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A B S T R A C T 

In a strong gravitational lensing system, the distorted light from a source is analysed to infer the properties of the lens. Ho we ver, 
light emitted by the lens itself can contaminate the image of the source, introducing systematic errors in the analysis. We present a 
simple and efficient lens light model based on the well-tested multi-Gaussian expansion (MGE) method for representing galaxy 

surface brightness profiles, which we combine with a semi-linear inversion scheme for pixelized source modelling. Testing 

it against realistic mock lensing images, we show that our scheme can fit the lensed images to the noise level, with relative 
differences between the true input and best-fitting lens light model remaining below 5 per cent. We apply the MGE lens light 
model to 38 lenses from the HST SLACS sample. We find that the new scheme provides a good fit for the majority of the sample 
with only 3 exceptions – these show clear asymmetric residuals in the lens light. We examine the radial dependence of the 
ellipticity and position angles and confirm that it is common for a typical lens galaxy to exhibit twisting non-elliptical isophotes 
and boxy / disky isophotes. Our MGE lens light model will be a valuable tool for understanding the hidden complexity of the 
lens mass distribution. 
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 I N T RO D U C T I O N  

alaxy–galaxy strong gravitational lensing is a phenomenon 
hereby light rays emitted from distant galaxies are strongly de- 
ected by the gravitational potential of a foreground galaxy when 

he galaxies are aligned along the line of sight. Multiple distorted
mages of background galaxies are observed in this phenomenon, and 
articularly, an Einstein ring of distorted images may be observed 
hen the galaxies are perfectly aligned. The first observation of 
 alaxy–g alaxy strong lensing dates back to the late 1970s, when a
air of strongly lensed quasars were observed (Walsh, Carswell & 

eymann 1979 ). Since then, over one thousand g alaxy–g alaxy 
trong lensing systems have been disco v ered (Huang et al. 2021 ).
urthermore, within this decade, newly launched space telescopes, 
uch as the JWST, Euclid, and China Space Station Telescope 
CSST), are expected to discover hundreds of thousands of new 

ystems (Collett 2015 ; Cao et al. 2023 ). These lenses are invaluable
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o explore fundamental cosmological questions, such as searches 
or the small dark matter substructures that might help distinguish 
ifferent dark matter candidates, tests of gravity, and independent 
easurement of the Hubble constant (Collett et al. 2018 ; Birrer et al.

022 ; Vegetti et al. 2023 ). 
Early-type massive elliptical galaxies dominate the statistics of 

bserved g alaxy–g alaxy strong lenses, for example, the Sloan Lens
dvanced Camera for Surv e ys (SLACS) sample (Bolton et al. 2006 ).
tudies of unlensed early-type galaxies reveal significant surface 
rightness variations, including twisted isophotes, radial ellipticity 
hanges, and boxy / disky isophotes (Hao et al. 2006 ; Kormendy
t al. 2009 ). Goullaud et al. ( 2018 ) perform photometric analysis of
5 nearby massive elliptical galaxies with comparable masses to the 
LACS sample and see evidence for all forms of surface brightness
ariations. At high-galaxy masses, independent kinematic analysis 
Krajnovi ́c et al. 2011 ) suggests twisting and boxy isophotes may
e a result of the underlying 3D mass distribution being triaxial. No
tudy has yet performed a detailed photometric analysis of a sample
f strong lenses in this way and this work therefore provides the first
aluable insight. 
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h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Such complexity presented by a lens galaxy introduces significant
hallenges to lensing analyses, particularly the modelling of lens
ight. The standard approach for modelling lens light is to use

ultiple S ́ersic profiles (S ́ersic 1963 ). Ho we ver, Nightingale et al.
 2024 ) have demonstrated that S ́ersic profiles cannot accurately
apture comple xities observ ed in real lenses. Be yond the application
f S ́ersic profiles, Bolton et al. ( 2006 , 2012 ) have adopted a B-
pline interpolation model to fit and subtract the lens light in SLACS
enses. This model has shown flexibility in representing complex
orphologies of lens light emission. Ho we ver, because this model

s not fitted simultaneously with the source model, it is necessary
o manually mask out the lensed source region during the lens
ight fitting process. This requires prior knowledge of the location
nd intensities of the lensed source emission, a task that becomes
articularly challenging with complex sources. 
A multi-Gaussian expansion (MGE) method has been widely

sed in stellar dynamics analyses and has shown great success
n fitting the surface brightness of realistic galaxies, especially
llipticals, with remarkable accuracy (Cappellari 2002 , 2008 ; Li
t al. 2019 ; Lu et al. 2023 ; Zhu et al. 2023 ). The key idea
s to approximate a galaxy’s brightness using tens or hundreds
f Gaussian profiles. As demonstrated by Cappellari ( 2002 ), this
pproach allows for significant flexibility because each Gaussian
rofile can be adjusted independently in terms of size, axis ratio,
osition angle, and intensity, enabling the model to accurately reflect
he varying ellipticity and twisted isophotes observed in real elliptical
alaxies. Ho we v er, the comple xity and the huge number of adjustable
arameters have limited the MGE model’s application in strong
ensing analyses. To ef fecti vely incorporate it into lensing modelling,
 careful balance must be achieved between the model’s adaptability
nd computational demands. 

Be yond the comple xity of a lens galaxy’s lens light distribution,
he lens mass complexity has recently become a focal point of
iscussion, driven by the increasing need for more precise lens
ass models. The conventional lens mass model, a single elliptical

ower-law profile (Tessore & Metcalf 2015 ), has encountered notable
imitations in various aspects of strong lensing analysis. This includes
hallenges in inferring the Hubble constant (Cao et al. 2021 ; Van
e Vyvere et al. 2022 ), detecting subhaloes in strong lenses (He
t al. 2023 ; Nightingale et al. 2024 ) and measuring cosmic shear
round lenses (Etherington et al. 2024 ). In an effort to surpass
hese limitations, researchers have introduced several sophisticated

odels, including both free-form mass models and those integrating
dditional multipole components (Vegetti & Koopmans 2009 ; Cohen
t al. 2024 ; O’Riordan & Vegetti 2024 ; Stacey et al. 2024 ) or stellar
iscs (Hsueh et al. 2017 , 2018 ). Ho we ver, the full picture of lens
ass complexity remains unclear. It is widely hypothesized that the

ystematic inaccuracies in current lens mass modelling may relate to
he observed complexities in stellar light, such as twisted isophotes.
his is because, in a standard g alaxy–g alaxy lensing scenario,

he stellar mass, which closely traces the stellar light distribution,
ominates the lens mass around and within the Einstein radius
several kiloparsecs). Therefore, refining the modelling of the lens
ight acts as a crucial step towards a comprehensive understanding
nd more precise modelling of lens mass complexity. 

In this work, our objective is to build a lens light model that
eets two key criteria. First, the model should have the capability to

epresent the surface brightness of most real lens galaxies, accounting
or twisting non-elliptical isophotes. Secondly, it should be simple
nough so that it can be easily integrated into the existing framework
or strong lensing analyses and therefore be fitted simultaneously
ith a model for the lens’s mass and a pixelized source recon-
NRAS 532, 2441–2462 (2024) 
truction. To achieve that, we propose a lens light model based
n the MGE technique. The MGE model also offers the advantage
f making an analytical computation of deflection angles possible,
llowing for a straightforward conversion of the surface brightness
epresentation into lensing quantities, assuming a specific mass-to-
ight ratio relation (Shajib 2019 ). MGE mass modelling will be
xplored in our future work. 

The MGE provides numerous benefits for automating strong lens
nalysis (Etherington et al. 2022 ), which is key with surveys such as
uclid poised to disco v er o v er 100 000 systems (Collett 2015 ). This
ill be expanded upon in Fran c ¸a et al. (in preparation), who perform

utomated analysis of 21 lenses using the MGE for not only the lens
ight but also the source galaxy. 

The paper is structured as follows: In Section 2 , we introduce our
GE lens light model, its implementation and the lensing modelling

ipeline; In Section 3 , we test the MGE lens light model against
ock data sets with realistic lens and source emission; In Section 4 ,
e then apply the model to real HST observed lenses to test its
erformance on real data and show the complexity of the surface
rightness of realistic lens galaxies; In Section 5 , we discuss our
esults; Finally, in Section 6 , we summarize our results. Throughout
he paper, unless otherwise specified, all lensing-related calculations
re conducted using the public code PYAUTOLENS . 1 (Nightingale,
ye & Massey 2018 ; Nightingale et al. 2019 , 2024 ; Nightingale,
ayes & Griffiths 2021 ). For our analyses, we adopt a spatially
at � -CDM cosmology with H 0 = 67 . 8 ± 0 . 9 km s −1 Mpc −1 and
M 

= 0 . 308 ± 0 . 012 (Planck Collaboration XIII 2016 ). 

 M O D E L  A N D  M E T H O D  

.1 Ov er view 

n illustrativ e e xample of applying our MGE lens light model to
 real HST observed image, SDSSJ1020 + 1122, is shown in Fig. 1 .
he lens galaxy’s emission is fitted using a total of 180 Gaussians,
hich are grouped into 6 sets of 30 Gaussians, where in each set the
aussians share the same axis ratios, position angles, and centre. The

ource galaxy is fitted simultaneously with the MGE, using a Voronoi
esh which reconstructs its irregular morphological appearance. The
GE fits all of the lens galaxy’s emission and ef fecti vely captures

ts twisted isophotal contours, as illustrated in the bottom middle
anel of Fig. 1 . More commonly adopted S ́ersic profiles cannot
apture this complexity. The MGE has over 500 parameters and
he source Voronoi mesh o v er 1000. This method section will outline
ow we parametrize both in a way that makes their joint application
omputationally tractable. Our MGE implementation can also be
pplied to non-lensed galaxies via the software PYAUTOGALAXY. 2 

We now explain our models and methods in detail. We first describe
he standard semi-linear method for fitting a pixelated model of
he source light in Section 2.2 . We then present the MGE model,
esigned for modelling the lens light, in Section 2.3 . Next, we detail
he integration of the MGE lens light model into the likelihood
ptimization framework of our strong lensing analysis in Section 2.4 .
or completeness, we briefly explain the exact source and lens
ass models used in this work in Section 2.5 and Section 2.6 .
inally, in Section 2.7 , we summarize our modelling pipelines used

n PYAUTOLENS . 

https://github.com/Jammy2211/PyAutoLens
https://github.com/Jammy2211/PyAutoGalaxy
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Figure 1. An o v erview of the lensing modelling of SDSSJ1020 + 1122 with the MGE lens light model described in this paper. The MGE lens light model 
used here consists of 6 sets of Gaussian profiles, where each set has 30 Gaussian profiles with sigmas spreading the image. Top left: The HST image of 
SDSSJ1020 + 1122 (a nearby galaxy on the left has been masked). Top middle: The best-fitting MGE lens light model image. Top right: The reconstructed 
source image (on the source plane). The grid lines mark the Voronoi mesh used to construct the source plane. Bottom left: The normalized residuals of the 
best-fitting model [(model–data)/errors]. The colour bar ranges from −3.5 to + 3.5. Bottom middle: Dashed lines are the isophotes of the best-fitting MGE 

lens light model. Solid lines mark (only) the position angles and axis ratios of the 6 sets of Gaussian profiles of the MGE lens light model. Bottom right: The 
reconstructed source image (on the lens plane). 
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.2 Semi-linear scheme for modelling a pixelized source 

o model background source galaxies of various morphologies, 
arren & Dye ( 2003 ) introduced a pixelized source model that

epresents the background source plane as a rectangular mesh with 
undreds of grid points, each having its flux as a free parameter. With
his source model, the lens fitting problem is posed as finding the best
ens mass parameters and fluxes for the source plane pixels that can
t the lensed image with realistic source emission. Here, ‘realistic’ 

mplies the source emissions should resemble physical components 
ith spatially smooth fluxes. 
A semi-linear inversion (SLI) method is used to solve the fitting 

roblem. For a lens model (without any lens light), the parameters are
aturally divided into two categories: the fluxes of source plane pixels 
nd the lens mass parameters. The lens mass parameters are non- 
inear, meaning that they can only be inferred by non-linear fitting, 
or example by a nested sampling algorithm. The source parameters 
or equi v alently pixels) are linear, whereby their flux values can
e efficiently solved for via a linear inversion. The combination of
on-linear and linear parameters gives it the name ‘semi-linear’. 
Given a set of lens mass parameters, one can build up a linear
apping relation between the fluxes of the source plane grid, 
 j ( j = 1 , 2 , ..., N S ), and the fluxes of the model image grid, I i ( i =
 , 2 , ..., N I ), as 

 = f × S, (1) 
here f is the (source-lens plane) mapping matrix and an element,
 ij , quantifies the fraction of the flux contributed from the j -th source
rid to the i-th image grid. f ij is determined by the ray-tracing of the
ens mass profile, the source pixelization and instrumental effects, 
uch as blurring due to the point spread function (PSF). 

With the mapping relation, equation ( 1 ), the χ2 is then defined as 

2 ≡ 1 
2 

∑ N I 
i= 1 

[ 
I i −d i 

n i 

] 2 
(2a) 

= 

1 
2 

∑ N I 
i= 1 

[∑ N S 
j= 1 f ij S j −d i 

n i 

]2 

(2b) 

= 

1 
2 || ZS − Y || 2 , (2c) 

here 

 ij ≡ F ij /n i , (3a) 

 i ≡ d i /n i . (3b) 

he image data are d i and the noise is n i . In terms of S, equation ( 2c )
as a quadratic form, confirming that the χ2 minimization problem 

educes to a classical least-squares fitting problem with respect to 
ource fluxes. If we have no boundary constraints on the solutions,
he best-fitting source fluxes, ˆ S , can be analytically expressed as 

ˆ 
 = 

(
Z 

T Z 

)−1 
Z 

T Y . (4) 

he time cost for solving ˆ S is small, which makes it feasible to
econstruct a source galaxy with thousands of pixels. 
MNRAS 532, 2441–2462 (2024) 
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We also require our model to produce a realistic background
ource. A regularization term, G L , is therefore added to the goodness
unction, G , as 

 = χ2 + G L . (5) 

o ensure that G keeps the quadratic form as equation ( 2c ), we require
 L to be a quadratic polynomial function of S i ( i = 1 , 2 , ..., N S ) as 

 L ≡ 1 

2 
r 
∑ 

i,j 

H ij S i S j , (6) 

here r is the regularization strength and H ij is called the regu-
arization matrix, whose elements are determined by the choice of
he regularization scheme. By design, the regularization matrix is
 positive-definite matrix, and thus has a ‘square root’ matrix, B ij ,
uch that H = B 

T B. Combining equation ( 5 ) and the regularization
erm, the goodness function, equation ( 5 ), can be expressed as 

 = χ2 + G L (7a) 

= 

1 
2 

∥∥∥∥
(

Z √ 

r B 

)
· S −

(
Y 

0 

)∥∥∥∥
2 

, (7b) 

hich keeps the quadratic form. 
Following the descriptions of Suyu et al. ( 2006 ) and Nightingale &

ye ( 2015 ), to objectively determine the regularization strength, we
ut the SLI procedure in a Bayesian framework which maximizes
he Bayesian evidence, ε, defined as 

−2 ln ε ≡ χ2 + G L + ln 
[
det 

(
f T f + rH 

)] − ln [ det ( rH ) ] 

+ 

N I ∑ 

i= 1 

ln 
[
2 πn 2 i 

]
. 

(8) 

.3 Multiple-Gaussian expansion 

.3.1 Basic formulas 

he MGE model represents a galaxy’s surface brightness, I ( x , y ),
y a set of independent 2D Gaussian profiles of the form 

 ( x , y ) = 

N ∑ 

i 

G i ( x , y ) . (9) 

ere, G i is the ith Gaussian profile 

 i ( x , y ) = I i · exp 

(
−R 

2 
i ( x , y ) 

2 σ 2 
i 

)
, (10) 

here I i and σi are the ith Gaussian profile’s intensity and width.
 i ( x , y ) is its elliptical radius defined as 

R i ( x, y) = 

√ 

x ′ 2 + 

(
y ′ 

q i 

)2 

, 

x ′ = cos θi ·
(
x − x c i 

) + sin θi ·
(
y − y c i 

)
, 

y ′ = cos θi ·
(
y − y c i 

) − sin θi ·
(
x − x c i 

)
, 

(11) 

here q i , θi , 
(
x c i , y 

c 
i 

)
are the profile’s axis ratio, position angle and

entre, respectively. A 2D Gaussian profile has 6 parameters, and an
GE model of N Gaussians has 6 × N parameters. 

.3.2 MGE parametrization 

o simplify the MGE model for lens modelling and reduce the
umber of non-linear free parameters, we introduce the concept of
NRAS 532, 2441–2462 (2024) 
 ‘set’. A set is a group of Gaussians which share the same centre,
osition angle, and axis ratio, and with σ values fixed to preset values.
e typically fix the σ values evenly in log-spaced intervals between

ne-fifth of the image pixel scale and the circular radius of the mask
pplied to the lens image. Our o v erall MGE lens light model is then
 combination of multiple sets of Gaussians with different centres,
osition angles, and axis ratios. The formula is then written as 

 

lens 
MGE ( x , y ) = 

N b ∑ 

i= 1 

B i ( x , y ) 

= 

N b ∑ 

i= 1 

N i g ∑ 

j= 1 

G i,j ( x , y ) , (12) 

here B i is the ith set of Gaussians, N b is the number of sets and N 

i 
g 

s the number of individual Gaussians of the ith set. One can simply
ustomize N b and N 

i 
g to change the flexibility of the model depending

n the complexity of the surface brightness of a lens galaxy. 
To model the extended luminous emission in each lens galaxy, we

ssume N 

i 
g = 30 and N b = 2, 4 or 6, where these values depend on

he complexity of each lens. We also perform fits including a ‘point’
et, which fits point-source emission found in the centre of a subset
f lenses. A point set consists of 10 Gaussians, has σ values spanning
ne-fifth the pixel size to two times the pixel size and has a centre
hat is independent of the centres of the other sets that model the
xtended emission. 

.3.3 Semi-linear solution for gaussian intensities 

e now describe the semi-linear procedure which solves for the
ntensity of each Gaussian linearly, further reducing the number of
on-linear parameters of our MGE model. The surface brightness
f the MGE model is a linear combination of the intensity of each
aussian therefore the intensities can be linearly solved once their
ther parameters (centres, axis ratios, sigma values) are given. Let
s first consider fitting the MGE model (with N 

tot 
g Gaussian profiles)

o an image without any lensing. Given an image, d , with N pix pixels
nd a noise map, n , we minimize the χ2 of the fit defined as 

2 ≡ 1 

2 

N pix ∑ 

i 

[
I lens 

MGE ( x i , y i ) − d i 

n i 

]2 

(13a) 

= 

1 

2 

N pix ∑ 

i 

⎡ 

⎣ 

∑ N tot 
g 

j I j · A ij − d i 

n i 

⎤ 

⎦ 

2 

(13b) 

= 

1 

2 
|| XI − Y || 2 , (13c) 

here 

A ij ≡ exp 

(
−R 2 

j 
( x i ,y i ) 

2 σ 2 
j 

)
(14a) 

X ij ≡ A ij /n i (14b) 

Y i ≡ d i /n i . (14c) 

χ2 can again be expressed as a quadratic form with respect to the
ntensities of Gaussians. As a result, we can obtain the best-fitting
ntensities of the Gaussians linearly. 

This formalism ensures that the intensities of the Gaussians are not
tted for by the non-linear sampler. Therefore, only the centres, axis
atios, and position angles of each set are. For example, for an MGE
odel composed of 3 sets, where each set has 30 Gaussians, it has just
 × 4 = 12 non-linear free parameters. By assuming the Gaussians
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n all sets share the same centre (which is a common assumption for
ealistic galaxies), this reduces to 2 + 2 × 3 = 8 parameters. This
s less than the number of parameters used to fit S ́ersic models
Nightingale et al. 2024 ), which have significantly less flexibility 
han the MGE. 

.4 Solving for the MGE and pixelized source simultaneously 

.4.1 Semi-linear solution for both lens and source intensities 

e now describe how using the semi-linear inversion method we 
olve for the MGE lens light intensities and pixelized source pixel 
uxes simultaneously. We extend the goodness function, equation 
7), as 

 = χ2 + G L + G M 

(15a) 

= 

1 
2 

( ∑ N I 
i= 1 

[∑ N s 
j= 1 f ij S j + 

∑ N g 
k= 1 I k A ik −d i 

n i 

]2 

+ G L + G M 

) 

(15b) 

= 

1 
2 

∣∣∣∣
∣∣∣∣
(

Z X √ 

r B B M 

)
·
(

S 

I 

)
−

(
Y 

0 

)∣∣∣∣
∣∣∣∣

2 

, (15c) 

here G M 

is a regularization term for the MGE light model, and B M 

s the corresponding ‘square root’ of the regularization matrix. The 
GE regularization stabilizes the quadratic minimization process 

ut has a negligible impact on the inferred intensity values. We set it
o be the identity matrix. 

.4.2 Non-negative least-square solver 

ithout any boundary constraints on the solutions, 

(
S 

I 

)
, the results 

an be analytically obtained by setting the first deri v ati ve of equation
 15c ) to be zero, which is a common choice for pixelized source
odels (Warren & Dye 2003 ; Nightingale et al. 2018 ). Ho we ver,

n Section 3.2 , we show that by combining two ‘free-form’ models
both MGE lens light and pixelized source), a significant degeneracy 
rises between the two, particularly around the lensed arc regions 
here both models are capable of fitting the light. This can bias the

eco v ery of the lens and source emission and produce o v erfitting
hereby the intensities of the Gaussians alternate between large 
ositive and negative values. 
We therefore require our solution (both the intensities of Gaussian 

rofiles and the fluxes of source pixels) to be non-ne gativ e, which
s a well-posed physical assumption as both the source and lens 
alaxies should not have negative fluxes in reality. The trade-off for
witching to a non-ne gativ e SLI scheme is slower computational 
un time. To alleviate this performance decrease, we use a modified 
ersion of the fast non-ne gativ e least-square (fnnls) algorithm to 
inimize equation ( 15c ) (Bro & De Jong 1997 ). 3 Hereafter, we use

nn-MGE’ to refer to analysis using an MGE lens light model with
on-ne gativ e constraints (on both the MGE lens light and pixelized
ource model) and ‘pn-MGE’ to refer to analysis without the non- 
e gativ e constraints (on both the MGE and pixelized source). 
 The fnnls code we are using is modified from https:// github.com/ jvendrow/ 
nnls . 

2

W
S
e  

2  
.4.3 Bayesian fr ame work 

his new goodness of fit is incorporated into an extension of the
ayesian framework shown in equation ( 8 ), where 

− 2 ln ε ≡ χ2 + G L + G M 

+ ln 
[
det 

(
f T f + rH 

)] − ln [ det ( rH )

+ 

N I ∑ 

i= 1 

ln 
[
2 πn 2 i 

]
. (16

ere, f and H are the same as defined previously for a pixelized
ource model. 

.5 Source implementation 

he formalism abo v e describes how source pixel flux values are
olved for via a mapping matrix f and regularization matrix H . The
onstruction of these matrices depends on the source implementation. 
n this work: (i) the source pixelization uses a Voronoi mesh with
atural neighbour interpolation; (ii) the Voronoi cell centres are 
omputed in the image plane via a k-means clustering algorithm 

nd ray traced to the source plane via the mass model and; (iii)
he regularization scheme adapts the degree of smoothing to the 
econstructed source’s luminous emission and interpolates values 
t a cross of surrounding points. The implementation details are 
iven fully in Appendix A . This Appendix also illustrates how
hese features address the noisy and stochastic likelihood systematics 
escribed by Etherington et al. ( 2022 ). 

.6 Light and mass 

 subset of fits will assume an elliptical S ́ersic profile, which is given
y 

 ( r) = I 
′ 
exp 

[ 

−b n 

(
r 

r e 

)1 /n 
] 

, (17) 

here I 
′ 
is the intensity, r e is the ef fecti ve radius, n is the S ́ersic index

nd b n is a normalizing coefficient determined by n (Graham & Driver
005 ). Ellipticity is introduced to the profile following equation ( 11 ).
The lens galaxy mass assumes the elliptical power-law profile 

Tessore & Metcalf 2015 ), whose convergence is described as 

( R) = 

3 − γ

1 + q 

(
R E 

R 

)γ−1 

, (18) 

here R E is the Einstein radius, q is the axis ratio and γ is the
lope. The ellipticity to the profile is introduced following equation 
 11 ). The singular isothermal ellipsoid (SIE) is the case where the
ower-law slope, γ , equals 2. 
An external shear is also included in the mass model, which is

arametrized as two components, γ ext 
1 and γ ext 

2 , 

ext = 

√ 

γ ext 2 
1 + γ ext 2 

2 , tan 2 φext = 

γ ext 
2 

γ ext 
1 

, (19) 

here γ ext is the shear strength and φext is the position angle of the
hear. 

.7 Lens modelling pipelines 

e construct automated strong lens modelling pipelines using the 
LaM (source, lens, and mass) scripts provided by PYAUTOLENS (Cao 
t al. 2021 ; Etherington et al. 2022 ; He et al. 2023 ; Nightingale et al.
024 ). These pipelines iteratively fit combinations of light, mass, and
MNRAS 532, 2441–2462 (2024) 
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Table 1. The Source, Light, and Mass (SLaM) pipelines used in this analysis, 
built using PYAUTOLENS . 

Pipeline Phase Component Model Prior info 

Source parametric SP Lens mass SIE + Shear –
Lens light MGE –

Source light MGE –
Source pixelized SPix1 Lens mass SIE + Shear SP 

Lens light MGE SP 

Source light Voronoi –
SPix2 Lens mass SIE + Shear SPix1 

Lens light MGE SP 

Source light Voronoi –
Light L Lens mass SIE + Shear SPix1 

Lens light MGE SP 

Source light Voronoi SPix2 
Mass M Lens mass EPL + Shear SPix1 

Lens light MGE L 

Source light Voronoi SPix2 
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ource models, where the initial stages fit simpler lens models (e.g.
IE mass profile, MGE source) for efficient and robust convergence

owards accurate results and later stages employ more complex mod-
ls (e.g. power-law mass model, Voronoi source reconstruction). We
se non-linear nested samplers, DYNESTY (Speagle 2020a ; Koposov
t al. 2023 ) and NAUTILUS (Lange 2023 ). 

Table 1 provides an overview of each fit performed in the pipeline.
he SLaM pipelines used in this work consist of five steps, a

eduction from the ten or more used in previous works (Cao et al.
021 ; Etherington et al. 2022 ; Nightingale et al. 2024 ). This reduction
s made possible because the MGE simplifies the fitting of lens
odels in the early stages of the SLaM pipeline, which will be

xpanded upon in Fran c ¸a et al. in preparation. 
An o v ervie w of the SLaM pipelines is as follo ws: 

(i) Source parametric pipeline (SP) : Computes an accurate
nitial estimate of the lens model parameters. The lens and source
ight are modelled using an MGE and the lens mass uses an SIE with
hear. The MGE lens light model comprises 2 sets of 30 Gaussian
rofiles, where all Gaussians share the same centre, but the two sets
ave different position angles and axis ratios. The MGE source uses
ne set of 20 Gaussians. Fits investigating S ́ersic profiles for the lens
ight use two S ́ersic profiles with the same centre. 

(ii) Source pixelized pipeline (SPix) : The source model is then
ade more complex, by using the Voronoi mesh. This is performed
 v er two fits. F or the first fit, the Voronoi mesh centres are based
n the mass model magnification, whereas for the second fit, they
dapt to the source’s unlensed morphology. Both fits subtract the lens
ight using a 2-set MGE, where the centres, axis ratios and position
ngles of all Gaussians are fixed to the previous maximum likelihood
olution. Ho we ver, their intensities are still solved via the fnnls. For
ts using S ́ersic lens light model, the light model is fully fixed to

he previous maximum likelihood solution. The mass model of the
rst fit is an SIE plus shear where all parameters are free (with priors
ased on the inferred model from SP ). For the second fit, the mass
odel is fixed and only the source pixelization parameters are fitted

or (the MGE intensities are again still solved via the fnnls). 
(iii) Light pipeline (L) : The Voronoi source reconstruction en-

bles a cleaner deblending of the lens and source light. Ho we ver, the
ens light’s non-linear parameters were previously fixed. The light
ipeline therefore refits the MGE lens light model, assuming broad
niform priors on the parameters of the MGE sets. The mass model
nd source parameters are fixed to those inferred at the end of the SPix
NRAS 532, 2441–2462 (2024) 
ipeline, ho we ver, the source fluxes are al w ays solved simultaneously
ith the MGE via the fnnls. Different lens light models are fitted,

ncluding fits using 2, 4, or 6 sets of Gaussians, fits with and without
 point-source emission set of 10 Gaussians and a model with three
 ́ersic profiles. 
(iv) Mass pipeline (M) : The mass pipeline fits a more complex

ens mass distribution, the single elliptical power law (EPL) plus
hear. The parameters of the lens light MGE and source reconstruc-
ion are fixed to those inferred in the light and source pipelines.
o we ver, their intensities are linearly solved for, for every mass
odel fitted. When using the S ́ersic light model, we simultaneously
t the light model parameters (e.g. ef fecti v e radii, S ́ersic inde x)
longside the mass model. The Mass Pipeline is the final step of our
ensing modelling procedure in this work. All the results reported in
his work are the results of this pipeline. 

 TESTS  O N  M O C K  DATA  

n this section, we first simulate three mock lensing images with
ealistic lens and source emission. We then use these simulated
mages to test the MGE lens light model and compare its results
ith those obtained using a S ́ersic lens light model. 

.1 Mock data 

o create mock lensing data with lens light emission close to that of
eal lens galaxies, we simulate the lens light of three lensing systems
rom the SLACS sample (Bolton et al. 2006 ), SDSSJ0252 + 0039,
DSSJ0330 −0020, and SDSSJ1205 + 4910. We need to simulate

mages containing the complex lens emission our MGE is designed
o fit, but also want to simulate images independently of our specific

GE implementation. We therefore use MGEFIT (a public MGE
tting code by Cappellari 2002 ) to fit these real HST strong lensing

mages, where the source emission is manually masked out. MGEFIT

odels the emission of a galaxy using multiple Gaussian profiles.
o we ver, unlike our MGE model, MGEFIT does not group the
aussian profiles into sets and each Gaussian profile has its own
osition angle and axis ratio. When using MGEFIT , we assume all the
aussian profiles share the same centre. 
In the first row of Fig. 2 , we show the HST images of the three

elected SLACS systems, and in the bottom row, we compare the
est-fitting MGEFIT results (red-dashed contours) with the obser-
ations (black contours). MGEFIT fits the lens emission accurately,
apturing the complex features we want to include in our lensing
ocks, such as the twisting of isophotes. The blue patterns mark

he source emission regions, which are not included in the MGEFIT

tting procedure. We use the best-fitting MGEFIT results to represent
he lens light emission of our mock data sets. The best-fitting

GEFIT results are listed in Table 2 . In total, the lens light of
DSSJ0252 + 0039, SDSSJ0330 −0020, and SDSSJ1205 + 4910 are
epresented, respectively, by 16, 16, and 12 individual Gaussian
rofiles. 
For the mock source galaxies, we use HST images of three nearby

alaxies, IC1954, NGC5248, and NGC3690 to ensure that our mock
ata have source galaxies with complex structures. The images of
hese three galaxies are shown in the top row of Fig. 3 . We obtain an
nrealistic extended lensed arc (compared to real lens observations)
f we directly place the images of the nearby galaxies at the source
edshifts. This is because actual strong lens source galaxies, such as
LACS, are more compact than the three nearby galaxies we selected
ere. Consequently, to simulate lensed arcs with similar sizes as those
een in real observations, we re-scale (shrink) the size of the images
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Figur e 2. Top r ow: The HST observations of three SLACS lenses, SDSSJ0252 + 0039, SDSSJ0330 −0020, and SDSSJ1205 + 4910. Contaminations of nearby 
galaxies are masked out. Bottom row: The isophotes of real observations (solid lines) and the best-fitting model of MGEFIT (dashed lines). The shaded patterns 
mark the regions of source emissions, where are masked out when fitted by MGEFIT . 

Table 2. Best-fitting MGEFIT results of the three selected SLACS lenses. The units of x , y , σ is arcsec. The units of I is e −s −1 pix −1 and the units of φ
is degrees. The centre (x, y) of the three best-fitting MGE light models are (0.013 ′′ , −0.070 ′′ ), (0.048 ′′ , 0.017 ′′ ), and ( −0.001 ′′ , −0.034 ′′ ), respectively for 
SDSSJ0252 + 0039, SDSSJ0330 −0020, and SDSSJ1205 + 4910. 

SDSSJ0252 + 0039 

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 
q 0.83 0.77 0.83 0.90 0.65 0.64 0.77 0.50 1.00 0.79 0.48 0.62 0.41 0.18 0.78 0.22 
φ −19 −19 71 −19 −70 4 56 −52 0 −80 −2 −78 28 49 −73 −25 
lg I 0.86 0.91 0.29 0.30 −0.24 −0.48 −0.13 −0.75 −0.73 −0.76 −1.6 −1.4 −2.0 −2.2 −2.2 −2.4 
lg σ −1.8 −1.6 −1.4 −1.1 −1.0 −0.85 −0.75 −0.56 −0.25 −0.14 −0.13 0.0018 0.020 −0.19 0.43 −0.11 

SDSSJ0330 −0020 

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 
q 0.82 0.64 1.0 0.60 0.62 0.91 0.58 0.34 1.00 0.46 0.59 0.76 0.21 0.30 0.44 0.48 
φ 65 −64 0 −78 −23 65 −55 84 0 −66 −89 −40 −81 7 65 −47 
lg I 1.0 0.69 0.26 0.14 −0.47 −0.19 −0.63 −1.1 −1.1 −0.86 −1.1 −1.1 −2.3 −2.3 −1.8 −1.7 
lg σ −1.7 −1.4 −1.1 −1.1 −0.91 −0.72 −0.72 −0.78 −0.25 −0.50 −0.23 −0.11 −0.15 0.018 0.18 0.22 

SDSSJ1205 + 4910 

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 
q 0.92 1.0 0.85 0.62 0.84 0.70 0.73 0.66 0.58 0.67 0.36 0.84 
φ −63 −90 −24 27 −62 −25 −18 −70 −25 8 −31 −28 
lg I 0.78 1.1 0.71 −0.65 −0.24 0.077 −0.015 −1.1 −0.61 −0.90 −1.4 −1.2 
lg σ −1.8 −1.3 −0.98 −0.86 −0.68 −0.75 −0.44 −0.22 −0.17 0.085 0.082 −1.2 
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hen placing them at the source redshifts. Their actual sizes, used 
n our mocks, are denoted in the bottom right corner of each panel.
wo of them are spiral galaxies with clear arm features, while the

hird is a system of two merging galaxies. 
As the main goal here is testing our MGE lens light model, we

imply set the mock lens mass as an elliptical power-law profile as
quation ( 18 ). We add no external shear to the lens mass. Ho we ver,
hen we model the mock images we include external shear as part
f our model. 
We simulate our mock images as HST observations with a pixel

ize of 0 . 05 arc se c and a Gaussian PSF with a sigma size equi v alent
o the pixel size. For a given mock lens mass, following the lensing
quation, we trace each image pixel back to the source plane to
etrieve the flux value of the lensed source image. To ensure that
MNRAS 532, 2441–2462 (2024) 
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Figur e 3. Top r ow: HST images of three nearby galaxies that are used as source galaxies in our mocks. The angular scale is indicated in the bottom right corner 
of each panel. Middle row: Source-only images of three mocks. Bottom row: Three mock images were used for our tests. 
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ur lensed images capture sufficient details of the source galaxies,
e sample each image pixel with 16 × 16 sub-pixels. This means

hat for each image pixel, we trace back 256 light rays to the source
alaxy plane and take the average flux of these 256 light rays as the
alue of that image pixel. We then add the lens light emission to the
ensed images and convolve the resulting images with the PSF to
reate mock lensing images. We set our mock images to match the
ata quality, resembling the best case of SLACS lenses, which has a
aximum pixel signal-to-noise (S/N) ratio ∼ 50. 
In total, we simulate three mock lensing images denoted as M1,
2, and M3: the lens light of M1 is from SDSSJ0252 + 0039 and the

ource is IC1954; the lens light of M2 is from SDSSJ0330 −0020
nd the source is NGC5248; the lens light of M3 is from
DSSJ1205 + 4910 and the source is NGC3690. In the bottom row
f Fig. 3 , we show the simulated mock lensing images. For clarity,
e also show the source-only versions in the middle row. In Table 3 ,
e summarize the parameters used for the three mocks. 
NRAS 532, 2441–2462 (2024) 

W  
.2 Mock test results 

e now use the SLaM pipeline to fit the mock imaging. The lens
ass model uses the elliptical power law profile plus an external shear

the same model used to simulate the mocks) and the source uses
he Voronoi mesh. In the Light pipeline , when using the MGE light

odel, we use 4 sets of Gaussians, each composed of 30 Gaussian
rofiles, all with the same centre. The additional set of 10 Gaussian
rofiles which model central point source emission in the lens is
lso included (see Section 4.1.3 ). We first perform fits enforcing
on-ne gativ e constraints on the solutions of source pixel fluxes and
aussian intensities (denoted as ‘nn-MGE’), which we compare to
ts without boundary conditions for our solutions (as ‘pn-MGE’). We
lso compare to models where the lens light is fitted using three S ́ersic
rofiles, which share the same centres but have different position
ngles, axis ratios, and other parameters. We do not constrain the
ource pix el flux es to be positiv e-only when using the S ́ersic model.
e fit data within circular masks containing the whole lensed arcs.
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Table 3. Parameters used for the three mocks. 

lens light source light mass ( x, y) [( ′′ , ′′ )] mass R E [ ′′ ] mass q mass φ [ ◦] mass γ z l z s 

M1 SDSSJ0252 + 0039 S1: IC1954 (0.013, −0.070) 1.2 0.8 45 2.1 0.28 0.98 
M2 SDSSJ0330 −0020 S2: NGC5248 (0.048, 0.017) 1.0 0.77 60 1.9 0.35 1.1 
M3 SDSSJ1205 + 4910 S3: NGC3690 ( −0.001, −0.034) 1.1 0.75 30 2.0 0.22 0.48 

Figure 4. Top row: Relative differences between the best-fitting ‘nn-MGE’ lens light model and the input lens light. Bottom row: Normalized residuals of the 
best-fitting lensing model. The black contours mark the source emission (image data–best-fitting lens light model). 
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or mock M1 and M3, the mask radius is 1 . 8 arc se c and the mask
adius of M2 is 1 . 6 arc se c because it has a slightly smaller Einstein
adius. 

We show results using the ‘nn-MGE’ model in Fig. 4 . Different
olumns show the results for different mock data. The first row 

hows the ‘lens light relative difference map’ (model lens light–input 
ens light/input lens light), therefore showing the relative difference 
etween the best-fitting MGE model and the true lens light input. The
odel reco v ers the true input lens light to a v ery high accurac y, with

elati ve dif ferences belo w 5 per cent e v erywhere e xcept the central
egions, which are due to Poisson noise. The second row shows
he o v erall (including both lens and source emission) normalized 
esiduals [best-fitting model image–data)/errors] for the fits with an 

GE lens light model. The model fits the mock data to the noise
ev el, e xhibiting no significant correlated residuals. Table 4 lists the
est-fitting parameters of our power-law mass model, with values in 
rackets indicating the 3 σ confidence regions. The model correctly 
eco v ers all of the parameters of the input power-law mass profiles
ithin the 3 σ error. 
In Fig. 5 , we show the same plots for fits using the ‘pn-MGE’
odel. The lens light relative difference map shown in the top 

o w sho ws systematic issues for all three mock lenses. Undesirable
ring-like’ correlated residuals around the Einstein arc of M1 and 
3 are seen, meaning that the ‘pn-MGE’ model is systematically 

 v erestimating the lens light fluxes in areas o v erlapping with the
ource emission. The lens light relative difference map of M2 shows
on-physical stripes that alternate between positive and negative 
alues. Inspection of the MGE intensities reveals Gaussian profiles 
ith alternating positive and ne gativ e intensities that counterbalance 

ach other, indicating o v erfitting. The bottom row shows this model
gain fits the mock data to the noise level. The second part of Table 4
ists the best-fitting parameters of the power-law mass model when 
sing the ‘pn-MGE’ lens light model. Despite the issues seen in the
ens light relative difference map, this model still correctly reco v ers
he input power-law mass profiles. 

Finally, we show the results using the S ́ersic lens light model in
ig. 6 , following the same format as Figs 4 and 5 . The first row
hows the relative differences between the best-fitting 3 × S ́ersic 
ens light model and the input lens light. The differences are much
arger than seen for either MGE model shown before, particularly 
or M1 and M2, where in some regions the relative differences
an exceed 15 per cent. The second row shows the normalized
esiduals, where the 3 × S ́ersic lens light model produces a poor fit
o the image with significantly correlated residuals. The best-fitting 
MNRAS 532, 2441–2462 (2024) 
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Table 4. Best-fitting power-law mass model parameters using MGE/S ́ersic lens light model. Values in brackets indicate 3 σ confidence regions. 

x [ ′′ ] y [ ′′ ] R E [ ′′ ] q φ [ ◦] γ

M1 nn-MGE 0.014 (0.010, 0.018) −0.068 ( −0.072, −0.065) 1.198 (1.178, 1.218) 0.80 (0.77, 0.83) 45.6 (43.1, 47.9) 2.08 (1.92, 2.23) 
M2 nn-MGE 0.047 (0.044, 0.051) 0.017 (0.014, 0.019) 1.006 (0.990, 1.023) 0.77 (0.74, 0.80) 59.6 (58.0, 61.1) 1.94 (1.83, 2.05) 
M3 nn-MGE −0.003 ( −0.005, 0.000) −0.033 ( −0.035, −0.031) 1.101 (1.088, 1.124) 0.75 (0.72, 0.77) 31.2 (30.2, 32.5) 2.01 (1.94, 2.15) 

M1 pn-MGE 0.015 (0.010, 0.018) −0.068 ( −0.072, −0.065) 1.199 (1.178, 1.222) 0.80 (0.76, 0.82) 46.1 (43.4, 47.6) 2.08 (1.91, 2.25) 
M2 pn-MGE 0.047 (0.044, 0.051) 0.015 (0.012, 0.018) 1.013 (0.995, 1.032) 0.76 (0.73, 0.79) 59.2 (57.3, 60.6) 1.99 (1.86, 2.13) 
M3 pn-MGE −0.000 ( −0.004, 0.003) −0.030 ( −0.032, −0.027) 1.108 (1.089, 1.136) 0.74 (0.70, 0.77) 32.6 (29.1, 33.7) 2.04 (1.92, 2.20) 

M1 3 ×S ́ersic 0.013 (0.009, 0.017) −0.067 ( −0.072, −0.064) 1.184 (1.177, 1.193) 0.80 (0.78, 0.82) 46.0 (43.6, 47.5) 1.96 (1.91, 2.02) 
M2 3 ×S ́ersic 0.026 (0.022, 0.035) 0.010 (0.006, 0.023) 1.05 (0.99, 1.09) 0.71 (0.68, 0.98) −4.2 ( −17.7, 9.5) 2.72 (2.61, 2.82) 
M3 3 ×S ́ersic −0.006 ( −0.009, −0.003) −0.032 ( −0.034, −0.030) 1.14 (1.12, 1.15) 0.73 (0.69, 0.74) 32.1 (30.1, 33.4) 2.27 (2.18, 2.36) 

Figure 5. Top row: Relative differences between the best-fitting ‘pn-MGE’ lens light model and the input lens light. Bottom row: Normalized residuals of the 
best-fitting lensing model. The black contours mark the source emission. 
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ower-law parameters are listed in Table 4 , where a biased estimation
f the lens mass profile is seen. Specifically, the slopes are reco v ered
ncorrectly at 3 σ confidence for all three mocks. This discrepancy
rises because the lens mass model compensates for inaccuracies in
he lens light model by adjusting its location, mass, shape and other
ttributes to fit the residuals left by an imprecise representation of
he lens light. 

.3 Summary 

he MGE models fit all three mock images with complex lens and
ource morphologies to the noise le vel. Ho we ver, without enforcing
on-ne gativ e constraints on the solutions of Gaussian intensities and
ource pixel fluxes, the ‘pn-MGE’ model overestimates the lens light
ux in regions where the lensed source is observed and may suffer
rom the o v erfitting due to the Gaussians alternating between large
ositiv e and ne gativ e values. By enforcing non-ne gativ e constraints
NRAS 532, 2441–2462 (2024) 
n the solution, the ‘nn-MGE’ fixes these issues and accurately
eco v ers the input lens light distribution with a > 95 % accuracy.
t also accurately reco v ers the lens mass profile parameters. The

GE is a significant impro v ement on a standard 3 × S ́ersic lens
ight model. The MGE lens light model demonstrates the ability to
apture the surface brightness of a realistic lens galaxy. 

 APPLI CATI ON  TO  SLAC S  LENSES  

.1 Fitting results 

.1.1 MGE fitting results 

e now apply the MGE lens light model with the non-ne gativ e
onstraints to 38 SLACS lenses. We first fit a ‘2 × 30 + 1 × 10’ MGE
odel (2 sets of 30 Gaussians plus an additional set of 10 Gaussian

rofiles which capture central point source emission). Ho we ver, in
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Figure 6. Top row: Relative differences between the best-fit 3 S ́ersics lens light model and the input lens light. Bottom row : Normalized residuals of the 
best-fitting lensing model. The black contours mark the source emission. 
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ertain SLACS lenses the model left lens light residuals and we 
herefore additionally fitted a more complex ‘6 × 30 + 1 × 10’ MGE
odel (6 sets of 30 Gaussians with an additional point-source set). We
t the lens mass using an elliptical power-law profile plus an external
hear and use a Voronoi mesh for the source. Some SLACS lenses
av e sev eral nearby galaxies within their 3 . 0 arc se c circular mask.
o a v oid light contamination from those nearby galaxies, following 

he same procedure of Nightingale et al. ( 2024 ), we have manually
elected out the region of contamination and increased the related 
oise by several orders to ensure the light of nearby galaxies would
ot affect our analysis. 
Fig. 7 shows the normalized residuals of our fits to the 38 SLACS

ensing systems, with the colour bar ranging from −3 . 5 σ to + 3 . 5 σ .
he bottom-left corner of each panel shows the MGE lens light model
sed for fitting the image. ‘X2’ denotes a ‘2 × 30 + 1 × 10’ MGE
odel, while ‘X6’ denotes a ‘6 × 30 + 1 × 10’ MGE model. Black

ontours outline the morphology of source emission. The MGE lens 
ight model fits the majority of SLACS lenses to the noise level.
o we ver, for three lenses – SDSSJ0841 + 3825, SDSSJ1432 + 6317

nd SDSSJ2341 + 0000, significant ( > 3 σ ) correlated normalized 
esiduals are observed in regions far from the source emission. These 
esiduals are due to an inaccurate lens light model, caused by distinct
symmetric features that even an MGE model cannot fit, such as the
spiral’-like feature shown in SDSSJ1432 + 6317. 

.1.2 Three S ́ersic lens light model results 

or comparison, we have also applied the 3 S ́ersic lens light model
o analyse the SLACS lenses. The normalized residuals of this 
nalysis are shown in Fig. B1 . The model fits the SLACS images
ignificantly worse than the MGE light model, with around half of the
ts exhibiting significant correlated residuals related to the lens light. 
aking SDSSJ1143 −0144 as a case study, the left and middle panels
f Fig. 8 compare the normalized residuals of the ‘6 × 30 + 1 × 10’
GE lens light model and the 3 S ́ersic lens light model. The three
 ́ersics model shows significant correlated residuals and therefore 
ails to capture angular complexity inherent in the light distribution 
f the lens galaxy, which the MGE model fits successfully. While one
ould theoretically increase the number of S ́ersic profiles to account
or these residuals, this becomes impractical as it significantly 
ncreases the complexity of the parameter space due to the addition
f more parameters. 

.1.3 ‘Point centre’ MGE set 

ur MGE lens light model also includes a point source of light,
onsisting of a set of 10 Gaussians with a centre distinct from the
ther MGE sets. This fits point source emission observed in the very
entral region of a subset of SLACS lenses. Fig. B2 shows MGE fits to
he SLACS sample without including this set. In approximately one- 
uarter of the cases removing the set of 10 Gaussians leads to point-
ike residuals appearing at the centre of the lens galaxy, illustrating
hat it serves an important role in capturing this central point-like
mission accurately. Fig. 8 compares the normalized residuals for 
DSSJ1143 −0144 using an MGE lens light model with (left panel)
nd without (right panel) this set of 10 Gaussians. Omitting them
eads to the presence of minor dipole residuals in the central region
f the lens galaxy’s light distribution. 
MNRAS 532, 2441–2462 (2024) 
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M

Figure 7. Best-fitting normalized residuals for images of 38 SLACS lenses. The letter in the bottom left corner of every panel indicates the lens light model we 
used to fit the image. ‘X2’ means a ‘2 × 30 + 1 × 10’ MGE lens light model while ‘X6’ means a ‘6 × 30 + 1 × 10’ MGE lens light model. The black contours 
mark the source emission. 
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.2 Complexity of realistic lens light emission 

.2.1 Ellipticity and position angles 

or 35 out of 38 SLACS lenses with satisfactory MGE fits, we
ssess the complexity of lens light emission based on the changing
llipticity and position angles of their isophotes as a function of
he 2D radius. For example, in Fig. 9 , we show isophote analysis
NRAS 532, 2441–2462 (2024) 
f the best-fitting MGE lens light models of SDSSJ0946 + 1006. To
ake the visuals close to observations, we incorporate the PSF and

ealistic noise into the best-fitting lens light model for this analysis.
n the left panel, black contours represent the isophotes of the best-
tting MGE lens light model. Each contour is fitted with an elliptical
urve, depicted by blue lines in the plot. The green curve represents
he critical curve on the lens plane. We measure the axis ratios and
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Figure 8. Normalized residuals for SDSSJ1143–0144 using three different lens light models, the ‘6 × 30 + 10’ MGE model (left panel), the 3 Sersic model, 
the ‘6 × 30’ MGE model. The colour bar range is from −3.5 to + 3.5. The black contours are the same as those in Fig. 7 . 

Figure 9. Left panel: Black lines represent the contours of the best-fitting MGE lens light model. Blue curves are the best-fitting ellipses to the contours. The 
green curve marks the critical line of the best-fitting power-law mass profile. Middle panel: Blue points show the axis ratios of the isphotes of the best-fitting 
MGE lens light model as a function of radius. The horizontal green line indicates the axis ratio of the critical curve of the best-fitting profile. The green triangle 
marks the Einstein radius. The horizontal red line represents the axis ratio of the best-fitting power-law profile with dashed lines showing its associated 3 σ errors. 
Right panel : Blue points show the position angles of the isophotes of the best-fitting MGE lens light model as a function of radius. The green line indicates 
the position angle of the critical curve of the best-fit mass profile. The green triangle marks the Einstein radius. The red line represents the position angle of the 
best-fitting power-law mass profile, with dashed lines showing its 3 σ errors. 
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osition angles of the best-fitting elliptical curves. The blue points 
n the middle and right panels show the axis ratios and position
ngles, respectively, as functions of the (semi-major axis) radius. In 
he middle panel, the green horizontal line represents the axis ratio of
he critical curve, with the green triangle marking the Einstein radius.
he red horizontal line shows the axis ratio of the best-fitting power-

aw profile, with dashed lines depicting its 3 σ errors. Similarly, 
n the right panel, the green line and triangles denote the position
ngle of the critical curve and the Einstein radius, respectively. The 
ed solid and dashed lines represent the position angle of the best-
tting power-law profile and its associated 3 σ errors. We can see 

hat SDSSJ0946 + 1006 exhibits a highly complex surface brightness 
ith isophotes twisting nearly 90 ◦ from the inner to outer regions. 

Similar plots as Fig. 9 for all 35 SLACS lenses can be found at
ttps:// github.com/ qiuhan96/ isophotes MGE SLACS .) 
For an overview of the complexity in the lens light emission for

he 35 SLACS lenses, Fig. 10 summarizes the maximum changes 
n axis ratios and position angles within the range of 0 . 5 arc se c 

nd 2 . 5 arc se c , co v ering the Einstein radii and the majority of lens
 δ
ight emission. The top panel displays the histogram of the maximum
hange in axis ratios and the bottom panel shows the histogram of the
aximum change in position angles. Notably, a significant portion 

f SLACS lenses ( ∼ 40 per cent ) exhibit isophotes with changes in
xis ratios exceeding 0.1 or changes in position angles over 10 ◦. This
uggests that the phenomenon of twisting non-elliptical isophotes is 
ommon among typical lens galaxies. 

.2.2 Boxiness / diskiness 

y analysing the isophotes of the best-fitting MGE light models we
an also assess the boxiness / diskiness of the 35 SLACS lenses. To
uantify an isophote’s shape, we follow the methodology outlined 
y Bender & Moellenhoff ( 1987 ), employing Fourier analysis to
easure deviations from standard elliptical shapes. The equation for 

his analysis is as follows: 

R ( θ ) = R ( θ ) − R el ( θ ) = a 0 + 

N ∑ 

1 

( a n cos nθ + b n sin nθ ) , (20) 
MNRAS 532, 2441–2462 (2024) 

https://github.com/qiuhan96/isophotes_MGE_SLACS
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Figure 10. Top panel: The histogram of the maximum changes in axis ratios 
within the range of 0 . 5 arc se c to 2 . 5 arc se c for 35 SLACS lenses. Bottom 

panel: The histogram of the maximum changes in position angles for those 
lenses. 
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Figure 11. Top panel: The histogram of the a 4 /a of maximum absolute val- 
ues within the range of 0 . 5 arc se c to 2 . 5 arc se c for 35 SLACS lenses. Middle 
panel: The isophotes of the best-fitting lens light model of SDSSJ1250 + 0523. 
This lens has the most boxy isophotes in our analysis. Bottom panel: The 
isophotes of the best-fitting lens light model of SDSSJ1032 + 5322. This lens 
has the most disky isophotes in our analysis. 
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here R( θ ) represents the polar coordinate of a given isophote, and
 el ( θ ) is the polar coordinate of the ellipse best-fitting the isophote.
he deviation, δR ( θ ), is expressed in terms of Fourier coefficients a n 
nd b n (for n = 0 , 1 , ..., N ), which capture the deviation’s amplitude
nd phase. We use the ratio a 4 /a, where a is the semi-major radius
f the isophote, to quantify the isophote’s shape. A positi ve v alue of
 4 /a indicates a ‘disky’ isophote, whereas a negative value indicates
 ‘boxy’ isophote. 

We report the a 4 /a with the maximum absolute value within
he range of 0 . 5 arc se c and 2 . 5 arc se c for each lens galaxy. The
istogram presented in the top panel of Fig. 11 shows the distribution
f these maximum | a 4 /a | values. We find that the vast majority of
he lenses, 32 out of 35, have a maximum | a 4 /a| less than 0.02.
pproximately half of the lens sample demonstrates a noticeable
egree of boxiness / diskiness, with their maximum | a 4 /a| falling
ithin the range of 0.01 to 0.02. Among the analysed systems,
DSSJ1250 + 0523 has the most boxy isophotes, characterized by
n a 4 /a value of −0 . 037, while SDSSJ1032 + 5322 shows the most
isky isophotes, with an a 4 /a value of 0.026. The middle and
ottom panels of Fig. 11 show the best-fitting isophotes of these
wo lenses. 
NRAS 532, 2441–2462 (2024) 
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From the analysis of the shape of isophotes, it is clear that while
he majority of the SLACS lenses do not exhibit significant boxiness
r diskiness, with the majority of lenses having a maximum | a 4 /a|
maller than 0.02, there are notable exceptions that exhibit distinct 
oxy or disky shapes, with | a 4 /a| exceeding 0.02. This diversity
ighlights the variation in structural features across different lens 
alaxies, with a small subset showing significant departures from 

lliptical symmetry. 

 DISCUSSION  

.1 Origin of lens light complexity 

he MGE model has demonstrated a remarkable capability to 
ccurately fit the light distribution of most real lenses, unco v ering
omplexities like radial ellipticity variations, twisting isophotes, and 
oxiness / diskiness. Similar features have been observed in S0 and 
lliptical galaxy populations (Hao et al. 2006 ), including detailed 
tellar kinematics studies (Emsellem et al. 2011 ; Krajnovi ́c et al.
011 ). Ho we ver, strong lens selection effects produce lens galaxies
ith higher stellar masses than these galaxy samples, which is 

orrelated with these features. The MASSIVE surv e y studies about 
00 of the most massive nearby elliptical galaxies, with comparable 
asses to SLACS lenses. We therefore compare our results to 
oullaud et al. ( 2018 ), who conducted a detailed photometric study
f 35 massive ellipticals. Their methodology differs markedly from 

urs, therefore the purpose of this comparison is to simply confirm 

hat the luminous complexity seen in SLACS lenses is reported in 
amples of analogous unlensed massive ellipticals. 

Goullaud et al. ( 2018 ) observe changes in galaxy ellipticities of
 . 1 –0 . 2 o v er a radial range of 1 –10 kpc, comparable to the axis-
atio changes shown for SLACS lenses in Fig. 10 . 37 per cent of
heir sample sho w v ariations in the position angle exceeding 20 deg,
omparable to values shown in Fig. 10 . Boxy and disky isophotes
re observed in their sample with magnitudes of 0 . 01 –0 . 02 and an
pproximately fifty-fifty ratio of boxy and disky, consistent with the 
alues and distribution shown for SLACS in Fig. 11 . The deviations
f SLACS lenses from elliptical isophotes are therefore broadly 
onsistent with nearby massive elliptical galaxies. 

The isophotal analysis offers clues on a galaxy’s formation 
istory. Ellipticity variations and twists are readily explained by 
n underlying triaxial 3D mass distribution which manifests in 
D projection. Stellar kinematic analysis reveals massive ellipticals 
ften sho w e vidence for trixality, which is likely a product of their
erger history and growth. Even in prolate or oblate systems, recent 
erger activity may produce departures from ellipticity. Ho we ver, 
orphological structures like bars and the presence of dust in the 

entres of galaxies can also produce these features (Goullaud et al. 
018 ). Our MGE technique therefore has the potential to reveal more
bout the formation history of strong lens galaxies. 

We also observe central point-like emission in the centre of 
25 per cent of lens galaxies. Galaxies often exhibit central point- 

ike emission (e.g. Bruce et al. ( 2016 )), which can be due to faint
mission associated with the galaxy’s central supermassive black 
ole or nuclear stellar emission. These phenomena do not offer 
uch information on the galaxy’s formation history. Ho we ver, a 

antalizing alternative is that these could be a dim lensed source 
entral image, made possible by the lens’s mass being centrally 
ored (Winn, Rusin & Kochanek 2004 ; Quinn et al. 2016 ). Whilst a
omewhat unlikely hypothesis, the MGE does allow us to separate 
his point-like emission from the main lens’s emission, moti v ating 
uture studies which fit cored mass profiles to SLACS lenses. 
.2 Implications for the complexity of lens mass distribution 

ecent studies on g alaxy–g alaxy strong lensing have shown that a
ingle elliptical power-law mass model is insufficient to accurately 
escribe the lens mass distribution, especially for scientific cases 
nvolving subhalo detection and inference of H 0 , where precise lens

ass modelling is crucial (Hsueh et al. 2017 , 2018 ; Cao et al. 2021 ;
an de Vyvere et al. 2022 ; He et al. 2023 ; Nightingale et al. 2024 ).
ens mass comple xity, be yond the power-law model, primarily arises

rom the stellar component of the lens galaxy because it dominates
he mass within ∼ 10 kpc, the scale of g alaxy–g alaxy strong lensing.
ngular complexity is particularly important, because strong lensing 

s highly sensitive to the projected enclosed mass within the critical
urv e, and an y variations in the 2D angular shape of the mass
istribution can significantly alter the shape of the critical curve. 
Our analysis of the isophotes of 35 SLACS lenses confirms that it

s common for a lens galaxy’s surface brightness to exhibit angular
omple xity be yond a single ellipse, which a single elliptical power
aw does not fully capture. This includes twisting (arising from the
arying position angles) and boxiness or diskiness (arising from 

he varying ellipticity). Supposing that stellar mass roughly traces 
he stellar light, it is reasonable to suggest that the stellar mass
ould exhibit a similar level of complexity as the surface brightness.
here are hints of this in the literature, for example, our study notes

hat SDSSJ1250 + 0523 is the lens with the most boxy isophotes,
nd the same system is flagged by Nightingale et al. ( 2024 ) to
equire an M4 multipole (which represents a boxy mass distribution) 
n order to produce a robust dark matter inference. Stacey et al.
 2024 ) also find evidence that a mass-model multipole correlates
ith lens light emission. Angular complexity in the stellar mass 

ould explain puzzling results regarding the external shear of strong 
enses (Gomer & Williams 2020 , 2021 ; Etherington et al. 2024 )
nd inconsistencies between power-law lensing and stellar dynamics 
easurements (Etherington et al. 2023 ). 
Our MGE lens light model is well suited to being used in a two-

omponent decomposed mass model, where the MGE represents 
he stellar mass and is modelled simultaneously with a dark matter
alo. The ease of computing deflection angles from Gaussian 
rofiles facilitates this (Shajib 2019 ). This model is more physically
oti v ated than a power law and scientifically could open many doors,

or example measuring the centre, mass and ellipticity of the dark
alo hosting the lens galaxy, which are challenging to measure with
lternative methods like stellar dynamics. Decomposed mass models 
ave previously been used (Nightingale et al. 2019 , 2024 ; Schuldt
t al. 2019 ; Chen et al. 2022 ), ho we ver, these studies rely on light
rofiles like the S ́ersic model which we have shown in this work
re limited in their applicability. The next steps are therefore for us
o begin fitting MGE mass models and to investigate assumptions 
egarding the conversion of stellar light to stellar mass, for example,
hether a constant mass-to-light ratio is sufficient. 

.3 Automated lens modelling with an MGE 

ith samples of o v er 100 000 strong lenses incoming (Collett 2015 ),
utomated lensing analysis is crucial (Etherington et al. 2022 ). The
GE of fers significant adv antages o v er traditional S ́ersic profiles

n lens modeling, for both the lens galaxy and source galaxy.
irst, it provides enhanced flexibility in capturing complex light 
istributions, ef fecti vely reducing residuals from foreground lens 
ight subtraction which often lead one to infer incorrect mass and
ource models (Etherington et al. 2022 ). Second, parametrizing the 

GE requires only 4 non-linear parameters (compared to 6 for a
MNRAS 532, 2441–2462 (2024) 
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inearized S ́ersic profile), leading to a reduction in the o v erall number
f non-linear parameters. Crucially, the MGE’s parametrization does
ot have a non-linear parameter governing the galaxy’s size or
uminosity (which are solved for linearly), eliminating a significant
e generac y between the source galaxy’s size and the lens mass model
arameters, ensuring more reliable sampling and reducing the risk of
ncorrectly inferring local maxima during optimization. Approaches
ike the B-spline lens light subtraction are user-intensive, requiring
hat the subtraction is performed manually via the graphical user
nterface. These benefits will be expanded upon by Franca et al.,
ho perform automated analysis of 21 lenses using an MGE for the

ens and source galaxies. 

 C O N C L U S I O N S  

e present a no v el lens light model for g alaxy–g alaxy strong lensing
nalysis. The model is built on a multi-Gaussian expansion (MGE)
ethod which has been widely used in stellar dynamical analysis.
he key idea is to represent the lens light as sets of Gaussian profiles
nd linearly solve the intensities of each individual Gaussian profile.
o simultaneously fit both the MGE lens light model and a pixelized
ource model, we incorporate the MGE lens light model into the
onventional semi-linear scheme for pixelized source modelling
Warren & Dye 2003 ). We note that because we are fitting two free-
orm models simultaneously, there could be a de generac y between the
ens light and pixelized source model, particularly in the lensed arc
egions where both models can fit the light. To mitigate de generac y
etween the MGE lens light model and the pixelized source model,
e also introduce non-ne gativ e boundary constraints to the semi-

inear inversion scheme which applies the physically moti v ated
onstraints that all lens and source emission must be non-ne gativ e.
ompared to traditional lens light models like S ́ersic profiles, the
rimary advantage of an MGE lens light model is its ability to capture
omplex angular and radial features of real lenses using only a few
arameters. 
To verify that the MGE lens light model can accurately fit realistic

ens galaxies, we simulate three mock lensing images with realistic
ens and source emission and employ them to test our MGE lens
ight model. The lens light is derived from three real SLACS lenses,
hile the source emission is represented by HST images of three
earby galaxies. We have demonstrated that the scheme utilizing the
GE lens light model can fit the mock images to the noise level

the second rows of Figs 4 and 5 ). For the MGE model with the
on-negativity constraint, the relative difference between the best-
tting lens light model and the true input is small, remaining below
 per cent (the first row of Fig. 4 ). This result confirms that the MGE
ccurately captures the lens emission and that it enables a clean
eblending of lens and source light. This is not the case when the
on-ne gativ e constraint is relaxed (a common assumption in many
ensing methods), with fits to the three mocks showing correlated
esiduals and evidence of o v erfitting, because the MGE unphysically
ts lensed source emission (the first row of Fig. 5 ). Fits using three
 ́ersic profiles produce significant residuals (Fig. 6 ) and biased best-
tting lens mass profiles (Table 4 ). 
Having confirmed that the MGE lens light model with the non-

e gativ e constraints enables a robust fit of a lens galaxy’s emission,
e apply it to 38 SLACS lenses. We judge that the MGE lens light
odel fits the majority – 35 out of 38 of SLACS lenses – accurately.
e examine the ellipticity and position angles of the isophotes of

hese lenses. For approximately 40 per cent of the lenses, the axis ratio
position angle) of the isophotes can change as much as 0.1 (10 ◦)
rom r = 0 . 5 ′′ to r = 2 . 5 ′′ (Fig. 10 ), suggesting that it is common for
NRAS 532, 2441–2462 (2024) 
 lens galaxy to exhibit twisting non-elliptical stellar emission. We
lso measure the boxiness / diskiness of the isophotes using Fourier
nalysis to e v aluate de viations from standard ellipses (Fig. 11 ). The
ajority of the 35 SLACS exhibit boxy or disky isophotes that are

elatively small in overall magnitude, but large enough to impact
ensing studies (Van de Vyvere et al. 2020 ; Cao et al. 2021 ; Cohen
t al. 2024 ). We compare our results to a sample of unlensed massive
lliptical galaxies with similar stellar masses to SLACS (Goullaud
t al. 2018 ) and confirm that the departures from ellipticity we have
een in SLACS lenses are observed with a similar frequency in non-
ens samples. Approximately ∼ 25 per cent of lenses also require
s to include an extra set of Gaussians which capture point-source
mission at their centre, indicative of nuclear emission from the
ens’s black hole or supernova or possibly a central image of the
ackground source. 
Our study confirms that the stellar emission of nearly all strong

enses shows angular complexity which the model commonly used to
odel their mass – the single elliptical power law – can not capture

ccurately. The MGE model will therefore form the basis of a mass
odel which decomposes each lens galaxy into its stellar mass and

ark matter. Future work seeks to fit this model to SLACS lenses
nd use it to inform studies of dark matter, cosmology and galaxy
volution. 

OFTWARE  C I TAT I O N S  

his work uses the following software packages: 

(i) 〈 0:sc 〉 astrop y 〈 /0:sc 〉 (Astrop y Collaboration et al. 2013 ; Price-
helan et al. 2018 ) 
(ii) 〈 0:sc 〉 colossus 〈 /0:sc 〉 (Diemer 2018 ) 
(iii) 〈 0:sc 〉 corner.p y 〈 /0:sc 〉 (Foreman-Mack ey 2016 ) 
(iv) 〈 0:sc 〉 dynesty 〈 /0:sc 〉 (Speagle 2020b ) 
(v) 〈 0:sc 〉 matplotlib 〈 /0:sc 〉 (Hunter 2007 ) 
(vi) 〈 0:sc 〉 numba 〈 /0:sc 〉 (Lam, Pitrou & Seibert 2015 ) 
(vii) 〈 0:sc 〉 numpy 〈 /0:sc 〉 (van der Walt, Colbert & Varoquaux

011 ) 
(viii) 〈 0:sc 〉 pyautofit〈 /0:sc 〉 (Nightingale et al. 2021 ) 
(ix) 〈 0:sc 〉 pyautog alaxy 〈 /0:sc 〉 (Nighting ale et al. 2023 ) 
(x) 〈 0:sc 〉 pyautolens 〈 /0:sc 〉 (Nightingale et al. 2018 , 2019 , 2021 ,

024 ) 
(xi) 〈 0:sc 〉 python 〈 /0:sc 〉 (Van Rossum & Drake 2009 ) 
(xii) 〈 0:sc 〉 scikit-image 〈 /0:sc 〉 (Van der Walt et al. 2014 ) 
(xiii) 〈 0:sc 〉 scikit- learn 〈 /0:sc 〉 〈 0:sc 〉 〈 0:ext- link 0:ext- link- 

ype="uri"3:href="https:// github.com/ scikit-learn/ scikit-learn" 〉 〈 /0: 
 xt-link 〉 〈 /0:sc 〉 (Pedre gosa et al. 2011 ) 

(xiv) 〈 0:sc 〉 scipy 〈 /0:sc 〉 (Virtanen et al. 2020 ) 
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PPENDI X  A :  NAT U R A L  N E I G H B O U R  

I XELI ZATI ON  A N D  CROSS-LI KE  

E G U L A R I Z AT I O N  

n Section 2.2 , we have described the semi-linear inversion frame-
ork for a pixelized source model. Here, we introduce the specific
atural neighbour source pixelization and cross-like regularization 
cheme utilized in this work. We then show how it achieves a smooth
ikelihood curve and a robust estimation of lens parameters. 

1 Method 

1.1 Mesh centres 

he source pixelization first determines the centres of the Voronoi 
ource pixels. Initial fits overlay a rectangular Cartesian grid of shape
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M

Figure A1. Left panel: An example lensed mock image. Black points are the source grid points mapped to the image plane. Middle panel: Voronoi pixelization 
of Nightingale & Dye ( 2015 ). Black points mark the source pixel positions on the source plane. Grey points are image pixels traced to the source plane. Colours 
show the reconstructed fluxes of the source pixels. Right panel: New pixelization scheme used in this work, involving natural neighbour interpolation plus 
cross-like regularization. 
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4 More details about the natural neighbour interpolation technique can be 
found at ht tps://gwlucast rig.github.io/TinfourDocs/NaturalNeighborTinfour 
Algorithm/index.html . 
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 y pix , x pix ) o v er the image plane, which e xtends to and from the mask
dges. All coordinates on this uniform grid which fall within the
ask are retained and traced to the source plane via the mass model

pixels outside the mask are discarded). These coordinates, M i , are
sed as the centre of the Voronoi cells, which therefore trace the mass
odel magnification. 
Subsequent fits adapt the mesh centres M i to the source’s unlensed
orphology. This uses a previous model of the lensed source

mission, � j , which is used to compute the weights 

 j = 

(
� j − min � 

max � j − min � 

)
+ W floor + max � j . (A1) 

he first term on the right-hand side runs from zero to one, where
alues closer to one correspond to the lensed source’s brightest pixels.
 floor controls how much weight is given to the source’s brightest

ixels and is a free parameter in certain fits. W is passed to a weighted
-means clustering algorithm (Pedregosa et al. 2011 ) to determine
mage-plane coordinates which are traced to the source plane. The
-means assumes N pix = 1500 source pixels throughout this work.
his scheme adapts to the lensed source emission. 

1.2 Mapping matrix 

he reconstruction computes the linear superposition of PSF-
meared source pixel images which best fits the observed image.
his uses the mapping matrix f ij , which maps the j th pixel of each

ensed image to each source pixel i, giving a total of J lensed image
ixels and I source pixels. When constructing f ij we apply image-
lane subgridding of degree 4 × 4, meaning that 16 × J sub-pixels
re fractionally mapped to source pixels with a weighting of 1 

16 ,
emoving aliasing effects (Nightingale & Dye 2015 ). 

Each image sub-pixel is mapped to multiple Voronoi source
ixels weighted via interpolation. We use Voronoi natural neighbour
nterpolation via Sibson’s technique (Sibson 1981 ). For every sub-
ixel, j , the method considers a new polygon that adding this point
o the Voronoi mesh computed from M i would create. The new
olygon captures some of the area that was previously co v ered by
ts neighbours, which the method computes and uses to compute the
nterpolation weights in f ij as 

 = f ij = 

1 ∑ K 

i= 1 A capture 

K ∑ 

k= 1 

A capture z k , (A2) 
NRAS 532, 2441–2462 (2024) 
here K is the number of neighbours of a given Voronoi cell i. 4 

1.3 Regularization 

erforming an inversion using equation ( A2 ) by itself is ill-posed,
herefore to a v oid o v erfitting noise the solution is regularized using
 linear regularization matrix H described by Warren & Dye
 2003 ). The matrix H applies a prior on the source reconstruction,
enalizing solutions where the difference in the reconstructed flux of
eighbouring Voronoi source pixels is large. Initial fits use gradient
egularization (see Warren & Dye 2003 ) adapted to a Voronoi mesh
see Nightingale & Dye 2015 ). The main results and those illustrated
n this appendix use a scheme which adapts the degree of smoothing
o the reconstructed source’s luminous emission and interpolates
alues at a cross of surrounding points. The formalism for the
alculation of these regularization matrices H is given in Appendix A
f (Nightingale et al. 2024 ). 

1.4 Inversion 

ollowing the formalism of Warren & Dye ( 2003 ), we define the data
ector 	 D i = 

∑ J 

j= 1 f ij ( d j − b j ) / ( σj ) 2 and curvature matrix F ik =
 J 

j= 1 f ij f kj / ( σj ) 2 , where d j are the observed image flux values
nd b j are the model lens light values. The source pixel surface
rightnesses are given by s = [ F + H ] −1 	 D which are solved via a
inear inversion that minimizes 

2 + G L = 

J ∑ 

j= 1 

[
( 
∑ I 

i = 1 s i f ij ) + b j − d j 

σj 

]2 

+ s T H s . (A3) 

he term 

∑ I 

i= 1 s i f ij maps the reconstructed source back to the image
lane for comparison with the observed data and G L = s T H s is a
egularization term. 

The degree of smoothing is chosen objectively using the Bayesian
ormalism given by equation ( 16 ). 

https://gwlucastrig.github.io/TinfourDocs/NaturalNeighborTinfourAlgorithm/index.html
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Figure A2. Top panel: The log evidence as a function of the power-law 

slope using the new source pixelization scheme. Bottom panel: The log 
evidence as a function of the power-law slope using the source pixelization 
scheme of Nightingale & Dye ( 2015 ). 
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5 For high performance, we have taken a C version of this natural neighbour 
interpolation algorithm from https://github.com/sakov/nn-c modified it and 
made a PYTHON wrapper. 
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2 Likelihood surface noise 

n strong lensing analysis, modelling with pixelized source models 
ay lead to noisy likelihood surfaces. This implies that a slight

hange in the parameter space of the lens mass could result in
 disproportionately large jump in the likelihood (see fig. 3 of
therington et al. 2022 ). The noisy behaviour of a likelihood curve
akes it difficult for a non-linear sampler to efficiently sample the 

arameter space, leading to an underestimation of parameter errors. 
ven worse, in complex strong lensing analyses, such as searching 

or small dark matter subhaloes, obtaining a robust estimate for the 
ubhalo’s mass and location becomes difficult, because the non-linear 
ampler may easily get trapped in a random local maximum due to a
oisy likelihood surface. 
The key reason for a noisy likelihood curve is the discreteness

nherent in the construction of a pixelized source model. Taking the 
oronoi source pixelization scheme of Nightingale & Dye ( 2015 ) as
n example, we illustrate the lensed image and the corresponding 
ource reconstruction in Fig. A1 . The left and middle panels depict
he lensed image and the source reconstruction, respecti vely. Gi ven 
he lens mass profile and the source grids on the lens plane,
epresented by black points in the left panel (1/5 of them shown for
larity), we can construct Voronoi cells on the source plane, which are 
he irregular cells in the middle panel, with black points indicating the 
ocations of the source grids on the source plane. As depicted in the
oronoi tessellation, the source plane is naturally divided into regions 
orresponding to different source pixels. To establish a connection 
etween the image pixels and the source pixels, the image pixels are
lso traced back to the source plane, marked as grey points in the
iddle panel (only 1/200 of them are shown for clarity). The image

ixel is then assigned the same flux as the Voronoi cell to which
he traced image pixels fall. With small changes of the lens mass
arameter, such as the slope or the Einstein radius, the positions of
oints (both grey and black points) on the source plane will undergo
light adjustments. As the change is small, the fluxes of most traced
mage pixels (grey points) do not change significantly. Ho we ver, for
 point located right between two Voronoi cells, such as the point L1
etween the cell of S1 and S2 in the middle panel, a slight change
n its location could entirely alter which cell it belongs to, resulting
n a discontinuous change in its flux and, consequently, an unsmooth
ikelihood curve. 

To alleviate this issue, we could introduce an interpolation scheme 
n the source plane so that we can ensure that when grey points
moothly change their locations on the source plane, their fluxes 
lso change smoothly. The most commonly used 2D interpolation is 
 bilinear interpolation implemented upon a Delaunay tessellation. 
o we ver, we note that although the bilinear interpolation provides a

ontinuous source plane, the first deri v ati ve of the interpolation is not
ontinuous at the boundaries of Delaunay cells. This characteristic 
akes it not ideal for analyzing subhalo signals, as a subhalo’s

erturbation to the lensed image is sensitive to the first deri v ati ve
f the surface brightness of the source galaxy (Vegetti & Koopmans
009 ). For this reason, we opt for the natural neighbour interpolation
cheme (Sibson 1981 ) to represent the source plane. For a given
oint on a Voronoi source plane, the natural neighbour interpolation 
omputes the value of that point as an area-weighted sum of the
uxes of its ‘neighbours’. These neighbours are determined by 

reating this point as a new member added to the Voronoi tessellation
nd weighting the neighbours according to the o v erlap of the new
oronoi cell with the original Voronoi cells. Despite the complexity 
f the algorithm, by design, the first deri v ati ve of natural neighbour
nterpolation is continuous, except at the sample points (Hiyoshi & 

ugihara 2000 ). In the right panel of Fig. A1 , we show the pixelized
ource scheme of this work where the values of traced image
ix els (gre y points) are computed through the natural neighbour
nterpolation. 5 

The mapping relation between the image and source plane is not
he only source of the discreteness. We note that the regularization
etween source pixels could also give rise to issues. Following 
ightingale & Dye ( 2015 ), the regularization of a source pixel is
efined as the differences between the fluxes of the pixel and its
eighbours, determined by the Voronoi tessellation. For example, 
he regularization of the source pixel S0 is computed as (half
he absolute) differences between its flux and fluxes of its seven
eighbours, S1 , S2 ,..., S7 . Ho we ver, it is noted cells S0 and S1 are
arely connected. We can imagine that a slight change in the points’
ocations could cause S0 and S1 to no longer be neighbours, resulting
MNRAS 532, 2441–2462 (2024) 
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n two terms being lost in the regularization term. This, in turn,
eads to a sudden change to the o v erall likelihood (evidence). The
urpose of regularizing source pixels by flux differences between
oronoi neighbours is to ensure a reasonably smooth solution for
ur pixelized (free-form) source model. Ho we ver, we note that it
s actually not necessary to define the flux differences relying on a
eighbour relation given by the Voronoi tessellation. Instead, similar
o the regularization scheme of Vegetti & Koopmans ( 2009 ), we
efine the regularization of a source pixel as the sum of absolute
ux differences between the pixel and four cross points surrounding

he pix el. F or e xample, as shown in the right panel of Fig. A1 , the
egularization of the source point S0 is computed as the sum of
bsolute flux differences between it and its four cross ‘neighbours’,
1 , S2 , S3 , and S4 . The distance between the source pixel and
ne of its cross points is determined as the square root of half
f the associated Voronoi cell’s area. The values of those cross
oints are computed through the natural neighbour interpolation.
ith this definition, a sudden change in a source pixel’s neighbour

elation would not lead to a sudden addition or subtraction of
erms in the regularization. Instead, the total number of terms in
he regularization remains fixed at four times the number of source
ixels. 
NRAS 532, 2441–2462 (2024) 
Finally, we assess the performance of our new source pixelization
cheme by examining the smoothness of log evidence in response
o small changes in the lens mass parameters. In the top panel
f Fig. A2 , we show the changes in log evidence with the slope
f a power-law lens mass model for the mock lensed image, as
resented in the right panel of Fig. A1 . For the test, we employ a
onstant strength for the regularization, and we also constrain the
olutions of the semi-linear inversion process to be non-ne gativ e.
he minimum change in the power-law slope is set to be 0.0004.
s shown, the log evidence changes smoothly with the power-law

lope under the new source pixelization scheme, which incorporates
atural neighbour interpolation and cross-like re gularization. F or
omparison, we also plot the log evidence as a function of the slope
nder the old pixelization scheme in the bottom panel. As shown,
he log evidence exhibits noisy behaviour with small changes in the
ower-law slope. At certain values, with a one-step change (0.0004)
n slope, the corresponding change in log evidence can be as large as

8, which is statistically significant. 

PPENDI X  B:  N O R M A L I Z E D  RESI DUALS  O F  

LA  C S  I MA  G E S  W H E N  APPLYI NG  TWO  

TH ER  LENS  L I G H T  M O D E L S  
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Figure B1. Best-fitting normalized residuals for images of 38 SLACS lenses using the 3 Sersic lens light model. The colour bar range is from −3.5 to + 3.5. 
The black contours are the same as those in Fig. 7 . 
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Figure B2. Best-fitting normalized residuals for images of 38 SLACS lenses using the MGE lens light model without the ‘point source’ set. The letter in the 
bottom left corner of every panel indicates the lens light model we used to fit the image. ‘X2’ means a ‘2 × 30’ MGE lens light model while ‘X6’ means a 
‘6 × 30’ MGE lens light model. The colour bar range is from −3.5 to + 3.5. The black contours are the same as those in Fig. 7 . 
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