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Many-body dissipative particle dynamics
simulations of micellization of sodium alkyl
sulfates†

Rachel L. Hendrikse, *a Carlos Amadorb and Mark R. Wilson a

We present a study of micelle formation in alkyl sulfate surfactants using the simulation method of

many-body dissipative particle dynamics (MDPD). We parametrise our model by tuning the

intermolecular interactions in order to reproduce experimental values for the chemical potential and

density at room temperature. Using this approach, we find that our model shows good agreement with

experimental values for the critical micelle concentration (CMC). Furthermore, we show that our model

can accurately predict CMC trends, which result from varying properties such as surfactant tail length

and the salt concentration. We apply our model to investigate the effect of aggregation number on

various micellar properties, such as the shape of individual micelles and the fraction of bound

counterions. We show that micelles become aspherical at large aggregation numbers, in line with

experimental predictions, and that longer tail surfactants are generally more spherical at all aggregation

numbers compared to those which are shorter. We find excellent agreement between our simulations

and experimental values for the degree of counterion binding, a factor that is crucial to accurately

studying micellar shape, but one that is typically overlooked in the existing literature.

1 Introduction

Surfactants are key components in a huge variety of everyday
products, including detergents and personal care items.
Surfactants are surface-active amphiphilic molecules that are
capable of forming micelles in solution when the concentration
is above a critical micelle concentration (CMC). At higher con-
centrations, lyotropic liquid crystal phases can be produced,1–3

however, most commercial products are at concentrations in the
micellar range: the phase region of interest in this article.

One of the most widely studied surfactants is the anionic
surfactant sodium dodecyl sulfate (SDS), which is present in a
large range of products such as shampoos and cleansers. Due
to its widespread use in commercial products, there has been a
great deal of experimental research dedicated to studying the
size and shape of SDS micelles,4–15 as well as determining the
CMC value.16–19 Therefore, the creation of an accurate model
for studying and understanding SDS aggregation behaviour is
of great interest, particularly to aid the design of commercial

products. We developed our model with the primary objective
of studying SDS. However, this model can be easily extended to
other surfactants. Consequently, we also investigate the varia-
tion in the length of the surfactant tail, allowing us to also study
sodium octyl sulfate and sodium hexadecyl sulfate; together
with the effects of additional salt.

Simulating surfactant solutions is challenging, primarily
because of the time scales involved in micelle formation. While
molecular dynamics (MD) simulations for SDS micelles can be
found in existing literature,20–25 these studies are typically limited
to simulating single preassembled micelles. These limitations
motivated the development of coarse-grained simulation methods,
such as dissipative particle dynamics (DPD).26 DPD is computa-
tionally faster than traditional MD techniques, which opens up the
possibility of simulating larger length and time scales. This speed-
up is partly because molecules are simulated using ‘beads’, which
represent groups of atoms as opposed to simulating individual
atoms, but is also due to the form of forces which represent the
intermolecular interactions between beads. The forces between
beads are designed in DPD to enhance diffusion, leading to shorter
equilibration periods. DPD has been shown across the literature to
be a highly useful tool for modelling surfactant systems, in
particular for predicting critical micelle concentrations27–29 and
for studying micellar shape and size.28,30,31 DPD has also been
shown to be useful for studying systems at higher concentrations,
including surfactants which form liquid crystal structures.31–34
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One of the drawbacks of the DPD method is that there is not
yet a force field which can be readily applied to any molecule of
choice. There are several existing parametrisation attempts in
the literature,26,35–47 including for SDS,28,29,32 but these
approaches are typically limited to small subsets of molecules.
These parametrisation attempts have also had varying success
in being able to make qualitative predictions, which agree with
experimental data since, for example, the aggregation number
is typically underestimated in existing models.28,29

Since its inception, traditional DPD methods have been
extended and modified to make them more versatile and applic-
able to a greater range of systems. This includes the adaptation of
many-body dissipative particle dynamics (MDPD),48 which we will
use in this work. MDPD is a variation of standard DPD, in which
the conservative interaction force between beads is altered from
being purely repulsive to one with long-range attractive and short-
range repulsive components. This makes the potential more
comparable to a molecular dynamics pair potential, such as the
Lennard-Jones potential. Adapting the potential in this way has
benefits, including the ability to simulate coexisting liquid and
vapour phases. It also allows for the possibility of reproducing
realistic chemical potentials since it allows negative potential
energies to be calculated. In Section 2 of this article we highlight
why this makes MDPD an attractive choice for studying micelles.

This article is structured as follows. We first present a brief
overview of the many-body dissipative particle dynamics
method, before presenting our approach to parametrising
surfactant simulations. We then calculate the CMC of SDS
molecules and show how this can be influenced by varying
the surfactant tail length and the addition of salt. Finally, we
calculate the aggregation number and present a short study of
how the aggregation number influences micelle shape.

2 Many-body dissipative
particle dynamics
2.1 Background and overview

In standard DPD, nonbonded beads are acted upon by three
forces, which are typically referred to as the conservative,
random, and dissipative forces. For the conservative force,
the interaction between beads i and j is given by

FC
ij ¼

aij 1� rij

rC

� �
r̂ij for rij o rC

0 for rij � rC

8><
>: (1)

where 0 o aij and can vary between different bead types. rij is
the distance that separates the beads and rC is the interaction
cut-off, commonly taken to be rC = 1.

The remaining two non-bonding forces are the dissipative (or
drag) force FD

ij and a random pairwise force FR
ij, which act as the

simulation thermostat. The dissipative force is calculated using

FD
ij = �goD(rij)(r̂ij�vij)r̂ij, (2)

and the random force using

FR
ij = soR(rij)zijr̂ijDt�1/2, (3)

where oD and oR are weight functions, g is a friction coefficient
and s is the noise amplitude. vij is the velocity between beads i
and j, Dt is the time step and zij(t) is a randomly fluctuating
Gaussian variable with zero mean and unit variance. It was shown
by Español and Warren49 that the relationship between the weight
functions and amplitudes must obey the following relations

oD = [oR]2 (4)

s2 = 2gkBT, (5)

where kB is the Boltzmann constant and T is the temperature.
In this work, we set kBT = 1 and set the values of constants to be
s = 3 and g = 4.5.

Individual DPD beads can be chemically bonded to create
coarse-grained molecules. The bonding force is calculated
via the potential UB

ij, which is represented as a harmonic
spring using

UB
ij ¼

C

2

X
j

ðrij � l0Þ2; (6)

where l0 is an equilibrium bond length and C is a constant. The
molecules are also subject to angle constraints to maintain a
realistic rigidity. These angle potentials take the form

UA
ij ¼

D

2

X
j

ðyijk � y0Þ2; (7)

where D is a constant, yijk is a bond angle between beads i, j and
k, and y0 is an equilibrium bond which we set to y0 = 1801. For
constants C and D we set C = 150 and D = 5 (DPD units).

In this paper, we choose to use an adaptation of DPD called
many-body dissipative particle dynamics (MDPD). In MDPD,
the form of the forces used is identical to the standard case for
all except for the conservative force. The conservative force is
altered to include both attractive and repulsive components,
taking the form

FC
ij ¼

aij 1� rij

rC

� �
þ Bðri þ rjÞ 1� rij

rd

� �
; if rij o rd;

aij 1� rij

rC

� �
; if rd o rij o rC

0; if rij 4 rC

8>>>>>>><
>>>>>>>:

(8)

where r are local densities for each particle, and are
calculated as

ri ¼
X
iaj

15

2prd3
1� rij

rd

� �2

; for rij o rd: (9)

Similarly to traditional DPD, the cutoff rC is usually taken as
rC = 1 and the cut-off for the density dependent component rd is
taken as rd = 0.75.50 In contrast to standard DPD, we define
aij o 0, with this term therefore acting as an inter-particle
attraction. The constant B, on the other hand, takes a positive
value (0 o B), producing a repulsive, density-dependant term.
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The no-go theorem51 imposes the condition that B and rd

parameters are the same for all particle types and in this work
we chose to make the common choice of setting B = 25 and rd =
0.75.50,52,53

2.2 Electrostatics

Charged systems are also subject to an additional electrostatic
force FE

ij acting on the beads. In molecular dynamics simula-
tions, it is typical to treat charged atoms as point charges.
However, in standard DPD simulations, it is usually the case
that researchers28,29,31,54 choose to use a smeared charge
approach instead, where the charge is spread over a finite
volume. Because of the soft-repulsive nature of the DPD con-
servative force, treating DPD beads as having a point charge can
result in artificial ion-pair formation where oppositely charged
ionic beads may collapse on top of each other, forming infi-
nitely strong ion pairs. When treated as point charges,
research55 has shown that the percentage of artificial pairs
formed decreases as the magnitude of the conservative force
repulsion between beads increases (corresponding to an
increasing value of |aij|). Therefore, at sufficiently high values
of aij, it is suggested that one can still use point charges as
opposed to requiring smeared approaches.

Due to the different form of the conservative force (eqn (8)) it
is unknown whether smeared charges are required in MDPD
simulations. We have not found any previous work investigating
artificial ion pair formation in the existing MDPD literature.
Therefore, before studying micelle solutions, we first present a
short investigation into the behaviour of charges in MDPD in
Section 4 of this article. It will be shown that we can safely treat
our beads as point charges for studying surfactant aggregation.
Therefore, the electrostatic force in the study of micellar solu-
tions will be calculated using the standard Coulombic potential

UE
ij ¼

G
4p

qiqj

rij
(10)

where qi and qj are the charges on two beads, G = e2/(kBTere0rC) is
a dimensionless electrostatic coupling parameter, where e0 is the
permittivity of free space, er is the relative permittivity of water,
and e is the elementary charge.

2.3 Interaction parameters aij

Self-interaction parameters aii are often calculated for DPD
simulations by aiming to reproduce experimental densities28,56

or compressibilities.29,38,55,57 In this work, we choose to define
our self-interaction parameters by matching to experimental
values for the density as well as chemical potentials of pure
water and octane.

Various approaches have been proposed to calculate cross-
interaction parameters aij, including matching to experimentally
derived quantities such as partition coefficients44 or solubility
parameters.58,59 Other approaches include matching to quanti-
ties obtained from molecular dynamics simulations, such as the
radial distribution.60 In this work, we will base our parameter-
isation on reproducing experimental activity coefficients at

infinite dilution gN (IDACs), an approach which has also been
used by various previous authors.29,38,57,61

The chemical potential can be split into two components62

for computational purposes:

m = mexcess + mideal (11)

where the ideal part is calculated using mideal = kBT ln rL3 where
L is the thermal de Broglie wavelength and r is the number
density. We calculate the excess potential energy mexcess via the
Widom insertion method, using the equation

mexcess ¼ �kBT ln exp �DU
kBT

� �� �
; (12)

where the change in potential energy DU due to the insertion of
a single bead is measured. The average over multiple insertion
attempts throughout the simulation domain can be used to
calculate the excess chemical potential per bead.

The total chemical potential of substance A in solution can
be represented in terms of its activity coefficient gA

63 as

mA ¼ m�A þ kBT lnðgAxaÞ (13)

where m�A is the chemical potential of pure component A, mA is
the chemical potential of A in the solution (where the units of
chemical potential m are energy per molecule), and xA is the
mole fraction of A in the solution. Supposing that the solution
consists of A at infinite dilution in a solvent of type B, then
combining eqn (11) and (13) leads to the following expression

lnðg1Þ ¼ kBT ln
rB
rA

� �
þ mexcessA � mexcess� (14)

where the excess chemical potentials can be calculated using
eqn (12). Note that a full derivation of eqn (14) can be found in
the ESI.†

Since in previous works (using traditional DPD), the self-
interactions are usually matched to density or compressibility,
the individual chemical potentials m are usually incorrect and
do not match experimental values. Instead, the focus is on
matching to the IDAC alone. However, in any case, due to the
form of the conservative force (eqn (1)), in DPD it would be
impossible to correctly reproduce the chemical potentials of
pure components anyway. To correctly reproduce the chemical
potentials of pure components, this will usually require nega-
tive mexcess values (due to the negative chemical potential of
most liquids). It is clear from eqn (12) that, in order to generate
mexcess o 0, in general, the insertion due to a single bead should
result in a negative change in the potential energy (DU o 0). In
liquids such as water, this is due to the attractive forces
between water molecules.

However, since the conservative force in standard DPD is
purely repulsive, this makes it impossible to generate these
negative excess chemical potential values. This is one of the
reasons we chose to use MDPD for our simulations. The
presence of the attractive term in MDPD means that negative
values of mexcess can be generated, therefore making it possible
to reproduce the correct pure chemical potential values. In this
work, we match not only the experimental values for ln(gN), but
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also the pure chemical potentials of the solute and solvent, and
also the experimental densities.

3 Parameterisation approach

In this work, we focus on a DPD model for anionic surfactant
sodium dodecyl sulfate (SDS). As discussed in Section 2, we
base the parameterisation of the tail and water beads on
experimental densities, chemical potentials, and IDACs. An
illustration of the coarse graining used for SDS is shown in
Fig. 1, such that a single DPD tail bead represents four carbon
atoms, and the head group is represented by a single negatively
charged bead. The counterion is represented by its own posi-
tively charged bead, in which the sodium atom is hydrated with
water. The stages for parameterisation are as follows:

1. Set tail bead self-interactions aTT based on the experi-
mental chemical potential of octane, which we determine by
performing Widom insertion calculations.

2. Define rC (length scale for conversation into real units) based
on matching the experimental density of octane (703 kg m�3) to the
density of the DPD fluid at the value of aTT determined in the
previous step.

3. Define the coarse graining of water and aWW based on
matching to the density (using the value of rC from the previous
step) and chemical potential of water. Note that the two
unknowns (aWW and the level of water coarse graining N, i.e.
water molecules per coarse-grained bead), can in theory be
solved exactly using the two equations (density and chemical
potential).

For the charged beads (the SO4
� head group and sodium,

Na+, counterion), we choose to set the aij interactions to be the
same as those with water. This decision is based on the
assumption that charged beads will mostly be surrounded by
water molecules in solution; therefore, at short range, the beads
will interact similarly to water beads. All simulations described
are performed using the DL_MESO software package64 and we
perform all simulations using a time step of Dt = 0.01.

3.1 Tail self-interactions (aTT)

The tail self-interactions (aTT) are based on reproducing the
chemical potential of octane. This calculation is performed by
simulating a cubic box with periodic boundary conditions,

which is entirely filled with octane beads. Therefore, before
performing the Widom insertions to calculate the chemical
potential, one must first know the choice of aTT relates to the
resulting bead density of the system. Knowing the bead density
of octane as a function of aTT will allow us to correctly set the
box sizes for the Widom insertion calculation.

To find a general relationship between aTT and the bead
density r, we perform a parameter sweep in the range �26 r
aTT r �18, with an interval of DaTT = 1. We simulate two
bonded beads to represent octane with an equilibrium bond
length of l0 = 0.6 (note that we make our initial choice of bond
length based on results from our previous work,61 more details of
which can be found in the ESI†). These simulations are conducted
in the const-NVT ensemble, in a box with periodic boundaries
with dimensions 10rC � 10rC � 100rC. The beads are initialised
with a random initial configuration using n = 10 000 simulation
beads (5000 molecules). For this number of beads, following
equilibration the simulations produce coexisting regions of liquid
and vapour, an example of which is shown in Fig. 2. Therefore,
from this, the bead density of the liquid phase can be determined.

Fig. 3a shows the relationship between aTT and the bead
density, rT. We fit a general expression in the form of a second-
order quadratic, such that the density can be calculated using
the expression:

rTrC
3 = �(8.42 � 10�3)|aTT|2 + (5.17 � 10�1)|aTT| � 2.78.

(15)

Following this, we perform a separate set of simulations to
calculate the chemical potential. Once again, we perform a
parameter sweep in the range 18 r aTT r 26, with an interval
of DaTT = 1. These simulations are conducted in a cubic box of
length L, with periodic boundaries and beads initialised with a
random initial configuration. The simulation is also conducted
in the const-NVT ensemble.

For each simulation, we use n = 50 000 simulation beads
(25 000 molecules), and the dimensions L of the box are calcu-
lated individually for each value of aTT. The value of L is chosen
to generate the correct density as determined by eqn (15). This
approach produces a domain completely filled with liquid so
that Widom insertions can be performed without concern about
potential insertions into a vapour phase. Note that for inserting
the octane molecules during the Widom insertion, we choose to
use a bond length of l0 = 0.6 for all insertions.

For each simulation box (corresponding to different aTT) we
calculate the excess chemical potential mexcess by Widom inser-
tion using eqn (12). We convert the energy calculated in DPD
units to real units using kBT = 4.11 � 10�21 J at room
temperature.

The relationship between the calculated excess potential
energy and aTT is shown in Fig. 3b, and we can fit the general
relationship for calculating the chemical potential in units of J,

Fig. 1 Coarse-graining of an SDS molecule such that one tail bead (T)
represents four carbon atoms and the head group is represented by a
single negatively charged bead (H). The counterion is represented as a
partially hydrated positively charged bead (I). Fig. 2 Coexisting liquid octane and vapour when aTT = 25.
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mexcess
O = (�3.45 � 10�21)|aTT| + 3.80 � 10�20. (16)

The experimental excess chemical potential of octane is
�5.33 kcal mol�1 65 (or �3.703 � 10�20 J per molecule); there-
fore, we determine that the value of aTT which produces the
correct excess chemical potential is aTT = �21.775.

At the value aTT =�21.775, eqn (15) can be used to determine a
bead density of r = 4.486. Matching to the experimental density of
octane (703 kg m�3 66) at room temperature allows us to determine
that rC = 8.45 Å. Note that this produces a bond length in real units
of about 5.07 Å. If we assume that the C–C–C angles are tetrahedral
(approximately 109.51) and that the experimental C–C bond is
1.543 Å,67 the separation between four carbon atoms (or two
adjacent beads) is calculated at around 5.04 Å, meaning that the
equilibrium bond length of 0.6rC is an appropriate choice.

3.2 Water self-interaction aWW

In this section, we perform a similar series of calculations for
water beads (as for octane). In order to find a relationship between
the density and value of aWW, we perform a parameter sweep in a
similar way to that performed in Section 3.1 for octane, however,
the simulation for water contains no bonded beads. The relation-
ship between aWW and rW is shown in Fig. 3c. We fit a general
expression in the form of a second-order quadratic, such that the
density can be calculated using the expression:

rWrC
3 = �(1.29 � 10�5)|aWW|2 + (7.73 � 10�2)|aWW| + 3.00

(17)

Similarly, to calculate the chemical potential, we now per-
form a parameter sweep over different aWW values. Once again

we perform const-NVT simulations in a cubic simulation box
where the entire domain is filled with water beads, this time
setting the box size to reproduce the density in eqn (17).

The experimental value for the excess chemical potential of
water is taken as �6.33 kcal mol�1 65 (or �4.4 � 10�20 J per
molecule). It should be noted that because one bead represents
more than one molecule, this must be taken into account in the
calculation. Therefore, the calculated chemical potential
depends on the coarse graining level, N, chosen for the water
molecules. This means that we can, in theory, find the values of
N and aWW that reproduce the experimental value for the
density of water at room temperature, as well as the chemical
potential, where N could (in principle) take a non-integer value.

The relationship between the excess chemical potential of
water and aWW is shown in Fig. 3d. The relationship can be fit
using a first-order equation (in units of J)

Nmexcess
W = (�3.55 � 10�21)|aWW| + 8.54 � 10�20 (18)

where N is degree of coarse graining and mexcess
W is in units of J per

molecule. We solve the simultaneous equations for density and
chemical potential to find N = 2.72 and aWW = �57.793 as the
optimal values to reproduce the density and chemical potential.

3.3 Cross interaction (aTW)

The cross-interaction, aTW, is calculated by reproducing the experi-
mental IDAC of octane in water, which has an experimental value
of ln(gN) = 16.0268 at room temperature. Using eqn (14), we find the
target value m*,excess = 3.5 (units of kBT). A sweep over aTW

parameter, calculating m*,excess in each case, gives the results shown
in Fig. 3e. By fitting a first-order equation of the form (in units of J)

Fig. 3 Illustration of the fitting used in the parameterisation of the tail and water beads: (a) bead density of octane at various values of aTT; (b) excess
chemical potential of octane as a function of aTT; (c) bead density of water at various values of aWW; (d) excess chemical potential of water as a function of
aWW (note that this is also a function of the degree of coarse-graining for water N); (e) excess chemical potential calculated due to the insertion of octane
into water (DPD units) as a function of aOW. Note that the horizontal lines in figure (b) and (e) represent the target values.
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Nmexcess
W = (�1.05 � 10�20)|aWW| + 3.97 � 10�19, (19)

we determine a cross-interaction value of aCW = �36.576.
A summary of the interactions calculated in this section can
be found in Table 1.

4 Electrostatics study

Studies have shown that in traditional DPD, when the short-
range repulsion between oppositely charged beads is high
enough (aij \ 100 in eqn (1)), point charges can comfortably
be used with no ion-pair formation.55 In MDPD the short-range
force is a combination of a repulsive contribution and an
attractive contribution, and therefore, the magnitude of the
repulsion at short range differs from that of standard DPD. In
the limit of when rij - 0, the magnitude of force approaches
|FC

ij| - [aij + B(ri + rj)]. Therefore, we investigate the effect that
varying aij has on the average value of haij + B(ri + rj)i for each
pair of interacting beads. Increasing |aij| has the effect of
increasing local densities, making it possible that the net force
is sufficiently repulsive to prevent ion collapse.

We perform these calculations using data from the water
bead parameter sweep, described previously in Section 3.2. We
create an additional Python script to determine the magnitude
of the average haij + B(ri + rj)i. For a given trajectory output at
time t, we compose a list of local densities for every bead in the
system using eqn (9), and find the average local density per
bead hrii = rL. We then calculate

hFijii,j = haij + B(ri + rj)ii,j (20)

Since aij is the same for all beads in our simulation, aij = A, and
we replace with the average local densities.

hFijii,j = A + Bh(ri + rj)ii,j = A + 2BrL (21)

Finally, we average over multiple outputs at different times t.
Fig. 4 shows the results of this calculation, and shows that the
net repulsive force at short distances is significantly larger than
that used in standard DPD (in which the magnitude of the force
tends to |FC

ij| - aij at short distances). Fig. 4 also shows that the
magnitude of repulsion increases with |aij|, and we observe that
at our proposed aWW value, the magnitude of repulsion at short
distances is likely to be large enough to avoid ion pair collapse.

To verify that our choice of parameters and point charges
does not lead to artificial ion pair formation, we performed test
simulations on simple salt solutions. We perform our simula-
tions in a box with periodic boundary conditions and dimen-
sions 7rC � 7rC � 50rC. The domain is populated with 500
positively charged beads, 500 negatively charged beads, and 2000
neutral beads representing water. We initialise with random
placement throughout the entire simulation box, and after a
short time, the beads form coexisting vapour and liquid phases.
Following this equilibration period, we start data collection.

Fig. 5 shows the radial distribution function between the
oppositely charged beads, where we confirm that there is no
artificial pair formation, even at this relatively high salt

concentration. If there was any ion collapse in the system, we
would expect to see this reflected at short distances in the value
of g(r).

5 Critical micelle concentration (CMC)

In this section, we calculate the CMC for sodium alkyl surfac-
tants of varying tail length (Section 5.1) and for SDS solutions
with added salt (Section 5.2). Although the CMC is fairly well
defined experimentally, there is no universally agreed best
approach to calculating the CMC from simulations. This means
that a variety of approaches have been used by various authors,
and in this section, we begin by comparing a selection of the
most common methods.

One common approach is to simulate at concentrations well
above the CMC and calculate the CMC from the number of free
surfactants.28,29,38,69 Another proposed method is to simulate at
lower concentrations and define CMC as the concentration at
which half of the surfactant material is free (as both monomers
and submicellar aggregates) and half exists as micelles.28,70,71

Of course, different authors may define the size at which an
aggregate can be considered a micelle differently, complicating
direct comparisons between parameterisation schemes. Other
proposed approaches include defining the CMC as the concen-
tration at which a significant change in viscosity occurs,72 or
when there is a significant change in the relationship between
aggregation and concentration, i.e., where one performs a
linear fit of the submicellar concentration in regions both

Table 1 Final |aij| values for MDPD simulations of alkyl sulfate surfactants

Tail (T) Head (H) Ion (I) Water (W)

Tail (T) 21.775 — — —
Head (H) 36.576 57.793 — —
Ion (I) 36.576 57.793 57.793 —
Water (W) 36.576 57.793 57.793 57.793

Fig. 4 Magnitude of the conservative force in MDPD in the limit of rij - 0.
Force is presented in DPD units.
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above and below an estimated CMC, where the crossing is
defined as the CMC.27,73

One further complication that arises for ionic surfactants
is that there is a strong dependence of the number of
free monomers on the concentration of micelles. In other
words, the number of free monomers cannot be considered
independent of the overall concentration.28,29,69 Therefore, to
calculate the CMC concentration CCMC from the free monomer
concentration CF, one should make use of the following
relation74

logCF¼ð1þaÞ logðC0
CMCÞ�a log

ð1�aÞðCT�CFÞþCFþCS

1�VCT

� �

(22)

where CT is the total surfactant concentration, CS represents
any additional counterions added as salt, V is the surfactant
molar volume, and a is the degree of counterion binding to
micelles. Note that C0

CMC in this equation represents the CMC
in the absence of salt.

Throughout the literature, different approaches have
been taken to choose a suitable value of a. One approach
is to select a value of a derived from experiment,29 while
others determine the value directly from the simulations using
the radial distribution function and an appropriate choice of
cutoff distance.69 However, it has been reported that the
calculated CMC can be relatively insensitive to the precise value
used.28,69 It will be shown in Section 6 that we also find this to
be the case. In this work, we choose to determine the CMC
using three of the different approaches discussed. These
include:
� Method A – defined as the concentration at which half of

the surfactant molecules are in micelles (CF = CT/2);
� Method B – via calculating the free concentration and

using eqn (22);
� Method C – by performing linear fits to the relationship

between aggregation and concentration and identifying a cross-
over point.

5.1 Pure aqueous surfactant systems

To test our model, we simulate SDS surfactants and also
investigate the impact of varying the length of the hydrocarbon
chain. This allows us to check the robustness of our parameter-
isation scheme. We calculate the CMC for molecules containing
8, 12, and 16 carbon atoms (which we henceforth refer to as S8S,
S12S and S16S). In practice, this involves varying the number of
tail beads from 2–4 in our coarse-grained representation. The
molecules are initially placed at random in a cubic box with
periodic boundary conditions, subject to constant pressure.

We set the box pressure to be equivalent to that of pure
water, which we calculate to be P = �0.37 (in DPD units). It
should be noted that when the liquid phase is in coexistence
with a very low-density vapour (as in our simulations), the
pressure which generates liquid phase density rL can be
estimated50 as P(rL) = 0. Therefore we expect setting P = 0 would
generate very similar results. However, to ensure we generate the
exact same density described in Section 3, we run a bulk NVT
simulation of our water beads a cubic simulation box at this
density, to determine a precise value for P. We discuss setting the
pressure of the system in more detail in the ESI.†

For each of the three different molecules, we choose a
different box size owing to the differences expected in their
CMC where we want to ensure there will be sufficient free
monomers in the simulation boxes, choosing a total of n =
24 000 (S8S), n = 300 000 (S12S) and n = 340 000 (S16S) beads in
each case. Note that although it would be desirable to have a
larger simulation box in the S16S case, we choose a moderate-
size simulation for computational reasons. We allow each
simulation to equilibrate until the number of free monomers
is approximately constant, which takes considerably more
computational effort for the larger molecules as a result of
their larger simulation sizes.

In order to determine the number of free monomers, one
must define a cutoff to distinguish between micelles and free
molecules (i.e., how large does an aggregate have to be to be
considered a micelle). We determine this cutoff by plotting a
histogram of aggregate sizes, from which we determine it is
sensible to define micelles as aggregates containing 8 or more
surfactant molecules.

Fig. 6 shows the results of this study, and presents plots of
the surfactant molecules which can be considered to reside in
micelles as a function of concentration. From this, we can
determine the CMC using method A (CF = CT/2) and method C
(using the cross-over point), which are both highlighted in
Fig. 6. From the free concentration, we also determine a CMC
value using method A (eqn (22)), where we use an
experimentally74 obtained estimate for the number of bound
ions, a = 0.7.

Table 2 presents a summary of the different CMC values
calculated using different approaches, as well as a comparison
with experimental data. Generally, we find that our simulations
slightly underpredict the CMC; however, given the magnitude
of variation between different length molecules (i.e. over an
order of magnitude difference in the experimental CMC values
between molecules which differ by only a single DPD bead), we

Fig. 5 Radial distribution function between the oppositely charged salt
beads and water beads.
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consider this underprediction to be relatively small. Fig. 7
compares the change in the log(CMC/mM) as a function of
chain length with the experimental data, which calculates the
CMC using conductivity measurements. We see that the experi-
mental trend of Aniansson et al.,16 showing a linear decrease in
log(CMC/mM) with chain length, is accurately reproduced by
the simulations.

5.2 Addition of salt

We also investigate the impact of salt, by calculating the CMC
of SDS in the presence of sodium chloride at various NaCl
concentrations. Experimentally, the CMC is expected to
decrease with increasing concentrations of salt.18,19

We perform these calculations in a similar manner to those
described in the previous section, keeping the number of water
beads the same as that described previously for S12S. We
modelled the additional salt using two oppositely charged
beads (each possessing a charge q = |e|), which represent a
single NaCl molecule. The short-range interactions with other
beads in the system are the same as those for water, based on
the reasoning outlined in Section 4. We simulate two different
salt concentrations using 220 and 1500 Na+ and Cl� ions, which
correspond to salt concentrations 15 and 100 mM respectively.

Fig. 8 shows the percentage of surfactant molecules in
micelles for the different salt concentrations, and we see that
micelles form more readily at higher salt concentrations as
expected. We also observe that there is a relatively short
concentration range where the solution transforms from con-
sisting entirely of free monomers to complete aggregation. As
the region is much narrower than in the salt-free simulations,
this makes determining the CMC using method A more diffi-
cult. From Fig. 8, we estimate the CMC value as the point where

there is an abrupt change in the number of surfactants in
micelles (similar to using method C). These calculated CMC
values are shown in Table 3 alongside experimentally determined
values. We also show an approximate lower bound based on the
highest concentration at which no aggregation is observed.

Since it was shown in the previous section that the values of
the CMC are slightly underpredicted using our model (even in
the absence of salt), it is unsurprising that the values in Table 3
are lower relative to experiment. However, the general trend for
the simulated results is in excellent agreement with the experi-
mental data. From the data presented by Dutkiewicz and
Jakubowska,18 we know that the CMC CCMC and salt concen-
tration CS should obey the relationship CCMC = a(CS)k where a
and k are fitted constants. From our simulated data, we
calculate a gradient value of, k = �0.35, which is reasonably
good agreement with the experimental value of k = �0.48.

Suppose we now once again consider eqn (22). If we use the
definition that the CMC is the concentration at which micelles
first start appearing, then we can say CF = CT = CCMC. If we also

Fig. 6 The fraction of surfactant molecules existing in micelles for S8S (a), S12S (b) and S16S (c). Red linear fits are shown for the purpose of calculating
the CMC using method C (as described in the main text). The CMC as determined using method A is also shown, and to identify the point at which CF =
CT/2, a blue line of best fit is shown for the S8S surfactant. Calculated CMC values are highlighted by vertical black lines.

Table 2 CMC (units mM) calculated from the MDPD results using three
different methods. Also shown are experimental values. (Note that ref. 16
and 75 report the CMC at the slightly elevated temperature of 30 1C)

Molecule Method A Method B Method C Exp.

S8S 71.0 39.9 71.4 13016,17

S12S 5.04 2.65 6.60 8.216,17

S16S 1.00 0.36 1.64 0.22–0.4516,75,76

Fig. 7 CMC of alkyl sulfate surfactants as a function of tail length,
where simulated results are compared with experimental data obtained
from Aniansson et al.,16 who calculate the CMC using conductivity
measurements.
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suppose that the surfactant concentration at the CMC is small
(VCCMC { 1) then eqn (22) simplifies to

log CCMC = (1 + a)log(C0
CMC) � a log(CCMC + CS). (23)

A rearrangement yields

log(CCMC(CCMC + CS)a) = (1 + a)log(C0
CMC) (24)

In the limit that CCMC { CS, we can say that CCMC(CCMC + CS)a

- CCMC(CS)a, and therefore we can find an expression for CCMC

CCMC = [(C0
CMC)(1+a)](CS)�a. (25)

Note that this is equivalent to the experimentally derived
expression CCMC = a(CS)k, where the constant a is a function
of the saltless CMC and the constant k = �a.

6 Aggregation number and micelle
shape

In this section, we use our model to determine the equilibrium
aggregation number for surfactants S8S, S12S and S16S. For
each surfactant, we do this for a range of concentrations: 2.5, 5,
7.5, 10 wt%. The simulations are set up in the same way as
described in Section 5, however, here we use much smaller
boxes than those that were required for calculating the CMC.
We take an approach that has previously been used by other

authors,28 in which we keep the number of surfactant mole-
cules NS in the box constant and alter the number of water
beads NW to vary the concentration of the box. We use NS = 500
surfactant molecules, meaning that the smallest simulation
box used is for the S8S surfactant at a concentration of 10%
(NW = 21 168), and our largest box is for the S16S surfactant at a
concentration of 2.5% (NW = 136 010). Each simulation is
equilibrated for long simulations until the aggregation number
is determined to no longer change.

Fig. 9 shows the final aggregation number calculated for
each simulation case. We see that the aggregation size generally
increases with both tail length and concentration. There is a
reasonably broad distribution of micelle sizes in each simula-
tion case, represented by the relatively large error bars shown in
Fig. 9. For example, for C16 at a concentration of 10%, we find
that 6 micelles form of various sizes in the range 50–113.
Experimentally,77 S8S is reported to have an aggregation num-
ber at around NAgg E 40 at 6.4 wt%, which is in good agreement
with our simulated results. However, S12S is reported as having
NAgg E 80 at 2.9 wt%, indicating that our simulated value of
around NAgg E 36 is a significant underestimate.

Other authors have commonly reported that the aggregation
number for micelles formed by ionic surfactants in DPD
simulations are underpredicted.28,29 One suggestion is that
this underprediction is due to problems with equilibration.
This stems from the fact that micelles with a net charge would
have a significant amount of repulsion between them. There-
fore, on the time scale of the simulation, they may not meet
sufficiently to come together and aggregate to form larger
micelles.

In order to test the impact of the charges on equilibration,
we performed simulations in which the charges were initially
turned off. We expect that this will allow the surfactant mole-
cules to aggregate significantly more easily, due to the reduced
repulsion between head groups. In all cases, we simulate using

Fig. 8 The fraction of S12S molecules existing in micelles for salt con-
centrations 15 and 100 mM. Fits are shown for the purpose of calculating
the CMC (as described in the main text), where the CMC values are
highlighted by dashed black lines.

Table 3 CMC of S12S solutions containing additional NaCl salt, where
simulated results are compared with experimental data obtained from
Dutkiewicz and Jakubowska,18 who obtained their CMC values via con-
ductivity measurements. Also shown in brackets is an approximate lower
bound for the CMC. All data presented in units mM

Salt concentration Simulated CMC Experimental CMC

15 2.5 (2.1) 4.2
100 1.3 (1.0) 1.7

Fig. 9 Final aggregation number of alkyl sulfate surfactants with different
tail lengths at different concentrations. Linear lines of best fit are shown
for each surfactant type. Error bars represent the standard deviation in
micelle sizes.
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a total of 24 000 beads, and we vary the number of surfactant
molecules NS in the box.

In the NS range studied (20 o NS o 220) we observe that the
surfactants quickly aggregate into a single, large micelle, often
significantly above the experimental aggregation number. An
example is shown in Fig. 10a. Note that the formation of large
micelles is to be expected because one would expect head group
repulsion to be a limiting factor on micelle size. However, this
approach allows us to treat this single large micelle as an ‘initial
state’ for studying anionic micelles. It has been shown20 that
when simulations are initialised with micelles larger than their
experimental values, they can break down into micelles, which
are closer in size to those expected experimentally.

When the charges are turned on, the micelle transforms its
shape and the counterions move to surround the micelle.
However, the micelle does not necessarily break down into smaller
aggregates, as one might expect. The S12S and S16S molecules
always remain as a single micelle, during the run time, albeit with a
significant shape change at high aggregation numbers (see
Fig. 10b). This behaviour allows us to study micelles as a function
of their aggregation number, and, in particular, study shape
changes. However, for S8S surfactants, which have weaker attraction
between (shorter) chains, the micelles exhibit different behaviour
and break down once the electrostatic interactions are turned on
when the initial micelle is above a particular size (NS ] 80). This
suggests that for S8S, large metastable micelles are significantly less
stable than for the two longer surfactant molecules. This may also
be reflective of the fact that experiments have shown that the width
of the distribution of stable micelles increases with chain length.16

To quantify the non-spherical nature of the large micelles,
we calculate the moment of inertia Im (where m = x,y,z). From
this, we define the eccentricity:

e ¼ 1� Imin

IAvg
(26)

where Imin is the smallest moment of inertia in any dimension
and IAvg is the average of all three. Here, 0 r e r 1 and a value
of e = 0 corresponds to a perfectly spherical micelle.

A plot of eccentricity as a function of aggregation number is
shown in Fig. 11. For S8S surfactants, we are limited to studying

a reduced range of surfactant sizes due to the breakdown of
micelles when initialised at larger aggregation numbers. The
bars plotted illustrate the standard deviation of the eccentricity
over the measurement period, highlighting the significant
fluctuations in shape we observe, particularly as the micelle
sizes increase. We observe that the eccentricity increases with
decreasing tail length, with S16S micelles being the most
spherical at all micelle sizes. For the S12S and S16S surfactants,
there appears to be a minima illustrating an optimal value of
the aggregation number for which the micelles are most
spherical, which is located around 60 for S12S and 90 for
S16S. It is of interest that these values are very close to the
experimental values for the average aggregation numbers at
the CMC (where NAgg = 64 and NAgg = 100 for S12S and S16S
respectively16), and small angle scattering studies5,78 and pack-
ing parameter calculations79,80 indicate that SDS micelles at
this concentration should be relatively spherical. Following this
plateau, the eccentricity increases with larger aggregation size
as the micelles begin to alter their shape. This increase is
significantly more rapid for S12S compared to S16S, with the
S12S micelles showing a more rapid transition to rod-like
shapes. Spin probe experiments have indicated that SDS
micelles start to become rod-like at aggregation numbers
around 130,81 which is in agreement with what we observe in
our simulations.

In Section 5 we chose to define the degree of counterion
binding as a = 0.7. Using our simulations of single micelles, we
are now able to calculate the degree of binding as a function of
micelle size, to investigate whether this was a suitable choice.
We calculate a by determining the number of sodium ions
within a specified cutoff range RIons of the micelle head groups.
This cutoff range is refined using the first peak of the radial
distribution function between the head groups and the coun-
terions. Fig. 12 shows examples of the radial distribution
function for different molecules of various sizes. While the
magnitude of the g(r) peaks varies significantly, we note that

Fig. 10 Micelle formation of SDS molecules when the charges are turned
off (a), compared with the shape change that results when they are turned
on (b). The example given is using 200 SDS molecules. Water molecules
are not shown for clarity and beads are coloured according to type: tail
(red), head (green), and sodium ions (purple).

Fig. 11 Eccentricity e as a function of micelle size, where the bars
represent the standard deviation over the measurement period. We note
that errors in e are typically much smaller than one standard deviation.
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the local minima between the two first peaks (at a distance of
0.9rC) does not significantly vary in position. Therefore, we
choose a cutoff distance of RIons = 0.9 in all calculations for
determining a.

In order to determine the number of ions which are bound to
the micelle, our aim is to calculate the average number of ions
which are within cutoff radius RIons of the head groups in the
micelle (i.e. the surface of the micelle). Here we can use the
simplification that all surfactants are contained within the micelle
(that is, there are no free surfactants). This can be done in one of
two ways. The first is to make use of the radial distribution g(r)
directly and calculate the number of particles within distance RIons

Nij ¼ ri

ðRIons

0

4pr2gijðrÞdr (27)

where ri is the bulk density of particles of type i. However, this
expression only provides the expected number Nij of type i beads
within distance RIons for a single bead of type j. To find the
probability of having at least one bead of type i within this distance,
we could use the Poisson distribution to give

a = P(n Z 1) = 1 � e�Nij(RIons). (28)

In this work, however, we choose to determine the number of
bound ions directly from our simulation trajectories instead.
For each frame we use a Python script to determine the number
of ions which are within at least one cutoff radius of a
surfactant head group. We then average over multiple trajec-
tories to calculate an accurate value for a for different micelle
sizes. We note that we compare our results calculated via this
method with the RDF approach discussed above and generate
very similar results.

Fig. 13 shows how the number of ions bound to a micelle
depends on the aggregation size. Here we focus on the S12S and
S16S micelles due to the wide range of micelle sizes we have
available for study. While we do not observe a significant
dependence on tail length, we see a strong dependence on
micelle size. With increasing size, the micelle increases its net

charge, likely increasing the percentage of bound ions to aid its
electrostatic screening. At larger micelle sizes (NS ] 100) the
number of bound ions is in agreement with experimental
values, and therefore in line with what was used in Section 5
to calculate the CMC in this work.

However, since the value of a appears to be affected by
varying the concentration/size of the system (particularly at
lower sizes), we investigate the impact this has on our previous
calculation of the CMC since our micelles are typically smaller
in these simulations. However, similarly to others,28,69 we
observe that varying a E 0.4–0.8 does not have a significant
impact on the calculated CMC. For example, using a value of a =
0.4 yields an estimate for the CMC of 2.70 mM (compared to a
CMC value of 2.65 when using a = 0.7). Thereby making our
previous choice of a = 0.7 a reasonable one.

We also note that it is possible to predict the degree of
counter-ion binding using eqn (23), and measurements of the
CMC in the presence of salt. We take the experimental value for
the CMC of saltless SDS as 8.2 mM16,17 (Table 2) and the CMC
in the presence of 15 mM and 100 mM of salt as 4.2 mM and
1.7 mM,18 respectively (Table 3). Using eqn (23) yields estimates
for the counter-ion binding of a = 0.79 and a = 0.62, where the
average of these two values a = 0.71 almost perfectly matches
our choice of a = 0.7.

7 Discussion

We discuss here some of the key results and considerations for
our model, including the choice to use point charges as
opposed to smeared charges; issues related to equilibration
and aggregation number prediction; the impact of the tail–
water interaction on our parameterisation scheme and the
quantities we calculate; and finally, how our results compare
with those from other experiments and simulations.

Fig. 12 Radial distribution function between the head groups and coun-
terions for molecules of different size and type.

Fig. 13 Fraction of counter-ions bound to the micelle as a fraction of the
aggregate size. Bound ions are classed as being those which are within a
distance r o RIons = 0.9 of a head group. Vertical bars represent the
standard deviation over the measurement period (note that standard errors
are around the size of the points).
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7.1 Use of point charges

As a result of our choice to use MDPD compared to standard
DPD, we are able to use point charges as opposed to smeared
charges. The smeared charge approach, which is typically used
in traditional DPD methods, is usually applied to deal with the
fact that the soft repulsion experienced by DPD beads is not
strong enough to prevent ion-pair formation. However, in this
work, we show that there is no evidence of ion collapse
occurring in our MDPD simulations.

The ability to use point charges was hypothesised as a result
of our analysis of the strength of the repulsion at short ranges
and was confirmed by checking the radial distribution func-
tions from salt solutions at high concentrations. We check that
our charged ions in micelle simulations behave correctly by
calculating the number of bound ions as a function of aggrega-
tion number. This allows us to confirm that the degree of
dissociation of the counterions is in excellent agreement with
experimental values, which is crucial for studying the shape
and size of simulated micelles.

The use of point charges is simpler than smeared charges,
and eliminates the issue that there are often several unknowns
when charges are smeared over the bead volume. For example,
various forms of the smear function have been proposed82–85

and various degrees of smearing have been used by different
authors.29,83 The function and degree of smearing are typically
chosen for computational efficiency reasons as opposed to
scientific reasoning, with little attention paid to the impact
this has on the simulated results. However, we note that the use
of smeared charges is perfectly possible within MDPD, is fully
implemented within codes such as DL_MESO, and potentially
could remove the danger of stability issues in some cases
(noting the Fisher–Ruelle stability criterion86).

7.2 Equilibration of aggregation number

We observe that our calculated aggregation number equilibrates
very slowly, such that it can be difficult to ascertain when
equilibration has completed. We also observe that our aggrega-
tion numbers are somewhat lower than might be expected for
the S12S2 and S16S surfactants. Once formed, charged micelles
do not meet on the time scales we look at. The net repulsion
between charged micelles is so great, that the micelles never get
close enough to aggregate into larger micelles. This creates a
difficulty in generating larger aggregation numbers.

In experimental reality, micelles are in dynamic equilibrium
constantly disintegrating and reforming, and it is generally
considered that micellar solutions exhibit two relaxation
processes16,87,88 characterised by relaxation times t1 and t2.
The first timescale t1 relates to the exchange of surfactant
monomers between micelles (order of microseconds), while t2

relates to micellization-dissolution equilibrium (order of milli-
seconds). Experiments16 on sodium alkyl sulfate solutions have
shown that, in general, t1 and t2 decrease with surfactant
concentration and also increase with increasing alkyl chain
length. This may partially explain our difficulty in equilibrating
micelles at lower concentrations and longer tail lengths.

To overcome these time-scale limitations, a potentially inter-
esting approach for future researchers might be the use of a
biased Monte Carlo simulation technique, in which one com-
putes micelle free energies as functions of aggregation number
in order to determine the equilibrium aggregation numbers.89

7.3 Choice of tail–water interaction

In Section 3.3 it was shown that the tail–water interaction is
defined based on a Widom insertion approach, with octane
being the reference molecule. The choice to use octane was
based on the fact that, in our coarse-grained representation, it
can be represented by two single-bonded beads. While matching
a longer hydrocarbon might be more desirable for calculating
the CMC for larger molecules, such as dodecane or even hex-
adecane, it is worth noting that the Widom insertion calculation
is much more complex for longer molecules. Firstly, it would
involve more than two beads, and therefore conformation needs
to be taken into account when performing insertions. Secondly,
a larger molecule would result in finding an accurate value for
mexcess very difficult. For a larger molecule, the available space in
the simulation box in which the molecule can be inserted is very
limited. This means that most insertion attempts result in very
high insertion energies DU, resulting in exp(�DU/kBT) becoming
negligibly small most of the time. This means that determining
mexcess is statistically difficult and inefficient. For these reasons,
we chose to focus on insertions of octane.

However, we observe that the precise value of the CMC
calculated is very sensitive to the value of aTW. This has been
commented on in conventional DPD by previous authors.29

To illustrate this point, we calculate a value for the CMC of S12S
if we increase the value of the tail–water interaction by a small
amount, choosing DaTW = 0.5 (such that the new value aTW =
37.076, an increase of about 1.4%). In this case, we calculate a
CMC value (using method A) as CCMC = 9.1 mM (see ESI† for
details), compared to the value of 5.04 mM calculated using our
original parameters. Therefore, we caution that it is possible
that small inaccuracies in the calculated value of aTW can lead
to large changes in the CMC, and that our exact values of CMC
could be improved by matching tail–water interactions to
different choices of molecules. However, we also note both
the aggregation number and micellar shape are relatively
insensitive to the exact choice of aTW, at least to a significantly
lesser extent than the CMC.

7.4 Comparison with earlier studies

In this article, we report values for the CMC and aggregation
number for sodium octyl sulfate, sodium dodecyl sulfate and
sodium hexadecyl sulfate. We also report on the change in the
CMC for additional salt for SDS solutions. Finally, we also
report the fraction of bound ions a as a function of aggregation
number, as well as their eccentricity as a means to quantify
micellar shape.

We showed that both without (Table 2) and with (Table 3)
salt, our CMC values are underpredicted in comparison with
the experimental data, however, the trends of CMC with tail
length match experimental data reasonably well. It is an issue

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 8

/2
/2

02
4 

2:
18

:3
0 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4sm00533c


6056 |  Soft Matter, 2024, 20, 6044–6058 This journal is © The Royal Society of Chemistry 2024

that other authors have also found when using standard DPD
approaches,28,38 and it is difficult to attribute an exact reason
for this. However, we will note that accurate prediction of the
CMC is expected to be difficult from theoretical reasons alone.
The Gibbs free energy change for micelle formation from 1 mol
surfactant is related to the CMC by

DG0 = RT ln CMC, (29)

where DG0 is the difference between the Gibbs free energy of
the micelle and of the monomeric surfactant, which is related
to the chemical potentials we determine via Widom insertion.
However, the main point is that the resulting simulated CMC
can become exponentially incorrect, for very small errors in
DG0. This is why it often makes more sense to compare the
logarithmic value of the CMC’s instead, which has been done in
this article, as well as by other authors.28,38

We discussed in the previous section the sensitivity that the
CMC has to the tail–water interaction, however, the CMC
mismatch is most likely to result from how we treat charges
in the system since these have the greatest impact on altering
the CMC behaviour. We made no attempt to parameterise the
charged beads in our model, and it is highly likely that the
treatment of charges will need to be tuned to accurately
reproduce the correct DG0. Up until now, direct parameterisa-
tion of charged beads has been largely neglected, with most
authors taking the simple approach to assign beads as having
the same aij interactions as water. However, an interesting
study by Lavagnini et al.90 indicated that for salt solutions,
even for nonionic surfactants, the calculated CMC values
depend largely on the ion-tail repulsion parameter, meaning
that this is likely to be a source of error in our approach.

Turning our attention now to the shape of micelles, it was
noted in Section 6 that spin probe experiments indicate that
SDS micelles start to become rod-like at aggregation numbers
which are comparable to those we see in our simulations. There
is also a wealth of literature using small-angle neutron scatter-
ing (SANS)4–10 and small-angle X-ray scattering13–15 (SAXS) to
investigate the shape and size of SDS micelles. Typically it is
concluded that micelles at equilibrium are nearly spherical, but
slightly prolate, which is in agreement with what we see in our
study. Fig. 11 shows that we never determine an eccentricity of
0 (which would correspond to a spherical micelle), instead
usually taking larger values of 0.1 o e. Interestingly, a mole-
cular dynamics study by Palazzesi et al.24 reported an eccen-
tricity value of around e = 0.15 for SDS micelles at aggregation
numbers of N = 60, which is in reasonably good agreement with
that we have reported at in this article. Other DPD studies31

have also found similar degrees of eccentricity for micelles of
around this size.

Finally, we discuss the binding of ions to micelles. It was
noted in Section 6 that our calculated fraction of bound ions a
is generally in line with experimental measurements74 at com-
parable micelle sizes. It is difficult to compare with experi-
mental data for smaller micelles, as data only exists for micelles
at their equilibrium, larger sizes. However, it was shown that
the counter ion binding varies very little over SDS micelles in

the range 60 r N r 110, which is broadly what we see in
Fig. 13.

The degree of counterion binding is a quantity that can also
be determined by molecular dynamics simulations of single
micelles. It has been shown that a can depend on the choice of
force field21 (where Tang et al.21 define bound ions to be
sodium atoms which exist within 0.6 nm of the oxygen atoms
in the head group). Authors report that for an SDS micelle with
aggregation number N = 60, a ranges from 45–70% for the six
force fields tested, which is generally in line with experimental
values. Using a cutoff of 0.9rC (0.76 nm), we determined in our
simulations that micelles of the same size have a = 0.55, while if
we use a cutoff 0.71rC (which translates in real units to a more
comparable value to Tang et al.21) we find a = 0.48. This puts
our MDPD simulated value in reasonable agreement with those
from MD simulations. However, it is still worth noting that this
still is not exactly comparable, since the distance used in our
calculation is the centre of the bead rather than the oxygen
atoms, and if calculated equivalently our values are likely to
have even closer matching.

8 Conclusion

In this article, we present a comprehensive parameterisation
scheme for MDPD simulations. We conclude that our MDPD
model provides good estimates for the CMC as a function of tail
length and salt concentration. Our model also allows us to
easily study micelles, including their size, shape, and charge,
making it a useful tool for studying charged surfactants. We
believe that, using the methodology presented here, the model
could easily be extended to other ionic and nonionic surfac-
tants, to oils, to mixed surfactant systems and to higher
concentration phases.
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