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Abstract In recent years, theoretical and phenomenologi-
cal studies with effective field theories have become a trend-
ing and prolific line of research in the field of high-energy
physics. In order to discuss present and future prospects con-
cerning automated tools in this field, the SMEFT-Tools 2022
workshop was held at the University of Zurich from 14th–
16th September 2022. The current document collects and
summarizes the content of this workshop.
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Preface by the Editors

The current developments in beyond-the-Standard-Model
(BSM) phenomenology point to an ever greater use of Effec-
tive Field Theories (EFTs). With no concrete hints of a forth-
coming discovery of on-shell new physics (NP), we see no
reason that this trend should change any time soon. In fact,
even a discovery of new high-energy resonances would call
for the use of EFTs to study many of their observable effects.
The role of computer tools is central to the successful use
of EFT in BSM physics: simply put, the amount of repeti-
tive computations is all but impossible to perform on a case
by case basis without them. For these reasons, we gathered
creators and developers of EFT tools for another workshop
three years after the first SMEFT-Tools workshop [1].

The SMEFT-Tools 2022 workshop received contributions
from a large part of the EFT theory community, especially,
as it pertains to the computer tools of the field. As a result,
this review is a comprehensive, if not quite complete, report
on the current status of the tools available in the field. Addi-
tionally, several speakers at the workshop were presenting
new results dealing with the more formal theory aspects.
These results frame the current and future developments of
EFT tools and are crucial to the ever growing capabilities of
the tools. However, the theory developments included in this
report are merely a sample of what is being undertaken in the
field as a whole; the field is simply too active to include all,
or even most, of the developments here.

The introductory section provides some context and moti-
vation for the use of EFTs and discusses some of the trends
in EFT used for BSM. We have grouped the other contribu-
tions in two main sections: On the one hand, Sect. 2 details
computer tools for the study of ultraviolet (UV) models using
EFTs. This section describes tools for matching ultraviolet
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(UV) models to EFTs, automating the renormalization-group
(RG) evolution of EFT coefficients, generating EFT operator
bases, and a proposal for a unified format for the storage of
EFT matching results. On the other hand, Sect. 3 describes
computer tools necessary for the phenomenological study of
EFTs. These tools are equally invaluable for bottom–up or
top–down analyses. This section contains four different tools
for the key task of performing global fits to experimental data,
along with a code for automatically deriving the Feynman
rules of the Standard Model effective theory (SMEFT). In
both sections, contributions covering recent theory develop-
ments relevant for future implementations or practical appli-
cations of EFT tools are also included.

1 Introduction and motivation

José Santiago and Peter Stoffer

EFTs have been a basic tool in particle physics for many
years. In most cases EFTs were used in the context of well-
defined, usually renormalizable, models, either because they
were the only way to compute certain observables (for exam-
ple, due to the strong coupling of QCD at low energies) or
because their use greatly simplified the calculation of interest
(gluon-fusion Higgs production at a high perturbative order
in the infinite mass limit is a clear example). Their applica-
tion to the study of physics beyond the Standard Model (SM),
while already present in the past, has experienced an expo-
nential increase in the last decade. The reasons for this are
two-fold: first, the LHC and other experiments are produc-
ing increasingly better limits on the mass of new particles,
searching in a multitude of different channels, which seems to
clearly indicate the presence of a mass gap between the scale
of new physics and the energies at which most experimen-
tal observables are measured; second, and this is especially
relevant for this workshop, the last few years have seen the
appearance of a plethora of new computer tools, that simplify,
and in many cases fully automate, the tedious calculations
needed to apply EFTs to new physics searches.

Connecting theory and experiment via EFTs

The problem of obtaining the implications of experimental
data on models of new physics is highly non-trivial. The vast
number of observables measured experimentally has to be
computed, via complicated, sometimes multi-loop calcula-
tions, for each particular model of new physics. These diffi-
cult calculations have to be repeated for every experimental
observable and every model with the added complication
that, despite the very large number of new physics models
developed by theorists, we are not guaranteed that the true
description of Nature falls into one of these models.

EFTs simplify the problem of obtaining the phenomeno-
logical implications of experimental data on new models by
splitting the calculation in two (mostly independent) steps.
In the first one, the bottom-up approach, the experimental
observables are computed, to the required order in perturba-
tion theory, in terms of the Wilson coefficients (WCs) of the
corresponding effective Lagrangian. This process can be per-
formed with no mention of any new physics model and there-
fore represents a mostly model-independent parametrization
of experimental data in the form of global fits (or rather a
global likelihood), see Sect. 3. In the second step, the top-
down approach, the WCs of the effective Lagrangian are
computed in terms of the couplings and masses of specific
UV models, that complete the EFT at high energies. This
calculation, called matching, has to be done for every model
of new physics (but not any more for every observable) but,
thanks to recently developed tools, it can be fully automated
(see Sect. 2). When the bottom-up and top-down approaches
are combined one can obtain the phenomenological implica-
tions of any experimental observable in any UV model and,
thanks to existing computer tools, in a mostly automated way.

The SMEFT and the LEFT

The absence of evidence for physics beyond the SM in direct
LHC searches suggests that new particles are either very
weakly coupled [2] or much heavier than the electroweak
scale. In the latter scenario, their effects at energies below the
scale of new physics can be described by an EFT. Depending
on the assumption about the nature of the Higgs particle, this
is either the Standard Model effective field theory (SMEFT)
[3,4] or Higgs effective field theory (HEFT) [5,6]. In partic-
ular, the SMEFT is the most general EFT invariant under the
SM gauge symmetry, SU (3)c × SU (2)L ×U (1)Y , involving
only SM particles with the Higgs field taken as an SU (2)L
doublet.

The SMEFT Lagrangian up to dimension-six operators is
given by

Ld≤6
SMEFT = LSM +

∑

k

C (5)k Q(5)k +
∑

k

C (6)k Q(6)k , (1.1)

withLSM being the SM Lagrangian. There is only one term at
dimension five corresponding to the Weinberg operator [7].
This operator violates baryon number in two units and yields
Majorana masses for the neutrinos after electroweak sym-
metry breaking. At dimension six, there are 59 terms that
preserve baryon number and another 5 that violate baryon
and lepton numbers in one unit. These are commonly pre-
sented in the so-called Warsaw basis [4]. The complete set
of RG equations for the dimension-six SMEFT in the War-
saw basis has been calculated in [8–11]. As we describe in
the sections below, these advances, together with simultane-
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ous theoretical and computational developments towards the
automation of one-loop matching calculations, pave the way
to the systematic use of EFT methods in the analysis of NP
models.

For processes below the electroweak scale, another EFT
should be used, wherein the heavy SM particles, i.e., the top
quark, the Higgs scalar, and the heavy gauge bosons, are inte-
grated out. This low-energy effective field theory (LEFT) is
a gauge theory invariant only under the unbroken SM groups
SU (3)c ×U (1)em, i.e., QCD and QED augmented by a com-
plete set of effective operators. If matched to the SM at the
electroweak scale, it corresponds to the Fermi theory of weak
interaction [12], but when all operators invariant under the
unbroken gauge groups are included, it also describes the
low-energy effects of arbitrary heavy physics beyond the SM.

The LEFT is defined by the Lagrangian

LLEFT = LQCD+QED + L(3)/L +
∑

d≥5

∑

i

L(d)i O(d)i , (1.2)

where the QCD and QED Lagrangian is given by

LQCD+QED = −1

4
G A
μνG Aμν − 1

4
FμνFμν

+ θQCD
g2

32π2 G A
μν G̃ Aμν + θQED

e2

32π2 Fμν F̃μν

+
∑

ψ=u,d,e,νL

ψi /Dψ

−
⎡

⎣
∑

ψ=u,d,e

ψ Rr [Mψ ]rsψLs + h.c.

⎤

⎦ . (1.3)

The additional operators are the Majorana-neutrino mass
terms L(3)/L at dimension three, as well as operators at dimen-
sion five and above. At dimension five, there are photonic
dipole operators for all the fermions (including a lepton–
number-violating neutrino dipole operator) as well as glu-
onic dipole operators for the up- and down-type quarks. At
dimension six, there are the CP-even and CP-odd three-gluon
operators and a large number of four-fermion operators. The
entire list of operators up to dimension six can be found in
[13], including operators that violate baryon and lepton num-
ber.

This theory has been extensively studied in the context
of B physics. The operator basis relevant for B-meson decay
and mixing has been constructed in [14]. The complete LEFT
operator basis up to dimension six in the power counting has
been derived in [13], where also the tree-level matching to the
dimension-six SMEFT above the weak scale was provided.
By now, the LEFT operator basis is known up to dimension
9 [15–17]. Recently, the tree-level matching to the SMEFT
has been extended to dimension eight in the SMEFT power

counting [18]. Partial results for lepton–flavor-violating oper-
ators were given already in [19].

The complete one-loop LEFT RG equations were derived
in [20]. Partial results for the RG equations were known
before and have been studied to higher loop orders [14,21–
45]. Within the SMEFT/LEFT framework, the one-loop RG
equations at the high scale [8–10], the tree-level matching
[13], and the RG equations below the weak scale [20] allow
one to resum the leading logarithms and to describe the indi-
rect low-energy effects of heavy physics beyond the SM
within one unified framework. The RG and matching equa-
tions have been implemented in several software tools, many
of which were presented at the SMEFT-Tools workshops.
Consistent EFT analyses at leading-log accuracy that com-
bine constraints from experiments at very different energy
scales are becoming standard.

For certain high-precision observables at low energies it is
desirable to extend the analysis beyond leading logarithms.
Steps in this direction have been taken, e.g., in [33,38,45].
Partial results for the matching at the weak scale at one loop
were derived in the context of B physics in [35,46]. The
complete one-loop matching between the SMEFT and the
LEFT at dimension six was calculated in [47]. It can be used
for fixed-order calculations at one-loop accuracy in cases
where the logs are not large, and it is an ingredient in next-
to-leading-log analyses within a resummed framework. Sev-
eral tools are being developed that automate the one-loop
matching between the EFT framework and UV models for
new physics [48,49].

At energies as low as the hadronic scale, additional com-
plications appear due to the non-perturbative nature of QCD.
In these low-energy processes, one should not work with per-
turbative quark and gluon degrees of freedom but rather per-
form either direct non-perturbative calculations of hadronic
matrix elements of effective operators or switch to another
effective theory in terms of hadronic degrees of freedom,
i.e., chiral perturbation theory (χPT) [50–52]. In [53], the
matching of semileptonic LEFT operators to χPT has been
discussed, which can be obtained within standard χPT aug-
mented by tensor sources [54]. The chiral realization of four-
quark operators was studied in [55], while [56] analyzed C-
and CP-odd LEFT operators up to dimension 8. If lattice
QCD is employed to deal with the non-perturbative effects
at low energies, one faces the problem that the EFT frame-
work requires matrix elements of dimensionally renormal-
ized operators. This necessitates another matching calcu-
lation to a scheme amenable to lattice computations. This
matching has to be performed at a scale of a few GeV, which
is already accessible to lattice computations but at the same
time sufficiently high that perturbation theory can be assumed
to work reasonably well. Traditionally, these matching calcu-
lations are based on regularization-independent momentum-
subtraction (RI-MOM) schemes [34,57–60], whereas in
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recent years the gradient flow [61,62] has received attention
[63–67].

Going beyond

The great sensitivity achieved in the search for CP violation,
rare meson decays, magnetic and electric dipole moments
and lepton-flavor-violating processes requires improvements
in the theoretical precision with EFTs. The need to include
higher-order corrections is twofold. On the one hand, the
inclusion of higher-order corrections, especially in QCD,
allows to better assess the uncertainties in the theoretical
calculation. On the other hand, some new-physics effects are
only generated once higher-loop effects have been accounted
for in certain UV completions, thus including them naturally
yields to better constraints on the underlying theory.

In fact, it is often the case that the leading effects of new
physics are due to loop-level processes. The last decade has
seen results for one-loop running in the SMEFT [8–11,68]
and the LEFT [20] and the one-loop SMEFT to LEFT match-
ing [47]. Likewise, as we highlight in this manuscript, there
has been recent substantial progress in the connection of NP
models to their EFTs. Going beyond the leading logarithm
effects requires systematic treatment of RG effects in the
EFTs because of the scheme dependence of the anomalous
dimension matrix and the matching coefficients appearing,
for instance, in the chosen prescription for γ5 in d dimen-
sions [69–78] and the definition of evanescent operators
[22,47,79–82]. To this end, consistent calculations across
different EFTs and bases have given cause for a new look
at the role of evanescent contributions [49,81]. In the per-
spective of systematic multi-loop computations within EFTs,
there has been a recent interest in the proper treatment of γ5

[78,83,84], a notorious stumbling block in dimensional reg-
ularization.

Higher-order anomalous dimensions have been calculated
for subsets of dimension-six operators [14,21–45], but due
to the hard technical nature of the calculations the complete
matrix is not known. Given the large number of operators of
the SMEFT and LEFT, it may be more convenient to con-
sider first a generic EFT with an arbitrary number of real
scalars and left-handed fermions and compute the anoma-
lous dimensions and the RG in such theory invariant under a
generic gauge group. Results for NLO running of the SMEFT
or LEFT WCs can be then extracted in a second step by spec-
ifying the field content and the gauge group.

There has also been recent progress in expanding the EFT
formulation beyond dimension-six operators, sparking the
formulation of geometric EFTs [85,86] and the determina-
tion of higher-dimension bases [15,87,88], as well as the
counting of the EFT operators through the use of Hilbert
series [89]. Recent work has also started constraining the

effects from higher-dimensional operators through the use
of unitarity bounds, e.g., [90–95,95–106].

2 Effective field theory matching and running

Despite the usefulness of the EFT approach, the interpreta-
tion of data in terms of NP models requires a direct con-
nection between those models and their EFT description.
This typically involves the calculation of sequential match-
ing steps at the relevant mass thresholds, and RG equations
between these thresholds and the scale of the observables.
In recent years, many tools that (at least partially) automate
these calculations have been developed.

In the absence of light particles beyond those in the SM,
the necessary calculations for RG running and matching
below the NP mass threshold are known up to dimension-
six operators [8–11,13,20,35,47]. These results have been
implemented into several computer tools includingDsixTools
[42,107] (which we describe in Sect. 2.1), wilson [108],
and RGESolver [109]. The SMEFT RG evolution has also
been incorporated [110] into the MadGraph Monte Carlo
generator [111]. As far as tree-level matching is concerned,
the Python package MatchingTools [112] allows to per-
form a fully automated matching computation for arbitrary
heavy particles and gauge groups. Furthermore, the match-
ing code CoDEx (see Sect. 2.2) implements formulae based
on path-integral methods [113–116] to automate the match-
ing of some NP models into the dimension-six SMEFT.
Further matching tools that rely on functional methods are
SuperTracer [117] and STrEAM [118].

Although it might be tempting to think of the target
EFT as the SMEFT, many realistic BSM constructions con-
tain several energy scales, calling for intermediate EFTs, or
feature additional light states, such as axion-like or dark-
matter particles, thus, demanding extensions of the SMEFT
(see, e.g., [2,119–122]). Furthermore, some phenomeno-
logical studies require extending EFT calculations beyond
dimension-six operators (see, e.g., [104,123–126] for recent
literature examples). Reflecting on this, a new generation
of tools is now aiming at solving the more general prob-
lem of completely automating one-loop matching and RG
evolution of arbitrary weakly-coupled models. The most
notable examples in this direction are matchmakereft
and matchete, described in Sects. 2.4 and 2.3, respectively.

Additional developments to assist matching calculations
are also described in this section. In particular, the computer
tool Sym2Int (see Sect. 2.5),1 which automates the con-
struction of EFT basis, and the MatchingDB format (see

1 Other tools that allow for finding higher-dimensional operators in the
SMEFT are BasisGen [127], DEFT [128] and ABC4EFT [129].
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Sect. 2.7), aimed at standardizing the storage of matching
results.

2.1 DsixTools: the effective field theory toolkit

Avelino Vicente

DsixTools is a Mathematica [42,107] package for
the matching and renormalization group evolution from the
NP scale to the scale of low energy observables. The current
version of DsixTools fully integrates the SMEFT and the
LEFT, treating both theories on an equal footing. It allows
the user to perform the full one-loop renormalization group
evolution of the WCs in the SMEFT and in the LEFT (with
SM β functions up to 5-loop order in QCD), and the full
one-loop SMEFT-LEFT matching at the electroweak scale.
Therefore, the user can start with some numerical values for
the SMEFT WCs at the high-energy scale 	UV, in principle
obtained after matching to a specific NP model, and translate
them into numerical values for the LEFT WCs at the low-
energy scale	IR, where some observables of interest can be
computed. This is achieved by adopting some conventions
and implementing some results in the recent literature:

• The Warsaw basis [4] for the SMEFT, for which full one-
loop RG equations [8–11,130] are known.

• Full one-loop SMEFT-LEFT matching [13,47].
• The San Diego basis [13] for the LEFT, for which full

one-loop RG equations [20] are known.

All these results can be used in a visually accessible and
operationally convenient way thanks to DsixTools. In
addition to running and matching numerical routines, it
also includes several functions for analytical applications, as
well as user-friendly SMEFT/LEFT dictionary tools. Since
version 2.1, DsixTools also admits input obtained with
matchmakereft, thus extending its capabilities.

The simplest way to download and install DsixTools is
to run the following command in a Mathematica session2

1 Import["https ://raw.↪→
githubusercontent .com/↪→
DsixTools/DsixTools/

2 master/install.m"];

This will download and install DsixTools, activate
the documentation and load the package. Alternatively,
DsixTools can also be installed manually. Finally,

2 It requires Mathematica: version 9.0 (or newer).

DsixTools can also be loaded (once installed) by running
the usual

1 Needs["DsixTools ‘"]

2.1.1 What DsixTools can do for you

For a full and updated list with all the tools provided by
DsixTools we refer to the manual on the package website
[131]. We will now concentrate on some useful features that
illustrate what DsixTools can do for you in practice. A
demo notebook with these and other examples of use is also
provided at [132].

User-friendly SMEFT & LEFT information.DsixTools
contains several routines and functions that allow one to use
the tool as a SMEFT/LEFT dictionary. For instance, one can
load DsixTools and execute the command

1 ObjectInfo[CHl1]

to print many details about the C (1)ϕ� SMEFT WC. One

may learn the definition of the associated Q(1)ϕ� operator, its
dimensionality and type (2-fermion in this case). In case of
WCs carrying flavor indices, such as this one, this command
also prints information about the possible symmetries under
exchange of indices, the number of independent coefficients
or the relations (due to Hermiticity, for example) among
them. This information is displayed in a user-friendly way.
Similarly, with

1 ObjectInfo[LG]

one would get the same information about the LEFT WC
LG . Finally, with the functions

1 SMEFTOperatorsGrid
2 SMEFTOperatorsMenu

and the analogous ones in the LEFT, DsixTools shows
a visual grid or a dropdown menu with all the WCs of the
theory. The user can now click on any of them to run the
ObjectInfo function on the selected WC and obtain all
its properties.

Introducing and changing input values. There are two
methods to introduce input values in DsixTools: with the
NewInput routine or from a file. In the latter case one can
choose between a native DsixTools format or the WCxf
format [133]. Let us focus on the former case. With the
NewInput routine the user loads the input values directly in
the Mathematica notebook. Only the non-zero WCs must
be given. The rest will be assumed to vanish. For instance,
the command

1 NewInput [{Clq1[1, 1, 1, 2] -> ↪→
1, Clq1[1, 1, 2, 1] -> 1,

2 CHBtilde -> -0.5}];
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sets [C (1)�q ]1112 = [C (1)�q ]1121 = 1 GeV−2 and Cϕ B̃ =
−0.5 GeV−2. We note that dimensionful quantities in
DsixTools are always given in GeV to the proper power. In
DsixTools, the input values for the parameters of the effec-
tive theory at work (SMEFT or LEFT) are stored as replace-
ment rules in a dispatch variable called Input Values.
Then, after defining an input, the user can easily read it as

1 Clq1[1, 1, 1, 2] /. ↪→
InputValues

Once the input values have been set, the user can change
them individually at any moment in the notebook. This is
done with the ChangeInput routine. For example, the line

1 ChangeInput [{ CHBtilde -> 0.6}]

changes the value of Cϕ B̃ to 0.6 GeV−2. Finally,
DsixTools produces a warning message when the WCs
provided by the user lead to an invalid set of input values.
There are two possible reasons for this:

1. Non-Hermiticity errors: Some WCs are related due to the
Hermiticity of the Lagrangian. For instance, [C (1)�q ]1112 =
[C (1)�q ]∗1121 must necessarily hold.

2. Antisymmetry errors: Some LEFT WCs are antisymmet-
ric under the exchange of two flavor indices. For instance,
[Lνγ ]11 = 0 must necessarily hold.

When the user’s input is not consistent with any of these
restrictions, a warning is issued and DsixTools corrects
the input by replacing it by a new one that ensures a complete
consistency of the Lagrangian. The list of invalid input values
can be seen by clicking on the button Input errors. We
note, however, that in some cases other WCs, related to these
by the two reasons given above, may be modified too.

A simple DsixTools program. Let us illustrate how eas-
ily one can use DsixTools with a simple but complete
program, given by the following three lines after opening
Mathematica and loading DsixTools:

1 NewInput [{Clq1[2, 2, 3, ↪→
3]->1.0/ HIGHSCALE ^2}, ↪→
HIGHSCALE - >10^4];

2 RunDsixTools;
3 D6run[Clq1[2, 2, 3, 3]]/.\[ Mu↪→

]->EWSCALE

Here we consider an example SMEFT input with
[C (1)�q ]2233 = 1/	2

UV, given at 	UV = 10 TeV. The rest
of the SMEFT WCs are assumed to vanish at 	UV. Notice
that input for the energy scales must be given too. However,
	EW and 	IR are taken to be equal to mW and 5 GeV by
default, and then only	UV must be provided. In the first line
of this program, the NewInput routine is used to introduce
the SMEFT WCs as well as the NP energy scale 	UV. In

the second line we make use of RunDsixTools, one of the
most important routines in DsixTools. It runs the SMEFT
RG equations, it matches the resulting SMEFT Lagrangian
at the electroweak scale onto the LEFT one and runs down
to	IR with the LEFT RG equations. The results of this pro-
cess can be obtained by means of the D6run function, which
returns interpolating functions that can be evaluated for any
value of the energy scale μ. For instance, in this program we
choose to print [C (1)�q ]2233 at the electroweak scale. Last but
not least, we emphasize that DsixTools not only provides
numerical routines. In fact, all the analytical information in
the code can be printed and used inMathematica sessions.
There are plenty of examples of this. For instance, with the
command

1 LeuVLL[2, 2, 1, 1] /. ↪→
MatchAnalytical

the user can display the analytical expression for the WC
[LV,L L

eu ]2211 of the LEFT after matching at one-loop to the
SMEFT WCs. Similarly, the SMEFT and LEFT β functions
can be readily accessed as

1 \[Beta][gs]
2 \[Beta][ LeuVLL[2, 2, 1, 1]]

We refer to the demo notebook [132] for examples of use
of other DsixTools routines and functions.

Using Matchmakereft results. The first step in the study
of specific NP models with the tools described here is the
matching of the model to an EFT. If the NP degrees of free-
dom lie at high energies, this EFT is generally the SMEFT.
Even though this theory is very well known nowadays, the
calculation might be hard, especially if done at one-loop.
Since version 2.1, DsixTools admits input obtained with
matchmakereft [48], a fully automated Python code to
compute the tree-level and one-loop matching of arbitrary
models onto arbitrary EFTs. Its use is very simple. Let us
illustrate it with an example NP model that extends the SM
field inventory with a right-handed neutrino N ∼ (1, 1)0 and
a scalar leptoquark S ∼ (3, 2) 1

6
, where we denote their repre-

sentations under (SU(3)c,SU(2)L)U(1)Y . The NP Lagrangian
contains the pieces

LN = i N γμDμN − 1

2
MN N c N , (2.1)

LS = DμS† DμS − M2
S S† S , (2.2)

LSH = −λ2 H† H S†S − λ3 H†S S† H , (2.3)

LY = −Y αN N �αL H − Y αS qαL N S + h.c., (2.4)

where α = 1, 2, 3 is a flavor index. This model can be easily
implemented and matched onto the SMEFT at the one-loop
level with matchmakereft. The results are saved in text
file called MatchingResult.dat, which can be loaded
into DsixTools with the command
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1 NewInput [{ MMEfile -> "SN_MM/↪→
MatchingResult.dat", MN ->↪→
1000, MS -> 1200, lam2 ->↪→
0.1, lam3 -> 0.1, YN[a_] ↪→

:> YNnum[[a]], YS[a_] :> ↪→
YSnum[[a]]}, HIGHSCALE -> ↪→
10^4]

With this line, the user not only loads the analytical infor-
mation in MatchingResult.dat, but also gives numer-
ical values for the NP parameters. After executing this com-
mand, the user can check some input values for the SMEFT
WCs at	UV = 10 TeV. Their analytical expressions in terms
of the parameters of the UV model can also be printed thanks
to the dispatch MatchAnalyticalUV. For instance, the
analytical expression and numerical value of Cϕ can be
printed with

1 CH /. MatchAnalyticalUV
2 CH /. InputValues

With the DsixTools SMEFT input fully generated,
one can now proceed and use the RunDsixTools routine.
Therefore, thanks to this novel functionality, the user can eas-
ily combine DsixTools and matchmakereft to study
NP models using the full power of EFTs.

2.1.2 Summary

Some of the most common tasks in the SMEFT and in
the LEFT require the handling of a large number of WCs
and/or the resolution of a huge set of coupled RG equations.
These can be automatized with the help of DsixTools, a
Mathematica package designed to provide a simple and
user-friendly experience. DsixTools contains many rou-
tines and functions to deal with the SMEFT or the LEFT, both
at the algebraic and numerical levels. Some examples of use
that illustrate the capabilities of DsixTools are given here.
We refer to the manual on the package website [131], as well
as to the comprehensive reference and documentation envi-
ronment provided withDsixTools, for further information
on the tool.

2.2 CoDEx: matching BSMs to SMEFT

Supratim Das Bakshi and
Sunando Kumar Patra

CoDEx [134] is a Mathematica package that computes
WCs for SMEFT effective operators up to one-loop level
and mass dimension six in terms of UV model parameters.

Fig. 1 CoDEx flowchart

The computation of WCs is based on the evaluation of effec-
tive action formulae derived using functional methods [113–
116]. The package is applicable to BSM scenarios containing
single or multiple mass-degenerate heavy fields of spin 0, 1

2 ,
and 1.3 It computes the effective operators in both strong
interacting light Higgs (SILH) [135,136] and Warsaw [3,4]
bases. The code also provides an option to perform the RG
evolution of these operators in the Warsaw basis, using the
anomalous dimension matrix computed in [8–10]. Thus, one
can get all effective operators at the EW scale, generated from
any such BSM theory. To run the program, it requires very
minimal input within a user-friendly format. The user needs
to provide only the relevant part of the BSM Lagrangian that
involves the heavy field(s) to be integrated-out. CoDEx, with
its installation instructions, web documentation, and model
examples, is available on GitHub (https://effexteam.github.
io/CoDEx/) �.4

3 The effective action formula used in CoDEx for 1-loop generation
of Wilson coefficients assumes the degenerate masses for heavy fields.
This utility will be extended to non-degenerate masses in subsequent
versions.
4 Send bug reports and questions at effex.package@gmail.com.
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2.2.1 User inputs & CoDEx outputs

The input information for any BSM to implement in CoDEx
is minimal. Here, we depict a step-by-step procedure to com-
pute the effective operators and the internal computation that
is carried out at each step in CoDEx (see also the flowchart
in Fig. 1):

• The users need to provide the following information
(quantum numbers) about the heavy field(s): color,
isospin, hypercharge, mass, and spin, based on which the
representation(s) of the heavy field(s) are evaluated by the
package internally. As mentioned, the SM gauge group
quantum numbers of the BSM field are needed as input.
On top of that, the relevant part of the BSM Lagrangian
that contains the heavy field(s) must be supplied by the
user. The code automatically builds the heavy field kinetic
(derivative and mass) terms, which are not required from
the user. The SM Lagrangian is also appended by default.
Let us consider an example here: we have only one
heavy field – a real singlet scalar (color → 1, isospin

→ 1, hypercharge → 0, spin → 0). Let us denote
fieldName → ‘hf’ and mass → ‘m’. This represents the
field content of our model in the correct way:

In[1]:= fields={{(*heavy field name *) hf,
(*color*) 1,
(*isospin*) 1,
(*hypercharge*) 0,
(*spin*) 0,
(*mass*) m}
};

From this input, we construct the field representation that
is needed to write the BSM Lagrangian and the CoDEx inter-
nal functions recognise this representation for further analy-
sis. First, load the package:

In[2]:= Needs["CoDEx‘"]

In[3]:= hfvecsewrss=defineHeavyFields[fields]

Out[3]= {{{hf[1,1]}}}

To write the Lagrangian in a compact form one can define
the heavy field S as:

In[4]:= SSS = hfvecsewrss[[1,1,1]]

Out[4]= hf[1,1]

Then we need to build the relevant part of the Lagrangian
(involving the heavy field only). Note that we do not need to
construct the heavy field kinetic term (the covariant derivative

Table 1 CoDEx functions for computing WCs

and the mass terms) in theCoDExLagrangian. Thus, the only
part of the Lagrangian we need here is5:

In[5]:= Lpotenewrss=Expand[-ca*abs[H]
2*SSS

-
κκκ

2
*abs[H]2*SSS2-

1

3!
μμμ*SSS3-

1

4!
λλλ*SSS4];

• Next, we need to load the symmetry generators for com-
puting loop-level WCs:

In[6]:= initializeLoop["ewrss",fieldewrss]

• Based on these inputs, one can generate the tree- and
one-loop-level WCs. The CoDEx-functions for generat-
ing WCs are listed in Table 1.

In[7]:= initializeLoop["ewrss",fieldewrss]

� Isospin Symmetry Generators for
the field ‘hf’ are isoewrss[1,a] = 0

� Color Symmetry Generators for
the field ‘hf’ are colewrss[1,a] = 0

(See the documentation of initializeLoop for details.)

• The last step is the computation of effective operators and
associated WCs:

In[9]:= res1=codexOutput[Lpotenewrss,
fieldewrss,model→→→"ewrss",
outRange→→→"Tree"];
formPick["Warsaw","Detailed2",res1,
FontSize→→→Medium,
FontFamily→→→"Times New Roman",
Frame→→→All]

• The output is obtained in "Warsaw" basis and is formatted
as a detailed table in

5 If there is a tadpole term in the input BSM Lagrangian, the user has
to perform field redefinition before implementing the Lagrangian in
CoDEx functions.

123



  170 Page 10 of 59 Eur. Phys. J. C           (2024) 84:170 

Table 2 Effective operators and WCs for Real Singlet Scalar model.
These results are calculated in MS renormalization scheme. The one-
loop result depends on the choice of renormalization scheme, e.g. in
this particular case, we have noted differences with results given in
Ref. [113] where different renormalization scheme has been considered.

Here, we have highlighted the extra terms obtained in our calculation in
MS scheme in bold. We have further cross-checked these results in the
other scheme, adopted in Ref. [113]. Warsaw basis WCs are consistent
with that reported in Refs. [137–139]

(a) SILH (Tree level)

OH
c2

a
m4

O6
μc3

a
6m6 − κc2

a
2m4

(b) SILH (one-loop level)

OH
κ2

192π2m2 − 11μ2c2
a

192π2m6 + 5κμca
96π2m4 + λc2

a
16π2m4

O6 − κ3

192π2m2 − c2
aκλ

32π2m2 − caκ2μ

64π2m4 + c3
aλμ

48π2m6 + c2
aκμ2

32π2m6 − c3
aμ3

96π2m8

(c) Warsaw (Tree level)

Q H
μc3

a
6m6 − κc2

a
2m4

QH� − c2
a

2m4

(d) Warsaw (one-loop level)

Q H − κ3

192π2m2 − c2
aκλ

32π2m2 − caκ
2μ

64π2m4 + c3
aλμ

48π2m6 + c2
aκμ

2

32π2m6 − c3
aμ

3

96π2m8

QH� − κ2

384π2m2 − c2
aλ

32π2m4 − 5caκμ

192π2m4 + 11c2
aμ

2

384π2m6

TraditionalForm. There is provision to export the result in
LaTeX format. Table 2c is actually obtained from the output
of the code above. We can compute the same in "SILH" basis
as well and for that we have to use:

In[10]:= res2=codexOutput[Lpotenewrss,
fieldewrssmodel→→→"ewrss",
operBasis→→→"SILH",
outRange→→→"Tree"];

formPick["SILH","Detailed2",
res2,FontSize→→→Medium,
FontFamily→→→"Times New Roman",
Frame→→→All]

Output of this can be found in Table 2a. Similarly, one-
loop results can be obtained by changing the option value
of ‘outRange’ to "Loop". The default value of outRange is "↪→
All", which combines both tree and one-loop results. These

resulting WCs can then be run down to the electro-weak
scale, using RGFlow. This function computes RG evolution for
Warsaw basis effective operators (in leading log approxima-
tion) using anomalous dimension matrices available in Refs.
[8–10].

• Detail model building guide is available on the package
web-documentation available here (https://effexteam.
github.io/CoDEx/)�. Moreover, SMEFT matching results
for multiple scalar extension are available in these articles
[140,141].

2.2.2 Developers’ version: yet to be released

• Heavy-light mixed WCs and dimension-8:

A module for incorporating effects from the mixed pro-
cesses at one-loop including heavy fields and light fields
is included. We generate these contributions by expand-
ing the UV action around the light field classical solution
obtained using the onshell relations of light fields. We
implement the universal effective action formulae for the
mixed heavy-light contributions and agree with that of
Ref. [116] (see Tables 1-5 in there). We evaluated this
formula in CoDEx along with 16 BSM models to gener-
ate the mixed heavy-light WCs [140–142]. Modules for
evaluation of one-loop processes involving fields with
non-identical spins and incorporating SMEFT operators
up to dimension-8 will be released shortly [123].

• WCxF [133]:
There are multiple packages available with different
applications for the EFT matching and running of the
WCs, and mapping these WCs to the observables [143].
It is desirable to have a data/result exchange format
among these packages. WCxF is such a data exchange
format widely used among EFT packages, see Ref. [133].
CoDEx has two functions for exporting and importing
data in WCxF. These functions are wcxfIn and wcxfOut.
We briefly discuss the utilities of these functions below.

In[11]:= ??wcxfOut

Out[11]= This function prepares an output
format

of WCs and effective
operators that can be exported to
.json

file using Mathematica Export[]
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function.

Attributes[wcxfOut]={Locked,
Protected,ReadProtected}
Options[wcxfOut]={eft→SMEFT,
basis→Warsaw}

In[12]:= (*A sample input --*)
wcxfOut[246 (*scale*),
result (* Numerical WCs*)]

The output (which is suppressed here) is in WCxF tem-
plate, and it can be interfaced with other available programs.
In Ref. [140], we have validated this by interfacing a.json file
generated by wcxfOut to DSixTools [107] package success-
fully.

The function wcxfIn takes WCxF files as input and pro-
vides output in CoDEx data format.

In[13]:= ??wcxfIn

Out[13]= This function takes the WCs and
effective operators

imported from .json file
(using Mathematica Import function),
which is taken as input
and for that the output is
WCs and effective
operators in CoDEx
result conventions.

Attributes[wcxfIn]={Locked,
Protected,ReadProtected}

In[14]:= Import["sample_result_1.json"];

In[15]:= wcxfIn[246 (*scale*),%(*wcxf data*)]

Out[15]= {{q1Hl[1,1],-3.53103*10^-12},...}

This output is in CoDEx readable format and the ellipses
above represent other WCs in the list.

• Identities: The effective action evaluation for a BSM
generates gauge-invariant structures, which do not directly
map to the desired effective operator basis. We imple-
ment operator identities and equations of motion on the
derived effective Lagrangian to cast the gauge-invariant
terms to desired structures. These identities depends on
the choice of the effective operator basis. The trans-
formations like Fierz identities, SM field equations of
motion, and SMEFT dimension-six operator identities
are introduced in the developer version of CoDEx. In
future developments, new modules will be available to
capture the evanescent operator effects [81,144–146], as
well as these identities will be extended to incorporate
effects from SMEFT dimension-8 operators [123].

2.3 Matchete: Matching Effective Theories Efficiently

Matthias König

Matchete (MATCHing Effective Theories Efficiently)
is a Mathematica package fully automating matching
computations up to one-loop order, utilizing functional meth-
ods. The user supplies the UV theory by first defining
the symmetry groups (both local and global), the fields
and the coupling parameters with simple commands. With
these definitions in place, the Lagrangian can be written in
Mathematica language in a simple way and then passed
to the matching function to integrate out fields that the user
has defined as “heavy”. As a consequence of the functional
matching procedure, no prior knowledge of the operators
basis of the resulting effective theory is required.Matchete
automatically generates the full set of effective operators and
reduces it to a basis without any user input.

The Matchete package is free software under the terms
of the GNU General Public License v3.0 and is publicly avail-
able in the following GitLab repository:

https://gitlab.com/matchete/matchete

This note only serves as a brief overview of the package; we
refer the reader to Ref. [49] for details.

2.3.1 Matching strategy

Functional methods and expansion by regions
Matchete achieves the matching by directly computing

the Wilsonian effective action, i.e. the contribution to the gen-
erating functional encoding only short-distance physics, cor-
responding to energy scales E > 	, where	 is the matching
scale (or in BSM contexts often called “new-physics scale”)
[115,117,118,147,148]. To this end, one first splits the field
content of the theory into Fourier modes with frequencies
above (hard) and below (soft) the scale 	:

φ = φH + φS . (2.5)

Low-energy matrix elements are computed from the gener-
ating functional:

Z [JS] =
∫

DφS DφH exp

{
i S(φS, φH )

+i
∫

d4z Js(z)φS(z)

}
, (2.6)
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from which the Wilsonian effective action S	 is defined:

∫
DφH exp {i S(φS, φH )} ≡ exp {i S	(φS)} . (2.7)

This object can be calculated directly by means of a back-
ground field expansion, meaning each field is further split
into classical fields φ̂i and quantum fluctuations ηi ,

φi = φ̂i + ηi , (2.8)

and an expansion of S(φ̂S + ηS, φ̂H + ηH ) in the quantum
fields is performed. Collecting hard and soft modes into a sin-
gle multiplet, i.e. φ̂ and η for the classical field and quantum
fluctuation, this expansion reads:

S(φ̂ + η) = S(φ̂)+ ηi

[
δS

δηi

]
(φ̂)+ 1

2
η̄i

[
δ2S

δη jδη̄i

]
(φ̂) η j

+ O(η3) . (2.9)

The first term corresponds to the tree-level contributions, the
second vanishes by virtue of the equations of motion and
the third term encodes all the one-loop contributions. At tree
level, the effective action is obtained by solving the equations
of motions for the heavy fields, inserting them back into the
full Lagrangian and expanding in the heavy mass. At one-
loop level, the effective action is found by

S(1)	 = ± i

2

∫

h

ddk

(2π)d
〈
k|tr log Q|k〉 , (2.10)

where Qi j = δ2 S
δη̄i δη j

is the fluctuation operator. The sub-
script h on the integral denotes the fact that the integral is
taken in the hard region, meaning the integration momen-
tum k is assumed to be of the order of the hard scale 	. In
practice, this is implemented by assigning a power-counting
to the soft scales (masses and momenta of soft modes) and
expanding the integrand systematically to the desired order
in the EFT counting. This expansion by regions [149,150]
simplifies the matching procedure as it computes directly the
one-loop contributions to the matching coefficients without
the need of having to evaluate matrix elements of the effective
theory [115].

The results obtained with the method outlined above
yields an effective Lagrangian that is not manifestly gauge-
invariant, as it contains open covariant derivatives, meaning
expression of the form

Leff ⊃ XμνDμDν , (2.11)

which cannot be dropped since the covariant derivatives com-
mute non-trivially. This is mitigated by the so-called covari-

ant derivative expansion, for details of which we refer the
user to the literature [151–153].

Basis Reduction After the matching procedure is performed,
the obtained effective operators are not linearly independent.
Matchete is able to handle the most common Lie alge-
bras and performs simplifications of Dirac algebra using d-
dimensional identities if they are available. To find a basis
however, redundant operators still need to be eliminated. The
first reduction technique is relating operators with covari-
ant derivatives to each others by the means of integration-
by-parts (IBP) identities, which can be derived by imposing
total derivative operators to vanish, Dμ Jμ = 0. These IBP
identities allow one to eliminate certain derivative operators
in favor of others. As an example in a theory with charged
Dirac fermions and a scalar, the following kind of reduction
is achieved by this:

φ ψ̄γ μγ ν{Dμ, Dν}ψ = −2(Dμφ)(ψ̄γμ /Dψ)

− 2φ(ψ̄
←−
/D /Dψ)+ φFμν(ψ̄i�μνψ) .

(2.12)

The choice of which operators are preferred is not unique,
but it is advantageous to favor operators proportional to the
equations of motions of the fields. In the above expression,
the derivatives have been either traded for a field-strength
tensor or act on the field operators in such a way, that the
Dirac equation can be used to further simplify them.

Operators with derivatives acting on fields in the way they
appear in their equations of motion6 can be further reduced
by the means of appropriate field redefinitions. For scalars
φ, fermionsψ and vector fields Aμ these operators are of the
form J DμDμφ, J /Dψ and JνDμFμν respectively. Redefin-
ing the fields by shifts proportional to the coefficient operator
J then eliminates these operators while introducing opera-
tors with fewer derivatives as well as operators at higher mass
dimension. Applying the procedure iteratively, order by order
in power-counting, then fully eliminates all operators propor-
tional to the field equations of motion.

Matchete applies all reductions described above fully
automatically without the user having to derive and specify
any operator reduction identities. As of the time of writing,
the list of possible reductions is not completely implemented
yet. In particular, the current version of Matchete does not
yet implement Fierz reductions, as these require the proper
treatment of evanescent operators [82]. This is left for a future
release (see also Sect. 2.3.3).

2.3.2 Usage example

In this section, we briefly outline a simple usage example.
Once again, the reader is referred to Ref. [49] for a more

6 One colloquially uses the phrase “proportional to the equations of
motion” even though this is not technically correct.
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detailed user manual of the package including an installation
guide. To demonstrate the features of Matchete, we match
a simple model in which we supplement the SM with a singlet
real scalar field φ, as has been discussed in Refs. [138,139].
The Lagrangian of this model reads7:

LUV = LSM + 1

2
(∂μφ)

2 − 1

2
M2φ2 − μ

3!φ
3 − λφ

4! φ
4

− Aφ|H |2 − κ

2
φ2|H |2 . (2.13)

Matchete provides the full definitions of the SM and its
Lagrangian as a simple macro. After installing the package,
it can be loaded via:

In[16]:= << Matchete`

Next, we load the SM Lagrangian from the predefined model
file included with Matchete:

In[17]:= LSM = LoadModel["SM", ModelParameters

-> {"μ" -> mH, "λ" -> λh}];

where we rename the Higgs mass parameter to mH and the
quartic Higgs coupling to λh. We then define the heavy scalar
using the command:

In[18]:= DefineField[φ, Scalar, SelfConjugate-

> True, Mass -> {Heavy, M}]

The arguments supplied to the function indicate the spin
of the field, the fact that it is real, the definition of the
mass parameter and that it should be considered heavy. The
remaining couplings in the Lagrangian (2.13) are defined
with:111

In[19]:= DefineCoupling[A, SelfConjugate -> True]

DefineCoupling[κ, SelfConjugate -> True]

DefineCoupling[μ, SelfConjugate -> True]

DefineCoupling[λφ, SelfConjugate -> True]

Matchete defines simple shortcuts for the fields and cou-
plings when these commands are evaluated. Even though the
full objects are more complicated, the user can input them in
a simple form:

In[20]:= V = LSM + FreeLag[φ] -
1

3!
μ[] φ[]3

-
1

4!
λφ[] φ[]4

- A[] Bar[H[i]]H[i]φ[] -
1

2
κ[]

Bar[H[i]]H[i]φ[]2;

7 Matchete also allows for the inclusion of tadpoles as long as they
are suppressed in the EFT counting compared to heavy-mass scales.
Otherwise, the user will have to redefine the fields and manually remove
the tadpole before using Matchete.

Note that the command FreeLag[φ] automatically gener-
ates the kinetic and mass terms for the new field and only
interaction terms have to be written out. We are now ready
to integrate out the scalar at one-loop order. This is achieved
by running the Match command with appropriate arguments:

In[21]:= LEFT = Match[LUV, LoopOrder -> 1,

EFTOrder -> 6];

Here the first option defines the order at which the matching
procedure is carried out while the second option denotes the
fact that we want to obtain the effective Lagrangian up to
dimension six. After this line is successfully evaluated, the
object LEFT contains redundant operators, as described earlier.
Reductions using IBP identities and field redefinitions are
then performed by running:

In[22]:= LEFTOnShell = LEFT //EOMSimplify;

The user can choose to only perform IBP identities without
field redefinitions to obtain the Green’s basis by using the
GreensSimplify command. The object LEFTOnShell then con-
tains the operators together with their matching coefficients.
The full output is cumbersome, but individual contributions
can be isolated using the SelectOperatorClass command. As
an example, to show only the leptonic four-fermion operator,
one uses:

In[23]:= SelectOperatorClass[LEFTOnShell,{Bar[l],
e, Bar[e],l},0] //NiceForm

Out[23]=
1

6
h̄ YersYetp A2

1

M4
(
es · PL · lir)(lti · PR · ep)

where the second argument specifies the field content
of the operator(s) to be extracted, and the last argu-
ment gives the number of derivatives. Here h̄ should be
understood as a loop counting factor that is equal to
1/(16π2). The matching example with more details is
included with the Matchete package in the example note-
bookExamples/Singlet_Scalar_Extension.nb.

2.3.3 Outlook

We conclude this note with a roadmap for features intended
for future releases:

• The matching is currently done in strictly d = 4 − 2ε
dimensions. This prevents reductions of Dirac structures
including Fierz rearrangements, because these hold only
in four dimensions. When applied to d-dimensional oper-
ators, one has to account for evanescent contributions.

• After evanescent contributions can be handled automati-
cally, Matchete will be able to produce output that, in
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the case of SMEFT computations, can be directly com-
pared to the Warsaw basis. In the future, Matchete
will be able to automatically perform this identification
as well as output the result in the WCxf [133] format. An
interface with other phenomenology codes and/or com-
monly used formats, such as UFO [154], would be desir-
able as well.

• At this time, Matchete does not allow integrating out
heavy vector fields at the loop level. The reason for
this is that these cannot be generally written down in
a renormalizable fashion. In weakly-coupled theories,
heavy vectors must arise from spontaneous symmetry
breaking. This results in a complicated interplay between
vectors, ghosts, and Goldstone bosons, especially in the
background field gauge. So as to avoid having to derive
and input all interactions manually, we wish to provide
(semi-)automated methods to determine the broken phase
Lagrangian.

• With small changes to the matching procedure, it is pos-
sible to determine the EFT counterterms and, thereby,
the RG functions. Implementing this functionality in
Matchete will allow for finding the RG functions for
intermediate-scale EFTs and vastly simplify sequential
matching scenarios.

After the above list of features is included in the package,
Matchete can be an integral part in a fully automated
pipeline from a UV model down to phenomenology, and as
such be a powerful tool for BSM phenomenology by taking
away the laborious task of one-loop matching.

2.4 Matchmakereft: a tool for tree-level and one-loop
matching

José Santiago

Matchmakereft is a computer tool that automates
the tree-level and one-loop matching of arbitrary weakly-
coupled UV models onto their EFT. Due to lack of space,
we refer the reader to the original publication [48] and the
manual that comes with the installation and summarize here
its main features and newest developments, and provide a
simple but illustrative example.

Matchmakereft is written in python, making it very
easy to install in different platforms, and it uses well-tested
tools that include Feynrules [155], QGRAF [156], Form

[157] and Mathematica to perform an off-shell matching
using diagrammatic methods in the background field gauge.

Matchmakereft takes advantage of the large degree
of gauge and kinematic redundancy in off-shell matching
to perform a significant number of non-trivial cross-checks,
ensuring the validity of the resulting computation. It is also
equipped to compute the RG equations of arbitrary EFTs
and the off-shell (in)dependence of a set of local operators.
Matchmakereft treats the kinematic and gauge depen-
dence independently, leaving the latter arbitrary until the very
end of the calculation. This increases its efficiency but it also
makes matchmakereft an ideal tool to compute IR/UV
dictionaries or to perform calculations in theories with arbi-
trary gauge structures.

Among the latest developments of matchmakereft,
the calculation of amplitudes in chunks of a fixed number of
diagrams and the ability to compute amplitudes in parallel,
have significantly increased its efficiency (see the manual for
details).

Let us now demonstrate many of the features of match
makereft with a concrete example involving two scalar
fields, a light, but not massless, field φ and a heavy field �.
Our model is described by the Lagrangian:

L = 1

2
(∂μφ)

2 − 1

2
m2

Lφ
2 + 1

2
(∂μ�)

2 − 1

2
M2

H�
2

−λ0

4! φ
4 − λ2

4
φ2�2 − κ

2
φ2�, (2.14)

which we want to match to the EFT Lagrangian without the
heavy scalar,

LEFT = α4k

2
(∂μφ)

2 − α2

2
φ2 − α4

4! φ
4 − α6

6! φ
6

− α̃6

4! φ
3∂2φ − α̂6

2

(
∂2φ

)2
. (2.15)

We will use this Lagrangian during off-shell matching. Sub-
sequently, the kinetic term can be canonically normalized,
and the redundant operators can be eliminated. Two of the
three operators of dimension six are redundant. We choose
φ6 as the independent operator. Using equations of motion
we can readily find that:

φ3∂2φ → −α2φ
4 − 1

3!α4φ
6, (2.16)

(
∂2φ

)2 → α2
2φ

2 + α2α4

3
φ4 + α2

4

36
φ6. (2.17)

Eliminating these operators from the Lagrangian would
induce the shifts

α2 → α2 + α2
2 α̂6 (2.18)

α4 → α4 − α̃6α2 + 4α2α4α̂6 (2.19)

α6 → α6 − 5α̃6α4 + 10α̂6α
2
4 (2.20)
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The coupling κ of this model is a dimensionful coupling,
and is expected to be parametrically of the order of the heavy
mass scale MH . Thus, κ

MH
is of O(1) and is kept throughout

the matching procedure consistently.
The feynrules file for the UV model, saved at

two_scalars.fr, is shown below.

1 (* --- Contents of Feynrules file ↪→
two_scalars.fr --- *)

2 M$ModelName = "two_scalars";
3 (* **** Particle classes **** *)
4 M$ClassesDescription = {
5 S[1] == {ClassName -> phiH , SelfConjugate ↪→

-> True , Mass -> MH ,
6 FullName -> "heavy"},
7 S[2] == {ClassName -> phi , SelfConjugate ->↪→

True , Mass -> mL ,
8 FullName -> "light"}
9 };

10 (* ***** Parameters ***** *)
11 M $Parameters = {
12 MH == {ParameterType -> Internal , ↪→

ComplexParameter -> False},
13 mL == {ParameterType -> Internal , ↪→

ComplexParameter -> False},
14 V == {ParameterType -> Internal , ↪→

ComplexParameter -> False},
15 lambda0 == {ParameterType -> Internal , ↪→

ComplexParameter -> False},
16 kappa == {ParameterType -> Internal , ↪→

ComplexParameter -> False},
17 lambda2 == {ParameterType -> Internal , ↪→

ComplexParameter -> False}
18 };
19 (* ***** Lagrangian ***** *)
20 Ltot := Block [{mu},
21 + 1/2 * del[phi ,mu] * del[phi ,mu] + 1/2↪→

*del[phiH ,mu] * del[phiH ,mu]
22 - 1/2 * MH^2 * phiH^2 - 1/2 * mL^2 * phi↪→

^2
23 - lambda0 / 24 * phi^4 - kappa / 2 * phi↪→

^2 * phiH
24 - lambda2 / 4 * phi^2 * phiH^2
25 ];

Note that we use the keyword FullName to characterize
each field as “heavy” or “light”. This is mandatory:
matchmaker uses this keyword to distinguish between
fields that are integrated out and those that are light and are
also present in the EFT. Also note that all the parameters that
are used in the Lagrangian, masses as well as couplings, must
be declared. In this example all parameters are real.

The feynrules file for the EFT model, saved at
one_scalar.fr, is:

1 (* --- Contents of Feynrules file for the ↪→
EFT model one_scalar.fr --- *)

2 M$ModelName = "one_scalar";
3 (* **** Particle classes **** *)
4 M$ClassesDescription = {
5 S[2] == {ClassName -> phi , SelfConjugate ->↪→

True , Mass -> 0,
6 FullName -> "light"}
7 };
8 (* ***** Parameters ***** *)
9 M$Parameters = {

10 alpha4kin == {ParameterType -> Internal , ↪→
ComplexParameter -> False},

11 alpha2mass == {ParameterType -> Internal , ↪→
ComplexParameter -> False},

12 alpha4 == {ParameterType -> Internal , ↪→
ComplexParameter -> False},

13 alpha6 == {ParameterType -> Internal , ↪→
ComplexParameter -> False},

14 alpha6Rtilde == {ParameterType -> Internal ,↪→
ComplexParameter -> False},

15 alpha6Rhat == {ParameterType -> Internal , ↪→
ComplexParameter -> False}

16 };
17 (* ***** Lagrangian ***** *)
18 Ltot := Block [{mu,mu2},
19 1/2 * alpha4kin * del[phi ,mu] * del[phi ,↪→

mu]
20 - 1/2 * alpha2mass * phi^2
21 - alpha4 /24 * phi^4
22 - alpha6 * phi ^6/720
23 - alpha6Rtilde /24 * phi^3 * del[del[phi ,↪→

mu],mu]
24 - alpha6Rhat /2 * del[del[phi ,mu],mu] * ↪→

del[del[phi ,mu2],mu2]
25 ];

Note that we have included WCs (denoted by alpha)
also for the kinetic and mass terms (squared), as well as for
all operators that are redundant solely due to the equations
of motion.

In order for matchmakereft to perform the reduction
to the physical basis, we need to provide a set of relations
that express the redundant WCs in terms of the irreducible
ones, see Eq. (2.18). This is done at one_scalar.red:

1 (* --- Contents of one_scalar.red --- *)
2 finalruleordered = {
3 alpha6 -> - alpha6Rtilde * alpha4 *5 + ↪→

alpha6Rhat * alpha4 ^2 * 10 + alpha6 ,
4 alpha4 -> alpha4 - alpha6Rtilde * ↪→

alpha2mass + 4 * alpha6Rhat * ↪→
alpha2mass * alpha4 ,

5 alpha4kin -> alpha4kin ,
6 alpha2mass -> alpha2mass + alpha6Rhat ↪→

* alpha2mass ^2
7 }

Note that only the WCs corresponding to physical oper-
ators, among those appearing in the EFT Lagrangian and
defined in the file one_scalar.fr, must be present on
the left hand side of the replacement rules in this file. The
WCs corresponding to redundant operators appear only on
the right hand side. When these rules are used, both redundant
and non-redundant WCs have been matched and are known
as functions of the parameters of the UV theory. The rules
are therefore instructions on how to update the non-redundant
WCs, to include the effect of the redundant ones.

With these files prepared we are ready to proceed
with matching. In the matching directory, where two_
scalars.fr,one_scalar.fr,one_scalar.red are
present, we can run matchmakereft:

>matchmakereft

upon which we enter the python interface

Checking for updates.
matchmakereft is up -to -date.
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Welcome to matchmakereft v1.1.3
Please refer to SciPost Phys. 12, 198 ↪→

(2022) arXiv :2112.10787 when using ↪→
this code.

For documentation please check the manual ↪→
in /installationdirectory/docs/manual.↪→
pdf

matchmakereft >

We first need to create the matchmaker models, i.e. the direc-
tories with all the necessary information for the UV and the
EFT models. We do this by

matchmakereft > create_model two_scalars.fr

which has the response

Creating model two_scalars_MM. This might ↪→
take some time depending on the ↪→
complexity of the model

Model two_scalars_MM created
It took 7 seconds to create it.

We can now observe that the directory two_scalars
_MM is created. We proceed with creating the EFT model

matchmakereft > create_model one_scalar.fr
Creating model one_scalar_MM. This might ↪→

take some time depending on the ↪→
complexity of the model

Model one_scalar_MM created
It took 7 seconds to create it.

The one_scalar_MM directory is now created as well, and
we are ready for the matching calculation. This is performed
by the match_model_to_eft command:

matchmakereft > match_model_to_eft ↪→
two_scalars_MM one_scalar_MM

Upon completion, the results of the matching are stored in the
UV model directory, in this case two_scalars_MM. The
filetwo_scalars_MM/MatchingProblems.dat con-
tains troubleshooting information in case the matching pro-
cedure failed. In our case it is an empty list, indicating no
problems:

1 problist = {}

The result of the matching procedure is stored in two
_scalars_MM/MatchingResults.dat, a Mathemat-
ica file with a list of lists of replacement rules. These match-
ing results can also be seen in printed form in Appendix C
of the original matchmakereft publication [48]. In this
example, the kinetic operator receives a one-loop matching
correction and, therefore, φ is no longer canonically normal-
ized. A field redefinition is needed to obtain a canonically
normalized theory on which we can apply the corresponding
redundancies to go to the physical basis. Matchmakereft
does these two processes (canonical normalization and going
to the physical basis) automatically. The resulting WCs in the

physical basis, up to one loop order and O

(
κ2n

M2n
H

m2
L

M2
H

)
can

also be seen in printed form in Appendix C of Ref. [48].
As mentioned above, matchmakereft can do many

more things than just finite matching. One can for instance
compute the RG equations for both models and check the
consistency of the logarithmic terms from the RG equations
and the finite matching. We refer to the manual for a detailed
explanation.

We would like to finish this overview of matchmakereft
by mentioning two projects we are currently working on
in the Granada group, that will either end up being part of
matchmakereft or strongly use it for their development.
Current matching programs perform the matching off-shell,
producing the effective Lagrangian in a so-called Green’s
basis, in which some redundant operators are not required to
describe physical, on-shell amplitudes. The usual process is
to reduce this Green’s basis to a physical basis, either man-
ually (as it is currently done in matchmakereft) or in
an automated way, as currently done by matchete [49].
We are looking into side-stepping this reduction step by per-
forming an on-shell matching. This has a number of technical
complications that have been essentially solved for the tree-
level matching. We are working on extending the on-shell
matching to the one-loop level. More details can be found in
Sect. 3.6.

Another project we are currently working on was men-
tioned by R. Fonseca in his talk but is not covered elsewhere
in this document (it has a significant overlap with the con-
tent of Sect. 2.8 by other authors). Even with current codes
that automate the process of one-loop matching, repeating
the calculation for different models is re-iterative and, in the
case of many fields, can be computationally very expensive.
Our idea is to define a generic model, in which the gauge
structure is not fixed a priori and the field multiplicity simply
appears as a dummy flavor index. This general EFT can be
built with a single multiplet of real scalars, Weyl fermions
and gauge bosons. We have defined the most general EFT
with this generic field content up to mass dimension six and
we are computing its RG equations. All the loop integrals,
tensor reduction and kinematic projections are performed in
this generic EFT in such a way that the calculation of the RG
equations for any specific EFT can be obtained by means of
a straight-forward group-theoretic calculation. The next step
will be to define a generic theory with light and heavy fields
and perform the finite one-loop matching for it.

2.5 Sym2Int: Automatic generation of EFT operators

Renato M. Fonseca
EFTs are a powerful tool for probing potential new physics

in a model-independent way. At a time when there is a lack of
clarity on how to extend the SM, its related EFTs have been
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receiving an increasing amount of attention. For example, the
number of SMEFT operators have been counted with several
techniques in the last few years, up to high mass dimensions.
Building an explicit basis of operators is more complicated,
but here too there has been notable progress. I will go through
my recent work on using the software packagesGroupMath
and Sym2Int to automatically build explicit bases of oper-
ators for EFTs, given their fields and symmetries.

2.5.1 Using computers to generate Lagrangians

With EFTs one can study the low energy consequences of a
model without having to handle or even know all of its intri-
cacies; by integrating out the heavy fields one can obtain a
Lagrangian which describes well the large distance behavior
of the original theory. However, the reduction in the number
of fields comes at the cost of introducing a potentially large
set of local operators of high dimension. As such, the very
first step in the study of an effective field theory is to establish
a basis of operators which encodes all possible interactions
between the light fields. Put simply, one needs a Lagrangian.
As the reader is certainly aware, most theories are invari-
ant under some group of transformations — for example the
Lorentz group and/or a gauge group — therefore the task
of finding all interactions is inseparable from the problem of
finding invariant combinations of products of representations
of some group.

There is a long history of using computers in particle
physics, given the complexity of the calculations one needs
to perform. Indeed, there are many codes specialized in var-
ious tasks, from calculating Feynman rules all the way to
generating events at colliders. However, at the very begin-
ning of such a stack of programs, it would be useful to have
one more code which, to some degree, alleviates the heavy
burden on the user of having to provide the full Lagrangian
of the model. To the best of my knowledge, SARAH [158]
and Susyno [159] were the first codes to build symmetry-
invariant Lagrangians (superpotentials, to be more specific)
with the user having only to specify the representation of the
(super)fields under some gauge group.

In the case of Susyno, it builds the most general renor-
malizable supersymmetric (SUSY) Lagrangian allowed by
the gauge symmetry, as well as the soft SUSY breaking terms,
and then applies known formulas in order to derive the two-
loop renormalization group equations for all the free param-
eters (such as the gauge and Yukawa couplings). The group
theory code used to perform the first step grew over time and
was eventually released as the standalone GroupMath pro-
gram [160]. It is also used in other packages, such as SARAH
4 [161], Pyr@te 2+ [162], DRalgo [163] and Sym2Int
[164]. The aim of this last program, which will be the main
topic from now on, is to go from symmetries to interactions:
given some input fields (that is, representations of the Lorentz

and gauge groups) it computes all operators up to some mass
dimension. Sym2Int is currently being extended in order
to be able to provide explicit expressions for the operators.8

2.5.2 The current Sym2Int program

Details on how to use the program can be found in [164], as
well as on the program’s webpage. For illustrative purposes,
with the following input one can obtain the list of SMEFT
interactions up to dimension 8:

gaugeGroup[SM] ^= {SU3, SU2, U1};
fld1 = {” u”, {3, 1, 2/3}, ” R”, ” C”,

3};
fld2 = {” d”, {3, 1, -1/3}, ” R”,

” C”, 3};
fld3 = {” Q”, {3, 2, 1/6}, ” L”, ” C”,

3};
fld4 = {” e”, {1, 1, -1}, ” R”,

” C”, 3};
fld5 = {” L”, {1, 2, -1/2}, ” L”,

” C”, 3};
fld6 = {” H”, {1, 2, 1/2}, ” S”, ” C”,

1};
fields[SM] ^= {fld1, fld2, fld3, fld4,

fld5, fld6};
GenerateListOfCouplings[SM, MaxOrder ->

8];
The number of interactions in this particular EFT — up to

dimension 15 and for an arbitrary number of flavors (which
is set to 3 in the code above) — can be found in a couple
of hours. As far as I know, this is the only cross-check of
the numbers provided for the first time in [89] using the the
Hilbert series.

It is worth noting that Sym2Int also computes some
important information on the symmetry of flavor indices.
For example, Li L j H H is found to be symmetric under the
exchange of i ↔ j , while Qi Q j Ql Lk has a more compli-
cated symmetry. Let us distinguish an operator, where we
expand flavor indices (for n flavors there are n (n + 1) /2
operators of the form L L H H ) from a Lagrangian term which
are tensors in flavor space (there is just one term of the form
L L H H ). Then, the information mentioned earlier can be
used to infer the minimum number of terms needed to write
a model’s Lagrangian. In the case of three Q’s and one L ,
even though there are four ways of contracting the various
spinor and SU (2)L indices, it is possible to write all of them
as a single Lagrangian term ωi jkl Qi Q j Ql Lk (see [166] for
a more thorough discussion of this topic).

8 See also the AutoEFT code mentioned in [165].
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2.5.3 An upgrade: building operators and terms explicitly

Counting operators and terms is not the same as building a
Lagrangian. For the latter one needs to know the explicit form
of each interaction, which implies knowing how the various
field indices are contracted. It is also worth highlighting that
neither the current version of Sym2Int nor the Hilbert series
method can be used to determine how the derivatives — if
there is any — are applied to the fields.

We desire a model’s Lagrangian, but I would like to point
out that the Lagrangian often consists of a complicated func-
tion of the field components with a very low information den-
sity. Consider for example the interactions between a fermion
transforming under the fundamental representation of SU (n)
and the gauge bosons of this group. The relevant Clebsch-
Gordan factors coincide with the entries T A

i j of the matrices
of the fundamental representation of SU (n), containing a
total of n2

(
n2 − 1

)
of entries. Given that fields can be rede-

fined, one has to wonder what is the information contained in
all these numbers: in principle, observable quantities should
depend on these Clebsch-Gordan factors through combina-
tions of the tensor T with no open indices, such as T A

i j T A
ji

(see for instance [167]).
It is therefore conceivable that in the future we might find

it unnecessary to know a model’s Lagrangian in full detail.
With this cautionary remark, the fact remains that at present
we do need these complicated expressions for the study of
models in general, and EFTs in particular. For this reason, the
Sym2Int code is in the process of being upgraded such that
it not only counts but also computes explicitly operators and
terms. In the following I will make a few remarks concerning
this upgrade.

Output for humans vs output for other codes While
designing a program which automatically generates lists of
operators, one must take into account whether the results
are to be used directly by a person, or fed into some
other software package – such as FeynRules [155] or
Matchmakereft [48]. In the second case, the readability
of the result is not so important. For example, the two possi-
ble ways of contracting three color octets can be described by
a 2 × 8 × 8 × 8-dimensional tensor cai jk containing the rele-
vant Clebsch-Gordan factors. But even in this rather modest
example, a human might find it hard to read such data format.

A related problem is that these Clebsch-Gordan factors are
not unique. In the previous case, we are free to take any invert-
ible combination of the two contractions, cai jk → Xaa′ca′i jk

with det (X) 
= 0, and one can also make a rotation in the
eight-dimensional space of the octet, leading to the change
cai jk → Uii ′U j j ′Ukk′cai ′ j ′k′ for some unitary matrix U .

Currently, the package GroupMath contains a function
Invariants which, subject to time and memory con-
straints, can compute the above group theory data for any

product of representations of a semi-simple Lie algebra.
However, due to the two issues discussed above, there is
room for improvement. Conveniently, the gauge symmetry
of many models is completely described by SU (n) groups
(and perhaps U (1)’s which are easy to handle). Motivated by
this, a future version of GroupMath will include SU (n)-
specific code capable of providing the same information as
Invariants but using instead the tensor method which is
familiar to physicists (see chapter 4 in [168]). The numerical
output will still consist of large tensors with Clebsch-Gordan
factors, but now it is also possible to include a human readable
string which identifies each of them. For the product of three
octets, writing them as 3 × 3 traceless matrices�i

j ,�
′i
j and

�′′i
j , the two invariant combinations alluded above would be

�i
j�

′ j
k�

′′k
i and �i

j�
′′ j
k �

′k
i ; the GroupMath program will

be able to provide the value of these two expressions as well
as the corresponding formulas/strings.

The approach to Lorentz indices is similar: for each invari-
ant expression the program keeps track of a tensor (with the
SO(1, 3) Clebsch-Gordan factors) as well as a human read-
able string involving the familiar scalars, spinors, gamma
matrices, derivatives and field strength tensors. If there are
fermions in the interaction, with the γ μ and C matrices one
can replace open spinor indices with vector indices. Then,
from an expression containing a set of open vector indices
only, one can construct all Lorentz invariants by contracting
it in all possible ways with the metric and Levi-Civita tensors,
ηab and εabcd . As for derivatives, they should be distributed
in all possible ways by the different fields in the operator.
This approach of contracting indices and applying deriva-
tives in every conceivable way leads to a highly redundant
list of Lorentz invariant expressions; such a list can easily
be pruned by looking for linear relations among the various
polynomials.

Dealing with gauge indices and Lorentz indices sepa-
rately Building operators explicitly implies handling poten-
tially very large polynomials of the numerous field compo-
nents, thus calculations are time consuming even for low
dimensional interactions. In each step of the design of a code
that handles explicit operators, one must therefore be aware
of this problem and try to mitigate its impact.

In my opinion, an important step in reducing the com-
putational and memory requirements of handling operators
is to segregate gauge indices from the space-time indices of
spinor and vector fields. If cg1g2··· and κl1l2··· are the Clebsch-
Gordan factors for the two type of indices, instead of working
with the full operator O ≡ cg1g2···κl1l2···�g1,l1�g2,l2 · · · , it is
preferable to manipulate — somehow — the simpler polyno-
mials OG ≡ cg1g2···�g1�g2 · · · and OL ≡ cl1l2···�l1�l2 · · ·
involving only one type of indices.

Some may consider this to be an elementary observation
but, as the following example will show, it is not trivial to
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implement it. Consider that both the gauge and the Lorentz
groups are described by the SU (2) group, and ignore for
simplicity that some fields (fermions) anti-commute. Now
take some field�which is a doublet under both groups: both
OG = εg1g2�g1�g2 and OL = εl1l2�l1�l2 are identically
zero, so whatever is our algorithm to handle these two poly-
nomials we would conclude that there is no�2 operator. And
yet, by considering the two indices together, we readily find
thatO ≡ εg1g2εl1l2�g1,l1�g2,l2 is not null. What is happening
here is that both the Lorentz indices li and the gauge indices
gi are contracted anti-symmetrically, so by considering each
set of indices separately, we get vanishing polynomials, while
the operator O is symmetric — not anti-symmetric — under
the change (g1, l1) ↔ (g2, l2).

A possible solution is to distinguish equal fields in the
simpler polynomials OG and OL ; in the previous example,
OG = εg1g2�g1�

′
g2

and OL = εl1l2�l1�
′
l2

are no longer
null, as long as we keep �′ 
= �. A solution along this
lines is viable, and indeed it has been successfully tested in
Sym2Int. Without going into details, I will simply note that
one must still account, in the end, for the fact that �′ is the
same as as�.9 Things become even more complicated when
fields have flavor.

Flavor It turns out that in some models (for example in
SMEFT), some representations of the symmetry group are
present more than once. We tend to account for this mysteri-
ous multiplicity by adding a flavor index to the relevant fields,
� → �i , and write Lagrangians with flavored tensors, such
as the Yukawa matrices. Each of them is associated with what
I previously called a Lagrangian term, which may correspond
to many operators once the indices are expanded.

Flavor constitutes a significant complication. If all the
fields in an interaction are distinct, such as in L∗

i L j Q∗
k Ql ,10

accounting for multiple flavors is trivial. The problem are
those cases containing repeated fields, such as L∗

i L j L∗
k Ll ,

as they will have some underlying symmetry under permuta-
tions of the flavor indices. One approach to these troublesome
cases might be to consider each flavor combination at a time,
effectively expanding the flavor indices. Not only is such an
approach very taxing computationally, but it is also not clear
how the results are to be presented — ideally one would like
to undo the expansion of the indices and write as few terms
in the Lagrangian as possible.

9 Setting back � = �′ = · · · at the end of the calculation can have
non-trivial consequences. To see this, using the same quantum num-
bers as before, let us consider the quartic operators �4. We start by
differentiating the fields, thus considering instead interactions of the
type ��′�′′�′′′. In that case, there are two independent polynomials
OG , and well as two independent polynomials OL (after all the product
2 × 2 × 2 × 2 contains two singlets). There is therefore a total of four
operators ��′�′′�′′′, but once we require that �′′′ = �′′ = �′ = �

they all become proportional to a single expression.
10 The precise form of the spinor indices is irrelevant for the discussion.

As the operator dimension increases, so does the number
of intervening fields. At some point we are bound to find
cases such as Qi Q j Qk Ll in SMEFT, where the same field
appears three or more times. The relevant permutation group
is then no longer abelian, and we may have to consider mixed
(or multi-term) symmetries in the flavor indices (see [166]).

This problem is most acute in a model where only one
index distinguishes all scalars and all fermions; such model is
therefore a good test-bed for Sym2Int’s new code. Indeed,
we may represent a generic EFT as a theory with an arbi-
trary number of real scalars φi and Weyl fermions ψi with
covariant derivatives

Dμψi = ∂μψi − igt A
i j V A

μ ψ j and

Dμφa = ∂μφa − igθ A
abV A

μ φb (2.21)

where t A and θ A are generic hermitian matrices (the θ A

must also be anti-symmetric). It was precisely in this gen-
eral framework that the two-loop RG equations for dimen-
sion 4 operators were derived in [169–171]. We may however
extend it to non-renormalizable operators, not just to study
complicated flavor symmetries, but also to derive important
results for a general EFT. Indeed we are currently in the
process of deriving the one-loop RG equations for this EFT
(up to dimension-six interactions), as well as the matching
relations between it and a general renormalizable UV model
[172]. Once these are known, it becomes unnecessary to go
back to the computation of loops and amplitudes for every
single model; the task of computing RG equations and match-
ing conditions for a particular model is reduced to writing a
Lagrangian, which involves only some algebra and group
theory.

2.5.4 Outlook

The Sym2Int code, as it exists now, lists and counts all the
possible operators in an effective field theory, up to some cut-
off. It is currently being extended to also build them explicitly,
while handling in a satisfactory way the fact that some fields
have flavor. With the approach being pursued, the presence
of flavor does not significantly affect the computational time,
but it does pose some complicated problems of a conceptual
nature which still have to be addressed. Side-stepping these
for now, the code was already used to compute all Green
operators in SMEFT up to dimension 10, for an arbitrary
number of fermion flavors, with their counting matching the
correct result.
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2.6 SOLD: Towards the one-loop matching dictionary in
the SMEFT

José Santiago

The benefit of using EFTs to compute experimental
observables for different UV models is undeniable, but EFTs
are much more powerful than that. They really shine when the
top-down approach is combined with power-counting argu-
ments, which allow for a complete classification of observ-
able UV models in the form of IR/UV dictionaries. The EFT
is a double expansion in the mass dimension of the opera-
tors and the loop order of the WCs, with operators of higher
dimension being less relevant at low energies and WCs of
higher loop order being smaller than lower loop ones. Even-
tually, contributions of high enough mass dimension and/or
loop order are smaller than the experimental precision and
can be disregarded as unobservable.

Given a finite order in mass dimension and loop order,
the complete set of UV models that contribute to and EFT
up to these orders can be exhaustively classified. Once the
complete classification is achieved one can go one step fur-
ther and compute the resulting WCs for all the UV models
in the list. This way we obtain true IR/UV dictionaries that
relate the WCs of the EFT (and therefore to experimental
observables via the bottom-up approach) to all UV models
that contribute to the EFT at the particular order the dictio-
nary has been computed. These dictionaries can be used in an
iterative way to obtain a complete map of the implications of
experimental data on models of new physics. Indeed, given
a particular experimental constraint or anomaly, one can list
all models that are restricted by (or explain in the case of
anomalies) that particular measurement. With this list, we
can then obtain all other experimental implications of these
models, that can be tested in a correlated way with different
experimental data.

The tree-level, dimension-six dictionary for the SMEFT
was computed a few years back [137], building on previ-
ous efforts [173–176]. This includes the most general exten-
sion of the SM with new scalars, fermions or vectors that
contribute at tree level to the SMEFT operators up to mass-
dimension six. While essential for the classification of large
effects, this leading dictionary falls short when compared
with the current precision of many experimental measure-
ments, even more taking into account that certain WCs are
only generated in weakly coupled extensions of the SM at the
one-loop order. The first step towards the calculation of the

one-loop, dimension-six IR/UV dictionary for the SMEFT
has been recently published in [177].

Towards the one-loop, dimension-six IR/UV dictionary in
the SMEFT

Contrary to the tree-level dictionary, in which the list of new
fields is finite (a total of 48 new scalars, fermions or vectors
appear in the dictionary), at one-loop order the list is infi-
nite, due to the fact that some contributions only constrain
the quantum numbers of the product of multiples fields rather
than each of them independently. Despite this infinite number
of models, it is still possible to classify them in the form of a
finite number of conditions on these models. Still, the calcu-
lation of the complete one-loop dictionary for the SMEFT at
dimension six is a formidable task and, with the help of the
computer tool matchmakereft [48], we have just finished
the first step towards it [177]. In particular, we have consid-
ered the most general extension of the SM with an arbitrary
number of scalar and fermionic fields11 that contribute at one-
loop order to those operators in the Warsaw basis [4] which
cannot be generated at tree level in any weakly-coupled
extension of the SM. This includes all operators in the basis
that contain at least one field-strength gauge tensor. Our
results, that include the full classification of models, a partial
list of the specific representations (up to a certain representa-
tion dimension, to be chosen by the user) and the actual value
of the corresponding WCs are too long to be reported in print
form, and we have published them in electronic form as a
Mathematica package called SOLD (for Smeft One Loop
Dictionary), available via its Gitlab repository (it can also
trivially installed directly from a Mathematica notebook).
Tools to create models suitable for the full one-loop match-
ing using matchmakereft are also available within SOLD
(see [177] for details). The fact that matchmakereft per-
forms the matching calculation in a gauge-blind fashion for
most of the computation has significantly helped the devel-
opment of the dictionary.

2.7 MatchingDB: A format for matching dictionaries

Juan Carlos Criado
MatchingDB is a format for the storage, exchange and

exploration of EFT matching results up to one-loop order. Its
specification, both in human- and machine-readable forms,
together with a Python interface, is located at the Match-
ingDB GitLab repository:

gitlab.com/jccriado/matchingdb

11 The best strategy to perform the matching in models with heavy
gauge bosons is currently under study in collaboration with J. Fuentes-
Martín, P. Olgoso and A.E. Thomsen.
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It aims to provide:

• A unified language/tool-independent format for the com-
munication of EFT matching results.

• An efficient workflow for the practical use of matching
dictionaries.

The format is particularly useful to store and publish large
matching dictionaries, whose size might make it impractical
to provide them in the form of human-readable equations
and tables. The Python interface makes it easy to interact
with them, and quickly obtain the relevant information for
specific applications. An example of such a dictionary is the
complete tree-level dictionary [137] between the dimension-
six SMEFT and any of its UV completions, which is provided
in MatchingDB format under the dictionaries directory in the
MatchingDB repository. Other matching databases will be
made available at the same place.

MatchingDB can also be employed as a data exchange
format between tools, allowing to compare results from dif-
ferent matching codes, and providing an interface to con-
nect them to packages for RG running and observable cal-
culations. It will be implemented as an output format in
MatchingTools [112] and Matchmakereft [48].

Some of the features currently offered by the combination
of the MatchingDB format and the accompanying Python
package are: listing the heavy fields and UV couplings that
generate a given WC; listing the EFT contributions of a given
set of heavy fields; providing LaTeX output, both for the
UV Lagrangian and for matching corrections; and providing
numerical output that matches WCxf [133] for the SMEFT.

2.7.1 Format definition

MatchingDB data can be stored either as a plain-text JSON
[178] file or as an SQLite [179] database. The format is
defined by its JSON schema, which is given in the match-
ingdb.json file at the root of the MatchingDB repository,
using the JSON Schema language [180]. A MatchingDB
JSON file must comply with this schema, which can be
checked using any of the standard tools for this purpose,
such as the jsonschema Python package [181]. Alterna-
tively, MatchingDB data can be stored as an SQLite database,
with a structure based on the JSON schema. The SQLite rep-
resentation may provide faster access to the information in
larger databases. Below, I describe the format informally,
starting with the JSON representation. A diagram summa-
rizing it is provided in Fig. 2. The root value of the data
must be an object with 4 name/value pairs, with names
''fields''''couplings,''''constants''and ''terms''. The
corresponding values should be arrays whose values are
objects with the following structures:

fieldRepresents a heavy field in the UV theory that has
been integrated out. It contains the following key/value
pairs:

– ''name''(string): a name identifying the field.
– ''real''(boolean): determines whether the field is

real or complex.
– ''representation''(string): the group theory rep-

resentation. The format for this is free in principle,
but intended to be self-consistent in each database.

– ''latex''(string): math-mode LaTeX code represent-
ing the field.

couplingRepresents a coupling present in the UV the-
ory. Its name/value pairs are:

– ''name''(string): a name identifying the coupling con-
stant.

– ''fields''(array of string): a sorted list of the heavy
fields that appear in the interaction.

– ''real''(boolean): determines whether the coupling
constant is real or complex.

– ''latex''(string): math-mode LaTeX code represent-
ing the coupling constant.

– ''latex_interaction''(string): math-mode
LaTeX code representing the full interaction term in
the UV theory, including the coupling constant.

constant Represents a scalar constant such as π or
a constant tensor such as the Kronecker delta, which
appears in the matching results. Its name/value pairs are

– ''name''(string): a name identifying the constant.
– ''value''(nested array of numbers or object): the

numerical value of the constant. If the constant is a
scalar, it should be a number. If it is a tensor, it should
be provided as a nested array of numbers. Finally,
if the constant is complex, it should be given as an
object of the form: {''Re'':..., ''Im'':...}, with
the values having the real scalar o tensor type.

– ''latex''(string): math-mode LaTeX code represent-
ing the constant.

term Represents a term appearing in the matching cor-
rections to some WCs in the EFT:

– ''coefficient''(string): a name identifying the
WC in which the term appears.

– ''fields''(array of string): a sorted list of the heavy
fields that contribute to the term.

– ''factors''(array of *_factor): a list of the factors
that appear in the term, as described below.

– ''free_indices''(array of string): a list of the free
indices of the term, which must coincide with the
ones of the corresponding coefficient, and appear at
least once in the ''factors''list.
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Fig. 2 Diagram summarizing the MatchingDB JSON schema. Rectan-
gles represent json objects, with the property names on the left column
and the corresponding value types on the right. Capsule-shaped items

represent a tuple, with the type of each of its items given in a larger
font, and an short explanation of their meaning on a smaller one directly
below

The ''fields''array in both couplings and terms should be
sorted with the lexicographic order. This allows to compare
them efficiently to a set of heavy fields when querying the
database.

The full analytical formulas for the matching corrections
to the WCs in the EFT are stored in the ''factors''property
of the term objects. The matching correction to any WC C
is a sum of terms T (N ), with each term being a product of
factors F (N )A :

C =
∑

N

T (N ), T (N ) =
∏

A

F (N )A . (2.22)

Each factor is assumed to be of one of 7 possible forms. Every
form has an associated JSON type, all of them being tuples,
that is, inhomogeneous arrays with a fixed type for each of
its items:

F = bn (numerical_factor): a number
b to some power n. Represented as a
tuple [b, n] of type:
[number, number].

F = kn
i j ... (constant_factor): a constant

k, to some power n, with some flavor
indices i , j , …Represented as a tuple
[g, n, [i, j, . . .]] of type:
[string, number, array
of string].

F = gn(∗)
i j ... (coupling_factor): a coupling

constant g, to some power n, possi-
bly complex conjugated (c = True
/False), with some flavor indices i ,
j , . . .
Represented as a tuple [g, n, c, [i, j,
. . .]] of type:
[string, number,
boolean,array of string].

F = Mn
F,i (mass_factor): the mass of a

field F , to some power n, with a fla-
vor index i . Represented as a tuple
[F, i, n] of type:
[string, string, number].

F = (M2
F,i − M2

G, j )
n (mass_difference_factor):

the difference between the masses
of two fields. Represented as a tuple
[F, i,G, j, n] of type:
[string, string, string,
string, number].

F = log(Mn
F,i/μ

n) (log_mass_factor): the log of
the mass of a field F , to some power
n, with a flavor index i . Represented
as a tuple [F, i, n] of type:
[string, string, number].

F = log(Mn
F,i/Mn

G, j ) (log_mass_difference
_factor):
the log of the ratio between the
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masses of two fields. Represented as
a tuple [F, i,G, j, n] of type:
[string, string,
string, string, number].

This completes the specification of the MatchingDB format
in JSON form.

MatchingDB data can also be stored as an SQLite
database. The SQLite representation consists of 4 tables,
named fields, couplings, constants and terms.
Their columns take their names from the keys of the asso-
ciated objects. Every object is stored as a row, with each of
its values encoded as a string containing the corresponding
JSON code.

2.7.2 Python interface

The matchingdb Python package is provided under the
python directory of the MatchingDB repository. It can be
installed by cloning the repository, moving into the python
directory and running

> pip install .

The package exposes two classes: JsonDB and SQLiteDB,
for creating and querying MatchingDB dictionaries, in the
JSON and the SQLite representations, respectively. Both
classes have the same methods, with the same arguments
and the same behaviour. An existing database can be loaded
as:

1 db = JsonDB.load("db.json")
2 # or SQLiteDB.load("db.sqlite")

A new one can be created through:

1 db = JsonDB.new("db.json", data=↪→
my_data)

2 # or SQLiteDB.new("db.sqlite", data ↪→
=my_data)

where my_data is the data to be included, as a JSON value
that validates against the MatchingDB schema, represented
as a Python object through the mapping displayed in Table 3.

New items can be inserted into a database through:

1 db.insert(item , table)

where table is one of ''fields'', ''couplings'',
''constants'', or ''terms'', and item is a dict complying
with the corresponding sub-schema, which can be found at
$defs/<table>/items in the full schema. Any changes
made to a database must be saved with

1 db.save()

in order for them to persist.
There are 4 methods to query a database:

Table 3 Mapping between JSON and Python types

JSON Python

Object dict

Array list or tuple

String str

Number int or float

Boolean bool

• select_fields()
• select_couplings()
• select_constants()
• select_terms()

They filter the items of each of the corresponding arrays
according to certain conditions, and prepare the selected
items in the desired output state. A summary of their argu-
ments is provided in Table 4. All of them are optional. If
provided, the name, fields and coeffi
cients arguments select only those items for which
the corresponding property coincides with the given one.
fields_criterion further configures the behaviour of
the fields argument, following Table 5.

The output_format argument must be one of the fol-
lowing strings:

''raw''(default). The method returns a list of the selected
items, represented as Python values, following Table 3.
''pandas''. The method returns a Pandas [182] dataframe
with a simplified version of the output. Provides an easy
way to visually explore the data.
''latex''. Returns math-mode LaTeX code representing
the output. select_couplings() returns a single
string with the formula for the selected sector of the UV
Lagrangian. select_terms() returns a dict with coef-
ficient names as keys and strings with their selected terms
as values. The other 2 methods do not accept this option.
''numeric''. Available inselect_terms()only. Returns
a function for the numerical evaluation of WCs. The addi-
tional parameters argument of select_terms()
must be set to an iterable containing all the names of all
the parameters that will be set to non-vanishing values. This
allows to prepare the output function to be efficiently eval-
uated many times.

The function returned byselect_terms()whenoutput
_format=''numeric''takes two arguments:

parameters: dict. A dict whose keys are the UV
parameters (couplings, masses and matching scale), and
whose values are NumPy [183] arrays with one axis
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Table 4 Summary of the querying methods of the JsonDB and SQLiteDB classes of the matchingdb Python package

Method Arguments Description

select_fields() name: str If provided, select the field with the given name

output_format: str One of {''raw''(default), ''pandas''}

select_couplings() name: str If provided, select the coupling with the given name

fields: [str] If provided, select the couplings with the given set of fields

fields_criterion: str One of {''equals''(default), ''subset'', ''supset''}

output_format: str One of {''raw''(default), ''pandas'', ''latex''}

select_constants() name: str If provided, select the constant with the given name

output_format: str One of {''raw''(default), ''pandas''}

select_terms() coefficient: str If provided, select the terms contributing to a given coefficient

fields: [str] If provided, select the terms with the given set of fields

fields_criterion: str One of {''equals''(default), ''subset'', ''supset''}

output_format: str One of {''raw''(default), ''pandas'', ''latex'', ''numeric''}

parameters: Iterable The non-vanishing parameters for numerical output

Table 5 Possible values and behavior of the fields_criterion argument to the select_couplings() and select_terms()methods
of the JsonDB, and SQLiteDB classes. In the right column, fields refers to the argument of these methods with the same name

Value Select an item if:

''equals'' item[''fields''] == sorted(fields)

''subset'' set(item[''fields'']) <= set(fields)

''supset'' set(item[''fields'']) >= set(fields)

for each of the indices of the corresponding parameter.
Masses are named ''M_<field> ''where ''<field>
''is the name of the field. The matching scale is ''mu''.
The values of constants in the ''constants''array of
the database are included automatically.

expand_flavor: bool (optional).

– If False (default), the output of the function is a dic-
tionary with WC names as keys, and NumPy arrays
as values, with one axis per EFT flavor index of the
coefficient.

– If True, flavor indices are expanded, and the out-
put becomes a dictionary with keys of the form ''<
coeff >_<flavor_indices> '', and values
being either float (if real) or dictionaries with keys
''Re'', ''Im''and floats as values (if complex). If the
names given to the coefficients in the database follow
the conventions of WCxf, the output will be compat-
ible with the values section of a WCxf WC file.

2.7.3 Example

The python/examples directory contains examples showcas-
ing several features of the matchingdb package. Here, I
will present a brief example on how to extract different types
of information from the tree-level dimension-six SMEFT

matching dictionary [137] (given in MatchingDB format at
dictionaries/smeft_dim6_tree
.json). To load this dictionary, one can do:

1 from matchingdb import JsonDB
2 db = JsonDB.load("smeft_dim6_tree.↪→

json")

One can then get a summary view of all terms that appear
in the WC for the Oll Warsaw operator through:

1 db.select_terms(
2 coefficient="ll", output_format="↪→

pandas"
3 )

1 Output:

2 coefficient fields couplings
3 0 ll [S1] [yS1 , yS1]
4 1 ll [Xi1] [yXi1 , yXi1]
5 2 ll [B] [glB , glB]
6 3 ll [W] [glW , glW]
7 4 ll [W] [glW , glW]

From this table, one can see which UV fields and couplings
generate this operator at tree level. Information on these fields
can be obtained as:

1 db.select_fields(
2 name="S1", output_format="pandas"
3 )
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1 name real representation
2 0 S1 False S(1,1,1)

All the matching corrections to any WC induced by the S1

field can be found via:

1 db.select_terms(
2 fields=["Xi"], output_format="↪→

pandas"
3 )

1 coefficient fields couplings
2 0 ll [S1] [yS1 , yS1]

This implies that S1 only contributes to Oll . The formula for
this contribution in LaTeX code can be obtained through:

1 db.select_terms(
2 fields=["Xi"], output_format="↪→

latex"
3 )

1 {’ll ’: ’ + \\frac{ \\left(y_{\\↪→
mathcal ...

which renders as: +
(
yS1

)∗
ajl

(
yS1

)
aik

M2
S1,a

.

This formula can also be numerically evaluated given the
values of the UV parameters: the coupling yS1 and the mass
MS1 . This is done as:

1 evaluator = db.select_terms(
2 fields=["S1"],
3 output_format="numeric",
4 parameters ={"yS1", "M_S1"},
5 )
6

7 import numpy as np
8 n = 2 # number of S1 flavors
9 parameters = {

10 "yS1": np.random.random(size=(n↪→
, 3, 3)),

11 "M_S1": np.random.random(size=(↪→
n,)),

12 }
13

14 evaluator(parameters , expand_flavor ↪→
=True)

1 {’ll_0000 ’: ..., ’ll_0001 ’: ...,
2 ’ll_0002 ’: ..., ...}

The final output here has the format of the values field
of the WCxf format, and is thus suitable for interfacing with
numerical tools for running and the calculation of observ-
ables. The evaluator() function is optimized for mul-
tiple evaluations, with the corresponding database lookup
being performed once, in the select_terms() call.

2.8 RG equations in generic EFTs

Mikołaj Misiak and Ignacy Nałȩcz
The SMEFT RG equations at one loop were determined in

Refs. [8–10], and the RG equations for the LEFT WCs have

been determined in the past, dependently on phenomenolog-
ical needs, sometimes up to the four-loop level [29]. How-
ever, the two-loop SMEFT RG equations remain unknown.
Instead of deriving the RG equations separately in various
Effective Field Theories (EFTs), one can consider a generic
case, as done for renormalizable models (see below). Partic-
ular results are then found by substitutions. Our goal in the
current (ongoing) project is to evaluate one-loop RG equa-
tions for all the dimension-six operators in the generic case.

2.8.1 Operator classification

We shall consider EFTs of the LEFT and SMEFT type,
where the gauge group is an arbitrary finite product of finite-
dimensional Lie groups. Real scalars φa and left-handed
spin- 1

2 fermions ψk are going to be the matter fields. Obvi-
ously, any complex scalar can always be written in terms of
two real ones, while right-handed spin- 1

2 fermions can always
be described as charge-conjugated left-handed ones.

To simplify our calculation in its initial steps, we assume
a discrete symmetry {φ → −φ, ψ → iψ}. It turns out to
forbid all odd-dimensional operators. However, it gives no
restriction on even-dimensional ones when they have already
been required to be Lorentz-invariant. In more generic EFTs,
where no such discrete symmetry is imposed, RG equations
for odd-dimensional operators can be obtained from the even-
dimensional case by treating one of the scalar fields as an
auxiliary gauge-singlet that takes a fixed vacuum expectation
value.

The generic EFT Lagrangian we are going to consider
reads

L = −1

4
F A
μνF Aμν + 1

2
(Dμφ)a(D

μφ)a + iψ̄ j ( 
Dψ) j

− 1

2
m2

abφaφb − 1

4!λabcdφaφbφcφd

− 1

2

(
Y a

jkφaψ
T
j Cψk + h.c.

)
+ Lg.f. + LFP

+ 1

	2

∑
QN + O

(
1

	4

)
, (2.23)

where QN stand for linear combinations of dimension-six
operators multiplied by their WCs.

Let us absorb the gauge couplings into the structure
constants and generators. Then F A

μν = ∂μV A
ν − ∂νV A

μ −
f ABC V B

μ V C
ν , (DρFμν)A = ∂ρF A

μν − f ABC V B
ρ FC

μν ,
(Dμφ)a = (

δab∂μ + iθ A
abV A

μ

)
φb, and (Dμψ) j = (

δ jk∂μ

+i t A
jk V A

μ

)
ψk . RG equations for couplings at the dimension-

four interactions in Eq. (2.23) were calculated up to two loops
in a series of papers by Machacek and Vaughn almost 40
years ago [169–171]. Some corrections to their results were
found more recently in Refs. [184,185]. Even at the one-loop
level, it is only the latter paper [185] that we fully agree with.
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Generic RG equations for the gauge and Yukawa couplings
at the four- and three-loop levels, respectively, were recently
determined in Ref. [186,187] by combining information on
results in various specific models. Earlier three-loop results
for the gauge coupling beta functions can be found in Refs.
[188,189].

We perform our one-loop calculation off shell, using the
background-field gauge method. Therefore, we need to begin
with classifying all the dimension-six operators in the off-
shell basis. Such operators are gauge invariant but many lin-
ear combinations of them vanish by the Equations of Motion
(EOM). Once the RG equations in the off-shell basis are
found, one needs to pass to the on-shell basis where no linear
combination of operators vanishes by the EOM. Only in the
latter case are the RG equations gauge-parameter indepen-
dent.

The off-shell basis we use consists of the following 22
terms12

Q1 = 1

6! W (1)
abcde f φaφbφcφdφeφ f ,

Q2 = 1

4
W (2)

abcd (Dμφ)a(D
μφ)bφcφd ,

Q3 = 1

2
W (3)

ab (D
μDμφ)a(D

νDνφ)b,

Q4 = 1

2
W (4)A

ab (Dμφ)a(D
νφ)b F A

μν,

Q5 = 1

4
W (5)AB

ab φaφb F A
μνF B μν,

Q6 = 1

4
W (6)AB

ab φaφb F A
μν F̃ B μν,

Q7 = 1

2
W (7)AB (DμFμν

)A (
DρFρν

)B
,

Q8 = 1

3! W (8)ABC F Aμ
νF B ν

ρFC ρ
μ,

Q9 = 1

3! W (9)ABC F Aμ
νF B ν

ρ F̃C ρ
μ,

Q10 = 1

8
W (10)

jkln (ψ
T
j Cψk)(ψ

T
l Cψn)+ h.c.,

Q11 = 1

4
W (11)

jkln (ψ̄ jγμψk)(ψ̄lγ
μψn),

Q12 = iW (12)
jk ψ̄ j ( 
D 
D 
Dψ)k ,

Q13 = 1

2
W (13)

a, jk φa(Dμψ)
T
j C(Dμψ)k + h.c.,

Q14 = W (14)
a, jk φaψ

T
j C(DμDμψ)k + h.c.,

Q15 = 1

2
W (15)

a, jk φa(Dμψ)
T
j Cσμν(Dνψ)k + h.c.,

12 Very similar off-shell and on-shell bases of dimension-six operators
were presented by R. Fonseca and J. Santiago at the SMEFT-Tools
workshop. We have verified that all the differences between our setups
are due to convention choices only.

Q16 = i

2
W (16)

ab, jk φaφb

[
(ψ̄

←
D) jψk − ψ̄ j ( 
Dψ)k
]
,

Q17 = W (17)
ab, jk φa(Dμφ)b ψ̄ jγ

μψk,

Q18 = 1

12
W (18)

abc, jk φaφbφc ψ
T
j Cψk + h.c.,

Q19 = 1

2
W (19)A

a, jk φa F A
μν ψ

T
j Cσμνψk + h.c.,

Q20 = iW (20)A
jk F A

μν

[
(ψ̄

←
Dν) jγ

μψk − ψ̄ jγ
μ(Dνψ)k

]
,

Q21 = iW (21)A
jk F̃ A

μν ψ̄ jγ
μ(Dνψ)k,

Q22 = W (22)A
jk

(
DμFμν

)A
ψ̄ jγ

νψk, (2.24)

where W (N ) contain both the WCs and the necessary
Clebsch-Gordan coefficients that select singlets from vari-
ous tensor products of the gauge group representations. In
general, each W (N ) contains many independent WCs, and
many gauge-singlet operators are present in each QN .

After applying the EOM, we find an on-shell basis that
consists of 11 operators only. They are conveniently chosen
as {Q1, Q2, Q5, Q6, Q8, Q9, Q10, Q11, Q17, Q18, Q19}.
There is a subtlety for Q2 whose W -coefficient has more
symmetries in the on-shell basis, namely W (2)

abcd = W (2)
cdab

and W (2)
(abcd) = 0, apart from just W (2)

abcd = W (2)
(ab)(cd) in the

off-shell case.

2.8.2 Sample off-shell results

As a sample off-shell result, let us quote the RG equation
we have obtained for W (1) in the Feynman-’t Hooft gauge.
Terms that are due to the presence of fermions ψ are going
to be denoted by (. . .)ψ in what follows. The RG equation
reads

μ
dW (1)

abcde f

dμ
= 1

16π2

(
2X (1) + X (2) + X (3)

−6X (4) + 2X (5) + 2X (6) + 2X (7)

− 12X (8) + 6X (9) + (. . .)ψ
)

abcde f
(2.25)

where

X (1)abcde f = 1

48

∑
θ A

agθ
A
bh W (1)

cde f gh,

X (2)abcde f = 2π2

15

∑
(γφ)agW (1)

bcde f g,

X (3)abcde f = 1

48

∑
λabgh W (1)

cde f gh,

X (4)abcde f = 1

4

∑
θ A

agθ
A
bhθ

B
cgθ

B
di W (2)

hie f ,

X (5)abcde f = 1

16

∑
λadhiλbcgi W

(2)
ghe f ,
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X (6)abcde f = 1

8

∑
θ A

ei θ
A
f jλadhiλbcg j W

(3)
gh ,

X (7)abcde f = 1

16

∑
λaei jλb f h jλcdgi W

(3)
gh ,

X (8)abcde f = 1

4

∑
θ A

cgθ
A
dhθ

B
bhθ

C
agW (5)BC

ef ,

X (9)abcde f = 1

2

∑
θ A

f iθ
B
ehθ

C
cgθ

C
diθ

D
agθ

D
bh W (7)AB . (2.26)

The sums go over such permutations of uncontracted
indices that make each X (N )abcde f totally symmetric. The scalar

field anomalous dimensions in X (2) are given by

(γφ)ab = 1

32π2

[
Y a

i j Y
b∗
i j + Y b

i j Y
a∗
i j − 4θ A

acθ
A
cb

]
. (2.27)

2.8.3 Automatic computations

Our calculation begins with generating the Feynman rules
from the Lagrangian (2.23) with the help of FeynRules
[155]. Next, FeynArts [190] is used to construct expres-
sions for all the necessary one-loop diagrams. Calculation of
their divergent parts is very simple, most efficiently achieved
with the help of a self-written code. Simplification of the eval-
uated results requires applying various identities that stem
from gauge invariance and/or EOM (see the next section).
For this purpose, the code xTensor [191] is very helpful,
as it allows us to impose all the relevant symmetries of the
considered tensors in a straightforward manner. However,
full automation of the necessary simplifications has not yet
been achieved, which is the main reason why our project is
still quite far from getting completed. New ideas are currently
being tested.

2.8.4 Simplification methods

Gauge invariance of the theory imposes some identities on the
couplings and W -coefficients. To derive such an identity for
the Yukawa couplings, one considers an infinitesimal gauge
transformation

Y a
jkφa(ψ j )

T C PLψk → Y a
jk(δab − iεAθ A

ab)φb

×
[
(δ jl − iεBt B

jl)ψl

]T

× C PL(δkn − iεC tC
kn)ψn .

(2.28)

Since the Yukawa term is gauge invariant,

φa(ψ j )
T C PLψkε

A[−θ A
abY b

jk + (t A)TjlY
a
lk + Y a

jl t
A
lk ] = 0,

(2.29)

it follows that

(t A)TjlY
a
lk + Y a

jl t
A
lk − θ A

abY b
jk = 0. (2.30)

A generic, purely fermionic operator can be written as

W (n)
j1 j2...k1k2...l1l2...

ψT
k1
ωCψk2 . . . ψ l1ωCψ

T
l2 . . . ψ j1γψ j2 . . . ,

(2.31)

where ω that contracts spinor indices is either the identity or
the σμν matrix. Some of the spinor fields may be replaced by
their covariant derivatives of arbitrary degree. For such oper-
ators, the quantity that must vanish due to gauge invariance
reads

t E
mk1

W (N )
j1 j2...mk2...l1l2...

+ t E
mk2

W (N )
j1 j2...k1m...l1l2...

−t E∗
ml1 W (N )

j1 j2...k1k2...ml2...

− t E∗
ml2 W (N )

j1 j2...k1k2...l1m... − t E∗
mj1 W (N )

mj2...k1k2...l1l2...

+ t E
mj2 W (N )

j1m...k1k2...l1l2...
+ . . . . (2.32)

Analogously, for the W -coefficients of operators with bosonic
fields only, the quantity that must vanish reads

i f B E A1 W (N )B A2...Ak
a1...am

+ . . . + i f B E Ak W (N )A1...B
a1...am

+ θ E
ba1

W (N )A1...Ak
ba2...am

+ . . . + θ E
bam

W (N )A1...Ak
a1...b

. (2.33)

Both types of terms arise on the r.h.s. for operators that
involve both the fermionic and bosonic fields.

Once the RG equations in the off-shell basis are found, we
should pass to the on-shell ones by using the EOM. Let us
illustrate this using the W -coefficient of Q5. We start from
the observation that Q7 is reducible by the gauge-field EOM

(DμFμν)A = −iθ A
abφb(D

νφ)a + (. . .)ψ + O( 1

	
). (2.34)

An operator Q̃7 that vanishes on-shell is obtained by a simple
redefinition

Q̃7 := Q7 + 1

2
Q′

4 + 1

4
Q′

5 + (. . .)ψ , (2.35)

with

Q′
4 := iW (7) ACθC

ab(D
μφ)a(D

νφ)b F A
μν,

Q′
5 := 1

4

(∑
W (7) ACθC

acθ
B
bc

)
φaφb F A

μνF B μν. (2.36)

Next, Q′
4 and Q′

5 are absorbed into Q4 and Q5:

W
(4) A

ab := W (4) A
ab − iW (7) ACθC

ab,

W
(5) AB

ab := W (5) AB
ab − 1

4
W (7) ACθC

acθ
B
bc . (2.37)

To get an on-shell expression for the W -coefficient of Q5,
another redefinition is necessary:

Q̃4 := Q4 + 1
4 Q′′

5 + (. . .), (2.38)

with

Q′′
5 := i

4

∑
W
(4)
ac

Aθ B
cbφaφb F A

μνF B μν. (2.39)
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It yields

W̃ (5) AB
ab = W

(5) AB
ab + i

4

∑
W
(4) A

acθ
B
bc = W (5) AB

ab

+ i

4

∑
W (4) A

acθ
B
bc . (2.40)

Finally, applying μ d
dμ to both sides of the above equation,

one obtains the on-shell RG equation for W̃ (5):

μ
dW̃ (5) AB

ab

dμ
= μ

dW (5) AB
ab

dμ

+ i

4

∑
(
μ

dW (4) A
ac

dμ
θ B

bc + W (4) A
acθ

B
bcγB

)
,

(2.41)

where

γB = 1

48π2

[
−11C2(G B)+ 1

2
tr(θ A

B θ
A
B )+ 2tr(t A

B t A
B )

]

(2.42)

and C2(G B)δ
BC = f B DE f C DE .

2.8.5 Sample On-Shell Results

Three out of six on-shell-irreducible bosonic operators,
namely Q6, Q8 and Q9, transform trivially to the on-shell
basis. The corresponding RG equations that we find in their
case take the form

μ
dW (6)AB

ab

dμ
= 1

16π2

(
2Z (1)+2Z (2)+8Z (3)−8Z (4)

+2Z (5)+Z (6)+Z (7)+2Z (8)+6Z (9)
)AB

ab
,

μ
dW (8)ABC

dμ
= 1

16π2 [12 C2(G B)+ 48π2 γB] W (8)ABC ,

μ
dW (9)ABC

dμ
= 1

16π2 [12 C2(G B)+ 48π2 γB] W (9)ABC ,

(2.43)

where

Z (1)AB
ab = W (6)AB

cd θ
C

ac θ
C

bd ,

Z (2)AB
ab =

∑
W (6)BC

bd θ
A

cd θ
C

ac ,

Z (3)AB
ab = C2(G B)W

(6)AB
ab ,

Z (4)AB
ab = f AC E f B DE W (6)C D

ab ,

Z (5)AB
ab = 16π2W (6)AB

ab γB ,

Z (6)AB
ab = 8π2

∑
W (6)AB

bc (γφ)ac ,

Z (7)AB
ab = W (6)AB

cd λabcd ,

Z (8)AB
ab = i

∑
W (9)BC D θ A

ac θ
C

bd θ
D

cd ,

Z (9)AB
ab = i

2

∑
W (9)BC D θ A

cd θ
C

ac θ
D

bd . (2.44)

The RG equations for Q8 and Q9 in Eq. (2.43) agree with
those in Refs. [192,193]. As far as Q6 in the generic case
is concerned, we are not aware of any published one-loop
RG equation so far. However, we have checked that in the
SMEFT case we reproduce the RG equations found in Refs.
[8–10]. Such a comparison tests the sum 2Z (5)+ Z (6)+ Z (7)

in Eq. (2.43).

2.8.6 Summary

Our goal is to evaluate one-loop RG equations for dimension-
six operators in a generic class of EFTs. In the absence of
fermions, the calculation has been completed [194] in the
off-shell basis, with partial reduction to the on-shell one. As
far as the operators with fermions are concerned, only partial
off-shell results have been obtained so far [195]. The main
issue that remains to be resolved is automatization of ten-
sor expression simplifications that must be performed after
evaluation of the necessary Feynman diagrams. Eventually,
once our project is completed, one-loop RG equations for
many practically relevant specific EFTs will be possible to
determine via straightforward substitutions.

2.9 Two-loop Renormalization for χQED in the BMHV
Scheme

Hermès Bélusca-Maïto, Amon Ilakovac,
Marija Mador-Božinović, Paul Kühler, Dominik Stöckinger,
and Matthias Weißwange

Dimensional regularization (DReg) is an indispensable
tool for practical calculations at the (multi-)loop level. Its
popularity is not least of all due to manifest preservation of
symmetries of vector-like theories of the classical action to
all loop orders, which aids greatly both in renormalizability
proofs, as well as in the practical determination of coun-
terterms [74]. Many powerful theorems such as the quan-
tum action principle can be rigorously derived in this frame-
work. However, it is known from experiment that the world
is described by chiral gauge theories such as the electroweak
sector of the SM. For such theories no invariant regulator is
known, and dimensional schemes like DReg clash with their
chiral nature. Technically, this is reflected in the definition of
γ5 (or, equivalently, εμνρσ ) in DReg, where inconsistencies
arise from relying on the simultaneous validity of custom-
ary 4-dimensional relations in the dimensionally regularized
setting.

Therefore, one cannot literally apply the familiar rela-
tions involving γ5 but must define an appropriate scheme.
In the following we summarize the main results presented
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in Refs. [76,77,83]. We adopt the Breitenlohner–Maison–
’t Hooft–Veltman (BMHV) [69,70] scheme, which treats
Lorentz covariants as being comprised of a 4-dimensional
(barred) and −2ε-dimensional evanescent (hatted) part,

gμν = ḡμν + ĝμν. (2.45)

Inconsistencies are avoided by giving up the anti-commu
tativity of γ5,

{γ5, γ
μ} = 2γ5γ̂

μ , {γ5, γ̄
μ} = 0 , [γ5, γ̂

μ] = 0 . (2.46)

Its distinguishing feature is its consistency, and hence, relia-
bility at the multi-loop level, but it introduces spurious sym-
metry breakings. There are a number of alternative schemes
(cf. [74], also references in [76,77]) like the naive scheme
[196] or reading-point prescriptions [197,198], which are
computationally simpler, but their consistency at higher loop
orders is generally not ensured.

At the level of the full quantum theory, expressed in terms
of the 1-particle-irreducible (1-PI) quantum effective action
�, the Becchi–Rouet–Stora–Tyutin (BRST) symmetry is for-
mulated by the Slavnov–Taylor identity,

S(�) =
∫

d4 x
δ�

δφi (x)

δ�

δKφi (x)
= 0 , (2.47)

with generic quantum fields φ and corresponding BRST
sources Kφ . Its validity to all orders is an essential ingre-
dient in ensuring unitarity and physicality of the S-matrix.
Hence we require that our full quantum theory obeys the
Slavnov–Taylor identity. It turns out that any violation of
BRST symmetry, and hence Eq. (2.47), can be related to the
insertion of a local operator into the effective action by the
regularized quantum action principle [70,199,200],

S(�DRen) = � · �DRen . (2.48)

Evaluating the r.h.s. of Eq. (2.48) determines the finite sym-
metry restoring counterterms without the need to compute
products of Green’s functions including higher-order terms
from the l.h.s. of Eq. (2.47).

We, therefore, aim for the systematic determination of the
full counterterm structure—comprised of non-symmetric,
singular counterterms needed for consistency at higher
orders, and finite, symmetry-restoring counterterms—for
various toy models of increasing complexity and loop orders
and, eventually, the SM. So far we have studied the scheme at
the one-loop level for a generic Yang-Mills theory [76] (see
also [78,201] for related works) and at the two-loop level for
an abelian model [77]. The latter will serve to illustrate our
methods in this article. For an extensive review on the topic
of chiral gauge theories and renormalization see [83].

2.9.1 Application to χQED

We consider an Abelian gauge theory with a family of N f

right-handed fermions [77], which we denote as χQED. The
d-dimensional treatment only affects the fermionic sector
non-trivially, where the kinetic term is kept d-dimensional
while the interaction term is purely 4-dimensional:
∫

dd x
(

iψ i /∂ψi + iψ i /̂∂ψi + eYRi jψ i PL /APRψ j

)

≡ Sψψ + Ŝψψ + Sψ AψR
, (2.49)

where YRi j = (diag(Y1
R, . . . ,Y

N f
R ))i j is the hypercharge

matrix for the abelian model. The full regularized action at
tree-level becomes

S0 = (2.49) +
∫

dd x

(
−1

4
FμνFμν − 1

2ξ
(∂μAμ)2

−c̄∂2c + Kφsdφ
)

≡ (2.49) + SAA + Sg-fix + Sc̄c + Sρc + SR̄cψ + SψcR,

(2.50)

with fieldsφ ∈ {Aμ,ψ
i
, ψ i } and sources Kφ ∈ {ρμ, Ri , R

i }.
We can see that the symmetry is violated for the regularized
action at tree level, giving rise to the following breaking ver-
tex:

Sd(S0) =
∫

dd x �̂(x) �

̂

Δ c

p2

ψ
j
β

p1

ψ
i
α

(2.51)

= eYRi j
(
/̂p1PR + /̂p2PL

)
αβ
.

The standard UV-renormalization of the model at one loop
order leads to the singular counterterm action,

S(1)sct = (symmetric
)− h̄ e2

16π2ε

Tr[Y2
R]

3

∫
dd x

1

2
Āμ∂̂

2 Āμ ,

(2.52)

where the unspecified terms correspond to 4-dimensional
multiplicative renormalization. The last term, evanescent and
non–gauge invariant, is necessary for canceling the diver-
gence in (2.53b). At one-loop order the symmetry restoration
is rather straightforward, with Eq. (2.48) boiling down to13

Sd(�subren)
(1) = �̂ · �(1)subren , cf. (2.53b) . (2.53a)

13 By �(n)subren we refer to the n-loop effective action including countert-
erms up to order n − 1. In the case of n = 1, this corresponds to the
unrenormalized and dimensionally regularized action.
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̂

Δ c

p1Aμ

̂

Δ

Aν

AρAμ

c

p1
p2

p3

̂

Δ

p2 p1
ψj ψi

c

(2.53b)

These are the only14 (divergent) contributing diagrams.
The finite part of (2.53b) leads to the finite, non-invariant
BRST-restoring counterterm action S(1)fct , whose structure
[76] is the same at two loops and will be highlighted below.

At order h̄>1 (using h̄ as the loop-counting parameter),
Eq. (2.48) implies

Sd(S0 + Sct) = (�̂+�ct) · �DRen , (2.54)

and more explicitly at two-loop order:
(
�̂ · �(2)subren+�(1)sct · �(1)subren+�(1)fct · �(1)subren+�(2)sct

)
div = 0 ,

(2.55a)

LIM
d→4

(
�̂ · �(2)subren+�(1)sct · �(1)subren+�(1)fct · �(1)subren+�(2)fct

)
fin = 0 .

(2.55b)

The singular counterterms have the same structure as at one-
loop (including the evanescent

∫
dd x 1

2 Āμ∂̂2 Āμ), except for
a novel non-gauge invariant, 4-dimensional piece,

S(2, 2)sct ⊃ −
(

h̄ e2

16π2

)2
1

3ε

∑

j

(Y j
R)

2
(

5

2
(Y j

R)
2 − 2

3
Tr[Y2

R]
)

S j
ψψR

.

(2.56)

There exist additional divergent one-loop diagrams contain-

ing one insertion of a finite counterterm S(1)fct (similar to dia-
grams Figs. 4 and 5), whose divergent parts define new coun-
terterms, S(2, 1)sct :

S(2, 1)sct = −
(

S(1)fct · �(1)
)div

. (2.57)

They possess a genuine one-loop structure, even though they
are of order h̄2.

For the r.h.s. of Eq. (2.48) three structures arise: the proper
two-loop diagrams with one insertion of the tree-level �̂-
vertex (first diagram in Fig 3), a new insertion of BRST-
transformed non-invariant one-loop counterterms into one-
loop diagrams (last diagram in the first line of Fig 3), and
the last term in Eqs. (2.55a) and (2.55b) that determines the
finite counterterms and provides a consistency check for the

14 The triple photon triangle variant (�̂ · �)cAA must vanish by the
anomaly cancellation requirement Tr[Y3] = 0.

divergent ones, respectively. The complete order-h̄2 finite
counterterms are, in Feynman gauge ξ = 1,

S(2)fct =
(

h̄ e2

16π2

)2
{∫

d4 x

(
11 Tr[Y4

R]
24

1

2
Āμ∂

2
Āμ

+3e2 Tr[Y6
R]

2

1

4
( Ā2)2

)

−
∑

j

(Y j
R)

2
(

127

36
(Y j

R)
2 − 1

27
Tr[Y2

R]
)

S j
ψψR

⎫
⎬

⎭ .

(2.58)

Remarkably, they have the same compact structure as at one-
loop and directly correspond to the restoration of three well-
known QED Ward identities, i.e., transversality of the photon
two- and four-point function, as well as the relation between
electron self energy and electron-photon interaction. Indeed,
we can explicitly check for the restoration of the symme-
try by evaluating the relevant identities and confirming that
only after adding those counterterms, are they satisfied in our
model [77].

2.9.2 RG equation in dimensional renormalization

The RG equation [202,203] describes the invariance of bare
correlation (Green’s) functions under a change of the arbi-
trary renormalization scale: in DReg it is the “unit of mass”15

μ [204,205], that is associated to each loop of any dia-
gram: με

∫
dd x . For example, the 1-PI quantum effec-

tive action � depends on μ both explicitly and implicitly
via the μ-dependence of the field renormalizations Z1/2

φ

and renormalized parameters: �[{φ(μ)}; e(μ), ξ(μ), μ]. Its
invariance under a total μ-variation is represented by the RG
equation (summation over fields φ ∈ χQED is implied16 ):

μ
d�

dμ
= 0 = μ∂μ� + (βee∂e + βξ∂ξ − γφNφ

)
� . (2.59a)

In Eq. (2.59a),μ∂μ is the RG differential operator. The Nφ
are field-numbering (“leg-counting”) differential operators,
defined by Nφ ≡ ∫

dd x φ(x)δ/δφ(x), for bosonic fields,
ghosts, and for right-handed (and left-handed anti-) fermions
φ := PRψ , φ := ψPL. The coefficient functions βe,ξ are
the beta-functions for the coupling constant e and the gauge
parameter ξ , and γφ are the anomalous dimensions for the
fields φ, defined by

βe = 1

e
μ

d e

dμ
, βξ = μ

d ξ

dμ
, γφ = 1

2
μ

d ln Zφ
dμ

.

(2.59b)

15 In off-shell schemes this is instead an arbitrary energy scale.
16 Here and in the following, we use the shorthand notations: μ∂μ :=
μ∂/∂μ, ∂e := ∂/∂e, etc.
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Fig. 3 The two-loop diagrams
with one insertion of the
tree-level �̂-vertex and the
relevant counterterms for the
subdivergences

“Modified” multiplicative renormalization (MultRen)
Standard renormalization transformation [169–171,204]

consists in renormalizing fields multiplicatively, while cou-
plings are usually renormalized additively:

e → e + δe , ξ → Z Aξ , Aμ → √
Z A Aμ ,

(ψRi , ψRi ) → √
Zψ(ψRi , ψRi ) , (ψL i , ψL i ) → (ψL i , ψL i ) ,

(2.60)

(BRST sources renormalize the inverse way from their
corresponding dynamical fields). Beta-functions and anoma-
lous dimensions can be found from the 1/ε poles of the renor-
malizations δe and Zφ .

The situation becomes more involved when new evanes-
cent singular and finite symmetry-restoring counterterms are
generated during renormalization. One way to proceed is to
extend [206,207] (also Section 8 in [76]) the original tree-
level action S0 with those new generated operators, associ-
ated with new auxiliary couplings ρO := σi , ρi . A new tree-
level action S∗

0 is thus defined, which, in the case of χQED,
can take the following form17

17 The operator
∫

dd x : 1
2 Āμ∂

2
Āμ generated in the finite countert-

erms is equal to the combination SAA + ξ Sg-fix of the 4-dimensional
photon kinetic and gauge-fixing terms. The operator

∫
dd x e2/4( Ā2)2,

associated to ρ3, does not actually contribute to the RG evolution at the
h̄2 order.

S∗
0 = S0 + ρ1δfctψ Sψψ + σ1 Ŝψψ + ρ2δfctA(SAA + ξ Sg-fix)

+ σ2 ŜAA +
∫

dd x

(
σ3

1

2
Āμ∂̂

2 Āμ + ρ3
e2

4
( Ā2)2

)
.

(2.61)

The coefficients δfctψ and δfctA arise from the finite
BRST-restoring counterterms Sfct. The generated modified
effective action �∗

DReg[φ, ρO] and counterterms can be
expanded in ρO, whose lowest-order terms correspond to
the quantities evaluated in the original theory.

One obtains an RG equation for �∗
DReg[e, ξ, {σi }, {ρi }],

with beta-functions β̃ for e, ξ and auxiliary couplings σi , ρi ,
and anomalous dimensions γ̃φ :

μ∂μ�
∗
DReg = (−β̃ee∂e − β̃ξ ∂ξ − β̃σi ∂σi − β̃ρi ∂ρi + γ̃φNφ

)
�∗

DReg .

(2.62)

The genuine renormalized theory generated by the original
S0 can be recovered in the limit σi , ρi → 0, since σi , ρi are
unphysical and are absent in S0. The true β and γ functions
for � will depend on β̃ and γ̃φ and are obtained for the 4-
dimensional renormalized effective action �, defined by

�[e, ξ ] = LIM
d→4

lim
σi ,ρi →0

�∗
DReg[e, ξ, {σi }, {ρi }] , (2.63)

where: (i) divergences are MS-subtracted from � with suit-
able singular counterterms, and (ii) d → 4, with (iii) remain-
ing finite evanescent quantities set to zero. The corresponding
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RG equation, obtained from Eq. (2.62) when both sides are
taken under those same limits, has the final structure:

μ∂μ� = (−βee∂e − βξ∂ξ + γφNφ
)
�

∼ LIM
d→4

lim
σi ,ρi →0

μ∂μ�
∗
DReg . (2.64)

The procedure [206,207] then consists in evaluating the
effects of the evanescent and non-symmetric operators, that
dilute into the non-evanescent ones, via the following terms
in the limit σi , ρi → 0 and the renormalized limit d → 4:

−β̃σi ∂σi�
∗
DReg, −β̃ρi ∂ρi�

∗
DReg . (2.65)

They correspond, from the Regularized Action Principle [70,
208,209], to diagrammatic vertex insertions of their associ-
ated operators: ∂�∗

DReg/∂ρO = (
O + ∂S∗

ct/∂ρO
) · �DReg,

where ∂S∗
ct/∂ρO removes the divergences from O · �DReg.

Finally, they are re-cast as new contributions to βee∂e�,
βξ ξ∂ξ� and γφNφ�, from which shifts to the βe and γφ are
obtained.

RG equation in Algebraic Renormalization (AlgRen) The
other and more streamlined method for obtaining the RG
equation is that of the “Algebraic Renormalization” frame-
work [201,210]. It is based on the properties of the theory and
of the RG evolution regarding the BRST symmetry (see, e.g.,
Section 7 of [76]). It applies at the level of the BRST-restored
4-dimensional renormalized effective action �.

After symmetry restoration,� is now BRST invariant, and
the RG operator inherits the symmetries from �: (i) the RG
evolution is BRST invariant, (ii) it satisfies the gauge-fixing
condition, (iii) and the ghost equation. The RG equation for
� is thus an expansion in a basis of 4-dimensional operators,
with ghost number = 0, satisfying these same constraints
(φ = A, ψ, c):

μ∂μ�︸ ︷︷ ︸
=R

= (−βee∂e + γφNφ
)
�

︸ ︷︷ ︸
=W

. (2.66)

The Nφ are BRST-invariant field-counting operators [76,
211] that are linear combinations of the basic Nφ operators
previously introduced:

NA = (NA + 2ξ∂ξ − · · · ) ,
Nψ = (N R

ψ + N L
ψ

− · · · ) ,Nc = Nc .

The Quantum Action Principle (QAP) [70,199,200,208–
210,212–214], asserts that the variations of� (termsW) with
respect to parameters and fields naturally present in S0, are
equivalent to a renormalized insertion of local d-dimensional
operators in�, derived from the finite dimensional-regularized
action, S0 + Sfct,

D� = N [D(S0 + Sfct)] · � , with D = e∂e ; Nφ .
(2.67)

Because μ is not a parameter of S0, but is a modification
of the loop integration, the QAP does not directly apply to
μ∂μ� itself (term R). Nonetheless, it can also be expressed
as a renormalized insertion (Bonneau [205]):

R ≡ μ∂μ� =
∑

Nl≥1

Nl N [r.s.p.�DRegN
l
loops] · � . (2.68)

In this equation, r.s.p.�DRegN
l

loops designates the residue
of simple 1/(4 −d) pole of the Nl -loop 1-PI diagrams, made
from Feynman rules derived from the action (S0 + Sfct), and
sub-renormalized using lower-order singular counterterms
Ssct.

The procedure then consists in re-expressing Eq. (2.66)
using (2.67) and (2.68), and all the operator insertions into
a basis of (independent) 4-dimensional ones. Note that the
inserted evanescent M̂ j operators manifesting there are not
linearly independent quantities, and need to be expanded into
independent insertions of 4-dimensional operatorsMi (Bon-
neau identities [205,215]): N [̂M j ] ·� =∑i c ji N [Mi ] ·�,
with c ji ∼ O(h̄). Grouping all terms together, one obtains
the final form of the RG equation, as a system of equations for
the βe and the γφ functions, ensuring their self-consistency:

μ∂μ� = ∑
i ri N [Mi ] · �

︸ ︷︷ ︸
=R

= ∑
i

(−βewe,i + γφwφ,i
)

N [Mi ] · �
︸ ︷︷ ︸

=W

. (2.69)

2.9.3 Results for the two-loop RG evolution

Mainly focusing on the AlgRen method, we now describe
how all the h̄2-order terms entering Eq. (2.69) can be explic-
itly evaluated in order to determine the two-loop β(2)e and
γ
(2)
φ functions. For all details we refer to [211].

The left-hand side of Eq. (2.69) can be grouped into four
different terms, R = R1 + R2 + R3 + R4.

• R1 corresponds to insertions of one-loop 4-dimensional
singular counterterms into one-loop diagrams, R1 =
N [−r.s.p. S(1)sct ] · �(1).

• R2 corresponds to insertions of one-loop evanescent sin-
gular counterterms into one-loop diagrams, Figs. 4 and 5:

R2 = N [−r.s.p.
̂
S(1)sct ] · �(1).

• R3 corresponds to two-loop singular counterterms,
obtained from the 1/(4 − d) pole of one-loop diagrams
involving insertions of one-loop finite counterterms (see

discussion around Eq. (2.57)), R3 = −r.s.p. S(2, 1)sct .
Those diagrams are similar to those of Figs. 4 and 5, but

with Ô → S(1)fct .
• R4 corresponds to the genuine two-loop h̄2 singular

counterterms (see discussion around Eq. (2.56)). Note
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Fig. 4 Diagrams with insertion of Ô ≡ ŜAA or −r.s.p.
̂
S(1)sct ∝∫

dd x 1
2 Āμ∂̂2 Āμ

that in the language of Eq. (2.68), it is only these R4

terms that receive a factor Nl = 2, whereas all other con-
tributions R1,2,3 receive a factor Nl = 1. This subtlety
is not present in the case of manifest symmetry preserva-
tion.

Similarly, the right-hand side of Eq. (2.69) can be grouped
into four terms, W = W1 + W2 + W3 + W4.

• W1 corresponds to contributions from the one-loop RG
coefficients combined with the insertions of the respec-
tive differential operators, i.e. W1 = −β(1)e N [e∂e S0] ·
�(1) + γ

(1)
φ N [NφS0] · �(1). Note that there is an auto-

matic agreement R1 = W1, in accord with the one-loop
RG coefficients.

• W2 corresponds to the contributions from one-loop
RG coefficients combined with insertions of tree-level
evanescent operators, W2 = 2γ (1)A N [̂SAA] · �(1) +
γ
(1)
ψi

N [̂Si
ψψ

] · �(1), corresponding to Figs. 4 and 5.

• W3 corresponds to contributions from one-loop RG
coefficients combined with finite one-loop counterterms,

W3 =
(
γ
(1)
ψi

+ γ (1)A ξ ∂
∂ξ

− β(1)e

)
Nψi S(1)fct .

• W4 contains the genuine “two-loop” h̄2-orderβ-functions
and anomalous dimensions of χQEDto be determined:
W4 = −β(2)e e∂e S0 + γ (2)φ NφS0.

In the MultRen method, there exists a one-to-one corre-
spondence with the terms obtained in the AlgRen method.
The singular counterterms R3,4 generate contributions β̃e,ξ

and γ̃A,ψi to the β and γ functions. The terms −β̃σi ∂σi�
∗
DReg

for i = 1, 2, 3, evaluated following Eq. (2.65) in Sect. 2.9.2,
correspond to W2 and R2. Those are evaluated with the very
same diagrammatic calculations as in AlgRen, Figs. 4 and 5.
Likewise, one evaluates the terms −β̃ρi ∂ρi�

∗
DReg (i = 1, 2),

that correspond to W3 in the AlgRen method.
All these quantities, except for the unknown two-loop RG

coefficients in W4, are known or calculable from one-loop
diagrams. The equation R = W can therefore be solved
to obtain these coefficients. The resulting h̄2-order β and γ
functions of χQEDare (in Feynman gauge ξ = 1):

β(2)e = γ
(2)
A = γ (2)c =

(
h̄ e2

16π2

)2

2 Tr[Y4
R] , (2.70a)

γ
(2)
ψi

= −
(

h̄ e2

16π2

)2 (
2

9
Tr[Y2

R](Y i
R)

2 + 3

2
(Y i

R)
4
)
.

(2.70b)

The two compared AlgRen and MultRen methods agree in
the obtained results.

2.9.4 Summary and outlook

We have demonstrated the practical renormalization of a chi-
ral Abelian toy model up to two-loop order. The main result
consists in the full set of non-invariant, singular countert-
erms as well as the finite, non-invariant symmetry-restoring
counterterms which implement the Slavnov–Taylor identity
at the two-loop level. These counterterms are found to be
rather compact and of a similar structure at one- and two-
loop order. Importantly, it is verified that they ensure the
validity of the usual Ward identities. The beta-functions and
anomalous dimensions of the renormalization group equa-
tion of the model have been derived using two approaches: in
the Algebraic Renormalization framework and in a modified
version of the more customary multiplicative renormalization
method. The methods are equivalent and provide the same
final results. However, the application of algebraic renor-
malization is more straightforward, as it does not require
any “auxiliary couplings”. We are currently working on the
three-loop renormalization as well as the two-loop study of
the non-Abelian case. All of this is in preparation for the
application to the SM.

3 Phenomenological studies and applications

Another important use case for computer tools has to do
with phenomenological analyses. Typical tasks performed
by such codes include the extraction of theory parameters
from data, the prediction of observables in terms of NP
parameters, or setting bounds on the underlying parameter
space. Tools are for instance used to determine the WCs
of higher-dimensional operators, by extracting them from
observables in an automated global analyses. Typical fitting
tools that allow for such analyses are SMEFiT [216], as well
as smelli, HighPT, and HEPfit, which are all discussed
further in this section. Common observable calculators, that
consist of a large data base of predefined observables are
flavio [217], SuperIso [218,219], FlavBit [220], as
well as the package EOS, which is further discussed below.
Furthermore, there are several clustering tools and Monte-
carlo enablers on the market, such as ClusterKing [221]
and Pandemonium [222], the package SMEFTsim [223],
as well as SmeftFR which can be used for Montecarlo sim-
ulations including Dim8 SMEFT operators, and which is dis-
cussed in the last subsection.
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Fig. 5 Non-vanishing diagrams

with insertion of Ô ≡ ̂Si
ψψ

3.1 smelli: Towards a global SMEFT likelihood

Peter Stangl

The Python package smelli is a powerful tool for
constraining SMEFT WCs and parameters of UV models
matched to the SMEFT. Its goal is to provide a likelihood
that is as global as possible while being fast enough to allow
comprehensive fits and parameter scans.

NP extensions of the SM aim to resolve certain theoretical
issues or tensions with experimental data. Typically, how-
ever, they have effects on many observables beyond their
original purpose. It is therefore crucial to carry out global
phenomenological analyses of NP models in order to assess
their viability and to show their actual superiority over the
SM. This is a challenging task as it involves computing pre-
dictions for a large number of observables and doing so for
each model. Fortunately, this problem can be tremendously
simplified by using the SMEFT in an intermediate step. In
particular, a global likelihood function that yields the prob-
ability of observing the experimental data given SMEFT
WCs18 can also be used as a likelihood function for model
parameters of all NP models that can be matched to the
SMEFT. For such models, a global phenomenological anal-
ysis can be divided into two parts.

1. The NP model has to be matched to the SMEFT in order
to express the SMEFT WCs at the matching scale 	NP,
C(	NP), in terms of model parameters �ξ , i.e.

C(	NP) = fmatch(ξ) , (3.1)

where the matching function fmatch and the model param-
eters �ξ depend on the specific NP model. It might be
necessary to include one-loop effects in this step, in par-
ticular if the leading contribution to relevant WCs is not
generated by the tree-level matching.

18 In the following we will focus on the WCs of operators up to and
including dimension-six.

2. The SMEFT WCs at the scale 	NP, C(	NP), have to
be constrained by experimental data. This requires the
computation of theory predictions for a large number of
observables at various scales, both in the SMEFT and in
the LEFT. Importantly, WCs at different scales and in
different EFTs are connected by RG running and match-
ing. The one-loop contributions introduced by the RG
running have been shown to be crucial in constraining
NP models (see e.g. Refs. [224,225]). Theoretical pre-
dictions and experimental measurements of all relevant
observables can then be used to construct a global likeli-
hood function for the SMEFT WCs at the scale 	NP,

LSMEFT (C(	NP)) . (3.2)

Through Eq. (3.1), this also directly provides a likelihood
function for the parameters �ξ of a NP model,

LNP

(�ξ
)

= LSMEFT

(
fmatch(�ξ)

)
. (3.3)

The matching in step 1 depends only on the NP model, but
is independent of both the experimental data and the theoret-
ical predictions of the observables. Full tree-level matching
of generic models to SMEFT has been performed in Ref.
[137] and several tools are being developed to fully auto-
mate generic one-loop matching [48,49,134].

The phenomenological part in step 2 is independent of
the NP model, so that a SMEFT likelihood function, once
constructed, can be be used for generic phenomenological
analyses of NP models. It is important to stress that different
sectors of observables should not be considered separately,
since RG effects mix all sectors, and matching a NP model
to the SMEFT will generally lead to effects in many sectors.
It is therefore crucial to consider a global SMEFT likelihood
function that encompasses as many sectors as possible.

3.1.1 smelli – the SMEFT likelihood

To establish a comprehensive global likelihood function in
the space of dimension-six SMEFT WCs, the open source
Python package smelli – the SMEFT likelihood – was
introduced in Ref. [226]. It builds on several other open-
source projects that provide key components:
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• wilson [108] – running and matching beyond the SM
wilson is a Python package for the running and match-
ing of WCs in the LEFT and the SMEFT. It imple-
ments the one-loop running of all dimension-six oper-
ators in the SMEFT [8–10], matching to the LEFT at
the electroweak scale [13], and one-loop running of all
dimension-six LEFT operators in QCD and QED [14,20].
Furthermore, it takes into account effects from rediago-
nalization of Yukawa matrices after running above the
EW scale [227,228].

• flavio [217] – A Python package for flavour and pre-
cision physics in and beyond the SM
The Python package flavio can compute theoretical
predictions for a wide range of observables from differ-
ent sectors, including flavour physics, electroweak preci-
sion tests, Higgs physics, and other precision tests of the
SM. NP contributions are taken into account in terms of
WCs of dimension-six operators in the SMEFT and the
LEFT. flavio also comes with an extensive database
of experimental measurements and allows the construc-
tion of likelihoods based on these measurements and their
corresponding theoretical predictions.

• WCxf [133] – the Wilson coefficient exchange format
smelli,wilson, andflavio all use the Wilson coef-
ficient exchange format (WCxf) to represent WCs, which
makes it easy to interface these codes with each other and
with any other code that supports the WCxf standard.

In order to achieve a reasonably fast evaluation of the likeli-
hood function in smelli, two simplifying approximations
are used to deal with nuisance parameters �θ that enter the
theory predictions Oth(C, θ):

• For observables with negligible theoretical uncertainties
compared to the experimental uncertainties, each like-
lihood Li

exp from a given experimental measurement is
evaluated with nuisance parameters fixed to their central
values �θ0,

Li
exp (Oth(C, θ0)). (3.4)

• For observables with significant theoretical uncertain-
ties,19 both the theoretical and experimental uncertainties
are approximated as multivariate Gaussian and a com-
bined likelihood is constructed for all correlated observ-
ables. The experimental covariance matrix �exp and the
central experimental values �Oexp are extracted from the
original experimental likelihoods. The theoretical covari-
ance matrix �th is obtained by sampling the nuisance

19 All theoretical uncertainties under consideration are parametric
uncertainties that are due to the uncertainties of the nuisance param-
eters �θ .

parameters �θ from their respective likelihood distribu-
tions, while their central values �θ0 are used for the theo-
retical predictions Oth(C, θ0). Both covariance matrices
enter the combined likelihood L̃exp defined by

− 2 ln L̃exp (Oth(C, θ0)) = DT (�exp +�th)
−1D ,

D = Oth(C, θ0)− Oexp . (3.5)

The global likelihood is then constructed by combining the
individual approximated likelihood functions,

LSMEFT (C) ≈ L̃exp (Oth(C, θ0))×
∏

i

Li
exp (Oth(C, θ0)) .

(3.6)

The smelli Python package that provides this global like-
lihood function is available in the Python package manager
pip and can be installed using

python3 -m pip install smelli --user

which will download smelli with all dependencies from
the Python package archive (PyPI) and install it in the user’s
home directory. The source code of the package and more
information about using it can be found in

• thesmelliGitHub repository https://github.com/smelli/
smelli,

• thesmelliAPI documentation https://smelli.github.io/
smelli,

• the introductory tutorial in Ref. [229].

3.1.2 Status and prospects of smelli

The smelli project is under active development and has
been extended several times in recent years, in particular also
since the SMEFT-Tools 2019 workshop [1] where smelli
v1.3 was presented.

The first version of smelli focused on flavour and
electroweak precision observables. These included flavour-
changing neutral and charged current B and K decays,
meson-antimeson mixing observables in the B, K and D
systems, charged-lepton flavour violating B, K , τ , μ and Z
decays, as well as Z and W electroweak precision observ-
ables and the anomalous magnetic moments of the charged
leptons.

In the context of Ref. [230], smelli has been extended
to Higgs physics, and the signal strengths of various decay
(h → γ γ , Zγ , Z Z , W W , bb, cc, ττ , μμ) and production
channels (gg, VBF, Zh, W h, t t̄h) have been implemented.

With smelli v2.0 more new observables and features
have been introduced. Beta decays were implemented fol-
lowing Ref. [231], adding the lifetimes and correlation coeffi-
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cients of neutron beta decay as well as super-allowed nuclear
beta decays. Furthermore, additional K decays and the total
and differential cross sections for e+e− → W +W − pair pro-
duction, as measured at LEP-2, have been added. Apart from
new observables and some minor innovations, one of the most
important new features of smelli v2.0 is a proper treat-
ment of the Cabibbo–Kobayashi–Maskawa (CKM) matrix
in SMEFT. Inspired by Ref. [232], smelli uses a CKM
input scheme that takes four observables as proxies for the
four CKM parameters. The default CKM input scheme uses
RKπ = �(K + → μ+ν)/�(π+ → μ+ν) (mostly fixing
Vus), B R(B+ → τν) (fixing Vub), B R(B → Xceν) (fixing
Vcb), and�Md/�Ms (mostly fixing the CKM phase δ). The
CKM elements are then expressed in terms of the four CKM
input observables and the SMEFT WCs that enter the predic-
tions of these observables. This removes a major limitation
of smelli and allows semi-leptonic charged current meson
decays to be included in the likelihood.

Since smelli v2.0 there have been several new devel-
opments that will be incorporated in future versions of
smelli. A new numerical method has been developed in the
context of Ref. [233], which allows a numerically efficient
implementation of the NP-dependence of the theory covari-
ance matrix. This will remove another major limitation of
smelli and will enable the inclusion of observables whose
theoretical uncertainties have a strong NP dependence, as e.g.
the neutron Electric Dipole Moment (EDM). In addition, the
new method of Ref. [233] increases the computational speed
by orders of magnitude, resulting in a significantly shorter
evaluation time of the global likelihood function and allowing
for much more comprehensive analyses. These new features
have already been successfully applied in Ref. [234], where
a global likelihood was constructed that includes neutral and
charged current Drell–Yan tails, which will be implemented
in a future version of smelli.

3.2 HighPT: A tool for Drell-Yan tails beyond the
Standard Model

HighPT
Lukas Allwicher

High-pT tails in Drell-Yan processes can provide useful
complementary information to low-energy and electroweak
observables when investigating the flavor structure beyond
the SM. The Mathematica package HighPT allows to
compute Drell-Yan cross sections for dilepton and monolep-
ton final states at the LHC. The observables can be com-
puted at tree-level in the SMEFT, including the relevant
operators up to dimension-eight, with a consistent expansion

up to O(	−4). Furthermore, hypothetical TeV-scale bosonic
mediators can be included at tree level in the computation of
the cross-sections, thus allowing to account for their propaga-
tion effects. Using the Run-2 searches by ATLAS and CMS,
the LHC likelihood for all possible leptonic final states can be
constructed within the package, which therefore provides a
simple framework for high-pT Drell-Yan analyses. We illus-
trate the main features of HighPT with a simple example.

Semi-leptonic interactions have received a lot of attention
in the literature in recent years, driven mainly by interesting
data in B meson decays. In this context, it has been stressed
several times that not only low-energy observables can con-
tribute to constrain the new physics scenarios, but high-pT

observables, especially Drell-Yan tails, can give comple-
mentary and independent information and, sometimes even
more stringent bounds [235–239]. A comprehensive analy-
sis of these effects has been implemented for the first time in
HighPT [240,241], a Mathematica package that allows
to compute hadronic cross-sections, event yields and the like-
lihoods from different LHC searches involving leptonic final
states. The aim is to provide an easy-to-use integrated frame-
work to directly obtain a likelihood, in order to easily extract
bounds on new physics parameters (both WCs in the SMEFT
and couplings of TeV-scale mediators), to be then juxtaposed
with low-energy experiments.

3.2.1 Drell-Yan cross-section

The most general Drell-Yan process can be written, at parton
level, as the scattering

q̄i q
′
j → �α�̄

′
β , (3.7)

where i, j (α, β) are quark (lepton) flavour indices, and q, q ′
indicate either up- or down-type quarks, while �, �′ generi-
cally stand for either a charged lepton or a neutrino. 20 The
amplitude can be expressed in terms of form factors as

A(q̄i q
′
j → �α�̄

′
β)

= 1

v2

∑

XY

{ (
�̄αγ

μ
PX�

′
β

) (
q̄iγμPY q ′

j

)
[F XY, qq ′

V (ŝ, t̂)]αβi j

+
(
�̄αPX�

′
β

) (
q̄i PY q ′

j

)
[F XY, qq ′

S (ŝ, t̂)]αβi j

+
(
�̄ασμνPX�

′
β

) (
q̄iσ

μν
PY q ′

j

)
δXY [F XY, qq ′

T (ŝ, t̂)]αβi j

+
(
�̄αγμPX�

′
β

) (
q̄iσ

μν
PY q ′

j

) ikν
v

[F XY, qq ′
Dq

(ŝ, t̂)]αβi j

+
(
�̄ασ

μν
PX�

′
β

) (
q̄iγμPY q ′

j

) ikν
v

[F XY, qq ′
D�

(ŝ, t̂)]αβi j

}
,

(3.8)

20 However, we do not consider for the moment the process pp → νν̄.
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which captures all possible SU (3)c × U (1)em and Lorentz-
invariant structures. The sum over X,Y = L , R extends over
left- and right-handed chiralities, and we have defined the
Mandelstam variables ŝ = k2 = (p� + p�′)2, and t̂ = (p� −
pq ′)2. The form factors FI can be decomposed as

FI (ŝ, t̂) = FI,Reg(ŝ, t̂)+ FI,Poles(ŝ, t̂) , (3.9)

where

FI,Reg(ŝ, t̂) =
∞∑

n,m=0

FI (n,m)

(
ŝ

v2

)n ( t̂

v2

)m

, (3.10)

is an analytic function in ŝ and t̂ , describing local interactions
(i.e. effective operators of d ≥ 6), while FI,Poles captures the
effect of simple poles in the s, t or u channel, due to some
TeV-scale mediator. The differential cross-section at parton
level then is

dσ̂

dt̂
(q̄i q

′
j → �α�′β) = 1

48π v4

∑

XY

∑

I J

M XY
I J (ŝ, t̂)

×
[
F XY, qq ′

I (ŝ, t̂)
]

αβi j

[
F XY, qq ′

J (ŝ, t̂)
]∗
αβi j

,

(3.11)

where M XY
I J decribes the interference between different form

factors. This cross-section needs to be convoluted with the
parton luminosity functions and integrated over the appropri-
ate region in order to match the experimental searches (see
[241] for further details).

3.2.2 Drell-Yan in the SMEFT

When working in the context of the SMEFT, the WCs can
be mapped to the form factor description of the scattering
process by suitable matching conditions [241]. Writing the
SMEFT Lagrangian as

LSMEFT = LSM +
∑

d,k

C(d)k

	d−4 O(d)k

+
∑

d,k

[ C̃(d)k

	d−4 Õ(d)k + h.c.

]
, (3.12)

the cross-section, up toO(	−4), can be schematically written
as

σ̂ ∼
∫

[d�]
{
|ASM|2 + v2

	2

∑

i

2 Re
(
A(6)i A∗

SM

)
(3.13)

+ v4

	4

[∑

i j

2 Re(A(6)i A(6) ∗j )

+
∑

i

2 Re
(
A(8)i A∗

SM

)]
+ . . .

}
(3.14)

whereA(6)i (A(8)i ) indicates the contribution from dimension-
six (dimension-eight) operators. The classes of operators
contributing to Drell-Yan up to this order are summarized
in Table 6.

3.2.3 Collider limits

In order to compare the theory prediction for the cross-section
with the searches performed by the experimental collabora-
tions, detector effects, such as limited resolution or accep-
tance, must be taken into account. For binned distributions,
this is done by introducing a response matrix K , such that

σq(xobs) =
M∑

p=1

K pqσp(x) , (3.15)

where x indicates a generic particle-level observable, divided
into M bins, and xobs is the experiment-level observable. σq

here indicates the cross-section for bin q. The matrix K needs
to be extracted from Monte Carlo simulation for each inde-
pendent combination of form factors. With all the elements
described so far, one can define a χ2 likelihood as

χ2(θ) =
∑

A∈A

(
NA(θ)+ N b

A − N obs
A

�A

)2

, (3.16)

where N b
A is the number of background events and N obs

A the
number of observed events in bin A, both provided by the
experimental collaborations. The uncertainty�A is obtained
by adding in quadrature the background and observed uncer-
tainties, �2

A = (δN b
A)

2 + N obs
A , where the last term cor-

responds to the Poissonian uncertainty of the data. NA(θ),
on the other hand, is the predicted number of events in bin
A, depending on the new physics parameters θ . HighPT
includes recasts from ATLAS and CMS searches for all pos-
sible dilepton (ee, μμ, ττ , eμ, eτ , μτ ) and monolepton (eν,
μν, τν) final states [240], such that a likelihood, written as
a polynomial in the WCs, can be obtained for each of them.

3.2.4 Using HighPT: an example

In order to briefly illustrate the main features of HighPT, we
show here an explicit example. For a detailed review of all
the functionalities see [240]. The main routine of the pack-
age is the function ChiSquareLHC, yielding the χ2 like-
lihood as a list, with each element corresponding to a bin
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Table 6 Classes of SMEFT operators relevant to the high-pT observ-
ables and corresponding energy scaling of the amplitude. The param-
eter counting takes into account all structures entering the Drell-Yan

cross-section up to O(1/	4). The operator bases for dimension-six and
dimension-eight operators are taken from [4] and [87], respectively

Dimension d = 6 d = 8
Operator classes ψ4 ψ2 H2 D ψ2 X H ψ4 D2 ψ4 H2 ψ2 H4 D ψ2 H2 D3

Amplitude scaling E2/	2 v2/	2 vE/	2 E4/	4 v2 E2/	4 v4/	4 v2 E2/	4

Parameters # R 456 45 48 168 171 44 52

# I 399 25 48 54 63 12 12

e.g. in m2
��.

21 Consider the dimuon search by CMS [242]

and the dimension-six coefficients [C(1)lq ]2211, [C(1)lq ]2222, as
in [4]. The likelihood can be extracted as

In[24]:= LμμBinned = ChiSquareLHC["di-muon-
CMS",

Coefficients->{WC["lq1",{2,2,1,1
}], WC["lq1",{2,2,2,2}]}];
Lμμ = Total[LμμBinned];

which computes the χ2 keeping only the specified operators,
and to O(	−4). The default setting is 	 = 1 TeV, but this
can be changed at any time, together with the order of the
EFT truncation [240]. Within the same framework, one can
compute the projected likelihood for the HL-LHC by

In[25]:= Lμμ3000 = Total[ChiSquareLHC["di
-muon-CMS",

Coefficients-> {WC["lq1",{2,2,1,1
}],WC["lq1",{2,2,2,2}]},

Luminosity->3000, RescaleError->
True]];

In[26]:= Lμμ3000Const = Total[ChiSquareLHC
["di-muon-CMS",

Coefficients-> {WC["lq1",
{2,2,1,1}],WC["lq1",{2,2,2,2}]},

Luminosity->3000, RescaleError->
False]];

where the first option corresponds to a rescaling of the back-
ground uncertainty by�N b

A → (Lprojected/Lcurrent)
1/2�N b

A =√
3000/140�N b

A, while the second is the likelihood com-
puted assuming that the ratio of background error over back-
ground is constant, i.e.�N b

A/N b
A = const. Minimizing these

likelihoods, one can plot for example the 95% C.L. contours
as in Fig. 6.

21 The default binning is chosen such that each bin contains at least 10
events [240].

Fig. 6 95% CL regions for a fit of the given WCs to the dimuon search
[242]. The blue region corresponds to the current constraints, whereas
the orange and green regions correspond to projections for HL-LHC

3.2.5 Summary and outlook

We have introduced HighPT, a Mathematica package
designed to translate the data from Drell-Yan searches at the
LHC into a likelihood function in terms of WCs. It is worth
stressing that, despite the focus in this brief overview has been
on the SMEFT, HighPT currently includes also a set of lep-
toquark mediators, allowing to include possible propagation
effects of such new states in the computation of the cross-
section [240]. We have shown in a short example how the χ2

can be computed, including also an option for HL-LHC pro-
jections. Future directions of development for the package
include the implementation of electroweak and low-energy
observables, in order to be able to get a global likelihood for
combined analyses in a unified framework. Another possi-
ble extension is the inclusion of more high-pT observables
related to semi-leptonic interactions, such as processes with
a jet in the final state, and the inclusion of processes mediated
by four-quark operators.
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3.3 EOS: Flavor Phenomenology with the EOS Software

Méril Reboud

Recent studies in flavor physics have revealed a con-
sistent numerical pattern where large amounts of experi-
mental data are analyzed to infer theory parameters of and
BSM. Constraining the WCs of effective field theories have
been proven particularly useful as they provide a model-
independent framework to study scenarios BSM. In this con-
text, performing the flavor analyses in a separated software
and exporting the resulting constraints in terms of likelihoods
in the WCs space is crucial for model building.

EOS [243,244] is such a software.22 It is an open source
flavor software dedicated to the calculation of observables
and the inference of theory parameters from an extendable
list of models and constraints. It is particularly suited to the
extraction of constraints on the parameters of effective field
theories in the context of global analysis. It is written for
three main use cases:

• the numerical prediction of experimental observables
with a wide range of theoretical and statistical techniques;

• the inference of theory parameters from an extensible
database of experimental and theoretical likelihoods;

• and the production of Monte Carlo samples that can e.g.
be used to study the experimental sensitivity to a specific
observable.

EOS is written in C++ but offers a rich Python interface
meant to be used e.g. within a Jupyter notebook.

3.3.1 Installation and documentation

EOS can be installed using Python package installer:

python3 -m pip install --user eoshep

and the Python module can be accessed using

import eos

EOS documentation [245,246] contains further installation
instructions, basic tutorials, as well as detailed examples for
advanced usage.

22 EOS developers welcome new contributors, feedback, questions and
wishes on https://github.com/eos/eos.

3.3.2 How to derive flavor constraints in the SMEFT

The two main objects in EOS are Observable and
Analysis. The former allows to compute any build-
in (pseudo-)observable by specifying a set of parameters,
options and kinematics. EOS pre-built observables are clas-
sified by their QualifiedNames and can be listed using
the Observables command. An updated list can also be
found together with the documentation. Experimental mea-
surements and theory constraints are expressed in terms of
likelihoods with the Constraint class.

The Analysis class allows to evaluate a set of con-
straints within ranges of parameters provided by the user.
Once the analysis object is defined, it can be optimized to
identify the best-fit point(s) and it accepts sampling routines.

A SMEFT analysis therefore consists of the following
steps:

1. List the experimental and theory constraints relevant
for the analysis. New constraints can be added using
manual_constraints.

2. List the relevant nuisance parameters. The parameters
of interest are the WCs of the effective theory relevant
to the observables (e.g. ''ubmunumu::Re{cVL}''for a
study of B → πμνμ). The matching from the low-energy
effective theory to the SMEFT is performed at a later
stage.

3. Create anAnalysisobject, specifyingmodel: LEFT
as a global option. This analysis can be optimized to find
the best-fit point and the corresponding goodness-of-fit
information.

4. Create posterior-predictive samples of the analysis, using
one of the sampling routines: sample_mcmc,
sample_pmcorsample_nested (EOS> v1.0.5).

5. After marginalizing over the nuisance parameters, the
samples can be exported to any matching software (e.g.
wilson [108]) and converted to SMEFT parameters
using the EOS basis of the WCxf format [247].

Alternatively, WCs can be imported fromwilsondirectly
into a Parameters object using the FromWCxf routine.

3.3.3 EOS vs. other flavor software

EOS is developed since 2011 [243] and was used in many phe-
nomenological studies (see e.g. [248–254] for the most recent
ones). It is however not the only openly available flavour
software and competes, among others, with flavio [217],
SuperIso [218,219],HEPfit [255] and FlavBit [220].
The unique features of EOS are described below.

• EOS is particularly suited to study and compare different
models of hadronic matrix elements (theory calculations,
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parameterizations...). It thus implements the possibility
to select from various hadronic models at run time. As far
as theory calculations are concerned,EOS implements all
the necessary tools for the evaluation of these elements
using QCD sum rules.

• The careful implementation of hadronic matrix elements
makes it the primary tool to a simultaneous inference of
hadronic and new physics parameters. The underlying
correlations are of primary importance when combining
many experimental results.

• EOS also offers the possibility of producing pseudo-
events from an extensible set of PDFs. These events can
then be used, e.g. for sensitivity studies and in preparation
for experimental measurements.

3.3.4 Recent and future developments

EOS development is done via its GitHub page, where the
issue tracker allows the user to ask for new features, observ-
ables or constraints. The long-term plans are also discussed
via the discussion panel.

In parallel to the implementations of new observables,
parameterizations and recent experimental results, a consid-
erable work has been done on the improvement of statistical
tools. This development was performed in preparation to new
phenomenology analyses which now usually reach O(100)
nuisance parameters. Such large numbers make the approach
based on basic Monte-Carlo techniques inefficient if not
impossible. EOS now offers an interface to the dynesty
[256,257] package to make full use of nested sampling algo-
rithm.

In the long-term, EOS will contain “pre-packaged” low-
energy analyses. The idea is to simplify the use of low-energy
constraints in the conception of new physics models. In par-
ticular, following the steps described above can be particu-
larly time- and CPU-demanding when the number of nui-
sance parameters is large. This is typically the case in flavor
physics due to involved parameterizations of the hadronic
form factors. For example, the extraction of the WCs of
the b → sμμ weak effective theory using B → Kμμ,
B → K ∗μμ and Bs → φμμ requires at least 130 param-
eters for a consistent description of the hadronic transitions
[253]. Provided that these nuisance parameters are uncorre-
lated to the other parameters entering a global SMEFT anal-
ysis, repeating this analysis in its entirety would be pointless
and computationally challenging.

We therefore propose to simplify the publication of likeli-
hoods containing only the parameters of interests (the WCs
in this case). The posterior densities can be fitted with a Gaus-
sian Mixture Model and used in EOS or other flavor software.

3.4 HEPfit: effective field theory analyses with HEPfit

Jorge de Blas,
Angelica Goncalves,
Víctor Miralles,
Laura Reina, and
Luca Silvestrini

HEPfit is a tool developed to facilitate the combina-
tion of all different types of available constraints that can
be used to learn from the parameter space of the SM or any
new physics model. In the case of new physics, these con-
straints include experimental searches looking for the direct
production of new particles, i.e. direct searches, or to find
deviations from SM predictions in measurements of SM pro-
cesses, i.e. indirect searches. The code has great flexibility in
the form in which experimental likelihoods for these searches
can be implemented, allowing e.g. correlations, binned mea-
surements or non-Gaussian likelihoods. Theory constraints
such as, e.g. unitarity, and theory uncertainties (including
correlations) can also be taken into account in the analysis
of a desired model.

The above-mentioned types of information can be com-
bined and used to sample the model parameter space via
the built-in Bayesian Markov Chain Monte Carlo (MCMC)
engine, which uses the Bayesian Analysis Toolkit (BAT)
library [258]. This enables the possibility of doing Bayesian
statistical inference of the model parameters. This Bayesian
analysis framework is parallelized with MPI so it can be
run in clusters and CPUs capable of multi-thread computing.
Alternatively, HEPfit can also be used in library mode to
compute predictions for observables. These can then be used
to perform inference in any other statistical framework. To
use HEPfit’s Bayesian framework, the user only needs to
provide the priors for the different model input parameters,
those observables to be included in the likelihood calcula-
tion and the settings of the MCMC. Examples can be found
in Section 7 of Ref. [255].

Another important feature of HEPfit is that, aside from
the observables and models currently implemented in the
code, the latter including the SM and several new physics
scenarios, the user can implement their own custom observ-
ables and/or models as external modules.

On the technical side, HEPfit is developed in C++ and
it requires a series of mandatory dependencies such as the
GNU Scientific Library, the BOOST libraries, and ROOT. To
use theHEPfitMCMC engineBAT is also required. Finally,
to enable the parallel use of HEPfit one needs OpenMPI.
See the Installation section in [255] for more details.

Aside from the SM, the current version of HEPfit
already includes several BSM models, such as Two-Higgs
doublet models [259], as well as several model-independent
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frameworks for the phenomenological description of new
physics effects using EFTs. The implementation of these EFT
is briefly described in the next section, following the status of
the most up-to-date (developer’s) version of the code, which
can be found in the Downloads area of https://hepfit.roma1.
infn.it. These features are expected to appear in the next pub-
lic release of HEPfit.

3.4.1 Effective field theory implementation in HEPfit

Assuming that BSM physics is characterized by a mass scale
	 and that for energies E � 	 the particle spectrum and
symmetries of nature are those of the SM, two types of EFT
can be used to describe the physics at such energies: the
SMEFT (see e.g. Ref. [260]), where the Higgs-like boson
is embedded in a SU (2)L doublet as in the SM; and the
HEFT, where the Higgs boson is described by a singlet scalar
state, i.e. not belonging to an SU (2)L doublet. Most of the
current development in HEPfit is focused on the SMEFT,
whose power counting follows an expansion in operators of
increasing canonical mass dimension, and thus BSM effects
are suppressed by correspondingly larger powers of the EFT
cut-off scale 	. Hence, the effective Lagrangian expansion
takes the following form,

Leff = LSM + 1

	
L5 + 1

	2 L6 + . . . , Ld =
∑

i

C (d)i O(d)i ,

(3.17)

where O(d)i are operators of mass dimension d and C (d)i
the corresponding WCs. The first term, L5, only contains
the lepton-number-violating Weinberg operator. In a lepton-
number preserving theory the leading order (LO) new physics
effects are therefore given by the dimension-six operators in
L6 and these are the effects implemented in HEPfit.

In the current implementation of SMEFT effects in
HEPfit, which can be found in the so-called NPSMEFTd6
model class, new physics contributions from dimension-six
operators are considered for several types of observables:

• Electroweak precision measurement (Z -pole observables
at LEP/SLD and measurements of the W mass and decay
widths). These are implemented to the state-of-the-art
precision in the SM and to LO in the SMEFT [261,262].

• Diboson production at LEP2 [263] and the LHC [264].
• LHC Higgs measurements, including the signal strengths

for the different production and decay modes, as well as
the Simplified Template Cross Section bin parameteriza-
tion from [265]. A comprehensive set of Higgs observ-
ables at future e+e− or μ+μ− colliders at different ener-
gies, with or without polarization, is also available in the
code, for future collider studies [266–268].

The current version of the code allows the use of either the
{MZ , α,G F } or the {MZ ,MW ,G F } schemes for the SM
electroweak input parameters for most of these observables.

A comprehensive set of top-quark observables at the LHC
is also available inHEPfit, via theNPSMEFT6dtopquark
model class used in [269]. These include differential cross
section measurements of t t̄ Z and t t̄γ processes and inclu-
sive cross sections for t t̄W , t t̄ H and single top processes.
(See Fig. 7 right.) These top-quark observables are also
being implemented as part of the main NPSMEFTd6 class
for global analyses.

For the above-mentioned set of observables, new physics
corrections are currently implemented at the linear level in
1/	2,

O = OSM +
∑

i

Fi
Ci

	2 . (3.18)

The coefficients Fi parametrizing the dependence on the
WCs Ci are computed at leading order, either analytically,
as in the case of the electroweak precision measurements or,
for LHC Higgs and top-quark observables, numerically, by
fitting Eq. (3.18) to the results of MadGraph5_aMC@NLO
[111] simulations using our own UFO implementation of the
SMEFT or any of the models available in the literature, e.g.
SMEFTsim [223] or SMEFT@NLO [270]. Our expressions
are given in the so-called Warsaw basis [4], but we give the
possibility of choosing as model parameters some operators
in other bases, in which case the corresponding expressions
are obtained via the SM equations of motion. Different fla-
vor assumptions can be chosen for fermionic operators, not
restricted to flavor universality.

Flavor physics is another sector that has been the focus
of attention during the development of HEPfit [271–275],
with multiple�F = 2 and�F = 1 observables included in
the code. As in the case of the electroweak precision measure-
ments the SM prediction has been implemented including
all available corrections. New physics corrections are imple-
mented as a function of the WCs of the LEFT, and the full
matching with the SMEFT is currently work in progress (so
far it is only implemented for interactions relevant for the
analysis of B anomalies [274,275]). Combined analyses of
flavor physics with electroweak precision observables can be
found in, e.g. [272,276], see Fig. 8.

As mentioned above, most of the SMEFT effects imple-
mented in HEPfit are currently available at leading order
and at O(1/	2). Part of the work to extend such calcula-
tions include the implementation of O(1/	4) effects, see
e.g. [277], and the full renormalization group running [8–
10] via the integration of RGESolver [109] in HEPfit.
The remaining contributions needed to obtain the full next-
to-leading order (NLO) calculation of given observables
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Fig. 7 (Left) Constraints on SMEFT modifications of electroweak, Higgs and anomalous triple gauge couplings at future circular e+e− colliders.
From Ref. [267]. (Right) Constraints from different top processes on Top dipole operators. From Ref. [269]

Fig. 8 Results from a combined fit to electroweak precision data and flavor observables. From Ref. [276]

are becoming increasingly available in the literature (e.g.
[278,279]) and will be gradually implemented.

Finally, aside from the SMEFT implementation, a model
describing the HEFT corrections to single Higgs processes
is also available in HEPfit. These corrections include the
effects from the leading order HEFT Lagrangian, using a
power counting in terms of chiral dimensions [280]. These
include all operators of chiral dimension two, but we also
include several operators of chiral dimension four, to param-
eterize local contributions from new particle loops in H →

gg, γ γ and Zγ . The results from a global analysis using
LHC run 1 and 2 Higgs data in this HEFT formalism can be
found in Ref. [281].

3.5 SmeftFR v3: a tool for creating and handling vertices
in SMEFT

Athanasios Dedes, Janusz Rosiek and Michal Ryczkowski
The abundance of parameters and interaction vertices in

SMEFT requires automation. The scope of the SmeftFR v3
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code [282] is to derive the Feynman rules for interaction
vertices from dimension-5, and -6, and, so far, all bosonic
dimension-8 operators which can easily be imported into
other codes, such as FeynArts [190] and MadGraph5
[111], for further symbolic or numeric calculations of matrix
elements and cross-sections.

SmeftFR starts from the most commonly used dimension-
5,6 “Warsaw” basis [4] and dimension-8 basis of Ref. [87]
of operators in the unbroken phase, and, following the steps
of ref. [283] generates all relevant Feynman rules in the
physical mass basis quantized in Unitary or Rξ -gauges. It
is written in Mathematica language and uses the package
FeynRules [155]. The code SmeftFR is an open access,
publicly available code and can be downloaded from www.
fuw.edu.pl/smeft.

There are several advances in SmeftFR v3 [282] com-
pared to its predecessor SmeftFR v2 [284]. Apart from gen-
eral optimizing and speeding up the code, SmeftFR v3 can
calculate vertices consistently up to the order 1/	4 in the
EFT expansion, including terms quadratic in dim-6 WCs and
linear in bosonic dim-8 WCs. What is particularly important
is thatSmeftFR v3 is able to express the SMEFT interaction
vertices directly in terms of the chosen set of observable input
parameters, avoiding the need of reparametrizations of tran-
sition amplitudes calculated in terms of SM gauge and Higgs
couplings. For convenience,SmeftFR v3 is augmented with
two predefined23 input parameter schemes in the electroweak
sector including corrections of order O(1/	4):

• The GF-scheme with input parameters (G F ,MZ ,MW ,

MH ),
• The AEM-scheme with input parameters (αem,MZ ,MW ,

MH ).24

Moreover, SmeftFR v3 employs the flavour input scheme
of ref. [232] which inserts the SMEFT corrected CKM
matrix elements starting directly from flavour observable
processes.25

SmeftFR v3 by an example

All details about physics and usage of SmeftFR v3 are pre-
sented in [282]. To get the essence of what SmeftFR can

23 In fact, also user-defined input schemes can straightforwardly be
implemented in SmeftFR v3.
24 A more customary choice for the AEM-scheme would be the
(αem ,G F ,MZ ,MH )-scheme, which can also be added in SmeftFR.
We must note, however, that the choice of this scheme leads to technical
complications, such as having WC-dependent mass in the denomina-
tor of the W -boson propagator, which makes consistent expansion to a
given EFT order much more involved.
25 The CKM corrections are limited to O(1/	2), but this should suffice
for most applications in flavour physics.

do in practice, it is better to study a step-by-step exam-
ple for a given set of dim-6 and dim-8, CP-even, oper-
ators. The processes we have in mind are vector-boson
scattering at the LHC. The subsequent steps follow the
Mathematica notebook file given in the SmeftFR distribu-
tion,SmeftFR-init.nb. After loading FeynRules and
SmeftFR codes, we need first to set the operator’s set (in
gauge basis). For the processes we have in mind, we set:

In[27]:= List6={"phi","phiBox","phiD","phiW",
"phiWB","phiB","W"};

List8={"phi8","phi6Box","phi6D2",
"phi4n1","phi4n2","phi4n3"};

The naming of operators is given in App. B of Ref. [282],
e.g. Qϕ� → “phiBox '', Q(1)

ϕ4 D4 → “phi4n1 '', etc. The
next step is to initialize the SMEFT Lagrangian with a chosen
set of available options:

In[28]:= SMEFTInitializeModel[Operators→→→
OpList, Gauge→→→Rxi,

ExpansionOrder→→→2, WCXFInit
File→→→WCXFInput,

InputScheme→→→"GF", CKMInput→→→
"no",

RealParameters→→→True,
MaxParticles→→→4];

Here we choose to generate vertices in the Rξ -gauges
up to the EFT expansion order of 1/	4 and with maxi-
mal 4 external legs (this option does not affect the UFO
and FeynArts file generation where there is no such restric-
tion). We have also chosen to use the G F -input parameter
scheme, and no SMEFT corrections to the CKM matrix.
Moreover, we use real numerical parameter values for WCs
(as required by MadGraph5) taken from the file named,
WCxfInput. The next step is to load the parameters’ model-
file and calculate the Lagrangian in the gauge basis, find
field-bilinears and diagonalize mass matrices to maximal
order 1/	4, and finally, find the SMEFT Lagrangian in the
mass basis and generate the Feynman rules, at this stage
keeping the field redefinitions necessary to canonicalize the
Lagrangian as symbols, without expanding them in 1/	pow-
ers. Up to now, the program takes ∼ 7 mins on a typical
laptop.26 The obtained vertices in this form are stored in
''/output/smeft_feynman_rules.m''file.

Now we are ready to expand the field-redefinition param-
eters and read the full vertices in user’s G F -scheme, previ-
ously adopted. We use the FeynRules command to select
the hγ γ -vertex and obtain:

26 Running times throughout are referring to a
i7,2.8GHz,16GB-RAM computer with Linux Ubuntu 22.04.
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In[29]:= SMEFTExpandVertices[Input→→→"user",
ExpOrder→→→2];

SelectVertices[GaugeHiggsVerticesExp,
SelectParticles→→→{H,A,A}]

Out[29]= {{{A,1},{A,2},{H,3}},
( 1

	2

)2

i

23/4 G3/2F M2Z (M2W-M
2
Z)(

-CφD CφW M4W -8 (CφW)
2

M4W

+4 (CφWB)
2

M4W +16 (CφW)
2

M2W M2Z

-4 (CφWB)
2

M2W M2Z +CφD CφW M4Z
-8 (CφW)

2
M4Z

-CφD CφWB M3W

√
-M2W+M

2
Z -12 CφW CφWB

M3W

√
-M2W+ M2Z

+12 CφW CφWB MW M2Z

√
-M2W+M

2
Z

+8 (CφB)
2

(M4W-M
2
W M2Z)

+CφB MW (M2W-M
2
Z) (4 CφBox MW+C

φD MW

-4 CφWB
√
-M2W+M

2
Z)

-4 CφBox (M2W-M
2
Z) (CφW M2W-C

φW M2Z

+CφWB MW

√
-M2W+M

2
Z)

)

*(p
μ2
1 p

μ1
2 -ημ1,μ2 p1.p2)

+
1

	2

2 i 23/4√
GF M2Z

(
CφB M2W-C

φWB MW

√
-M2W+M

2
Z

+CφW (-M2W+M
2
Z)
)

*(p
μ2
1 p

μ1
2 -ημ1,μ2 p1.p2)}

As expected from gauge invariance, the resulting vertex
is proportional entirely to the Lorentz factor (pμ2

1 pμ1
2 −

gμ1μ2 p1 · p2). In this vertex, there are terms linear in dim-6
WCs plus quadratic terms of the form (dim-6)2. Although,
the chosen set of WCs associated to dim-8 operators does not
appear in Hγ γ -vertex, in the following example they do:

In[30]:= SMEFTExpandVertices[Input→→→"user",
ExpOrder→→→2];

SelectVertices[GaugeSelfVerticesExp,
SelectParticles→→→{Z,Z,Z,Z}]

Out[30]= {{{Z,1},{Z,2},{Z,3},{Z,4}},

2 i (Cφ4n1+Cφ4n2+Cφ4n3)
( 1

	2

)2
M4Z

*(ημ1,μ4 ημ2,μ3
+ημ1,μ3 ημ2,μ4

+ημ1,μ2
ημ3,μ4

)}

The quartic Z -vertex is generated for the first time at dim-8
level from the chosen operators Q(1),(2),(3)

φ4 D4 ! The user could
enjoy investigating further new vertices that did not appear up
to dim-6 level. Finally, we note here that analogous vertices
can be extracted at this stage in standard SM parametriza-
tion ((ḡ, ḡ′, v)-scheme) or even in the unexpanded-field-
redefinition version of this scheme.

If we now want to continue with interfaces to LaTeX,
UFO, FeynArts and WCxf formats we have to Quit[]

Mathematica kernel and open the notebook SmeftFR_
interfaces.nb located in the home-directory of the
SmeftFR distribution. We again have to load FeynRules
and SmeftFR engines and reload the mass basis Lagrangian
by typing:

In[31]:= SMEFTInitializeMB[Expansion→→→"user",

Include4Fermion→→→True];

where the “user''-input scheme from the previous session
is used (i.e. the G F -scheme), expansion is up to 1/	4, etc.
(we do not include 4-fermion operators, so this option is
irrelevant for the chosen set of operators in this example).
The whole SMEFT Lagrangian in the mass basis is finally
stored in variable SMEFT$MBLagrangian for further use
by interface routines.

At this point, we can continue by exporting numerical val-
ues of WCs from the FeynRules model-file to a WCxf-file
format. The created file can be used to transfer numerical val-
ues of WCs to other codes that also support WCxf-format. In
addition, as already possible in SmeftFR v2, we can gen-
erate a LaTeX file with vertices and corresponding Feynman
graphs. Since the resulting expressions for (dim-6)2 and dim-
8 contributions are (usually) too long, we have kept in the
LaTeX output only the linear dim-6 terms.

SmeftFR UFO and MadGraph5

SmeftFR v3 provides a new routine for producing UFO
model files that may be useful in running realistic Monte
Carlo simulations and replaces the standardFeynRulesone.
It can assign the correct “interaction orders” for both the SM
couplings and the higher order operators, as required by MC
generators to properly truncate transition amplitude calcula-
tions and reads:

In[32]:= SMEFTToUFO[SMEFT$MBLagrangian,

CorrectIO→→→True];

For details, including several comparisons to other exist-
ing codes such as, SMEFT@NLO [285], Dim6Top [286]
and SMEFTsim [287], the user must consult Ref. [282].
The generation of the UFO model files (especially in the
“user” scheme) is a time-consuming process. For this
particular example, it took about 2 hrs to generate the
''/output/UFO” directory. Moreover, the resulting UFO
model-file may lead to lengthy calculations in MadGraph5
itself. If the goal of the user is to examine the influence of
a single SMEFT operator on the chosen set of processes at
a time, one may either start with the model containing sev-
eral SMEFT operators and manually set only one of them to
be non-zero by using MadGraph5’s, set command (e.g.
set CW 1e-06) or produce separate models, each con-
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taining one of the SMEFT operators and load different mod-
els before each run. Both options lead to the same results, but
the latter one may be especially attractive to users with lim-
ited CPU facilities. Whichever we choose, one must copy the
produced UFO model-directory to the models-directory of
MadGraph5 and then import it with the command import
model UFO. We are now ready to generate matrix elements
and cross-sections with MadGraph5.

For example, the cross-section for vector-boson scattering
at LHC is calculated with: generate p p > w+ w+ j
j QCD=0 (& NP=0 - SM, NP<=1 - O(	−2) and NP<=2 -
O(	−4) order). In order to highlight the significance of the
quadratic (dim-6)2 corrections, we adopt for the input WCs
large values which could arise from a hypothetical strongly
coupled sector. The resulting cross-sections are given in
Table 7, with further definitions in its caption. As we can
see, the quadratic effects for (CW )

2 are by a factor of 4400
bigger than the linear contributions. For the pure scalar opera-
tors, the effects of (dim-6)2 terms depend on the sign of Cϕ�,

while the effect of dim-8 coefficient C (i)
ϕ4 D4 , has an impact of

about 100 in the cross-section. The tendency in the results
for the pure scalar operators, presented in Table 7, follow
the analytic amplitude expression for the W +

L W +
L -scattering

in Eq. (3.19) below. To our knowledge, the effects of these
(dim-6)2 and dim-8 modifications to the cross-section appear
for the first time in the literature.

SmeftFR to FeynArts

SmeftFR can generate a FeynArts output by just using
the native FeynRules command,

In[33]:= WriteFeynArtsOutput[SMEFT
$MBLagrangian,Output→→→

FileNameJoin[{SMEFT$Path,"output",
"FeynArts","FeynArts"}]];

This is also a time-consuming stage (about double the
UFO file generation). The generated file is stored in the
''output/FeynArts''-directory. We can use the files suf-
fixed*.gen,*.mod and*.pars in the patchedFeynArts
program, FormCalc [288] or FeynCalc [289]. As an
example, we create tree-level diagrams for the vector boson
scattering, W +W + → W +W + and isolate the longitudinal
W -bosons, W +

L . We obtain the tree amplitude at high energies
expanded for s � M2

W , with θ being the scattering angle,

MW+
L W+

L →W+
L W+

L
(s, θ)

= −2
√

2G F M2
H

[
1 − M2

Z

M2
H

(
1 − 4

sin2 θ

)]
(SM)

+ (2Cϕ� + CϕD
) s

	2 (dim − 6)

+
[
8Cϕ6� + 2Cϕ6 D2 + 16(Cϕ�)2

+(CϕD)
2 − 8Cϕ� CϕD − 16(C (1)

ϕ4 D4 + 2C (2)
ϕ4 D4

+C (3)
ϕ4 D4)G F M2

W

] √
2

8 G F	2

s

	2 (dim − 6)2

+
[
(3 + cos 2θ)(C (1)

ϕ4 D4 + C (3)
ϕ4 D4)+ 8C (2)

ϕ4 D4

]

× s2

8	4 dim − 8. (3.19)

This result, up to linear dim-6 operators, agrees with Ref.
[290] whereas all other contributions, the quadratic (dim-6)2

and the linear dim-8 effects, are new. The advantage of using
a Rξ -gauge (here Feynman gauge), is that we can confirm this
result by using the Goldstone–Boson equivalence Theorem
comparing Eq. (3.19) with the amplitude for charged Gold-
stone boson scattering, G+G+ → G+G+. Indeed, we find
agreement. This is a serious non-trivial check since the Feyn-
man diagrams involved in W +

L W +
L elastic scattering contain

in addition, the coefficients CW ,CϕW B,CϕB,CϕW in a com-
plicated way, but in the end their contributions cancel out. We
have also verified, that in the ''AEM''input scheme the combi-
nation of WCs appearing in (3.19) are exactly the same and
therefore, numerically, the result is identical. This is another
check towards correctness of SMEFT vertices generated by
SmeftFR v3.

Conclusions

We briefly presented a step-by-step example illustrating
the practical use and capabilities of the recently released
SmeftFR v3 code [282]. SmeftFR brings forward Feyn-
man rules for a desired set of WCs by consistently including
corrections of up-to order O(1/	4) in the EFT expansion.
SmeftFR generates interaction vertices in terms of chosen
physical input parameters. Furthermore, SmeftFR offers
LaTeX output, as well as UFO and FeynArts model-files
useful for numerical and analytical calculations.

In Table 7 and in Eq. (3.19), we show an example in which,
(dim-6)2 and dim-8 operator effects should not be ignored
when mapping experimental data onto their associated WCs.
For such research, SmeftFR v3 is a requisite.

3.6 Application of EFT tools to the study of positivity
bounds

Mikael Chala
Positivity bounds are restrictions on the S-matrix of well-

defined relativistic-quantum theories that follow from local-
ity, unitarity and crossing-symmetry. In order to discuss the
findings from Refs. [104,125], let us first consider any such
theory with a low-energy spectrum coinciding with that of
the SM and with heavy fields of mass ∼ M . Let us focus on
two-to-two Higgs scattering for simplicity, φφ → φφ. In the
forward limit, the corresponding scattering amplitude satis-
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Table 7 Cross-sections (in pb) obtained using MadGraph5 v3.4.1
with UFO models provided by SmeftFR v3 at the orders O(	−2) and
O(	−4) in the EFT expansion for the p p > w+ w+ j j QCD=0
process at the Large Hadron Collider (LHC) with

√
s = 13 TeV and

cuts: �η j j > 2.5, m j j > 500 GeV. Simulations are performed in the

default “G F ” electroweak input scheme with default numerical values
of input parameters. For each run, only one of the WCs has non-zero

value assigned, equal to Ci
	2 = 4π

TeV2 for dim-6 and Ci
	4 = (4π)2

TeV4 for
dim-8 operators

SmeftFR O(	−2) SmeftFR O(	−4)

p p > w+ w+ j j QCD=0

SM 0.12456 ± 0.00029

CW 8.564 ± 0.020 37161 ± 83

+Cϕ� 0.13387 ± 0.00032 0.20981 ± 0.00059

−Cϕ� 0.14670 ± 0.00043 0.12511 ± 0.00035

Cϕ6� – 0.12868 ± 0.00031

C (i)
ϕ4 D4 – 10.891 ± 0.024

fies that A(s) = A(−s) due to crossing-symmetry, and it is
analytic everywhere in the complex plane of the Mandelstam
invariant s up to certain “mild” singularities (definitely not
as severe as delta functions [291]).

In first approximation, the only singularities of A(s) are
single poles at s = ±M2, from where it can be easily proven
that A′′(s = 0) ≥ 0 [292]. But this positivity restriction
is actually much more widely satisfied. For example, let us
assume that the singularities of A(s) are branch-cuts sitting
along the Re(s) axis, with branch points at s ∼ M2. Then,
following Fig. 9, we can compute the quantity

� ≡ 1

2π i

∫

�

ds
A(s)

s3 , (3.20)

which fulfils

� = 1

π i

∫ ∞

M2
ds

1

s3 lim
ε→0

[A(s + iε)− A(s − iε)]

= 1

π i

∫ ∞

M2
ds

1

s3 lim
ε→0

[
A(s + iε)− A(s + iε)∗

]

= 2

π

∫ ∞

M2
ds
σ(s)

s2 ≥ 0, (3.21)

where in the first equality we have used that, by virtue of the
Froissart’s bound [293], the integral over the circular paths
of � vanishes; in the second equality we have relied on the
Schwarz reflection principle A(s∗) = A(s)∗; and in the last
step we have invoked the optical theorem, which relates the
imaginary part of the forward amplitude to the total cross
section σ(s).

Now, by analyticity, and using Cauchy’s theorem, � can
be also computed from the residue of A(s)/s3 in the origin,
which is nothing but the second derivative of the amplitude
itself at s = 0, from where we conclude again that A′′(s =
0) ≥ 0. Similar results can be drawn even in the case in which
the branch cut extends all the way to s = 0 [294].

Fig. 9 Singularities of the amplitude for scalar two-to-two scattering
in the forward limit, and contour of integration used in the derivation
of positivity bounds

Because the amplitude in the vicinity of the origin can
be computed within the EFT, the aforementioned restriction
translates to bounds on the parameters of the EFT. Thus, if
this process occurs already at tree level, then

A(s) = a0 + a2
s2

	4 + a4
s4

	8 + · · · (3.22)

where 	 ∼ M represents the cutoff of the EFT. (Note that
odd terms in s, and in particular the linear one and hence con-
tributions from dimension-six EFT interactions, are absent
due to the invariance of the amplitude under s → −s.) From
this equation and A′′(s = 0) ≥ 0, it can be concluded that
a2 ≥ 0.

If the EFT amplitude vanishes at tree level, then the WCs
ai must be understood as evaluated at a scale μ � 	. For a2

in particular:

a2(μ) ∼ a2(	)+ 1

16π2 (β2 + β ′
2) log

μ

	
, (3.23)
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where β and β ′ are the one-loop beta functions induced
by dimension-eight and pairs of dimension-six operators,
respectively. From this schematic point of view several inter-
esting conclusions can be drawn [104,125]:

1. The matching contribution a2(	) must be always non-
negative at tree level.

2. It must be also non-negative if it does not run at one loop.
3. On the contrary, if it does run, then it can be negative.
4. β2 must be non-positive, because β ′

2 can be neglected in
the limit of vanishing gauge and Yukawa couplings of the
UV.

5. β ′
2 must be non-positive whenever β2 is zero.

3.6.1 Explicit computations using EFT tools

The conclusions 3.6–3.6 can be explicitly checked within
different UV completions of the SM. For concreteness, we
focus mostly on the restrictions ensuing from the processes
ϕiϕ j → ϕiϕ j , with ϕi representing any of the real degrees of
freedom of the Higgs doublet φ. We assume that the Higgs
is massless.

The condition a2 ≥ 0 translates into the bounds c(2)
φ4 D4 ≥

0, c(1)
φ4 D4 + c(2)

φ4 D4 ≥ 0 and c(1)
φ4 D4 + c(2)

φ4 D4 + c(3)
φ4 D4 ≥ 0,

where c(1,2,3)
φ4 D4 are the WCs of the only three φ4 D4 SMEFT

dimension-eight operators in the basis of Ref. [87]:

O(1)
φ4 D4 = (Dμφ

† Dνφ)(D
νφ† Dμφ),

O(2)
φ4 D4 = (Dμφ

† Dνφ)(D
μφ† Dνφ) ,

O(3)
φ4 D4 = (Dμφ

† Dμφ)(Dνφ† Dνφ). (3.24)

The benefit of testing conclusions 3.6–3.6 with explicit com-
putations within concrete UV models is that it strengthens the
confidence on results that might be hard to follow at the pure
abstract level. In turn, a careful validation of these conclu-
sions implies a thorough cross-check of the EFT tools (which
entails performing highly non-trivial computations of match-
ing and running up to dimension eight) against robust results
supported by very fundamental physics principles.

In what follows, we describe the different ways in which
we have tested the conclusions 3.6–3.6 usingmatchmakereft
[48], SuperTracer [117], and MatchingTools [112].

Tree-level matching Let us consider five different single-
field extensions of the SM that induce φ4 D4 operators at tree
level:

S ∼ (1, 1)0 → c(1,2,3)
φ4 D4 ∼ (0, 0, 1) ,

 ∼ (1, 3)0 → c(1,2,3)
φ4 D4 ∼ (2, 0,−1) ,

B ∼ (1, 1)0 → c(1,2,3)
φ4 D4 ∼ (−1, 1, 0) ,

B1 ∼ (1, 1)1 → c(1,2,3)
φ4 D4 ∼ (1, 0,−1) ,

W ∼ (1, 3)0 → c(1,2,3)
φ4 D4 ∼ (1, 1,−2). (3.25)

This should be read as follows:S is a full singlet of SU (3)c ×
SU (2)L with hypercharge Y = 0 (in sub-index), which when
integrated out produces the WCs (in arbitrary units) specified
in the last parenthesis; likewise for the scalar triplet and for
the three vectors. In these and all cases hereafter, the omitted
UV couplings appear squared, so they are always positive.

The WCs above satisfy the positivity relations in a non-
trivial way. For example, in the W case, c(3)

φ4 D4 and c(2)
φ4 D4 +

c(3)
φ4 D4 are negative, but precisely c(2)

φ4 D4 , c(1)
φ4 D4 + c(2)

φ4 D4 and

c(1)
φ4 D4 + c(2)

φ4 D4 + c(3)
φ4 D4 are non-negative.

We have obtained these results with matchmakereft.
Despite being “simply” a tree-level computation, the task
is not as easy as it might seem. Within matchmakereft,
where the matching is performed by computing one-light-
particle irreducible (1PI) Green’s functions off-shell in both
the UV and in the IR, one needs to specify the full set of EFT
operators independent up to field redefinitions, as well as their
reduction to physical ones in on-shell observables. Fortu-
nately, these results, for the bosonic sector of the dimension-
eight SMEFT, can be found in Ref. [88]; see also Ref. [295].
But even implementing this into matchmakereft can be
very cumbersome.

As an alternative cross-check, we have verified the val-
ues of the WCs by using MatchingTools, which per-
forms the matching by solving for the classical equations
of motion. The advantage is that no EFT basis needs to be
provided a priori, but the problem is that the final result
involves operators related by all kind of redundancies (field
redefinitions, integration by parts, different names of same
indices,...). As a matter of example, integrating out W within
MatchingTools gives (suppressing couplings) [88]:

LEFT = (Dμφ
† Dνφ)(D

μφ† Dνφ)

+ · · ·︸︷︷︸
17 terms

− 1

4
(DνDμφ

†φ)(DμDνφ†φ). (3.26)

Our approach to reduce this Lagrangian consists of using ded-
icated routines to export the output of MatchingTools
to Feynrules [155], where it is in turn exported to
FeynArts [190] and FormCalc [296], in which 1PI
amplitudes are computed and matched onto the basis of
Green’s functions of Ref. [88]. The final result is finally
reduced onto a physical basis using the relations obtained
from equations of motion therein. It reads:

LEFT = 2O(1)
φ4 D4 + 2O(2)

φ4 D4 − 4O(3)
φ4 D4 + · · · (3.27)

in agreement with matchmakereft (the ellipses stand for
higher-point interactions).
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One-loop matching Let us now take the scalar singlet and
triplet cases up to one loop, in the limit in which the only
relevant couplings in the UV are the trilinear terms (which
we set to unit). Working with matchmakereft, we get:

c(1)
φ4 D4 = c(2)

φ4 D4 = − 13

48π2 , (3.28)

for the scalar case, and

c(2)
φ4 D4 = − 61

144π2 , (3.29)

in the triplet case. Here, we ignore the WCs that arise already
at tree level. In both models, at least the condition c(2)

φ4 D4 ≥ 0
is broken, as expected from conclusion 3.6.

We have cross-checked this result with the help of
SuperTracer [117]. To this aim, the output of Super
Tracer is simplified within the code itself, and the
final result is processed following the same strategy as
with MatchingTools. This provides a very strong and
robust test of the validity of both matchmakereft and
SuperTracer.

Let us now take scalar quadruplet extensions of the SM,
with Y = 1/2 and Y = 3/2. These scalars couple linearly
to three Higgses. The only operators that they induce at tree
level are of the formφ6 D2n , which do not renormalizeφ4 D4.
Consequently, following conclusion 3.6, we expect the pos-
itivity bounds to hold. Indeed, from matchmakereft we
obtain (we ignore couplings again):

c(1)
φ4 D4 = 1

9π2 , c(2)
φ4 D4 = 1

36π2 , c(3)
φ4 D4 = − 1

18π2 , (3.30)

for Y = 1/2 and

c(1)
φ4 D4 = c(3)

φ4 D4 = 0, c(2)
φ4 D4 = 1

4π2 , (3.31)

for Y = 3/2.
One-loop running Despite the breaking of positivity in

one-loop matching, as for example highlighted in Eq. (3.29),
the amplitude for ϕiϕ j → ϕiϕ j is non-negative in the deep

IR because there it is dominated by the running of c(2)
φ4 D4

induced by tree-level operators. It can be indeed checked
that β(2)

φ4 D4 is always non-positive [104,297].

On the other hand, this implies that β(2)′
φ4 D4 does not need

to be negative. Computed again with matchmakereft as
well as with FeynArts+FormCalc, we obtain for exam-
ple:

β
(2)′
φ4 D4 = 1

6
(28c(1)

φ4 D4 + 43c(2)
φ4 D4 + 15c(3)

φ4 D4)g
2
2 + · · ·

(3.32)

which is positive, for example, in the scalar singlet case
(c(1,2)
φ4 D4 = 0, c(3)

φ4 D4 = 1). In the equation above, g2 stands
for the SU (2)L gauge coupling and the ellipses represent
terms proportional to other SM couplings.

In cases where β2 vanishes, we do expect β ′
2 to be non-

positive; see conclusion 3.6. One such case is given by
the renormalisation of W 2φ2 D2 operators (where W is the
SU (2)L gauge boson) by φ4 D4 operators. We know that β2

vanishes in this case because loops with two insertions of
φ4 D2n operators must have at least four Higgses.

Among the W 2φ2 D2 operators, there is one that is
restricted by the positivity of the amplitude for Wφ → Wφ.
The corresponding β2 function reads:

β
(1)
W 2φ2 D2 = −g2

2

6
(2c(1)

φ4 D4 + 3c(2)
φ4 D4 + c(3)

φ4 D4)+ · · · .
(3.33)

The ellipses encode non-φ4 D4 operators. This quantity is
necessarily non-positive, because the parenthesis is non-
negative (at tree level). Indeed, we can recast it in the form

(c(1)
φ4 D4 + c(2)

φ4 D4 + c(3)
φ4 D4)+ (c(1)φ4 D4 + c(2)

φ4 D4)+ c(2)
φ4 D4 ,

(3.34)

which is non-negative because the three terms in the sum are
non-negative, as we saw before.

For all these calculations, we have relied on match
makereft with full cross-check using FeynArts+
FormCalc.

3.6.2 Towards fully-automated one-loop matching

Even with the help of current EFT tools, the explicit compu-
tations described before can become extremely tedious. This
is because the simplification of the Lagrangian resulting from
integrating out the heavy degrees of freedom is highly redun-
dant. To the best of our knowledge, there is no generic and
publicly available method to reduce the effective Lagrangian
to a physical basis in an automated way.27 In this final sec-
tion, we comment briefly on the approach we have adopted
to face this problem, and on the progress we have made so
far.

Our idea for automating the process of reducing a redun-
dant Lagrangian to a physical basis of operators consists in
requiring explicitly that both Lagrangians provide exactly the
same S-matrix for all different processes that can be com-
puted within the EFT (up to the corresponding order in the
expansion in inverse powers of the cutoff).

In practice, this amounts to equating all needed tree-level
on-shell connected and amputated Feynman graphs. As a
matter of example, let us focus here on the SMEFT Higgs
sector up to dimension eight. For the redundant Lagrangian,
we consider that comprised by all Higgs operators in the

27 After this work was presented in the SMEFT-Tools workshop, and
prior to the publication of this manuscript, the tool Matchete [49] was
released, which, among many other features, makes progress towards
reducing redundant Lagrangians in an automated fashion.
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Green’s basis of Ref. [298] (dimension six), together with
those in Ref. [88] (dimension eight). For the physical one,
we stick to the basis of Ref. [87]. The notation below follows
the conventions in these references.

Upon equating the resulting calculations in both theories,
one obtains a set of equations from where the physical WCs
in the physical theory can be solved in terms of the physical
and redundant WCs in the redundant EFT.

The main complication of on-shell matching, besides the
huge number of diagrams, is the presence of light propaga-
tors, which manifest as non-local combinations of momenta
in the S-matrix, which implies that solving the aforemen-
tioned system of equations analytically and in an automated
way becomes very complicated. It can be instead solved
numerically, upon giving concrete values to the different
momenta involved in the process. In order to do so, without
conflicting with (i) momentum conservation, (ii) on-shellness
of the external legs and (iii) the fact that, as soon as the num-
ber of momenta in the amplitude is larger than four, not all
them can be linearly independent; namely to ensure that we
are in the physical region, we use Monte Carlo algorithms
(currently RAMBO [299]) to sample the phase space.

Our current results for the Higgs sector of the SMEFT (up
to the operator φ8), expressed as shifts on physical WCs (ci )
induced by the presence of redundant ones (r j ), read:

cφ� → cφ� + 1

2
r ′
φD , (3.35)

cφ6 → cφ6 + 2λr ′
φD, (3.36)

c(1)
φ6 D2 → c(1)

φ6 D2 + 2λ(2r (12)
φ4 D4 − 2r (4)

φ4 D4 − r (6)
φ4 D4)

− 4cφ�r ′
φD − 1

2
cφDr ′

φD−7

4
r ′2
φD + r ′′2

φD, (3.37)

c(2)
φ6 → c(2)

φ6 + 2λ(r (12)
φ4 D4 − r (6)

φ4 D4)− cφDr ′
φD, (3.38)

where we omit those that remain invariant. These shifts coin-
cide fully with previous results derived from using equations
of motion [88,297,298], with the exception of the terms in
blue. These terms are of higher order in the power counting
used in the mentioned references, but in other scenarios they
must be considered and they can be only captured by field
redefinitions [300] or via our explicit matching of scattering
amplitudes. Both of these approaches guarantee exactly the
invariance of the S-matrix, while equations of motion do not.

As of now, we have successfully applied this method to
the SMEFT and other EFTs up to dimension eight including
(massless or massive) scalars and gauge bosons, and we are
working on extending it to fermions as well [301].

4 Summary and outlook

Effective field theories are basic tools in our description of
nature. On the one hand, they let us calculate physical quanti-
ties without knowing the underling theory; e.g., the SMEFT

provides an efficient way to characterize new physics at the
EW scale in terms of coefficients of higher-dimension opera-
tors without knowing the underlying UV completion. On the
other hand, even if we want to consider specific NP models,
EFTs offer a comprehensive approach to compare with data
while, at the same time, providing a way to sum large loga-
rithms via the use of the RG-improved perturbation theory.

However, implementing the EFT approach in an auto-
mated way suited for systematic phenomenological analyses
is a formidable task. This approach includes, for instance,
the identification of higher-dimensional operators appearing
in an EFT, the extraction of Feynman rules, the calculation
of the matching coefficients between EFTs valid at different
energy scales, and the calculation of anomalous dimensions
to evolve the WCs between different energy scales. Many of
these tasks are not feasible in a reasonable amount of time
without computer codes as they can involve hundreds or even
thousands of WCs, like in the SMEFT and the LEFT.

The interpretation of experimental data in terms of con-
straints on effective couplings also requires automation, in all
but a few restricted cases. Extensions of the SM are typically
parameterized in terms of the SMEFT. Each WC, however,
can appears in many observables. This is also a challenging
task, as it involves computing predictions for a large number
of observables and performing global fits with hundreds of
experimental constraints.

With this report, we have documented the large efforts
in the theory community in automating calculations within
EFTs framework. They have been presented at the SMEFT-
Tools 2022 workshop held at the University of Zurich from
14th-16th September 2022. The milestones reached so far
can be summarized as follows:

• For the two major extensions of the SM, SMEFT
and LEFT below the electroweak scale, the anomalous
dimensions of dimension-six operators have been calcu-
lated to leading order and implemented in user-friendly
programs such as DsixTools and Wilson. They also
provide the complete matching between SMEFT and
LEFT at tree level and one-loop order. Higher order oper-
ators (dimension sever or higher) can be studied with
Sym2Int, which automatically build explicit bases of
operators for EFTs, given their fields and symmetries.
Derivation of Feynman rules is enabled by SmeftFR,
which also generate UFO model files suitable for further
symbolic or numerical calculation of matrix elements and
cross-sections.

• The viability study of specific BSM scenarios can be
largely simplified by first matching the NP models to
the SMEFT and then determining the experimental con-
straints on the SMEFT WCs. Such matching between
any realization of NP can be performed in an automated
way at tree level with tools like Matchmakereft,

123



  170 Page 50 of 59 Eur. Phys. J. C           (2024) 84:170 

Machete and CoDEx. These programs allow to get all
effective operators at the EW scale. Matching at one-loop
is possible in many cases. A completely generic imple-
mentation at one-loop level in currently under develop-
ment.

• Several programs (e.g., smelli, HighPT, HEPfit,
EOS) have been developed for phenomenological studies,
implementing predictions in the presence of EFT WCs
which are then used to constraints NP effects in global
fits. They include observables from a wide range of high-
energy physics, such as flavor physics, physics at hadron
colliders, electroweak precision tests, Higgs physics, and
other precision tests of the SM.

Many issues and development directions were also
addressed during the workshop. Most probably, the next-to-
leading logarithms in SMEFT and LEFT will have to be tack-
led. Given the large number of operators, it is inconvenient to
consider separately the two-loop running of the various EFTs
separately. In fact, it is more advantageous to calculate the
anomalous dimensions for a generic EFTs with an arbitrary
number of real scalars and left-handed fermions, invariant
under a generic gauge structure. Result for NLO running of
the SMEFT or LEFT WCs can be derived in a second step by
specifying the field content and the gauge group. An ongoing
project aims at evaluating the one-loop RG equations for all
the dimension-six operators in such generic EFT.

Another relevant development is the complete classifica-
tion of contributions to dimension six operators in SMEFT
which arise from BSM models only at the one-loop level.
Such one-loop matching program is using on-shell matching
to avoid the use of (redundant) Green’s basis.

Also a consistent treatment of γ5 in running of four-
fermion operators is necessary since it gives rise to evanes-
cent structures in dimensional regularization. Renormaliza-
tion of chiral Abelian theory up to two loops has been devel-
oped recently in the so called BMHV scheme for γ5 and it
will be extended to the non-Abelian case in preparation for
the application to the SM.
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high-mass Drell–Yan. JHEP 05, 087 (2023). https://doi.org/10.
1007/JHEP05(2023)087. arXiv:2212.10497

235. J. Fuentes-Martin, A. Greljo, J. Martin Camalich, J.D.
Ruiz-Alvarez, Charm physics confronts high-pT lepton tails.
JHEP 11, 080 (2020). https://doi.org/10.1007/JHEP11(2020)080.
arXiv:2003.12421

236. J. de Blas, M. Chala, J. Santiago, Global constraints on lepton-
quark contact interactions. Phys. Rev. D 88, 095011 (2013).
https://doi.org/10.1103/PhysRevD.88.095011. arXiv:1307.5068

237. A. Angelescu, D.A. Faroughy, O. Sumensari, Lepton flavor
violation and dilepton tails at the LHC. Eur. Phys. J. C 80,
641 (2020). https://doi.org/10.1140/epjc/s10052-020-8210-5.
arXiv:2002.05684

238. S. Dawson, P.P. Giardino, A. Ismail, Standard model EFT
and the Drell–Yan process at high energy. Phys. Rev. D 99,
035044 (2019). https://doi.org/10.1103/PhysRevD.99.035044.
arXiv:1811.12260

239. D. Marzocca, U. Min, M. Son, Bottom-flavored mono-tau tails
at the LHC. JHEP 12, 035 (2020). https://doi.org/10.1007/
JHEP12(2020)035. arXiv:2008.07541

240. L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, F. Wilsch,
HighPT: a tool for high-pT Drell–Yan tails beyond the standard
model. Comput. Phys. Commun. 289, 108749 (2023). https://doi.
org/10.1016/j.cpc.2023.108749. arXiv:2207.10756

241. L. Allwicher, D.A. Faroughy, F. Jaffredo, O. Sumensari, F. Wilsch,
Drell–Yan tails beyond the Standard Model. JHEP 03, 064 (2023).
https://doi.org/10.1007/JHEP03(2023)064. arXiv:2207.10714

242. CMS collaboration, A.M. Sirunyan et al., Search for resonant and
nonresonant new phenomena in high-mass dilepton final states
at

√
s = 13 TeV. JHEP 07, 208 (2021). https://doi.org/10.1007/

JHEP07(2021)208. arXiv:2103.02708
243. D. van Dyk, The decays B̄ → K̄ (∗)�+�− at low recoil and their

constraints on new physics. Ph.D. thesis, Dortmund U. (2012)
244. D. van Dyk et al., EOS source code repository, (2021). https://

github.com/eos/eos
245. D. van Dyk et al., EOS v1.0 online documentation, (2021). https://

eos.github.io/doc/v1.0/
246. EOS Authors collaboration, D. van Dyk et al., EOS: a soft-

ware for flavor physics phenomenology. Eur. Phys. J. C 82,
569 (2022). https://doi.org/10.1140/epjc/s10052-022-10177-4.
arXiv:2111.15428

247. The WCxf Authors, EOS WET basis, (2021). https://wcxf.github.
io/assets/pdf/WET.EOS.pdf

248. N. Gubernari, D. van Dyk, J. Virto, Non-local matrix elements in
B(s) → {K (∗), φ}�+�−. JHEP 02, 088 (2021). https://doi.org/10.
1007/JHEP02(2021)088. arXiv:2011.09813

249. S. Bruggisser, R. Schäfer, D. van Dyk, S. Westhoff, The flavor
of UV physics. JHEP 05, 257 (2021). https://doi.org/10.1007/
JHEP05(2021)257. arXiv:2101.07273
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