each of the 10 runs we have concentrations among 20 locations and
3 values of the outcome for each location. The data show different variability
within location and even between locations. We thus incorporate random effects
in variance of residuals and location effects in statistical models in the next section
to capture this phenomenon. Based on Figure 2 we can assume homogeneity of
variance within runs.



Sakmárová et al. 287

R9 R10

R5 R6 R7 R8

R1 R2 R3 R4

5 10 15 20 5 10 15 20

5 10 15 20 5 10 15 20

95.0

97.5

100.0

102.5

95.0

97.5

100.0

102.5

95.0

97.5

100.0

102.5

Location

C
on
ce
nt
ra
tio
n

FIGURE 1. Artificial data resembling real CM line data.
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FIGURE 2. Within-run variability displayed.

2.2 Model structure

The simplest model used to analyze the concentration of API (Yijk, where i =
1, . . . , 10 represents the index of run, j = 1, . . . , 20 is the location index and
k = 1, 2, 3 is the sample index) is the fixed run effects (Ri) model with normally
distributed random effect of location (lij) and normally distributed random errors
(εijk):

Yijk = Ri + lij + ϵijk, lij ∼ N(0, σ2
loc), ϵijk ∼ N(0, σ2

res). (1)

To acknowledge the fact, that the effect of the run is allowed to vary across all
its levels, we need to include variability among runs as well. This leads us to use
of random run effects (ri) model:
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Yijk = µ+ ri + lij + ϵijk, ri ∼ N(0, σ2
run), (2)

where µ represents global process mean and distribution of location effects and
random errors remains the same as in the first model. However, location effects
and residuals are not necessarily i.i.d. We thus take into account the two following
scenarios:

1. different variances among residuals w.r.t. to the run,

2. different variances among residuals and locations w.r.t. to the run.

The first scenario leads to use of random effect of the run on residuals in the
model (2). We use logarithmic transformation of standard deviations to re-scale
the values on the interval (−∞,∞):

ϵijk ∼ N(0, σ2
res,i), log

√
σ2
res,i = αres + si, si ∼ N(0, σ2

runSD). (3)

In the second scenario we simply analogically add random effect of the run on
location to the model (3). This time we don’t use the logarithmic transformation
to preserve the simplicity of implementation of the model in the brms package.

lij ∼ N(0, σ2
loc,i), σloc,i = αloc + ti, ti ∼ N(0, σ2

runLocSD). (4)

We use Bayesian statistics to estimate the parameters and implement the mod-
els (3) and (4) using brms package created by Bürkner (2017,2018) in R by R
Development Core Team (2023). All results in the next section were verified by
direct implementation in Stan by Stan Development Team (2024). Application
of random variance models is pretty straightforward and have been already used
e.g. by Wright and Simon (2003) or Williams, Rodriguez and Bürkner (2021).

3 Results

Estimated parameters from model (3) can be found in Table 1 and from model (4)
in Table 2. All estimates were calculated as posterior means from 3 chains with
4 000 iterations that followed 1 000 burn-in iterations. Differences between es-

TABLE 1. Model (3) with random residual error across batches.

Parameter Interpretation Estimate 95% Cred. Int.

µ Global process mean 99.58 (98.87, 100.32)
σrun Run SD 1.11 (0.68, 1.88)
σloc Location SD 0.32 (0.08, 0.50)
αres Log Average/Population 0.08 (−0.05, 0.21)

Residual SD
exp(αres) Average/Population 1.09 (0.96, 1.24)

Residual SD
σrunSD Run SD 0.16 (0.06, 0.31)

on Log Residual SD
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timates of common parameters of the models (3) and (4) are negligible. Inter-
est arouses narrower credible interval for the population location s.d. (αloc) in
comparison to the location s.d. σloc from model (3) (Table 1). This result to-
gether with rather narrow credible interval for run s.d. on population location
s.d. (σrunLocSD) indicates advisable use of random effects on location effects as
well as on residuals. This is confirmed by relatively high σrunLocSD in comparison
to σloc.

TABLE 2. Model (4) with random residual and location error across batches.

Parameter Interpretation Estimate 95% Cred. Int.

µ Global process mean 99.59 (98.88, 100.30)
σrun Run SD 1.10 (0.67, 1.85)
αloc Average/Population 0.41 (0.28, 0.55)

Location SD
σrunLocSD Run SD 0.29 (0.17, 0.44)

on Population Location SD
αres Log Average/Population 0.07 (−0.04, 0.18)

Residual SD
exp(αres) Average/Population 1.07 (0.96, 1.19)

Residual SD
σrunSD Run SD 0.12 (0.02, 0.27)

on Log Residual SD

4 Discussion

Use and interpretation of random effects on variance are uncomplicated. Both
of considered variations can indeed be very different in a developmental run and
averaging them into a single value (as it is the case when homoscedasticity is
assumed) could lead to overoptimistic assessment of the process performance.
Attention should be given to heteroscedasticity within the random effects and
not only to heteroscedasticity in the residual errors as it is often the case. Resid-
ual error variation represents different degrees of micromixing whereas location
s.d. variation introduces different stability of the run. Finally, representation of
the random effect variability via log transformation adds efficiency into the esti-
mation, but requires more complex implementation within the existing software.

Acknowledgments: Special Thanks belongs to Martin Modrák , Department
of Bioinformatics, 2nd Faculty of Medicine, Charles University, Prague, Czech
Republic for providing technical details and backround on brms and Stan inter-
face.
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Abstract: Frailty is a syndrome of reduced physiological and cognitive reserve
resulting in vulnerability to physiological insult and delayed recovery. It is a recog-
nised predictor of poor perioperative outcomes. The Rockwood clinical frailty
score (CFS) is a validated frailty screening tool based on the appearance of the
patient in clinics. A study sponsored by South Tees Hospitals NHS Foundation
Trust investigated whether patients may be able to self-assess their frailty uti-
lizing a modified Rockwood CFS, by benchmarking the self-assessed scores with
a clinician- and a researcher-assessed CFS score. A linear mixed-effects model,
involving covariates such as age and ASA scores, was used to compare the CFS
frailty scores and to identify any differences in their agreement. Linear mixed-
effect model trees were also used for a better understanding of interactions of
covariates and scorer effects.

Keywords: Frailty; Peri-operative care; Clinical frailty scale; Cohen’s kappa
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1 Introduction

Frailty is a recognised predictor of poor perioperative outcomes (Lin et al., 2016).
Preoperative assessment of frailty is key to allow planning of perioperative care,

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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and discussions with patients to manage risk, expectations, and facilitate shared
decision-making and informed consent.
The Rockwood clinical frailty score (CFS) is a validated scoring system-based
global clinical impression of frailty based on the appearance of the patient in
clinic. It is in routine use in patients over 64 in the perioperative and wider
clinical settings. The CFS groups patients into 9 classes ranging from very fit
to severe frailty, each allocated a numerical value of 1-9, increasing with rising
frailty (Rockwood et al., 2005). Typically, a person allocated a score of 1-3 is
labelled as ‘non-frail’. A person scoring 4 is labelled ‘pre-frail’, a score of 5-8 is
‘frail’ and 9 is ‘terminally ill’.
Recently, drivers toward a digitalised NHS, along with the COVID-19 pandemic,
have encouraged remote clinical working and telemedicine to deliver patient care.
This limits the applicability of the CFS without a face-to-face patient contact,
removing a key component of comprehensive preoperative assessment.
A surrogate marker for frailty is required. We propose that patients may be able
to self-assess their frailty utilizing a modified Rockwood CFS. If patient self-
assessment is feasible and agreement with clinician assessed CFS is acceptable,
this would be a stepping stone to wider validation and utilisation as a remotely
delivered preoperative frailty assessment tool.

2 Methods

Initially, agreement between CFS frailty scores was examined using the quadratic
weighted Cohen’s Kappa. Values for levels of agreement using the Kappa coeffi-
cient are interpreted as follows:< 0 = no agreement; 0.00-0.20 = slight agreement;
0.21-0.40 = fair agreement; 0.41-0.60 = moderate agreement; 0.61-0.80 = sub-
stantial agreement; 0.81-1.00 = almost perfect agreement (Landis et al., 1977).
However, such an analysis does not allow for the investigation of covariate effects
such as age or ASA score, on the strength of agreement between scores. Hence,
a linear mixed-effects model was set up to compare the CFS frailty scores. The
linear mixed-effects model allows assessing covariate impacts and interactions
when comparing CFS frailty scores, and accounts for intra-patient correlation
using a patient-level random effect, hence enabling the computation of robust
standard errors to minimise the likelihood of false conclusions. We consider the
scores produced by the patient, clinician, and researcher, as pertaining to assess-
ment groups j = 0, 1 and 2, respectively. We denote by yij the measured score for
patient i on group j, and by the vector xi any covariates of interest for patient
i. Then a linear mixed-effects model can be formulated as:

yij =

2∑
j=1

γj1{group=j} + xTi β + ui + εij ,

where the terms involving the γj and β are fixed effects, and ui is a patient-level
random intercept. In the summation term, the patient self-assessment (j = 0)
serves as the reference category. The fixed effect parameters γj capture the agree-
ment differences of interest. Additionally, and not displayed here notationally, we
considered models using interaction terms between the grouping variables and
the covariates age and ASA score. The linear mixed-effects models were fitted
using function lmer in R package lme4.
In addition, for a more comprehensive understanding of the interaction between
covariates and scorers, we used linear mixed-effects model trees. The GLMM
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tree algorithm is an extension of the model-based recursive partitioning (MOB)
method. The MOB method uses a parameter instability test to select partition-
ing variables. However, MOB is not suitable for multilevel data. To address this
limitation, the GLMM tree algorithm was developed to incorporate random ef-
fects into the analysis (Fokkema et al., 2018). While random effects are estimated
globally using all observations, the fixed effects are estimated locally. The dataset
is partitioned based on additional covariates or partitioning variables, and fixed
effects are estimated for each partition cell. The GLMM tree model was estimated
using the function lmertree from the R package glmertree.

3 Results

All patients aged 65 or over who were listed for major surgery were included in the
study (n = 80). Table 1 presents the inter-rater reliability of the CFS frailty scores
using Cohen’s Kappa. The results demonstrate a moderate agreement between
patient-allocated self-score and pre-assessment score on the 9-level scale (κ =
0.43). There was also a moderate agreement between the pre-assessment score and
the research team score on the 9-level scale (κ = 0.59). There was a substantial
agreement on the 9-level scale CFS between the patient-allocated self-score and
the research team score (κ = 0.62). On the 3-level scale, the results indicate a
fair agreement between the patient-allocated self-score and pre-assessment score
(κ = 0.32). There was a substantial agreement on the 3-level scale CFS between
the patient-allocated self-score and the research team score (κ = 0.68). There was
a moderate agreement between the pre-assessment score and the research team
score on the 3-level scale (κ = 0.55).

TABLE 1. Inter-rater reliability on 9-point and 3-level clinical frailty score.

Agreement measured (Kappa statistics) 9-point scale 3-level scale

Patient allocated self-score vs. pre-assessment score 0.433 0.319

Patient allocated self-score vs. research team score 0.622 0.683
Pre-assessment score vs. research team score 0.591 0.554

All P-values < 0.01

Table 2 represents the results of the linear mixed-effect model. The results show
that the patient-allocated self-scores were higher than pre-assessment scores (model
1, p = 0.015). There were no significant differences between the patient-allocated
self-score and the research team score (model 1, p = 0.588). In model 2, patient-
assessed scores tend to be higher than the other ones, but older patients (age >
74y) behave differently than younger patients in the sense that older patients do
not assess themselves frailer than the other scores would indicate. The results
for interaction between ASA (American society of anesthesiology) and groups
(model 3) indicate that there were no significant differences between patients
with ASA ⩾ 3 and ASA < 3 when comparing the pre-assessment and research
team with patient-allocated self-scores.
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TABLE 2. Results of linear mixed-effects models.

Model Formula Fixed effect
Effect Estimate
(β coefficient)

Standard
error

P-value

1 CFS score ∼ group + (1|ID) (Intercept) 3.539 0.126 < 0.001
group (pre-assessment) -0.289 0.117 0.015
group (research team) -0.064 0.117 0.588

2 CFS score ∼ group + age>74 + group:age>74 + (1|ID) (Intercept) 3.498 0.164 < 0.001
group (pre-assessment) -0.498 0.154 0.001
group (research team) -0.253 0.154 0.101
age>74 0.084 0.25 0.737
group (pre-assessment):age>74 0.487 0.235 0.039
group (research team):age>74 0.443 0.235 0.06

3 CFS score ∼ group + ASA ⩾ 3 + group:ASA ⩾ 3 + (1|ID) (Intercept) 3.171 0.176 < 0.001
group (pre-assessment) -0.229 0.171 0.184
group (research team) -0.200 0.171 0.245
ASA ⩾ 3 0.660 0.24 0.006
group (pre-assessment):ASA ⩾ 3 -0.114 0.235 0.629
group (research team):ASA ⩾ 3 0.236 0.235 0.316

Reference category: patient self-assessment score

CFS clinical frailty score, ASA American society of anesthesiology

FIGURE 1. Fitted linear mixed-effects model tree for model 2

To gain a deeper understanding of how covariates and scorers interact in models
2 and 3, we used the GLMM tree model. The GLMM trees for models 2 and 3 are
shown in Figures 1 and 2, respectively. In each inner node of the plotted trees,
the splitting variable and corresponding p-value from the parameter stability test
are reported. The diagram in each figure shows two terminal nodes for CFS. In
Figure 1, Node 2 shows that patients 74 years of age or younger had higher
self-assessment scores compared to pre-assessment and research team scores. In
node 3 (patients over 74), there were no substantial differences between scores.
In Figure 2, patients with ASA scores under 3 had slightly higher self-assessment
scores than pre-assessment and research team scores, and in node 4, patients
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FIGURE 2. Fitted linear mixed-effects model tree for model 3

with ASA scores of 3 or higher had slightly lower pre-assessment compared to the
other scores. Please note that the p-values displayed in the top node indicate the
significance of the split; that is the existence of subgroups with differing behavior.
They make no statement on significant differences of scorer types within those
subgroups.

4 Conclusion

In this study, we evaluated the use of patient self-assessment as a surrogate marker
for clinician-assessed frailty. Our findings suggest that patients can evaluate their
frailty by using a modified Rockwood CFS. In an additional analysis, we also
assessed the agreement between CFS frailty scores using the intraclass correlation
coefficient and Bland–Altman plots. All of the results confirmed that there was
an acceptable agreement between the self-scores allocated by the patients and
the research team scores, with some tendency for relatively younger patients to
assign themselves larger frailty scores.
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Abstract: Functional regression models can quickly become computationally ex-
pensive with either the response or some covariates being functional. We suggest
to use gradient descent based optimization algorithms to estimate such models as
an easily scalable alternative to established approaches. Preliminary simulation
results show our approach to perform reliably. We apply our approach to super-
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in Germany.
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1 Introduction

Functional regression models are models that are able to include functional ob-
servations. This framework encompasses datasets with functional covariates and
scalar responses, functional responses with scalar covariates or datasets in which
both, response and covariates, are functional (Ramsay and Silverman, 2005; Reiss
et al., 2010). Due to the nature of the data, the models can already become com-
putationally expensive with a comparably low number of observations. To accom-
modate this increased complexity, we introduce gradient descent based functional
regression. The idea is to fit functional regression models using gradient descent
based optimization algorithms and estimate the model parameters as one would
estimate the parameters of neural networks.
In the following sections we introduce the general framework, demonstrate the
applicability of our approach on simulated data and finally apply our model
to supermarket parking data to analyze the effect of Covid-19 restrictions on
supermarket visits during the spring of 2020 in Germany.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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2 Methods

Function-on-scalar regression models with functional response y(t) and scalar
covariates can be represented as

y(t) = Zβ(t) + ϵ(t)

where y(t) is an N - dimensional vector containing the functional responses, Z
is a N × q design matrix and β(t) is a vector of coefficient functions defined
as β(t) = (β1(t), ..., βq(t))

T that are represented by linear combinations of basis
functions θ(t) = (θ1(t), ..., θK(t)) such that

βj(t) = bTj θ(t) .

In matrix notation, the model becomes

Y = ZBΘT +E ,

with Y containing the functional responses collected at t1, ..., tn, B containing
the coefficients to be estimated and Θ being matrix of evaluated basis functions.
Applying the vec-operator and expressing the model in terms of Kronecker prod-
ucts, this model can be expressed in the form of a standard regression model

vec(Y T ) = vec
[
(ZBΘT )T

]
+E

vec(Y T ) = (Z ⊗Θ)vec(BT )

with Z⊗Θ as the design matrix (Reiss et al., 2010). Usually, the coefficient func-
tions βk(t) are estimated using penalized splines. The framework is not limited to
simple scalar covariates as depicted here and can furthermore be augmented to
include multi-dimensional splines to model interactions between t and covariates.
Since a single observation actually consists of n observations, these models can
become computationally expensive very easily. For large datasets, we therefore
propose gradient descent based functional regression. In our approach, the mod-
els are set up as usual, the model parameters are then trained as if they were the
weights and biases of a neural network without hidden layers. Rather than relying
on the conventional fitting methods which require the whole dataset every step
of the way, the use of optimizers using mini-batching allows the models to scale
really well. Their reliance on only the gradient of the loss function furthermore
makes the models very easy to setup and flexibly adjustable.

3 Simulations

We demonstrate the general functionality of our model based on a simulation
setup adapted from the R-package refund (Goldsmith et al., 2023) with a func-
tional response y(t) with N = 50 and n = 40, a functional intercept β0(t) and
a single scalar covariate x with the corresponding coefficient function β1(t) such
that

y(t) = β0(t) + xβ1(t) + ϵ(t)

with ϵ ∼ N(0, 1). The model is set up with cubic regression splines with k = 10
and fitted by minimizing the negative log-likelihood of a Gaussian distribution
using the Adam-optimizer (Kingma and Ba, 2014). The left panel of Figure 1
shows a few exemplary observations. Each curve in the plot depicts a single
observation. The other two panels show the results of 100 simulation runs using
our proposed fitting methods and confirm the general ability of our approach to
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appropriately deal with functional data. Throughout, the model is able to reliably
approximate the true coefficient functions.
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FIGURE 1. The left panel shows 5 exemplary observations, each depicted by one
line, the center and right panel show the functional intercept and the functional
covariate effect.

4 Covid parking application

We apply our method to data provided by Smart City System Parking Solutions, a
company that produces smart parking sensors which record the occupancy status
of parking spots. The dataset consists of 89 supermarket parking lots from all
over Germany. The data spans 120 days, starting on February 1, around the time
Covid-19 was already known to be on the rise but before the introduction of the
extensive contact restrictions, until May 31. Most but not all lots were observed
every day. We exclude the obervations from 0:00 to 6:00 and aggregate the used
parking spots on the respective lots every 15 minutes and use their utilization
levels as the response. With N = 10, 431 and n = 64, the dataset effectively
consists of 10431 ∗ 64 = 667,584 observations. We fit a model with a functional
intercept which is specified to be a cubic regression spline and a tensor-product
spline to estimate the interaction of time of day and time within the year and
assume the response to follow a Beta-distribution. The predictor for the mean is
estimated as

η(t) = α+ β0(t) + f(day, t) .

where α is a regular intercept. The results are depicted in Figure 2. The functional
intercept shows the expected pattern of high utilization during the day and low
utilization during the early morning and late evening. The contour plot shows
some interesting patterns, such as shifts towards overall fewer supermarket visits,
especially in the afternoon, following the introduction of the restrictions in March
2020.
While efficiently programmed libraries such as refund are still able to estimate
the above model despite the already large amount of data points totaling more
600,000, extending the time frame to several years will drastically increase the
volume and ultimately make the application of stochastic gradient descent meth-
ods indispensable.
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FIGURE 2. Functional intercept and interaction of day and daytime as a smooth
surface.
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Abstract: The tree-structured varying-coefficient model (TSVC) is a flexible
regression approach that allows the effects of covariates to vary with the values
of the effect modifiers. Relevant effect modifiers are identified inherently using
recursive partitioning. To quantify uncertainty in TSVC models, we propose a
procedure to construct confidence intervals. This task constitutes a selective in-
ference problem as the coefficients of a TSVC model result from the data-driven
model building. To account for this issue, we introduce a parametric bootstrap
approach, which is tailored to the complex structure of TSVC. Coverage propor-
tions of the proposed confidence intervals were evaluated in a simulation study.
For illustration, we considered an application to data from patients suffering from
Covid-19.
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1 Tree-structured varying coefficients

The classical varying coefficient model proposed by Hastie and Tibshirani (1993)
allows the modeling of an outcome variable Y in a generalized regression frame-
work with predictor function

η(X ,Z ) = β0 + β1(Z1)X1 + . . .+ βp(Zp)Xp , (1)

where Z1, . . . , Zp denote random variables that serve as effect modifiers and
change the linear effects of X1, . . . , Xp through an unspecified functional form.
The model in (1) requires the effect modifiers to be specified beforehand, and
each varying coefficient may only depend on one effect modifier. To address these
limitations, Berger et al. (2019) proposed the tree-structured varying coefficient
(TSVC) model, which applies a recursive partitioning technique to inherently

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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detect relevant effect modifiers. The predictor function of a TSVC model M is
given by

ηM(X ) = βM
0 + βM

1 (X [−1])X1 + . . .+ βM
p (X [−p])Xp , (2)

where X [−j] denotes the set of covariates X1, . . . , Xp excluding Xj . Accordingly,
the effect of each covariate can be modified by each other covariate except itself.
The functions βM

j (·) are each determined by a tree structure. This means that
each function βM

j (·) sequentially partitions the observations into disjoint subsets
Njm, m = 1, ...,Mj , based on the values of the selected effect modifiers and
assigns a different regression coefficient for Xj to each partition Njm. These
functions can be written as

βM
j (X [−j]) =

Mj∑
m=1

βM
jmI(X [−j] ∈ Njm) . (3)

where I(·) denotes the indicator function. Hence, the structure of TSVC modelM
is characterized by the set of partitions M = {{Njm ,m = 1, . . . ,Mj} , j =
1, . . . , p}. Each coefficient is derived from binary splits partitioning the observa-
tions of one parental node into two child nodes iteratively.
In each step of the TSVC fitting algorithm, the best splitting rule among all co-
variates Xj , respective candidate splitting variables Xk, k ̸= j, and possible split
points is selected, starting from a linear predictor without varying coefficients.
For this, all candidate models with one additional split are evaluated and the best
performing one is selected based on the minimal deviance. From the resulting se-
quence of hierarchical models, an optimal model can finally be selected using a
likelihood-based measure, e.g. the Bayesian information criterion (BIC).

2 Selective confidence intervals

Our objective is to construct confidence intervals (CIs) for the best approximating
varying linear effects βM of a TSVC model M fitted to the data D = {(yi, x i =
(x1i, . . . , xpi)

T ), i = 1, . . . , n}.
In order to do so, we need to account for the fact that the coefficients of interest
βM
jm arise out of model structureM being selected by the TSVC fitting procedure,

that is, that the model selection event M̂ = M occurred. Therefore, a 100(1−α)%
CI of βM

jm is supposed to satisfy

P
(
βM
jm ∈ CIMjm | M̂ = M

)
≥ 1− α , (4)

which constitutes a so-called selective inference or post selection inference prob-
lem (Berk et al., 2013, Fithian et al, 2014). In linear regression models with

LASSO penalization Lee et al. (2016) found that if the selection event M̂ = M
can be characterized by a set of inequalities that fulfill specific condtions, M̂ = M
constitutes a linear selection event and exact statistical inference of the coeffi-
cients conditional on the selection event can be performed. Specification of the
selection event for TSVC models, however, would require a vast number of in-
equalities. The main reason is that the TSVC algorithm involves the fitting of
several trees, which is considerably more complex than fitting of a single tree or
a predictor function with interactions of predefined order (scenarios investigated
by Neufeld et al., 2022, and Suzumura et al., 2017). In the first iteration of the
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TSVC algorithm, the event of selecting one specific splitting rule is characterized
by p(p− 1)n inequalities, assuming p continuous covariates with n possible split
points each. Overall, O(np2S) inequalities are required to describe the selection
of one specific sequence of nested TSVC models M[s], s = 1, . . . , S, and an op-
timal model M out of it. Since there are cases where the same model structure
M can be described by a number of different sequences of nested models (e.g.
when the same splits are performed in a different order), the conditioning set

that characterizes the selection event M̂ = M is a union of sets. Moreover, after
the selected number of splits is reached, any combination of additional splitting
rules can result in the same model structure as long as the respective models’
BIC is larger than the BIC of the selected model.
To tackle this complex mechanism and construct a CI for the effect βM

jm satis-
fying Equation (4), we propose a parametric bootstrap approach tailored to the
selective inference problem at hand. Specifically, we compute estimates for βM

jm

from a set of bootstrap samples Db, b = 1, . . . , B. Simply enforcing the structure
of the original model M on each sample neglects the uncertainty induced by the
data-driven model building, resulting in CIs that tend to be too short. To account
for this uncertainty, we first apply the TSVC fitting procedure to the samples
Db, resulting in B different models Mb with predictor functions

ηMb(X ) = β̂
Mb
0 + β̂

Mb
1 (X [−1])X1 + . . .+ β̂Mb

p (X [−p])Xp. (5)

Secondly, we determine an estimate of the effect βM
jm from the original model

based on bootstrap sample Db by averaging the node-specific effect estimates
β̂
Mb
jm with regard to partition Njm from the original model yielding

β̄
(b)
jm =

1

|Njm|
∑

i:xi∈Njm

β̂
Mb
j (x i[−j]) . (6)

By definition of (6), for covariate Xj each observation is assigned to one of the
subsets Njm that was identified by the original model M, and subsequently the
average value of the function β̂

Mb
j (·) from model Mb across the observations in

Njm is calculated. Finally, a 100(1 − α)% CI for βM
jm is obtained by computing

the α/2 and (1− α/2) percentiles from the bootstrap estimates β̄
(1)
jm, . . . , β̄

(B)
jm .

Equation (6) allows to determine bootstrap estimates of the coefficients of inter-
est βM

jm. Yet, calculating these estimates does in itself not condition on the model

selection event. In order to mimic the conditioning on M̂ = M, we apply a para-
metric bootstrap scheme to generate bootstrap samples Db, where the bootstrap
values of the outcome variable y

(b)
i are drawn from the conditional distribution

of Y |X = xi indicated by the fitted TSVC model M. That is, the new outcome

values y
(b)
i are generated from a distribution with expectation

E(Y |X = xi) = g−1
(
ηM(xi)

)
, (7)

where ηM(·) is the predictor function of the original TSVC model M fitted to
data D.

3 Empirical evaluations

Coverage proportions of the proposed CIs were assessed in a simulation study
and compared to those of classical asymptotic normal distribution-based Wald
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TABLE 1. Coverage proportions of 95% CIs for TSVCs averaged across all
effects.

DGP CI method n 200 500 1000
σ 1 2 1 2 1 2

Linear Wald .833 .833 .875 .875 .900 .900
Parametric percentile .951 .951 .949 .949 949 949

TSVC Wald .795 .795 .843 .852 .865 .867
Parametric percentile .968 .971 .966 .970 .963 .965

TABLE 2. Restults of fitting the TSVC model to the Covid-19 patient data.

Variable Partition β̂ exp(β̂) 95% CI of exp(β̂)
Age — 0.008 1.008 [1.006; 1.051]
Treatment antibodies Age≤ 60 -2.924 0.054 [0.000; 0.252]

Age> 60 -0.986 0.373 [0.001; 8.629]

CIs. We considered a non-varying linear data generating process (DGP) with one
informative variable X1 and one noise variable X2

yi = 0.25xi1 + εi, i = 1, . . . , n , (8)

where xi1, xi2 ∼ N(0, 1). We also considered a TSVC DGP

yi = 0.5 I(x2i > 0.5)xi1 − I(x2i ≤ 0.5 ∧ xi3 = 0)xi1 + εi, i = 1, . . . , n , (9)

where xi3 ∼ Bin(1, 0.5). For both DGPs, we set εi ∼ N(0, σ2) with standard devi-
ations σ ∈ {1, 2} and sample sizes n ∈ {200, 500, 1000}. The proposed parametric
percentile CIs were based on B = 1000 bootstrap samples. The average cover-
age proportions were calculated based on R = 5000 replications. The average
coverage proportion across all covariates was calculated as

Cav =
1

R

R∑
r=1

1

p

p∑
j=1

1

Mr
j

Mr
j∑

m=1

I
(
βMr
jm ∈ CI(βMr

jm )
)
, (10)

where Mr denotes the TSVC model fitted in the r-th replication andMr
j denotes

the number of coefficients of Xj in model Mr.
The results in Table 1 for the linear DGP show that the proposed CIs yield
coverage proportions close to the nominal level whereas coverage proportions of
the Wald CIs are far too low but increased with larger sample size. Of note,
even with this simple underlying linear DGP without varying effects, neglecting
the fact that constructing CIs for TSVCs is a selective inference problem (e.g.
by applying a naive Wald type CI) may yield highly anti-conservative results
with low coverage. For the TSVC DGP, the proposed CIs tended to be rather
conservative but approached the nominal level for larger sample size and lower
noise. The naive Wald type approach resulted in insufficient coverage proportions
across all settings.
In addition, we applied a logistic TSVC model to data from Covid-19 patients
(Huebner et al., 2023). The main objective was to investigate the effect of age
and of treatment with antibodies on the need for oxygen support and to detect
possible interactions between treatment effect and age. The results in Table 2
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indicate a linear non-varying effect of age and a treatment effect modified by
age. Based on the proposed CIs, a significant effect of age and of treatment with
antibodies for patients aged 60 years or younger at significance level α = 0.05
was shown but no significant treatment effect for patients older than 60 years.

4 Summary

TSVC models are flexible tools for generalized regression that allow the linear
effects of the covariates to vary with the effect modifiers. They can be fitted using
the eponymous R add-on package (Berger, 2021). The TSVC fitting procedure is
able to inherently detect relevant effect modifiers and relaxes the prerequisite that
effect modifiers need to be specified before model fitting. Constructing CIs for
TSVCs is a selective inference problem as statistical inference is performed after
model selection. In this vein, we proposed parametric bootstrap-based method
tailored to the complex selection mechanism of TSVC as an approximate solution.
The applications to real-world data from COVID-19 patients showed that the
proposed CIs may differ strongly from naive Wald type CIs and lead to different
conclusions when assessing statistical significance of the coefficients. The effect
of CVIV in the group of elderly patients is highly clinically meaningful. This
highlights that accounting for the selective inference problem is essential when
statistical inference on the parameters of a TSVC model is of interest. In the
simulation study, our approach yielded coverage proportions close to the nomi-
nal level for the linear DGP whereas the simple Wald type CI showed insufficient
coverage. In the more complex scenario with varying coefficnets, the proposed ap-
proach showed slightly conservative results, while Wald type CIs yielded coverage
proportions that were far too low.
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Abstract: In survival analysis, censoring is an inherent observation that is usu-
ally assumed to be unrelated to the event of interest. When this assumption is
not fulfilled, traditional methods like the Cox model may yield skewed or biased
results. For example, if a patient’s health deteriorates and the patient chooses to
withdraw from the trial due to a poor prognosis, the time of censoring depends
on the patient’s health status. To deal with dependent censoring, in this work
we propose to utilize distributional copula regression via model-based boosting.
This approach allows to model the joint distribution of survival and censoring
times by linking appropriately marginal distributions for T and C through a
parametric copula. Rather than assuming the marginals are known, all distribu-
tion parameters (including the copula parameter) are estimated simultaneously
as functions of (potentially different) covariates. A key merit of boosting is that
estimation is even feasible for high-dimensional data with p > n, when classical
estimation frameworks easily meet their limits. In addition, the boosting algo-
rithm includes data-driven variable selection. To investigate the performance of
our approach under controlled conditions, we first conduct a simulation study.
Furthermore, we illustrate its practical application analysing the survival of colon
cancer patients from an observational study.

Keywords: Copula; Dependent censoring; Model-based boosting.

1 Introduction

In time-to-event analysis, it is inherent that we encounter censored observations,
whereby some patients in a study are not observed until the occurrence of the
event of interest. Most widely used approaches, such as the Kaplan-Meier estima-
tor or the Cox proportional hazard model, can handle time-to-event data with,

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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FIGURE 1. Graphical representation of two survival scenarios, showing the de-
pendency between covariates X and the event time T and the censoring time C.
Here, Y is the last observed time point and δ is the event indicator. The left-hand
graph shows the case of independent censoring and the right-hand graph shows
two cases of dependent censoring: a) direct dependence between T and C and b)
through an unmeasured covariate U .

for example, right-censored observations. In these approaches, it is assumed that
the survival time T and censoring time C are statistically independent for given
covariates, see Figure 1 (left) for a graphical illustration.
However, this assumption may not be fulfilled in many situations, e.g. if patients.
withdraw from a study due to their poor state of health. In these cases classical
approaches that assume independent censoring could lead to biased results. This
is due to a direct link between the survival time and the censoring time shown
with a) in Figure 1 (right). Thus, if we assume that sicker patients drop out
of the study due to poor health, then censored patients are more likely to be
sicker than the non-censored patients, and the survival time of the patients may
be overestimated. A further dependence can exist if it is caused by unobserved
confounding variables, as shown in b) in the right graph of Figure 1, where the
unobserved variable U influences survival and censoring time. Therefore, it is of
great importance to take the dependency in such cases into account. In practice,
however, one observes either the event or censoring, which makes it hard to verify
the dependency.
Copula models linking two random variables by specifying their dependence struc-
ture (Midtfjord et al., 2022; Czado and Van Keilegom, 2023), gained increasing
interest in recent years. Most of the proposed models in the literature for de-
pendent censoring rely on a completely known copula. However, in practice, the
association parameter is often unknown and can have a major influence on the
resulting estimators of the marginal distributions (Huang and Zhang, 2008).

2 Methodology

In the following, we propose a boosting approach based on copulas to deal with
dependent censoring without an assumed copula. Let T be the survival time and
C the censoring time and based on the assumption of random right censoring,
we have Y = min(T,C) and ∆ = I(T ≤ C), where I(A) = 1 if A is true and
the event was observed. According to Sklar’s theorem, we can express the joint
conditional cumulative distribution function (CDF) of T and C given covariate
information x as

FT,C(t, c|α) = C{FT (t|θT ), FC(c|θC)|θ},
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where α = (θT ,θC , θ)
T is the vector of model parameters and FT (t|θT ) and

FC(c|θC) are the marginal CDFs, which are non-negative, continuous and para-
metric. The copula C(., θ) is uniquely defined and parametric with a copula pa-
rameter θ that describes the dependency between T and C. Due to identifiability
of the complete model, we consider the log-normal and Weibull distribution as
marginal distributions and the Clayton, Gauss and Gumbel copula (Czado and
Van Keilegom, 2023).
For estimation, we assume that we have an independent and identical distributed
sample D = {(yi, δi,xi), i = 1, . . . , n}. Then the joint log-likelihood is

ℓ(α;D) =
∑
δi=1

log(fT,θT (yi)
[
1− hC|T,θ{FC,θC (yi)|FT,θT (yi)}

]
)

+
∑
δi=0

log(fC,θC (yi)
[
1− hT |C,θ{FT,θT (yi)|FC,θC (yi)}

]
),

where hC|T,θ{FC,θC (yi)|FT,θT (yi)} and hT |C,θ{FT,θT (yi)|FC,θC (yi)} express the
conditional distribution function in terms of their associated copula.
Model-based boosting is used for the estimation of the proposed copula model,
which allows modeling all distribution parameters simultaneously while being
able to process high-dimensional data problems with p > n (Hans et al., 2023).
Furthermore, it leads to a data-driven variable selection which is controlled by
the number of boosting iterations (Mayr et al., 2012).

3 Simulation

To study the performance of the proposed approach, we conducted a detailed
simulation study. We considered not only low- and high-dimensional settings but
also different censoring rates (20%, 50% and 80%) and an independent setting
modeled via copula regression. The results of 100 simulation runs for the low-
dimensional setting indicate that the model was able to identify the informative
variables and accurately estimate the true effects for all distribution parame-
ters, while also demonstrating stability across varying censoring rates. The high-
dimensional setting performed similarly but it was more challenging to estimate
the association parameter. Also the independent setting was estimated quite well
for the informative variables regarding the marginal distributions, however, the
model included many noise variables. We also compared our model with a classi-
cal Cox model and accelerated failure time models (AFT) models. We evaluated
the estimated coefficients as well as the prediction performance using various met-
rics, i.e., C-index, Brier score, integrated Brier score, integrated absolute error
and integrated squared error. Overall, the Cox model always performed consid-
erably worse concerning the predictive performance than the AFT and copula
models. Note, that the estimated coefficients of the Cox model are not directly
comparable to the copula approach, because the coefficients are interpreted as
hazard ratios.
For the AFT, the estimated coefficients of the informative variables were slightly
overestimated and the model included some noise variables, particularly those
that were informative for the censoring time. In terms of predictive performance,
the copula model always performed best for the Brier score and integrated Brier
Score; for the other metrics, the AFT model was similar to the copula model
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FIGURE 2. Histogram of the follow-up time in months for patients with event
(light green) and without event (dark green).

from time to time. No major differences were found for the C-index between all
three models.

4 Modelling the survival of colon cancer patients

We illustrate the new boosting approach for dependent censoring on a dataset
on colon cancer. The dataset contains n = 546 patients, listed in a registry of
a local German acute care hospital where all patients underwent the surgical
resection of the affected part of the intestine with radical regional excision of
adjacent lymph node stations, following the corresponding guidelines. We focus
on the outcome of overall survival since surgery, where the event was observed in
201 patients, while 345 patients were right-censored, with an illustration of the
follow-up time in Figure 2. The following covariates were included in the model:
chemotherapy (yes/no), ASA score (general health status, mild/severe), UICC
cancer stage (I-IV), age, LNE (number of pathologically examined lymph nodes),
LNR (lymph node ratio, cancerous lymph nodes / examined lymph nodes), sex,
R status (residual tumor, yes/no) and preexisting cancer (yes/no). The outcome
was modeled by Weibull distributed margins and the Clayton copula chosen by
the comparison of the empirical risk. All variables were included with simple
linear models as base-learners.
Table 1 shows the selected and estimated coefficients for each parameter of the
boosted copula model. Negative estimated coefficients for the mean survival time,
for example, increase the chance of experiencing the event. Positive coefficients
would indicate a longer survival or more precisely, chemotherapy shows a coef-
ficient of 0.54 for survival time, which means that patients who have undergone
chemotherapy are more likely to have a longer survival time. Chemotherapy was
also selected for the correlation parameter with a coefficient of −1.170, which
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TABLE 1. Resulting estimated coefficients for the dataset on colon cancer.

µT σT µC σC ρ

Intercept 6.070 -0.270 3.061 -0.428 0.546
Age -0.016 -0.001 0.007 0.002 -
Sex (female/male) -0.033 0.071 0.006 -0.081 -
Chemotherapy (yes/no) 0.540 0.592 0.117 0.186 -1.170
ASA score (mild/severe) -0.693 -0.195 - -0.143 -
UICC cancer stage II -0.092 - - 0.029 -
UICC cancer stage III -0.393 0.052 0.111 0.231 -
UICC cancer stage IV -1.081 -0.147 - - -0.250
LNE 0.009 0.008 0.007 0.011 -
LNR -1.616 0.434 0.560 - -
R status -0.153 -0.014 0.220 0.519 -
Preexisting cancer -0.398 -0.020 -0.060 -0.014 -

indicates a negative impact on the association between survival and censoring
time.

5 Conclusion

We have introduced a copula-based boosting approach to deal with dependent
censoring. The simulation study indicates a promising performance of our ap-
proach, achieving stable results even with low and high censoring rates, also in
comparison to classical approaches. Nevertheless, the challenge persists in eval-
uating the model adequately to facilitate comparison with traditional methods
like the Cox model, as conventional evaluation metrics are no longer valid in the
presence of dependent censoring. We have tried to solve this problem by consid-
ering several metrics that serve different purposes, but further research is needed
in this direction.
A related approach was recently proposed by Midtfjord et al. (2022), which em-
ploys the Clayton copula to account for dependent censoring and builds on the
accelerated failure time model. However, this approach is based on a fixed depen-
dency parameter which does not depend on the covariates. We allow our algorithm
to select also variables for the dependency parameter, like the chemotherapy in
our colon cancer application.
Overall, the favorable performance of our new approach motivates further re-
search in this direction, for example, the extension to non-linear effects, left cen-
soring and the use of semi-parametric margins.
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Abstract: We show how Bayesian hidden Markov models may be employed
to build early warning systems of particular risky events. The adopted model
formulation assumes that every binary response variable depends only on the
latent state further to the lagged covariates and response. A Markov chain Monte
Carlo algorithm is proposed for estimation and forecasting, where the latter is
based on the optimisation of the F-score. An application referred to banking crisis
of countries based on an unbalanced panel dataset is used as an illustration.
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Abstract: Incorporating covariates into spatial models for areal count data is
a common approach for studying linear associations between covariates and the
dependent variable. However, if a covariate is spatially structured, the spatial
random effects might compete to explain the spatial variability in the response,
possibly resulting in biased fixed effect estimates. This issue is referred to as
spatial confounding. While various methods have been developed to address this
problem, they have achieved only partial success, managing to reduce bias but
often falling short in providing appropriate coverage rates. In this study, we pro-
pose a combination of a simplified spatial+ method with restricted regression to
mitigate bias and achieve coverage rates closer to the nominal value. To illus-
trate the effectiveness of our method, we analyse the association between dowry
deaths, a form of crime against women, and several socio-demographic covariates
in Uttar Pradesh, India. Additionally, we conduct a simulation study that shows
the improvement in the coverage of credible intervals for fixed effects with the
proposed combined approach.

Keywords: Crimes against women; Restricted regression; Spatial confounding;
Spatial+.

1 Introduction

Spatial models for areal count data are essential to smooth standardized incidence
or mortality ratios of a disease and represent their geographical distribution.
Incorporating covariates into spatial models to evaluate potential risk factors is

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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usual in ecological regression. However, spatial confounding might appear. This
refers to the difficulty in disentangling the effects of covariates and spatial random
effects, ultimately resulting in biased fixed effect estimates.
Various procedures have been proposed in the literature to mitigate spatial con-
founding. An interesting approach is the simplified spatial+ method (Urdangarin
et al., 2024), a modification of spatial+ model (Dupont et al., 2022), that reduces
bias of the fixed effects estimates, though coverage rates are over the nominal
value.
In this work we propose combining the simplified spatial+ method and restricted
regression (RSR) (Reich et al., 2006) to obtain unbiased fixed effects estimates
while achieving appropriate coverage rates. For illustration purposes, we assess
the association between the socio-demographic indicator sex ratio and dowry
deaths in Uttar Pradesh, India, in 2011 (Vicente et al., 2020). Finally, we conduct
a simulation study to evaluate coverage rates of the credible intervals for fixed
effects with the proposed method. Model fitting and inference is carried out from
a full Bayes approach, using integrated nested Laplace approximations (Rue et
al., 2009).

2 A unified approach combining simplified spatial+
and restricted regression methods

The simplified spatial+ method (Urdangarin et al., 2024) is a modified version of
the spatial+ approach (Dupont et al., 2022) that reduces bias of the fixed effects,
avoiding fitting a spatial model to the covariate. The first step of the simplified
spatial+ approach removes the spatial dependence from the covariate. Then, in
a second step, a spatial model is fitted replacing the covariate by its decorrelated
version.
Let Yi and ei denote the number of observed and expected cases, respectively, in
the ith small area (i = 1, . . . , S). Conditional on the relative risk ri, Yi is assumed
to follow a Poisson distribution

Yi|ri ∼ Poisson(µi = eiri) and logµi = log ei + log ri,

where the log risk is modeled as

log r = 1Sα+Xβ + ξ. (Spatial)

Here, α is an intercept, r = (r1, . . . , rS)
′
is the vector of relative risks, X =

(x1, . . . , xS)
′
is the covariate of interest, β is the fixed effect coefficient and ξ is

the vector of spatial random effects. We express X as a linear combination of the
eigenvectors Ui (i = 1, . . . , S) of the spatial precision matrix as follows

X = a1U1 + · · ·+ aSUS .

Assuming unconfoundedness at high frequencies, we split the covariate into two
parts X = Z +Z∗ where Z∗ comprises large-scale eigenvectors associated with
the lowest eigenvalues, responsible for the collinearity between fixed and random
effects, and Z contains the rest of eigenvectors.
Then, the simplified spatial+ model consists in modeling the log risks using the
spatial model, but replacing the covariate X by its spatially decorrelated part
Z, i.e.

log r = 1Sα+Zβ + ξ. (SpatPlus)
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Restricting the spatial random effects to the space orthogonal to the fixed effects
Z in the previous model, we obtain the combination of the simplified spatial+
method and restricted regression. Namely

log r = 1Sα+Zβ + Ŵ−1/2LL
′
Ŵ 1/2ξ, (SpatPlus-RSR)

where the columns of L are the eigenvectors having non-null eigenvalues of the
projection matrix IS − Ŵ 1/2Z̃(Z̃

′
Ŵ Z̃)−1Z̃

′
Ŵ 1/2, W being a diagonal matrix

of weights with Wii = µi, and Z̃ = [1S ,Z].

3 Real data analysis

In this section we study the association between dowry deaths in Uttar Pradesh
in 2011 and the covariate sex ratio, defined as the number of females per 1000
males. We fit the SpatPlus and SpatPlus-RSR removing six large scale eigenvec-
tors (SpatPlus6 and SpatPlus6-RSR), and the classical spatial model using an
intrinsic CAR prior for the spatial random effects. Table 1 shows that SpatPlus6
and Spatplus6-RSR estimate very similar fixed effects, however the restricted
regression yields smaller standard error for the regression coefficient.

TABLE 1. Posterior means, standard errors and 95% credible intervals of β for
dowry deaths data in Uttar Pradesh in 2011.

Model Mean SD 95% CI

Spatial -0.1916 0.0592 -0.3062 -0.0734
SpatPlus6 -0.0922 0.0404 -0.1711 -0.0122
SpatPlus6-RSR -0.1153 0.0224 -0.1592 -0.0714

4 Simulation study

We simulate a spatial confounding scenario using the geographical setup of Uttar
Pradesh. We consider the observed values of sex ratio (X1) and an additional
simulated variable (X2) that plays the role of the unobserved covariate. Here,
the sex ratio and the unobserved covariate have a moderate-to-strong correlation,
cor(X1,X2) = 0.7. The data are generated as

log r = 1Sα+X1β1 +X2β2

Y l|r ∼ Poisson(µ = er)

where l = 1, . . . , 300, e is the vector of expected cases taken from the real case
study, α = −0.03, β1 = −0.2 and β2 = −0.3. We consider 6 (SpatPlus6) and
11 (SpatPlus11) large-scale eigenvectors in Z∗ and the models fitted to the data
only include the covariate sex ratio. In contrast to the simplified spatial+ without
restricted regression, the integrated procedure provides coverages rates close to
the nominal value 95%. Both methods recover well the true fixed effects.
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TABLE 2. Posterior means, standard deviations, 95% credible intervals and em-
pirical 95% coverage probabilities of the true value of β1 based on 300 simulated
datasets.
Model Mean SD 95% CI 95% coverage

Spatial -0.3846 0.0591 -0.5002 -0.2671 2.6667
SpatPlus6 -0.2288 0.0424 -0.3119 -0.1451 97.0000
SpatPlus11 -0.2133 0.0403 -0.2922 -0.1338 98.6667
SpatPlus6-RSR -0.2104 0.0243 -0.2581 -0.1627 95.6667
SpatPlus11-RSR -0.1905 0.0230 -0.2356 -0.1454 96.3333
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to compare differences between two independent variables when the dependent
variable is either ordinal or continuous. The associated test statistic follows a
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Abstract: We developed an R package, now available on CRAN, that imple-
ments the fitting methodologies for the 1-level and 2-level variants of a recently
introduced model for clustered and highly correlated multivariate data. The com-
putations are based on an EM algorithm in the spirit of the Nonparametric Max-
imum Likelihood (NPML) approach for the estimation of mixture models. The
implementation also features alternative choices of the starting values for the EM
algorithm, which we discuss in this abstract and which have not been described
elsewhere.
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1 Introduction

In recent work, Zhang and Einbeck (2024) proposed a modelling framework for
multivariate data, which provides implicit dimension reduction by representing
1-dimensional latent linear structures (as occurring for highly correlated data)
through a univariate random effect. The basic model takes the form xi = α +
βzi+εi, where xi ∈ Rm and ϵi ∼ N(0,Σ). Regression problems with multivariate
response can be dealt with through the inclusion of a covariate term Γvi, allowing
for correlations between response variables to be taken into account. An extension
enabling the handling of multivariate response scenarios with 2-level structure
was provided in Zhang et al. (2023), allowing for covariates on both levels, xij =
α+βzi+Γvij+εij , with lower-level units indexed by j = 1, . . . , ni, and upper-level
units i = 1, . . . , r. We use an NPML–type approach (Aitkin, 1996) for parameter
estimation, implemented through the EM algorithm. This involves the fitting
of a discrete mixture along the latent space which can be useful for clustering
purposes.

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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2 R package

We developed an R package titled mult.latent.reg that implements the EM al-
gorithm for the presented models. We use AIC and BIC for model selection. The
main functions for the 1-level model are mult.em 1level and mult.reg 1level.
The first function will run EM once with (by default) 20 iterations, producing
output including parameter estimates, log-likelihood, disparity, AIC, BIC values
and starting points; the second function can execute the EM multiple times (by
default 10 runs) and outputs the result with the smallest AIC value (also giving
the starting points that generate that result). We support four types of parame-
terizations for Σ: the same diagonal variance matrix for all mixture components,
different diagonal variance matrices for different mixture components, the same
full variance matrix for all components, and different full variance matrices for
different components.
The main functions for the 2-level model are mult.em 2level and
mult.reg 2level; the outputs are the same as the ones obtained from the func-
tions for the 1-level model except we only AIC for model selection. The 2-level
model offers only two choices for variance parameterization due to practical rea-
sons: using the same diagonal variance matrix for all components of the mixture
or using different diagonal variance matrices for different components.

Here, we present an example of the 2-level model function applied to bivariate
trading data (OECD, 2023) on imports and exports collected between 2018 and
2022 across 44 countries, each with 3 to 5 annual observations available (no
covariates). We use option = 1 for the starting value (to be explained in Section
3) and adopt the second variance parameterization.

> set.seed(49)

> trade_res <- mult.em_2level(trading_data, K=4, steps=10, var_fun=2,

option = 1)

then we obtain the estimates (only showing an excerpt), where p and z are es-
timated mixture parameters, beta corresponds to the β parameter from Section
1, and W is the matrix of responsibilities.

> trade_res$p

[1] 0.23645108 0.43082442 0.02272643 0.30999807

> trade_res$z

[1] -1.4015770 0.8455288 2.9333327 -0.3210802

> trade_res$beta

0.5073759 0.5381193

> trade_res$W

[,1] [,2] [,3] [,4]

[1,] 9.786883e-01 5.870324e-04 0.000000e+00 2.072465e-02

[2,] 1.355809e-06 9.525065e-01 0.000000e+00 4.749210e-02

[3,] 1.251692e-12 9.999948e-01 8.906935e-141 5.227975e-06

[4,] 9.999611e-01 4.111404e-06 0.000000e+00 3.478559e-05

...
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3 Starting values

Using appropriate starting values for the parameters is beneficial for the EM to
find the maximum likelihood parameter estimates. In R packagemult.latent.reg,
we provide four options of data-dependent starting values for the EM initializa-
tion, with the first based on Zhang and Einbeck (2024) and the other ones novel:

(i) option=1: For the mixture weights, we use π
(0)
k = 1

K
, where K is the number

of components. We draw random numbers from a standard normal distribution
as the starting values for the mass points z

(0)
k . We use column means for the line

parameters α(0), and β(0) = xr − α(0), where xr ∈ Rm is a randomly selected
observation. For parameter Γ, we first fit separate linear models, each using one
of the columns of xi as response variable and vi as predictor variables, then we
use the coefficient estimates as the starting values, Γ(0). For all four variance
parameterizations, we use a diagonal matrix Σ(0) ∈ Rm×m, not depending on k,
as the ‘starting variance matrix’: Denote sj for j = 1, 2, ...,m the sample standard

deviation of the j-th variable. Then, for each diagonal element (σ
(0)
j )2 of Σ(0),

one has the starting value σ
(0)
j =

sj
K
, j = 1, . . . ,m.

(ii) option=2: We use a short run (5 iterations) of the EM process which uses
option (i) with var fun=1 as the starting values, and then use the estimates as
the starting values for a relatively larger number of iterations. This approach is
motivated by Biernacki et al. (2003), where a short run of the EM is applied
before running CEM runs.

(iii) option=3: The parameter β in our model plays a similar role to the rotation
matrix in principal component analysis, specifically aligned with the first princi-
pal component. This observation motivated our choice of using the first principal
component of the rotation matrix as the initial values for β, while keeping the
starting values for the remaining parameters consistent with those described in
(i).

(iv) option=4: In the application of clustering, a small number of observations
in a dataset intended to form a distinct group may occasionally be assigned to
a neighboring cluster. This inspired the idea that it would be better to use a
more precise starting value for the mass points zk. What we do is that first, take
the scores of the first principal component of the data and perform K-means
on these. Then the starting values for the parameter πk are the proportions of
the clustering assignments, and the starting values for zk are the values of the
K-means centers. The starting values for the rest of the parameters are the same
as described in (i).

The performance of these options is illustrated in Figure 1 for two data sets,
namely the trading data introduced in Section 2, and a 1-level data set where five
fetal movement types serve as multivariate outcomes, and a variable indicating
pre/post-Covid status as covariate (more detail on the modelling in Zhang and
Einbeck, 2024). The left plot shows that, in terms of AIC values obtained from
50 applications of each starting value option, option=3 tends to perform better
than the other three options, with option=2 showing the worst performance.
Meanwhile, for the fetal data, option=2 tends to perform best, emphasizing that
different starting point choices may be successful for different data sets.
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FIGURE 1. Distributions of AIC values from 50 runs for each starting value
option, for the trading data (left) and the fetal data (right).
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Abstract: We introduce the underlap coefficient as a novel metric for the statis-
tical evaluation of medical tests across multiple disease stages, and for measuring
covariate dependence in cluster analysis. Initially designed to quantify separation
between distributions, we demonstrate its application through a covariate-specific
variant estimated via a Bayesian approach. Utilizing a Bayesian nonparametric
covariate-dependent mixture model with a logit stick-breaking prior, we conduct
a case study on Alzheimer’s disease (AD), aimed at evaluating the accuracy of
potential biomarkers in distinguishing between normal cognition, mild cognitive
impairment, and dementia, and examining how this accuracy is influenced by
covariates. This metric is also useful in the context of precision medicine and
targeted interventions, where it’s crucial to assess the dependency of partitions
obtained by mixture models on covariates.

Keywords: Underlap coefficient; Mixture models; Degree of separation; Covari-
ate dependence.

1 The underlap coefficient

Let Yd, where d ∈ {1, 2, . . . ,K}, denote independent continuous random variables
representing the biomarker values across K distinct disease classes. The underlap
coefficient (UNL) (Zhang et al 2024) was proposed to measure a biomarker’s
discriminative ability, and for K classes is defined as:

UNL(f1, . . . , fK) =

∫
max(f1(y), . . . , fK(y))dy, (1)

where fd(y) is density of biomarker value y in group d.
The underlap coefficient can be intuitively interpreted as the ”effective” number
of populations of biomarkers for all groups, drawing an analogy to the effective

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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sample size in Markov chain Monte Carlo (MCMC). Its values range from 1 to K,
with higher values indicating higher degree of separation. A value of K indicates
complete separation of biomarker values across groups, signifying the presence
of K distinct ”effective” populations without any overlap. Conversely, a value of
one for the UNL suggests that only one ”effective” population exists, as all K
populations are identical.
Covariates can impact the discriminatory power of a biomarker and ignoring
covariate information may lead to erroneous inferences about a test’s accuracy,
and therefore a covariate-dependent structure should be included when modelling
the underlap coefficient. Let Xd, where d ∈ {1, 2, . . . ,K}, denote independent
covariate vectors in group d. For a given covariate vector value x, the covariate-
specific underlap coefficient is defined as:

UNL(f1, . . . , fK |x) =
∫

max(f1(y|x), . . . , fK(y|x))dy, (2)

where fd(y|x) denotes the conditional density of Yd, for d ∈ {1, 2, . . . ,K}.

2 Bayesian estimator for the underlap coefficient

Within the Bayesian nonparametric framework, we consider the general class of
covariate-dependent infinite mixture of normals model

fd(y | x) =
∞∑
l=1

ωl(x)ϕ(y|θl(x)), d ∈ {1, 2, . . . ,K}, (3)

where the mixing weights follow a a stick-breaking construction, i.e., ω1(x) =
v1(x), ωl(x) = vl(x)

∏l−1
m=1(1 − vm(x)) for l ≥ 2. Popular particular cases,

mainly due to computational simplicity, of the model specification in (3) include
the single-weights model (ωl(x) = ωl) and the single-atoms model (θl(x) = θl).
However, the covariate-independent assumption for the mixing weights or the
atoms might have limited flexibility in practice. With this in mind, we follow the
logit stick-breaking prior formulation, recently proposed by Rigon and Durante
(2021), which retains the computational simplicity but affords the necessary flex-
ibility needed in many applications. Specifically, let θl(x) = (µl(x), σ

2
l ), where

µl(x) is modelled as a linear combination of selected functions of the covariates
λ(x) = {λ1(x), . . . , λM (x)}T , thus leading to

µl(x) = λ(x)Tβl

A logit stick-breaking prior for the weights is employed, which is represented by
a sequence of logistic regressions:

ηl(x) = logit(vl(x)) = ψ(x)Tαl

where ψ(x) = {ψ1(x), . . . , ψR(x)}T are selected functions of the observed covari-
ates. Note that ηl(x) is interpreted as the log-odds of being allocated to compo-
nent l in the continuation-ratio parameterization (Tutz 1995), conditionally on
the event of surviving to the first (1, . . . , l− 1) components. In practice, the infi-
nite mixture in (3) is truncated to a finite number of components, say L, which
shall be regarded as an upper bound on the number of occupied components. To
complete the model specification, we should set prior distributions for the model
parameters. For conjugacy reasons, we let

αl ∼ NR(µα,Σα), βl ∼ NM (µβ ,Σβ), σ2
l ∼ IG(aσ2 , bσ2),
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where IG(a, b) represents an inverse-gamma distribution with shape parameter
a and rate parameter b. It is worth mentioning that Pólya-gamma data augmen-
tation scheme (Polson et al., 2013) should be adapted to solve the difficulty of
Bayesian inference in logistic regression, in order to get the full posterior con-
ditional distributions of each αl in Gibbs sampling. For a detailed model spec-
ification and justification, please see Rigon and Durante (2021). Based on the
estimated conditional densities, the integral in (1) and (2) can be approximated
numerically by the Simpson’s rule.

3 Examining the the discrminatory ability of 4
potential AD biomarkers by UNL

The dataset derived from the Alzheimer’s Disease Neuroimaging Initiative con-
sists of 1032 subjects, with 313 subjects in the cognitively normal group, 581 sub-
jects in the mild cognitive impairment group, and 138 subjects in the Alzheimer’s
disease group. We aim to evaluate the age and gender effect on the accuracy’s
performance, as measured by the underlap coefficient, of CSF Abeta, CSF Tau,
hippocampal volume, and hypometabolic convergence index (HCI) to distinguish
(simultaneously) between the three groups.
In selecting the predictor functions for modeling the weights in our mixture
model, we employed the ’absolute difference strategy’ (Ariyo et al 2020). This
approach entails choosing a more complex model only if it surpasses a simpler
model by more than 5 units in the criterion value (WAIC/LPML value in our
case). Accordingly, we implemented a B-splines formulation with no interior knots
for the cognitively normal group in the HCI, the mild cognitive impairment group,
and the Alzheimer’s disease group in CSF Abeta, as well as for the cognitively
normal group in hippocampal volume. For the other groups of the four biomark-
ers, raw predictors were used to model the mixing weights. Posterior inference
was obtained using 5000 iterates after 5000 iterations were discarded as burn-in
period.
In Figure 1 we show the estimated age and gender specific underlap coefficient.
For the HCI, the underlap coefficient is consistently higher for females than for
males of equivalent age, implying a marginally superior performance of HCI in fe-
males. The trend of UNL observed for CSF Abeta closely mirrors that of the HCI.
However, it is noteworthy that the UNL values for CSF Abeta are consistently
moderately lower than those for HCI across all age groups and in both genders.
Moreover, the underlap coefficient for CSF Tau is higher for females than for
males up to the age of 77, suggesting a more robust classifying capability for fe-
males within that age range. In terms of hippocampal volume, the rate of change
in the underlap coefficient is more gradual compared to the other three biomark-
ers, with test performance slightly favoring males over females. Also, ignoring
the age effect would lead to underestimate the performance of the biomarkers
for younger individuals and to overestimate it for older individuals. The results
indicate a moderate age & gender effect.
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FIGURE 1. Blue/Pink line and ribbon: posterior mean and 95% credible inter-
vals for the age and gender specific underlap coefficient for the four biomarkers
(Male/Female). Orange/Green line and ribbon: posterior mean and 95% credible
intervals for 3-class underlap coefficient for the four biomarkers ignoring age ef-
fect (Male/Female).

4 Measuring covariate dependence based on UNL

To measure the covariate dependence in cluster analysis, we would need to model
the underlap of covariate rather than that of the response, which is

UNL(f1, . . . , fK) =

∫
max(f1(x), . . . , fK(x))dx, (4)

where fj(x) is density of covariate x in cluster j.
Given a partition with K clusters, if the clusters are equally presented across the
covariate space, the UNL will be close to 1, whereas it will be k when all clusters
correspond to distinct regions in the covariate space.
To illustrate how to use UNL for measuring covariate dependence, we consider one
simulated data example with a quadratic regression function. For i = 1, . . . , 50,

Yi|Xi
ind∼ N(X2

i , 1); Xi
ind∼ U(−5, 5)

we employed a linear dependent Dirichlet process Gaussian mixture (LDDP)
model (formulated as y | x, Px ∼

∑J
j=1 wjN(y | βjx, σ2

j )) to model the data.
Subsequently, we identified a representative partition of the posterior by mini-
mizing the lower bound to the posterior expected Variation of Information from
Jensen’s Inequality (Wade and Ghahramani 2018).
Based on the representative partition, we modeled the covariate x within each
cluster using an unconditional Dirichlet process Gaussian mixture (DPM) model
to compute the underlap coefficient of all clusters together. As depicted in Figure
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FIGURE 2. Representative partition of simulated data generated using the
LDDP model

2, there are two clusters given by the LDDP model in this example, with the
covariate regions of the two clusters are very distinct from each other. The poste-
rior median of UNL is 1.90, and the 95% credible interval of UNL is (1, 77, 1.96).
Both the point estimate and the credible interval approximate 2 closely, suggest-
ing that allowing the weights in LDDP model to depend on covariate x might
enhance the predictive performance.

References

Rigon, T. and Durante, D. (2021). Tractable Bayesian density regression via logit
stick-breaking priors. Journal of Statistical Planning and Inference, 211,
131 – 142.

Wade, S. and Ghahramani, Z. (2018). Bayesian cluster analysis: Point estima-
tion and credible balls (with discussion). Bayesian Analysis, 13, 559 – 626.

Zhang, Z., Inácio, V. and de Carvalho, M. (2024). The underlap coefficient as
measure of a biomarker’s discriminatory ability in a three-class disease
setting. Technical report.

Polson, N. G., Scott J. G. and Windle, J. (2013). Bayesian inference for logis-
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Abstract: High-resolution soil moisture data have great value in many different
application areas. Soil moisture can be measured in a variety of ways, including
using in-situ sensors, which can provide accurate and stable long-term soil mois-
ture values. However, typically the sensor data have limited spatial coverage and
in some cases, soil moisture is indirectly measured through other related covari-
ates. In this project, we develop a data fusion method using an SPDE (Stochastic
Partial Differential Equation) approach to generate detailed soil moisture maps
using measurements of Volumetric Water Content (VWC) and related covariates
obtained from in-situ sensors. This work accommodates both misaligned and
aligned covariates in a spatial perspective. The model is examined via simulation
to explore how model performance scales with the number of sensors. The pre-
liminary results are presented both in a detailed simulation and in a real data
application from Elliot Water in Scotland, UK.

Keywords: Data fusion; Spatial misalignment; INLA-SPDE.

1 Introduction

Monitoring soil moisture can play an important role in helping to inform re-
searchers, regulators and land owners about the available water content of the
soil for agriculture and vegetation. However, the capacity to observe soil mois-
ture is constrained by practical and financial limitations making it challenging to
observe continuously across space and time. We can only monitor soil moisture
at a finite number of spatial locations and time points. One of the most accurate
methods for measuring soil moisture is using in-situ sensors. However, the high
cost of deploying these sensors extensively means that soil moisture data tends
to be collected from a sparse network of monitoring points. Given the limited
in-situ sensor data, it becomes essential to explore the benefits of utilizing other
data sources through developing and using data fusion techniques. Data fusion
allows for the integration of different related determinands from different in-situ

This paper was presented at the 38th International Workshop on Statistical
Modelling (IWSM), Durham University, UK, 14–19 July 2024. The copyright
remains with the author(s). Permission to reproduce or extract any parts of this
abstract should be requested from the author(s).
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FIGURE 1. Locations for the response variable (VWC) and the aligned covariate
(soil temperature) are represented by blue squares, while the misaligned covariate
(rainfall) is represented by red circles.

sensors, enhancing the ability to make informed decisions and understand envi-
ronmental phenomena with more precision, despite the limited direct monitoring
of soil moisture.
Spatial misalignment, which here refers to the response variable and the covari-
ates being observed at different spatial locations, is a common challenge in many
environmental research studies. Scott (2023) mentioned that it is very challenging
to deal with the data fusion of misaligned data. Spatial regression models, com-
monly employed to investigate the relationship between response variables and
covariates while considering spatial correlation, often assume that these variables
are observed at the same locations. However, this is not always true in the real
world; with the development of new technology, it has become increasingly com-
mon for response variables and covariates to be collected from different locations
and data sources, such as environmental sensors gathering information from dif-
ferent collection points. Figure 1 illustrates the spatial distribution of the direct
measurements of soil moisture (Volumetric Water Content, VWC), along with
two variables related to soil moisture: soil temperature and rainfall from sensors
deployed by the Scottish Environment Protection Agency (SEPA) in the Elliot
water catchment, which is located in the north-east of Scotland. In this context,
rainfall is the misaligned covariate, whereas soil temperature is identified as the
aligned covariate.

2 Methodology

This paper uses a spatial regression model to deal with misaligned covariates and
generate a predictive soil moisture map for the Elliot water catchment.
The framework of the geostatistical model is described as follows:

y1(s
∗) = α1 + µ1(s

∗) + e1(s
∗)

y2(s) = α2 + µ2(s) + e2(s) (1)

y3(s) = α3 + β3x(s) + β1(α1 + µ1(s)) + β2(α2 + µ2(s)) + µ3(s) + e3(s),
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where yk(s) denotes the realization of the spatial process Y (·) with k = 1, 2, 3
and s denoting the set of all locations. The notation s∗ here denotes that the
variable is collected at non-aligned locations with other variables, and s denotes
that the variable is collected at the same locations with other variables. The αk
are the intercepts, µk(s) are random fields with Matérn covariance function, x(s)
introduces a covariate as a fixed effect. β1 and β2 are scaling parameters for the
spatial effects, β3 is the scaling parameter of the fixed effect and ek(s) ∼ N(0, σ2

ek)
are uncorrelated error terms defined by a Gaussian white-noise process, and the
error process is spatially uncorrelated. Further, the decision to model a covariate
as either a fixed effect or a random effect depends on its availability at the
predicted target locations.

3 Simulation study

In many applications, real data tends to be complex and hard to explain. Par-
ticularly in environmental applications, the monitoring network used for data
collection can be sparse. So even if the variable of interest is continuous across
space and through time, the scarcity of monitoring makes it challenging to model
spatial correlations due to the small number of available locations. Therefore, a
simulation study is employed to assess the effectiveness of the model with differ-
ent numbers of sensors, where the simulated data are constructed to mimic the
real data Elliot water case as far as possible.
For data simulation, the spatial process µk(s) is simulated by generating inde-
pendent random field realizations from a Matérn Gaussian random field. The
behaviour of the Matérn field is controlled through three parameters: range (ρ),
marginal variance (σ), and smoothness (v). The trend covariate x(s) is derived
from a surface where values (from 0 to 3.5) exhibit an increasing pattern from
the southwest to the northeast across the area.
For each scenario, 100 independent replications are performed to compute pos-
terior quantities of interest which include the posterior mean, posterior median,
and 95% credible intervals of the parameters within the model. As above, the
viability of this approach in such a data constrained setting can be evaluated by
fitting the model using a different number of locations. The number of locations
for each variable can be found in Table 1, where n1 is the number of misaligned
covariate locations, n2 is the number of aligned covariate locations, and n3 is the
number of response variable locations. The model is fitted using integrated nested
Laplace approximation (INLA) and SPDE approaches (Lindgren and Rue, 2011).
The details about the prior distribution and the parameter setting for the model
fitting can be found in Lindgren and Rue (2015).
Table 1 presents the mean from the posterior distributions for a selection of the
parameters within the model. It reveals consistent and accurate estimations for
the fixed effect parameters regardless of the amount of available data. As the
number of locations increases, the accuracy in estimating the scaling parameters
β1 and β2 improves. However, for some remaining parameters, for example, the
estimation of ρ3 is not accurate no matter how many locations are available
within our tested ranges. The simulation of model (1) indicates that 95% CIs
(not shown) from the number of sensors in the real data (n1 = 10, n2 = 22, n3

= 22) capture true fixed effects values only, whereas CIs from the large sample
size accurately include most parameter values.
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TABLE 1. Mean of the posterior parameter distribution as the number of loca-
tions varies, offering insights into how parameter estimates evolve across different
scenarios.

n1 n2,n3 α1 α2 α3 β1 β2 β3 ρ1 ρ2 ρ3

10 22 0.46 0.76 0.76 -0.15 -0.09 -0.25 2.19 1.37 2.15
40 88 0.49 0.8 0.74 -0.22 -0.15 -0.19 1.68 1.68 3.51
200 440 0.46 0.79 0.94 -0.3 -0.35 -0.19 3.58 3.38 2.7

Actual Value 0.5 0.8 1 -0.3 -0.4 -0.2 4 3 2

FIGURE 2. Prediction of VWC from sensors in the Elliot Water catchment
on 06/01/2022 (top left), 06/02/2022 (top right), 06/03/2022 (bottom left) and
06/04/2022 (bottom right)

4 Real data application

Model (1) is implemented for the soil moisture dataset of the Elliot Water catch-
ment, where y1 represents rainfall, y2 represents soil temperature, y3 represents
Volumetric Water Content (VWC) and x denotes high resolution elevation data.
All the variables are normalized between 0 and 1 to prevent one variable from be-
ing overly influential when they are measured in different units. Figure 2 displays
the predicted soil moisture map for the Elliot water catchment on 06/01/2022,
06/02/2022, 06/03/2022, and 06/04/2022 individually. Notably, the soil moisture
map for 06/01/2022 shows more spatial variation, particularly in the middle-
bottom region, which is directly linked to the availability of the number of in-situ
sensors over time. The circles represent the actual VWC values measured by sen-
sors. Due to the sparse monitoring network of the in-situ sensors, the predicted
mean does not exhibit significant spatial variation. The elevation, which is avail-
able everywhere, accounts for the observed spatial patterns in the areas where
there are no sensors.
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5 Conclusion and future directions

In this paper we have proposed a spatial regression model to predict soil mois-
ture from (mis)aligned covariates. The effectiveness of the model has been il-
lustrated through simulation and real data indicating the information gained
through the increase in in-situ sensor locations. The future work includes expand-
ing the spatio-only model to a spatio-temporal model to improve the estimation
of parameters through the utilization of temporal data as well as incorporat-
ing grid satellite data to enhance the spatial coverage of the soil moisture map
(Moraga et al., 2017).
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Abstract: Fusing remotely-sensed reflectance data from different sources at dif-
ferent spatial and temporal scales is useful to monitor lake water quality. The
nonparametric statistical downscaling model (NSD) [Wilkie et al., 2019, Envi-
ronmetrics] can account for a change of spatial and temporal support between
two remote sensors, but it is computationally demanding for large datasets. This
work proposes a method to improve the computational efficiency of the NSD
model by endowing it with a Gaussian predictive process. The predictive per-
formance and computational efficiency of both models are compared through
simulation and using satellite reflectance data from Lake Garda.
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