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Abstract
Image inpainting, or image completion, is a crucial task in computer vision that aims

to restore missing or damaged regions of images with semantically coherent content.
This technique requires a precise balance of local texture replication and global contex-
tual understanding to ensure the restored image integrates seamlessly with its surround-
ings. Traditional methods using Convolutional Neural Networks (CNNs) are effective
at capturing local patterns but often struggle with broader contextual relationships due
to the limited receptive fields. Recent advancements have incorporated transformers,
leveraging their ability to understand global interactions. However, these methods face
computational inefficiencies and struggle to maintain fine-grained details. To overcome
these challenges, we introduce M×T composed of the proposed Hybrid Module (HM),
which combines Mamba with the transformer in a synergistic manner. Mamba is adept
at efficiently processing long sequences with linear computational costs, making it an
ideal complement to the transformer for handling long-scale data interactions. Our HM
facilitates dual-level interaction learning at both pixel and patch levels, greatly enhancing
the model to reconstruct images with high quality and contextual accuracy. We evaluate
M×T on the widely-used CelebA-HQ and Places2-standard datasets, where it consis-
tently outperformed existing state-of-the-art methods.

1 Introduction
Image inpainting, as known as image completion, aims at restoring missing or damaged
parts of images with semantically plausible context. This demands accurate modeling of
both global and local information within the corrupted image, which is crucial as the global
and local interaction maintains the coherence of both the content and style of the missing
areas, ensuring seamless integration with the surrounding image regions [42].

Convolutional Neural Networks (CNNs) have been employed for image inpainting, cap-
italizing on their ability to capture local patterns and textures. However, CNNs-based meth-
ods are inherently limited by the slow-grown receptive field, which limits the ability to grasp
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broader image context [17, 46]. To solve this issue, recent advancements [4, 17] have seen
the integration of transformer or self-attention into image inpainting, leveraging their capa-
bility to capture global correlations across entire images. However, transformer-based meth-
ods are often constrained by quadratic computational complexity, prompting most methods
to process images in smaller patches to reduce the spatial dimension [36, 48], to learn the
interaction in patch-level. This patch-based approach hinders the learning of fine-grained
details, often resulting in artifacts in the generated images.

Mamba [7], merging from the domain of long-sequence modeling, offers promising ad-
vantages for handling long sequential data and capturing long-range dependency efficiently,
all at a linear computational cost. This capability makes Mamba particularly suitable for
globally learning interactions at the pixel level, thus complementing transformers by adding
detailed context.

We observe that, Mamba and transformer exhibit complementary strengths: Mamba is
good at learning long-range pixel-wise dependency, which is computationally expensive for
the transformer. Conversely, transformer is good at capturing global interactions between
localized patches, such spatial awareness is an area that Mamba lacks due to it being designed
for sequence modelling.

In this paper, we introduce M×T, consisting of proposed Hybrid Modules that synergis-
tically combine the strengths of both transformer and Mamba. This novel approach allows
for dual-level interaction learning from the patch level and pixel level. Our comparative ex-
periments demonstrate that our M×T outperforms existing state-of-the-art methods on two
wildly used datasets, CelebA-HQ and Places2. We summarize our contributions as: 1) We
propose M×T to introduce Mamba combined with transformer for image inpainting. 2) We
design a novel Hybrid Module to capture the feature interaction at both the pixel level and
patch level. 3) Our M×T overall suppress the state-of-the-art methods on both CelebA-HQ
and Places2 datasets. 4) M×T is able to adapt to high-resolution images with only training
on low-resolution data.

2 Related Work

2.1 Image Inpainting

Image inpainting is an ill-posed low-level vision task that aims to infer the missing regions
of the image via the undamaged pixels. Conventional works employ diffusion-based ap-
proaches to inpaint the missing regions by deriving by neighbouring visible pixels [32], or
filling the missing areas by using the good match patches from the background or external
sources such as the depth information [1, 2]. Although these methods can effectively com-
plete small missing regions, they face challenges in precisely reconstructing more complex
scenes due to limited global understanding of the image. Recently, deep learning based im-
age inpainting studies propose to use CNN-based encoder-decoder architecture [33, 39, 44]
or CNN-based Generative Adversarial Networks (GANs) [13, 28, 31, 38, 41, 42], which sig-
nificantly improves the visual plausibility and diversity of inpainted images. However, the
limited convolutional receptive field hinders the model’s learning of long-range dependen-
cies, which motivates studies on expanding the receptive field by applying the frequency con-
volution techniques [5, 34] or developing transformer-based models [3, 4, 17, 19]. Nonethe-
less, practical training and application of the transformer-based models are still constrained
by the exponential complexity of self-attention calculations. In particular, it is still challeng-
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ing to use pixel-level self-attention to achieve relatively high-resolution image inpainting.
To this end, we turn our eyes to the field of selective SSM (i.e., Mamba [7]) for achieving
image long-range pixel-wise dependency learning with robust spatial awareness.

2.2 SSMs in Computer Vision
Recently, State Space Models (SSMs) have demonstrated promising advantages of long se-
quence modeling and linear-time complexity in Natural Language Processing (NLP) [9].
This work specifically tackles the problem of vanishing gradients in SSMs when solving the
exponential function by the linear first-order Ordinary Differential Equations [8]. Building
on the rigorous theoretical proofs of the HiPPO framework that enables SSMs to capture
long-range dependencies, Gu et al. [7] further introduce a data-dependent selective structure
SSM (i.e., Mamba) to significantly improve the computational efficiencies in conventional
SSMs. Inspired by pioneering SSMs, vision-specific adaptations of the Mamba architecture,
such as Vision Mamba [50] and V-Mamba [22], propose visual SSMs designs for com-
puter vision tasks including image classification and object detection [22, 50]. However,
their performance is still behind of the state-of-the-art transformer-based models like Spect-
Former [27], SVT [26], and WaveViT [40]. U-Mamba [24] effectively extends the capabili-
ties of Mamba for biomedical image segmentation by proposing a hybrid CNN-SSM block.
However, these studies ineffectively leverage the capabilities of Mamba in image long-range
pixel-level dependency learning and overlook the critical spatial awareness during model
designs.

3 Preliminary

3.1 State Space Models and Mamba
The State Space Model (SSM) is generally known as a linear time-invariant system that maps
a 1-dimensional input sequence x(t)∈R to a response y(t)∈R via a hidden latent state h(t)∈
RN (Eq.1). For efficient linear-complexity deep learning model training, the structured SSMs
employ a zero-order hold discretization rule (Eq.2) to transform the continues parameter
(∆,A,B) to discrete parameters (A,B), as shown in Eq.3.

h′(t) = Ah(t)+Bx(t) (1a), y(t) = Ch(t) (1b), (1)

A = exp(∆A), B = (∆A)−1(exp(∆A)− I) ·∆B, (2)

ht = Aht−1 +Bxt (3a), yt = Cht (3b). (3)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N , and ∆ is a time-scale parameter. Mamba [7],
one of the most recent selective SSMs, introduces a gated selective mechanism to propa-
gate or eliminate selected information based on the current state, significantly improving the
content-reasoning performance. Specifically, Mamba changes the model from time-invariant
to time-varying via converting parameters ∆, B, C into input-dependent functions.

4 Method
The overall pipeline of the proposed M×T is illustrated in Fig. 1, which is a U-Net shape
architecture formed with 7 Hybrid Blocks. Formally, the masked image Imasked ∈ RH×W×3
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Figure 1: (a) The architecture overview of the proposed M×T. (b) The Hybrid Block is
composed of n proposed Hybrid Modules. (c) The proposed Hybrid Module, consisted of a
Mamba Block, a Spatial Reduced Self-Attention and a Context Broadcasting Feed-forward
Network. (d) The Spatial Reduced Self-Attention provides spatial awareness. (e) The
Mamba Block captures pixel-level interaction. (f) The Context Broadcasting Feed-forward
Network transfers the features.

concatenated with a mask M ∈RH×W×1 as the input Iin. We first use an overlapped convolu-
tion to embed Iin, then feed into the following 7 HBs with 3 times downsampling and 3 times
upsampling. At the end, one convolution layer projects the final output Iout . Each Hybrid
Block consists of n Hybrid Modules (HM), as shown in Fig. 1 (b), where n is the number
of HMs. Each HM has a Transformer block, a Mamba block and a Context Broadcasting
Feedforward Network (CBFN), which will be detailed in section 4.1.

4.1 Hybrid Module

Each of the seven Hybrid Modules involves a pair of SRSA (Spatial Reduced Self-Attention)
and Mamba modules for capturing long-range dependency, followed by a Context Broad-
casting Feedforward Network (CBFN) to enhance the local context and control data flow
consistency.

Spatial Reduced Self-Attention. We introduce the Spatial Reduced Self-Attention (SRSA)
module, designed to leverage the capability of the transformer for capturing global correla-
tion while enriching local context detail. Specifically, given a input feature F , we first apply
layer normalization followed by a 1× 1 convolution and a 3× 3 depth-wise convolution to
extract the local features:

F ′ = DConv3×3(Conv1×1(LayerNorm(F))). (4)

The feature F ′ is then split along the channel dimensions to form the Query Q, Key K and
Value V . To address the traditional quadratic computational complexity of self-attention, we
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share the idea with PVTv2 [37] to adopt average pooling for K and V to a fixed dimension.

K′,V ′ = AvgPool(K),AvgPool(V ),

Att = so f tmax(K′ ·Q),
(5)

where Att is the attention map. In this work, the spatial dimension is reduced to 8. After
multiplying Att and V ′, we get the initial output F ′′. To further enhance local context, we in-
corporate a Local Enhancement operation LE(V ) as proposed in [29], which is implemented
using a 3× 3 depth-wise convolution, to effectively balances capturing extensive global in-
teractions with detailed local features. After an element-wise addition, the final output of
SRSA is:

LE(V ) = DConv3×3(V ),

Out putsrsa = LE(V )+Att ·V ′,
(6)

Mamba with Positional Embedding. Mamba showcases a strong capacity to handle long
sequence data with linear computational complexity, making it highly effective for modeling
interactions between adjacent pixels. In this work, we propose leveraging the Mamba mod-
ule to modeling the flattened feature, thereby capturing long-range dependency at the pixel
level, which is expensive to capture by self-attention. To adapt Mamba more aptly for vi-
sion tasks and enhance its ability to maintain positional awareness, we incorporate positional
embedding into the module.

Within the Mamba module, given an input feature F with the shape of (B,C,H,W ), the
process begins by flatting and transposing it to (B,C,L), where L = H ×W :

F ′ = transpose(reshape(F,(B,C,L))). (7)

Subsequently, we introduce cosine positional embedding [35] to the transformed feature,
enhancing the capacity to maintain positional awareness:

F ′′ = F ′+PE(L). (8)

After applying layer normalization, mamba implements a gated mechanism to further re-
fine the feature representation. The body branch involves a linear layer, a SiLU activation
function [11], 1D convolutional layer and the SSM (State Space Sequence Models) layer.

Fbody = SSM(Conv1D(SiLU(Linear(F ′′)))) (9)

The gate branch involves a linear layer and a SiLU activation function [11]. After the gate
branch re-weight the body branch, the output will be reshaped to the shape of (B,C,H,W ):

G = SiLU(Linear(F ′′)),

Fgated = G ·Fbody,

Out putmamba = reshape(Fgated ,(B,C,H,W )),

(10)

where G is the gate matric, Fgated is the output from gate mechanism, Out putmamba is the
final output from Mamba module.

Context Broadcasting Feed-forward Network. We propose Context Broadcasting Feed-
forward Network (CBFN) by improving the Gated-Dconv Feed-Forward Network (GDFN) [46].
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The GDFN is recognized for its efficacy in enhancing local context through a gated mech-
anism with depth-wise convolution. To build upon this, our CBFN integrates a global pro-
cessing stage post-GDFN. Specifically, we implement global average pooling followed by
channel-wise averaging to obtain the overall mean value of the input feature F , denoted as
µ = GlobalAvgPool(F), where F is the output from GDFN. This µ is then broadcast to the
dimensions of F and added to it. The output of CBFN is represented as F ′:

F ′ = F +broadcast(µ). (11)

This global processing is designed to facilitate the learning of dense interactions within the
self-attention layers [12], thereby enhancing the effectiveness of the Hybrid Module.

4.2 Loss Functions

To achieve superior inpainting outcomes, we adopt a multi-component loss strategy as de-
lineated in the previous research [4, 18, 25]. This strategy includes an L1 loss, a style loss
Lstyle, a perceptual loss Lperc and an adversarial loss Ladv. The composite loss function is
formulated as:

Lall(Iout , Igt) = α1L1 +α2Lstyle +α3Lperc +α4Ladv, (12)

where Iout and Igt are the reconstructed image and ground truth, respectively. α1=1, α2=250,
α3=0.1, and α4=0.001 are the weighting factors for each component.

5 Experiment Results

Datasets. We evaluate our M×T on two diverse datasets, CelebA-HQ [14] and Places2-
standard [49], to ensure a comprehensive comparison. CelebA-HQ is a dataset consisting of
high-quality human face images. For CelebA-HQ, we train our model on the first 28000 im-
ages and reserve the remaining 2000 for testing. Places2 comprises a wide range of natural
and indoor scene images. For Places2, we employ the standard training set, which includes
1.8 million images, and test on its validation set of 30000 images. We follow [4, 10, 18] to
conduct all experiments with the widely used irregular mask [20] in three mask ratios.

Implementation Details. All experiments are carried out on one Nvidia A100 GPU. During
training, we adopt the Adam optimiser [15] with β1 = 0.9, β2 = 0.999. The learning rate is
set to 1×10−4 and the batch size is 4. In the Hybrid Blocks, the numbers of Hybrid Modules
are [4,6,6,8,6,6,4].

Evaluation Metrics. We followed [4, 18] to evaluate the image generation quality with Peak
Signal-to-Noise ratio (PSNR), Structural similarity (SSIM), L1, Frechet inception distance
(FID) and Perceptual Similarity (LPIPS). We use these metrics as they offer insights into the
quality of the images generated by the model. PSNR, SSIM, and L1 metrics evaluate recon-
struction quality at the pixel level, assessing fine-grained details and structural context. FID
quantifies the distributional differences between generated images and the original dataset.
LPIPS is employed to reflect differences in human perception.
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CelebA-HQ 0.01%-20% 20%-40% 40%-60%
Method PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

DeepFill v1 [42] 34.2507 0.9047 1.7433 2.2141 0.1184 26.8796 0.8271 2.3117 9.4047 0.1329 21.4721 0.7492 4.6285 15.4731 0.2521
DeepFill v2 [43] 34.4735 0.9533 0.5211 1.4374 0.0429 27.3298 0.8657 1.7687 5.5498 0.1064 22.6937 0.7962 3.2721 8.8673 0.1739

WaveFill [45] 31.4695 0.9290 1.3228 6.0638 0.0802 27.1073 0.8668 2.1159 8.3804 0.1231 23.3569 0.7817 3.5617 13.0849 0.1917
RePaint [23] - - - - - - - - - - 21.8321 0.7791 3.9427 8.9637 0.1943
LaMa [34] 35.5656 0.9685 0.4029 1.4309 0.0319 28.0348 0.8983 1.3722 4.4295 0.0903 23.9419 0.8003 2.8646 8.4538 0.1620
MISF [18] 35.3591 0.9647 0.4957 1.2759 0.0287 27.4529 0.8899 2.0118 4.7299 0.1176 23.4476 0.7970 3.4167 8.1877 0.1868
MAT [17] 35.5466 0.9689 0.3961 1.2428 0.0268 27.6684 0.8957 1.3852 3.4677 0.0832 23.3371 0.7964 2.9816 5.7284 0.1575
CMT [16] 36.0336 0.9749 0.3739 1.1171 0.0261 28.1589 0.9109 1.2938 3.3915 0.0817 23.8183 0.8141 2.8025 5.6382 0.1567

Ours 36.7394 0.9737 0.3614 1.1142 0.0229 28.8098 0.9112 1.2413 3.3890 0.0722 24.3784 0.8220 2.6739 5.6041 0.1402

Places2 0.01%-20% 20%-40% 40%-60%
Method PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓

DeepFill v1[42] 30.2958 0.9532 0.6953 26.3275 0.0497 24.2983 0.8426 2.4927 31.4296 0.1472 19.3751 0.6473 5.2092 46.4936 0.3145
DeepFill v2[43] 31.4725 0.9558 0.6632 23.6854 0.0446 24.7247 0.8572 2.2453 27.3259 0.1362 19.7563 0.6742 4.9284 36.5458 0.2891

CTSDG [10] 32.1110 0.9565 0.6216 24.9852 0.0458 24.6502 0.8536 2.1210 29.2158 0.1429 20.2962 0.7012 4.6870 37.4251 0.2712
WaveFill [45] 29.8598 0.9468 0.9008 30.4259 0.0519 23.9875 0.8395 2.5329 39.8519 0.1365 18.4017 0.6130 7.1015 56.7527 0.3395

LDM [30] - - - - - - - - - - 19.6476 0.7052 4.6895 27.3619 0.2675
Stable Diffusion∗ - - - - - - - - - - 19.4812 0.7185 4.5729 27.8830 0.2416

WNet [47] 32.3276 0.9372 0.5913 20.4925 0.0387 25.2198 0.8617 2.0765 24.7436 0.1136 20.4375 0.6727 4.6371 32.6729 0.2416
MISF [18] 32.9873 0.9615 0.5931 21.7526 0.0357 25.3843 0.8681 1.9460 30.5499 0.1183 20.7260 0.7187 4.4383 44.4778 0.2278
LaMa [34] 32.4660 0.9584 0.5969 14.7288 0.0354 25.0921 0.8635 2.0048 22.9381 0.1079 20.6796 0.7245 4.4060 25.9436 0.2124
CMT [16] 32.5765 0.9624 0.5915 22.1841 0.0364 24.9765 0.8666 2.0277 32.0184 0.1184 20.4888 0.7111 4.5484 35.1688 0.2378

Ours 32.9940 0.9672 0.5950 15.3980 0.0334 25.3278 0.8756 1.9404 23.7109 0.1106 20.7022 0.7319 4.3379 26.9155 0.2372

∗: The officially released Stable Diffusion inpainting model pretrained on high-quality LAION-Aesthetics V2 5+ dataset.

Table 1: Quantitative comparison against state-of-the-art methods on CelebA-HQ (top), and
Places2 (bottom). The best and second-best are indicated by Bold and underline, respec-
tively.

5.1 Comparison with State of the Art

Quantitative Comparison. For a fair comparison, we employ the officially released models
and test them with the same test sets and masks. As shown in table 1, our M×T outperforms
in all metrics across different mask ratios. Especially on CelebA-HQ, at the increasing mask
ratios, M×T improves PSNR by 2.0%, 2.3% and 1.8% respectively, and decreases LPIPS
by 12.3%, 11.6% and 10.5% respectively. Moreover, for Places2, our model demonstrated
comparable performance to SOTAs such as MISF and LAMA. While our training utilized
the Places2-Standard dataset with 1.8 million images, MISF and LAMA were trained on the
Places2-Challenge dataset, which contains 8 million images. Despite using only 22.5% of
the images employed by these benchmarks, our model achieved comparable results, show-
casing its robustness and efficiency.

Qualitative Comparison. The qualitative comparisons are presented in Fig. 2. For human
face samples, M×T maintains consistency from the visible regions to the missing regions,
such as effectively reconstructing elements like a missing hat. Additionally, M×T renders
features like eyes with improved fine-grained details, showcasing its strong capability in
learning complex representations. In the Places2 dataset, M×T effectively captures the spa-
tial layouts in indoor environments and excels at maintaining the architectural integrity of
the road surfaces. Such examples highlight our M×T has superior spatial perceptions.

Efficiency Comparison. Our M×T efficiently reduces spatial dimensions within the trans-
former and leverages Mamba’s inherent capabilities, both achieving linear complexity. This
synergy optimizes operational simplicity while enhancing effectiveness. As shown in Tab. 3,
our model comprises 180 million parameters and achieves 110 ms to infer one image, making
it suitable for real-time applications.
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Input WaveFill [45] LAMA [36] MISF [18] MAT [17] RePaint [23] CMT [16] Ours GT

Input WaveFill [45] LAMA [36] MISF [18] MAT [17] RePaint [23] CMT [16] Ours GT

Figure 2: Visual comparisons at (256×256) resolution against the state-of-the-art methods
on CelebA-HQ [14] (first two rows) and Places2 [49] (last two rows).

Components 0.01%-20% 20%-40% 40%-60%

MB SRSA GDFN [46] CBFN PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓ PSNR↑ SSIM↑ L1↓ FID↓ LPIPS↓
(a) 33.5812 0.9537 0.5385 1.4877 0.0513 25.8971 0.8527 1.9786 4.4025 0.1480 21.6134 0.7308 4.1254 8.1732 0.2464
(b) ✓ ✓ 33.7640 0.9567 0.5244 1.4604 0.0425 26.1093 0.8736 1.8007 4.3721 0.1236 21.8573 0.7614 3.8649 8.0315 0.2197
(c) ✓ ✓ 33.7408 0.9598 0.5295 1.4181 0.0422 26.1274 0.8760 1.8092 4.3577 0.1196 21.8914 0.7682 3.8587 7.9974 0.2157
(d) ✓ ✓ ✓ 33.9042 0.9610 0.5129 1.4362 0.0419 26.2847 0.8768 1.7498 4.3115 0.1178 22.1377 0.7687 3.7679 7.9910 0.2067
(e) ✓ ✓ ✓ 34.1393 0.9618 0.5010 1.3896 0.0411 26.3231 0.8780 1.7043 4.2927 0.1170 22.1704 0.7699 3.6337 7.9905 0.2053

Table 2: Ablation studies of each component. MB is the Mamba Block with positonal em-
bedding. SRSA is the Spatial Reduced Self-Attention. GDFN is the feed-forward network
in [46]. CBFN is the Context Broadcasting Feed-forward Network. Our M×T corresponds
to configuration (e).

5.2 Ablation Study

In our comprehensive ablation study conducted on CelebA-HQ, we incrementally enhance
the baseline U-Net shape model, observing significant performance improvements with the
integration of each component. Results are shown in the Tab. 2. The addition of the Mamba
Block in configuration (b) and the addition of self-attention in configuration (c) both demon-
strated improvement across all evaluated metrics compared to the baseline (a). Notably,
self-attention improves in SSIM, suggesting its superior capability in capturing spatial inter-
actions. Mamba showcases the superior in capturing pixel-level interactions, demonstrated
by the better PSNR and L1 values. The simultaneous use of Mamba and self-attention in
configuration (d) lead to further improvements, indicating that these components effectively
complement each other and contribute to a robust model. Configuration (e) is our final
model, where we optimize GDFN to CBFN. The overall metrics are further improved. All

Model Wavefill [45] WNet [47] MISF [18] MAT [17] LAMA [34] CMT [16] SD [30] LDM [30] Repaint [23] Ours
Param ×106 49 46 26 62 51 143 860 387 552 180
Infer. Time (ms) 70 35 10 70 25 60 880 6000 250000 110

Table 3: Comparison of parameter count and inference time from the evaluations conducted
on 256×256 images.
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GT Masked Input Output

Figure 3: Illustration of the application on real-world high-resolution images with resolution
of 2560×1920.

GT Masked Input Output

Figure 4: Illustration of a fail case with a much larger mask ratio.

ablation experiments are trained for 30K iterations. In addition, we followed [6] to build a
light M×T with a halved parameter for an efficient evaluation.

5.3 Application: High-Resolution Image Inpainting

Our M×T is designed with linear computational complexity, enabling it to effectively handle
high-resolution image inpainting tasks. We directly apply our model, pre-trained on the
Places2-standard dataset, to real-world high-resolution images, demonstrating its capability.
The example is illustrated in Fig. 3.

5.4 Limitation and Discussion

Fail Cases. Our model is trained using a wildly used irregular mask dataset [21], where
the largest mask ratio is 60%, which restricts the ability to effectively handle images with
much larger missing regions., particularly when the missing regions are concentrated in large
shapes, such as very large rectangular masks (as shown in Fig. 4).
Future Work. In this work, our goal is to develop an inpainting model capable of recon-
structing high-quality images, emphasizing fine-grained details and contextually plausible
structures. Moving forward, our next objective is to enhance its capability by integrating
multimodal foundational models, such as CLIP, to make the inpainting process controllable
through text guidance, allowing users to influence the reconstruction results with descriptive
input, while maintaining high quality.
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6 Conclusion
In this paper, we introduce M×T, a hybrid model for image inpainting designed to recon-
struct high-quality images with fine-grained details and spatial coherence. The proposed
Hybrid Module effectively combines transformer and Mamba, leveraging the capacity of
Mamba for capturing pixel-wise long-range interaction along with the spatial perception pro-
vided by the transformer. This integration enables M×T to maintain linear computational
complexity, which is particularly advantageous for handling high-resolution images. We
validate M×T on the widely-used CelebA-HQ and Places2 datasets, where it demonstrated
superior or comparable performance to existing state-of-the-art methods.
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