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Abstract

The goal of our work is to generate high-quality novel views from monocular

videos of complex and dynamic scenes. Prior methods, such as DynamicN-

eRF, have shown impressive performance by leveraging time-varying dynamic

radiation fields. However, these methods have limitations when it comes to

accurately modeling the motion of complex objects, which can lead to in-

accurate and blurry renderings of details. To address this limitation, we

propose a novel approach that builds upon a recent generalization NeRF,

which aggregates nearby views onto new viewpoints. However, such meth-

ods are typically only effective for static scenes. To overcome this challenge,

we introduce a module that operates in both the time and frequency do-

mains to aggregate the features of object motion. This allows us to learn the

relationship between frames and generate higher-quality images. Our exper-
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iments demonstrate significant improvements over state-of-the-art methods

on dynamic scene datasets. Specifically, our approach outperforms existing

methods in terms of both the accuracy and visual quality of the synthesized

views. Our code is available on https://github.com/xingy038/CTNeRF.

Keywords: Dynamic neural radiance field, monocular video, scene flow,

transformer.

1. Introduction

Realistically rendering and presenting dynamic real-world scenes is a

highly challenging research topic, with diverse applications in fields such as

film production and virtual reality [1, 2, 3]. However, accurately modeling

these scenes using traditional mesh-based methods can be difficult due to

the complex movements of multiple objects and changes in factors like mir-

roring and transparency that occur during these movements. While multi-

view-based methods have shown better results, they come with their own

limitations. These methods require a large number of cameras, resulting in

high costs and technical challenges like synchronization and data processing

[4, 5, 6, 7]. Additionally, they are not easily applicable in daily life scenarios.

Although reconstruction from monocular videos is a promising approach for

scene reconstruction, novel view synthesis for monocular videos of dynamic

scenes is more challenging.

Recent advancements in deep learning have made significant breakthroughs

in novel view synthesis, with Neural Radiative Fields (NeRF) [8, 9] being one

of the most notable contributions to this area. NeRF employs the position

and viewing direction of a given image as a query, and employs volume render-
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ing to generate the color of each pixel. However, these methods are primarily

designed for static scenes and do not perform optimally when dealing with

dynamic objects or scenes. To address this limitation, recent research has ex-

plored the application of this approach to monocular dynamic video [10, 11].

For example, some studies have focused on learning a deformable warp field

[12] or a neural scene flow between adjacent frames [13, 14, 11, 15]. These ef-

forts aim to extend the utility of NeRF and enable more robust and accurate

synthesis of dynamic scenes. Despite the success achieved by NeRF-based

methods for dynamic scenes, they still have some limitations. For instance,

deformable warp field methods such as Nerfies [16] can handle long sequences

but may not perform well for dynamic scenes with complex object motion.

On the other hand, neural scene flow or neural trajectory methods like NSFF

[13] can handle large movements in dynamic scenes, but their effectiveness is

highly dependent on the accuracy of the predicted scene flow or trajectory.

We propose a novel approach that can be applied to dynamic scenes, en-

abling the handling of more complex motions and improving the rendering

results. Our method draws inspiration from recent research on rendering

static scenes [17, 18, 19, 20], where local image features are synthesized by

aggregating them along epipolar lines from nearby views to enhance the ren-

dering process. However, the apparent limitations assumed by these methods

are violated by scenes in motion, making them unsuitable for direct appli-

cation to dynamic scenes. To overcome this challenge, we have designed a

module that aggregates changes in ray due to motion in the ray space, along

with the obtained multi-view features [21]. This enables us to accurately

consider both temporal and spatial changes in geometry and appearance,
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resulting in better rendering of dynamic scenes. More specifically, we first

input the extracted feature vector into a cross-time transformer. Next, we

input the feature aggregated with time information into a ray transformer to

find the relationship between the sampling points on the ray and obtain the

aggregated feature. In addition, to strengthen the spatial-temporal relation-

ship of feature vectors, we use a 2D fast Fourier transform frequency-domain

feature aggregation module to obtain the aggregated features. Finally, we

feed the fused feature vectors of these two features together with the queried

rays into residual-based MLPs to output color and density. Experimental

results demonstrate that our method can synthesize new views with high

quality. Furthermore, compared to previous methods, our approach can ren-

der higher-quality ground-truth details of ground truth in dynamic regions.

In summary, the contributions of our work are as follows:

1) A novel dynamic neural rendering field for dynamic monocular video,

which can aggregate multi-view feature vectors to improve rendering

novel view quality.

2) The aggregation of multi-frame feature vectors may lead to the po-

tential loss or merging of intricate details into other features, thereby

compromising the retention of crucial characteristics from the origi-

nal data. To address this issue, we introduce a Ray-based cross-time

transformer.

3) To mitigate potential blurring during feature aggregation, we introduce

a Global Spatio-Temporal Filter.
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4) Extensive experiments show that our method achieves superior novel

view synthesis of dynamic scenes.

2. Related Work

2.1. Novel view synthesis

Recently, neural implicit representation methods like NeRF [22, 8, 9, 23,

24, 25, 26] have demonstrated significant potential for achieving high-quality

rendering. NeRF employs multi-layer perceptrons (MLPs) to implicitly rep-

resent continuous scenes, yielding impressive view synthesis results. Despite

their progress, NeRF-based methods necessitate training separate models for

each scene, with optimization demanding varying training times. Applying

these methods faces some other challenges, including unknown camera poses,

boundary blur, and observation noise. For unknown camera poses, Li et al.

[27] proposed a novel online scene representation method that can simultane-

ously learn to represent the target scene and estimate the camera pose from

the RGB-D stream. For boundary-blurring, Barron et al. proposed Mip-

NeRF [28], which uses sampling of cones instead of rays and considers scale

information by integrating position encoding, so that the scene is represented

in a scale of continuous values, and the rendering result is anti-aliased. In

addition, variations of NeRF-based methods, such as PixelNeRF [26], MVS-

NeRF [19], and IBRNet [17], exhibit promise in incorporating feature infor-

mation to generalize to unseen scenes. However, their primary focus is on

static scenarios, neglecting dynamic scenes with objects or cameras in mo-

tion. These methods estimate a 3D representation of a scene using multiple

input images, which they then leverage for rendering novel views. Neverthe-
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less, their applicability is limited in dynamic scenes, where assumptions of

scene stability may lead to inaccuracies or artifacts in rendered images. Our

work addresses this limitation by extending the approach to more challeng-

ing dynamic scenarios, concentrating on modeling complex object motion

and synthesizing higher-quality novel views.

2.2. Dynamic region view synthesis

With NeRF [22, 8, 9] demonstrating impressive results in view synthesis

tasks, several works have attempted to extend NeRF to tackle dynamic new

view synthesis challenges [11, 14, 13, 29]. These methods can be classified

into two main directions. The first direction involves using deformation fields

to represent scenes [29, 12, 16, 30]. While this approach can handle long se-

quences of videos, its primary challenge is dealing with large motions in the

scene. As this method typically warps the scene from the same frame, it can

result in a lack of continuity throughout the entire sequence, such as Nerfies

[16] and HyperNeRF [12]. The second approach is based on the time-varying

4D radiance fields approach [31, 13, 32]. These methods model dynamic

scenes as time-varying continuous functions of appearance, geometry, and

3D scene motion by predicting the scene flow field. Although such methods

can capture fast and complex motion in the scene, they usually require more

accurate scene flow or trajectory guidance and cannot handle non-rigid de-

formation well. Our proposed method aggregates feature from nearby views

to effectively handle this situation and improve rendering results.
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Figure 1: The pipeline of our model. Our model is composed of two main parts, each

responsible for handling a different aspect of the input data. One component focuses on

the static background, while the other deals with the dynamic foreground. These two sets

of values are then blended together to obtain the final novel view.

3. Proposed Method

In this section, we present the proposed methods with the goal of enabling

the trained model to query new viewpoints at any time and angle within a

monocular video of a dynamic scene. Our system pipeline (Figure 1) can

be divided into two parts: one part focuses on the static background, while

the other part handles the dynamic foreground, and finally blends the two

through blending to obtain the reconstructed video. Furthermore, similar to

other time-varying NeRF-based techniques, we first optimize the model to

reconstruct the input frame, before being utilized for rendering novel views.

Instead of directly encoding 3D color and density in the weights of the MLPs

like recent dynamic NeRF methods [11, 13], we borrow the idea of a recent

generalized NeRF to aggregate features from views near the target view to

enhance rendering. Below we describe our approach to multi-feature aggre-
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gation, a ray-based cross-time aggregation module, and a boost module via

frequency-domain effects.

3.1. Multi-view aggregation

We leverage two models to reconstruct the static and the dynamic area

respectively and finally blend the color and density of the two through a

blending value predicted by the dynamic model in the interval [0, 1] to obtain

the final reconstructed image.

3.1.1. Static Region Feature Aggregation

For the static region, we simply adopt the projection methods to query

the position of the camera ray projected on the image coordinates at a cer-

tain point in the space. And then the corresponding feature vectors can be

obtained by the method of bilinear difference. More specifically, the feature

vectors of two adjacent frames are queried using the camera ray from the

target viewpoint, which can be expressed as:

xt±i = P±ixt ∈ R3 (1)

where xt is a point in space on the camera ray on the target view, the

xt±i ∈ R3 is the adjacent view, and the P±i = [R±i, T±i] ∈ R4×4 is the

camera parameters, note that we set i = 1. And the queried feature can be

expressed as:

Ft±i = E(proj ⟨xt±i⟩) ∈ Rd (2)

proj ⟨·⟩ represents the coordinates of the point projection image in space, and

then uses a feature extractor E(·) to extract the features of the image, and

8



Figure 2: Aggregating feature vectors in an epipolar-aligned manner will cause errors in

the rendering of the model, resulting in artifacts that degrade the quality of the model

rendering novel views.

finally obtains the query feature vector Ft±i ∈ Rd. The RGB c and density

σ of the static region can use an MLP to query, which can be expressed as:

MLPθs(x, y, z, t, dt, Ft±i) = (cs, σs) (3)

the inputs include extracted feature vectors Ft±i ∈ Rd, target view direction

dt ∈ R3, and space coordinates x, y, z.

3.1.2. Dynamic Region Feature Aggregation

For the dynamic region, we cannot use the same method as the static

region to aggregate features. The object movement violates the static hy-

pothesis, computing adjacent frames only with camera parameters cannot

handle this change. Therefore, inspired by recent neural scene flow work

[11, 13], we first use predicted scene flow to warp the camera rays to describe

the motion of a point in space in the scene, which can be expressed as:

xt+1 = xt + sfw ∈ R3 (4)

xt−1 = xt + sbw ∈ R3 (5)

where, sfw ∈ R3 and sbw ∈ R3 are the predicted scene flow. And then, we

can obtain the corresponding feature vectors using Equation (2). Note that
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we use a four-layer MLP to predict this scene flow, while also outputting a

blend value to weigh the color and density of static and dynamic regions.

Thus, it can be expressed as:

MLPθd(x, y, z, t, dt, Ft±i) = (cd, σd, sfw, sbw, b) (6)

sfw ∈ R3 and sbw ∈ R3 are the predicted scene flow, b is the predicted

blending value and the i = {0, 1}.

3.1.3. Combining static and dynamic models

Time-varying-based dynamic models typically undergo very much defor-

mation to reliably infer correspondences over larger time intervals, however,

static regions should be consistent. In order to render complete and high-

quality content in the static area of the new view composition, we follow

the idea of NSFF [13] and use two separate models (static and dynamic) to

model the entire scene. Through the above methods, we can obtain static

and dynamic colors cs, cd and densities σs, σd respectively, then the volumet-

ric radiance field can then be rendered into a 2D image via:

Cfull(r) =

∫ tf

tn

(Td(t)σd(t)cd(t)b

+ Ts(t)σs(t)cs(t)(1 − b))dt

(7)

T{s,d}(t) = exp

(
−
∫ t

tn

σ{s,d}(s)ds

)
(8)

The rendered pixel values for camera ray r can then be compared to the

corresponding ground truth pixel values:

Lpho =
∑
r

∥∥∥Ĉ(r) − Cgt(r)
∥∥∥2

2
(9)
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Figure 3: The pipeline of the RBCT module. The model consists of two main components:

the cross-time transformer on the left and the ray transformer on the right. The left

component takes a set of feature vectors from consecutive frames as input and applies

cross-time attention to aggregate these vectors with the current frame. The resulting

feature vector is then passed to the right component, which uses ray attention to aggregate

feature vectors from multiple sampling points along each ray. Finally, a pooling operation

is applied to these vectors to obtain the final aggregated feature vector.

where C(r) includes the static, dynamic, and blended regions. Directly

aggregating these features can enhance the representation of target feature

maps, and the effect of improving quality can be obtained in the reconstruc-

tion stage. However, through our observations during the rendering process

of the novel view, artifacts of adjacent frames (see Figure 2) manifest in the

novel view, significantly compromising the performance of our model. In ad-

dition, we observed that our methods will produce some non-rigid deforms

when rendering novel views of dynamic scenes, it also will affect the quality

of novel views synthesis. Thus, we propose a ray-based cross-time (RBCT)

aggregation module to handle this issue.
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3.2. Ray-Based Cross-Time Aggregation Module

3.2.1. Cross-Time Aggregation

By means of the aforementioned method, the correlation between the

frontal and posterior frames can be integrated using the camera rays from

the current viewing angle. However, it should be noted that there exists a

temporal relationship among the input feature vectors of adjacent frames,

and a direct aggregation would overlook this temporal variation. Therefore,

we design a cross-time converter to enable the feature vector of the target

frame to attentively focus on the variations in the feature vector of its ad-

jacent frame (as illustrated in the left figure, see Figure 3). The cross-time

transformer leverages a classic cross-attention mechanism [33, 34, 35, 36] that

allows for a variable number of inputs, given the frame-to-frame changes in-

volved:

F̂t±i = Cross-Time Transformer(Ft±i, Ft) (10)

For a given target frame Ft, the query vector Qt is derived by linearly trans-

forming the original feature vector:

Qt = WQ · Ft (11)

Similarly, key (Kt±i) and value (Vt±i) vectors for adjacent frames (Ft±i) are

obtained through linear transformations:

Kt±i = WK · Ft±i, Vt±i = WV · Ft±i (12)

The attention scores are computed using the dot product of the query and

key vectors, scaled by a factor
√
dk:

Attn =
Qt ·KT

t±i√
dk

(13)
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Finally, the target frame’s feature vector F̂t±i is updated by computing a

weighted sum of the value vectors:

F̂t±i = Softmax(Attn) · Vt±i (14)

Our ablation studies demonstrate that this approach effectively enhances the

quality of synthesized images.

3.2.2. Ray Aggregation

While aggregating camera views, we have successfully explored the re-

lationship between the camera ray’s point in space and its corresponding

feature vector. However, one crucial aspect that has been overlooked is the

relationship between feature vectors from adjacent frames. To address this

limitation and improve the overall representation, we introduced a cross-time

transformer mechanism, allowing the target frame to focus on the inter-frame

relationships and enhancing the global correlation. Despite the progress

achieved with the cross-time transformer, we encountered an issue. Specifi-

cally, this approach failed to accurately associate the local relationship be-

tween the camera ray’s sampling point and its corresponding per-frame fea-

ture vector. To overcome this limitation, we propose a method similar to the

depth bin utilized in stereo-matching algorithms when calculating the cost

volume [37]. This involves considering each sampling point along the entire

ray to match a specific pixel in the form of a matching score.

More specifically, we introduce a new ray transformer that enables the

mutual focus of feature vectors corresponding to samples on a ray. The ray

transformer is composed of two core components of the classical transformer
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[33]: position encoding and self-attention. It can be expressed as:

F = Ray Transformer(F̂t±i) (15)

Specifically, we define:

Q = WQ · F̂t±i, K = WK · F̂t±i, V = WV · F̂t±i (16)

Here, WQ, WK , and WV are learned weight matrices. Subsequently, we

compute attention scores and utilize these attention weights to calculate a

weighted average, yielding a new feature representation:

F = Softmax(
Q ·KT

√
dk

) · V (17)

Given M (we set M to 64) samples along a ray, our ray transformer trans-

forms the output of its input cross-time transformer, resulting in an aggre-

gated feature vector. The introduction of this ray transformer allows the

model to focus on the feature vectors corresponding to samples along the

ray in adjacent frames, capturing finer local relationships and addressing the

limitations of the previous cross-time transformer in this regard. Our abla-

tion experiments demonstrate that the proposed ray transformer significantly

improves the quality of the final synthesized image.

3.3. Frequency Domain Aggregation Module

We introduce a novel spatio-temporal feature learning module termed the

Global Spatio-Temporal Filter (GSTF), inspired by recent advancements in

frequency-domain-based methodologies [38] aimed at enhancing the render-

ing quality of new views [39]. The primary objective of GSTF is to elevate

the representation of feature vectors by capturing both spatial and temporal
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relationships through specialized frequency filters. In our approach, GSTF

is meticulously crafted to discern and learn distinct frequency filters at each

spatial location. This enables the modeling of temporal variations within fea-

ture vectors across different spatial positions. The core mechanism involves

the transformation of both temporal and spatial features at each location

into frequency feature spectra. This transformation is achieved through a

two-dimensional Fast Fourier Transform (FFT) [40]. The frequency filter,

learned through GSTF, acts as a modulator on this transformed spectrum.

Subsequently, we revert this modulated spectrum back to the time domain

using an inverse FFT. This comprehensive process allows GSTF to effectively

encode the intricate interplay between time and space in the feature vectors,

contributing to the improvement of new view rendering. To gain a better un-

derstanding of our GSTF design, let’s first review the convolution theorem in

the field of digital signal processing [41]. Given a sequence of feature signals

with T points (f [t], 0 ≤ t ≤ T − 1), we can calculate its discrete spectrum

S[k] using Discrete Fourier Transform (DFT) via:

S[k] =
T−1∑
t=0

f [t]e−j(2π/T )kt, 0 ≤ k ≤ T − 1 (18)

In the equation above, j represents the imaginary unit. The Discrete

Fourier Transform (DFT) is a one-to-one orthogonality decomposition. More-

over, we can use the DFT outputs to reconstruct input signals using Inverse

Discrete Fourier Transform (IDFT) via:

f [t] =
1

T

T−1∑
k=0

S[k]ej(2π/T )kt, 0 ≤ t ≤ T − 1 (19)

Specifically, we first convert the features into frequency domain signals. Next,

these frequency domain signals are filtered, and then the filtered signals are
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Algorithm 1 Global Spatio-Temporal Filter

1: Initialization: learnable weight w

2: x = torch.fft.rfft2(x, dim=(0,1))

3: x = x * w

4: x = torch.fft.irfft2(x, dim=(0,1))

reconstructed into time domain features. Our GSTF can be easily used in

modern deep-learning frameworks such as PyTorch [42], The pseudocode of

PyTorch is shown in Algorithm 1. Finally, these time-domain features are

merged with the RBCT-processed features to achieve effective aggregation

of time-domain and frequency-domain features. It can be expressed as:

F = f [t] + F (20)

Where f [t] is the frequency-domain features, F is the time-domain features,

and F is the aggregated features. Through ablation experiments, we demon-

strate that our global filtering mechanism is an effective spatial information

mixing method. The GSTF module improves the texture quality of new views

and alleviates blurring and artifacts often observed in new view synthesis.

3.4. Regularization

It is well known that monocular video reconstruction of complex dynamic

scenes is an ill-posed problem, and using only a photometric error for super-

vision cannot avoid local minima. Therefore, many regularization strategies

have been used in previous work [11, 13]. We continue to use the previous

strategy and add several regularization items. Specifically, it includes the
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Figure 4: Network architectures of our static and dynamic representations.

following three parts:

L = Ldata + Lsmall + Lpho (21)

The Ldata is a data-driven prior regularization term, composed of pre-trained

monocular depth estimation network and optical flow estimation network

consistency prior [11]. The Lpho is provided by Equation (9). Our model

is highly dependent on the accuracy of scene flow, thus we provide an ad-

ditional regularization term for scene flow. The Lsmall = ∥sfw∥1 + ∥sbw∥1 +

∥sfw + sbw∥1 is a regularization term that minimizes scene flow.

3.5. Architecture

Our approach utilizes two distinct types of models: static and dynamic.

The architecture of static and dynamic model is depicted in Figure 4.

4. Experiment

4.1. Implementation details

Our model uses ResNet34 [43] as the encoder to extract feature maps.

There are some differences between the static and dynamic models. For the

static model, we use ResNet-based MLPs block, while for the dynamic model,

we add four additional layers of MLPs to predict scene flow and mixed values.
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Figure 5: Novel view synthetic qualitative results on Nvidia Dynamic Scene Dataset [44].

In contrast to other NeRF-based approaches, our outcomes exhibit enhanced clarity, cap-

turing finer details that closely approximate ground truth, particularly in dynamic regions.

We found that the ResNet-based MLP block is difficult to train for accurate

scene flow. More details about our model can be found in the Figure 4. We

first train the static model for 300K steps and then fix it to train the dynamic

model for 200K steps. We use frames t − 1, t, and t + 1 as input to extract

feature vectors. Note that we only choose t− 1, t and t, t + 1 when selecting

the first and last frames as input.

4.2. Model Parameters and Inference Time
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Method Parameters Inference speed Training Time

DynamicNeRF 4.59M 8 s/Frame about 21 hours

Our 12.21M 10 s/Frame about 24 hours

Table 1: Parameters, inference speed, and

training time.

We present our model’s Param-

eters, inference speed, and training

time. The amount of our speed pa-

rameters has increased compared to

our baseline, but in more complex

scenes, our baseline cannot correctly

obtain dynamic scenes (As shown in Figure 6).

4.3. Dataset

Our method is assessed on the Nvidia Dynamic Scene Dataset [44], DAVIS

Dataset [45], and iPhone dataset [31].

Nvidia Dynamic Scene Dataset comprises nine video sequences captured

using a static camera rig of 12 cameras. All cameras capture images simul-

taneously at 12 different time steps {t0, t1, . . . , t11}, and we obtain a twelve-

frame monocular video {I0, I1, . . . , I11} by sampling the image taken by the

i−th camera at time ti. It is worth mentioning that we use a different camera

for each video frame to simulate camera motion. The video frames consist of

a background that remains stationary throughout the video and a dynamic

object that changes over time. We adopt COLMAP [46] similar to NeRF

[23], to estimate the camera poses, near and far boundaries of the scene, and

assume that all cameras share the same intrinsic parameter. We exclude the

DynamicFace sequence from our evaluation since COLMAP fails to estimate

camera poses for this sequence. Lastly, we resize all video sequences to a

resolution of 480 × 270. The DAVIS Dataset [45] consists of fifty sequences

featuring dynamic moving objects, like animals and cars. However, due to

limitations in camera movement, COLMAP could only estimate camera poses
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for six out of the fifty sequences, all of which include ground truth object

masks. Finally, for the iPhone Dataset [31], we conducted a quantitative

evaluation using seven dynamic scenes, each accompanied by ground truth

images of novel views.

4.4. Comparison with State-of-the-Art Methods

4.4.1. Qualitative Results

We present some visual comparisons on the Nvidia Dynamic Scene Dataset

[44] in Figure 5 and the DAVIS dataset [45] in Figure 6. The camera poses

of most sequences in the DAVIS dataset cannot be estimated by COLMAP.

By aggregating the features of adjacent frames, our method generates frames

with fewer visual artifacts and obtains results that are closer to ground truth.

In contrast, our method exploits feature associations across frames, which

yields better visual quality results.

Figure 6: Novel view synthetic qual-

itative results on DAVIS Dataset

[45]. Compared to our baseline, our

method obtains sharper results and

fewer artifacts.

4.4.2. Quantitative Results

Table 2 presents the quantitative results obtained from the Nvidia Dy-

namic Scene Dataset [44]. We adopted the evaluation methodology from

DynamicNeRF [11] to synthesize views using the first camera while varying
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Table 2: Novel view synthesis quantitative results on Nvidia Dynamic Scene Dataset [44].

We report average PSNR and LPIPS [47] results by comparison with existing methods.

The best performance is bold and the next best is underline.

PSNR↑ /LPIPS↓ Jumping Skating Truck Umbrella Balloon1 Balloon2 Playground Average

NeRF [23] 20.58 / 0.305 23.05 / 0.316 22.61 / 0.225 21.08 / 0.441 19.07 / 0.214 24.08 / 0.098 20.86 / 0.164 21.62 / 0.252

NeRF [23] + time 16.72 / 0.489 19.23 / 0.542 17.17 / 0.403 17.17 / 0.752 17.33 / 0.304 19.67 / 0.236 13.80 / 0.444 17.30 / 0.453

D-NeRF [30] 22.36 / 0.193 22.48 / 0.323 24.10 / 0.145 21.47 / 0.264 19.06 / 0.259 20.76 / 0.277 20.18 / 0.164 21.48 / 0.232

HyperNeRF [12] 18.34 / 0.302 21.97 / 0.183 20.61 / 0.205 18.59 / 0.443 13.96 / 0.530 16.57 / 0.411 13.17 / 0.495 17.60 / 0.367

TiNeuVox [48] 20.81 / 0.247 23.32 / 0.152 23.86 / 0.173 20.00 / 0.355 17.30 / 0.353 19.06 / 0.279 13.84 / 0.437 19.74 / 0.285

Yoon et al. [44] 20.16 / 0.148 21.75 / 0.135 23.93 / 0.109 20.35 / 0.179 18.76 / 0.178 19.89 / 0.138 15.09 / 0.183 19.99 / 0.153

Tretschk et al. [29] 19.38 / 0.295 23.29 / 0.234 19.02 / 0.453 19.26 / 0.427 16.98 / 0.353 22.23 / 0.212 14.24 / 0.336 19.20 / 0.330

NSFF [13] 24.12 / 0.146 28.91 / 0.135 25.94 / 0.171 22.58 / 0.302 21.40 / 0.225 24.09 / 0.228 20.91 / 0.220 23.99 / 0.205

RoDynRF [49] 24.27 / 0.100 28.71 / 0.046 28.85 / 0.066 23.25 / 0.104 21.81 / 0.122 25.58 / 0.064 25.20 / 0.052 25.38 / 0.079

DynamicNeRF [11] 24.61 / 0.144 28.90 / 0.124 25.78 / 0.134 23.15 / 0.146 21.47 / 0.125 25.97 / 0.059 23.65 / 0.093 24.74 / 0.118

Our 24.35 / 0.094 33.51 / 0.034 28.27 / 0.084 23.48 / 0.129 22.19 / 0.111 26.86 / 0.048 24.28 / 0.077 26.17 / 0.082

Table 3: Assessing novel view synthesis outcomes, we measure performance using the

mPSNR and mSSIM metrics, benchmarked against established methods. The evaluation

is conducted on the iPhone dataset [31].

Method Apple Block Paper-windmill Space-out Spin Teddy Wheel Average

NSFF [13] 17.54 / 0.750 16.61 / 0.639 17.34 / 0.378 17.79 / 0.622 18.38 / 0.585 13.65 / 0.557 13.82 / 0.458 15.46 / 0.569

Nerfies [16] 17.64 / 0.743 17.54 / 0.670 17.38 / 0.382 17.93 / 0.605 19.20 / 0.561 13.97 / 0.568 13.99 / 0.455 16.45 / 0.569

HyperNeRF [12] 16.47 / 0.754 14.71 / 0.606 14.94 / 0.272 17.65 / 0.636 17.26 / 0.540 12.59 / 0.537 14.59 / 0.511 16.81 / 0.550

T-NeRF [31] 17.43 / 0.728 17.52 / 0.669 17.55 / 0.367 17.71 / 0.591 19.16 / 0.567 13.71 / 0.570 15.65 / 0.548 16.96 / 0.577

RoDynRF [49] 18.73 / 0.722 18.73 / 0.634 16.71 / 0.321 18.56 / 0.594 17.41 / 0.484 14.33 / 0.536 15.20 / 0.449 17.09 / 0.534

Our 19.53 / 0.691 19.74 / 0.626 17.66 / 0.346 18.11 / 0.601 19.79 / 0.516 14.51 / 0.509 14.48 / 0.430 17.69 / 0.531

the time on the Nvidia Dynamic Scene Dataset. To evaluate the rendering

quality of each method, we employed two widely recognized error metrics:

peak signal-to-noise ratio (PSNR) and perceptual similarity (LPIPS) as de-

fined by [47]. Additionally, due to minor differences observed in our ablation

study’s results, we incorporated the structural similarity index (SSIM) for a

more thorough assessment.

Our method demonstrates significant advancements, outperforming ex-

isting state-of-the-art techniques in five of the seven tested scenarios. This
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Table 4: Evaluation of the whole module, RBCT module, and temporal module on the

Nvidia Dynamic Scene Dataset [44] (Balloon 2 scene).

PSNR↑ SSIM↑ LPIPS↓

A) w/o MV 26.01 0.8330 0.061

B) w/o Four-layer 25.32 0.8205 0.070

C) w/o GSTF 26.73 0.8537 0.051

D) w/o RBCT 26.40 0.8434 0.057

E) w/o Lsmall 26.86 0.8597 0.048

Full 26.86 0.8602 0.048

(a) Whole Module

PSNR↑ SSIM↑ LPIPS↓

A) w/o CTT 26.66 0.8491 0.060

B) w/o RT 26.16 0.8360 0.061

C) w/o GRSPE 26.30 0.8410 0.056

D) RT to CTT 26.69 0.8564 0.048

Full 26.86 0.8602 0.048

(b) RBCT Module

PSNR↑ SSIM↑ LPIPS↓

A) w/o CTT 26.66 0.8491 0.060

B) w/o GSTF 26.76 0.8625 0.050

Full 26.86 0.8602 0.048

(c) Temporal Module

improvement is particularly evident in the average PSNR increase of 1dB

and a notable 20% reduction in LPIPS error, underscoring a substantial en-

hancement in perceptual quality compared to real images. Moreover, we ex-

tended our evaluation following DyCheck’s methodology [31] for the iPhone

dataset, detailed in Table Table 3, where we report masked PSNR and SSIM

scores. Given that a significant number of scenes within this dataset are long

sequences, and considering our method’s limitations in effectively modeling

such sequences, notable improvements are limited. Nevertheless, our method

demonstrates comparable performance to established methods and even ex-

hibits slight enhancements in select scenarios. These outcomes serve as a

compelling demonstration of the superior effectiveness of our framework in

restoring intricate scene content.

4.5. Ablation Study

To validate the effectiveness of our proposed system components, we con-

duct an ablation study on the Dynamic Scene Dataset [44].

4.5.1. Evaluate the whole module
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Figure 7: In the absence of global ray sampling point coordinate embedding, the synthe-

sized view displays stripes.

Figure 8: The qualitative results of the ab-

lation experiments on the Nvidia Dynamic

Scene Dataset [44] (Balloon 1 and Balloon

2 scene). From right to left, showcasing un-

used GSTF module, unused RBCT module,

and the complete model.

In Table 4, we present a de-

tailed comparison between our com-

plete system and its variants, each

lacking a specific module: A)

multi-view aggregation, B) an ad-

ditional four-layer MLP, C) Global

Spatio-Temporal Filter module, D)

Ray-Based Cross-Time Aggregation

Module, and E) regularization scene

flow loss. As indicated in the first

two rows of Table 4, the absence

of multi-view aggregation and the

additional four-layer MLP markedly

diminish the quality of view syn-

thesis, with a decrease in PSNR by

0.75% and 2.61% respectively, and

SSIM by 1.29% and 2.81% respectively. Additionally, LPIPS scores increased
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by 25.00% and 27.08%, signaling a noticeable degradation in image quality

and accuracy. These two components, therefore, are critical in enhancing the

fidelity and precision of the synthesized views. We observe that removing the

Global Spatio-Temporal Filter module and the Ray-Based Cross-Time Ag-

gregation Module also impacts the system’s performance, though to a slightly

lesser extent compared to the first two components, with PSNR decreasing by

2.08% and 0.63%, and SSIM by 2.23% and 0.44% respectively. Additionally,

the removal of the regularization scene flow loss demonstrates a relatively

minor impact on the quality of view synthesis, with a less pronounced de-

crease in performance metrics compared to the other modules. This suggests

that while this component aids in fine-tuning the system, its absence does

not drastically compromise the overall effectiveness.

4.5.2. Evaluate the RBCT module

Furthermore, we investigate the impact of the internal structure of the

RBCT module on the model-view synthesis performance, as summarized in

Table 4. Specifically, we examine the effects of the following variations: A)

without using Cross-time Transformer, B) without using Ray Transformer,

C) without using global ray sampling point coordinate embedding, and D)

using Ray Transformer first, followed by Cross-time Transformer. Excluding

the Cross-time Transformer led to a moderate decline in synthesis quality, as

indicated by a 0.74% decrease in PSNR and a 1.29% drop in SSIM, coupled

with a notable 25% increase in LPIPS. The omission of the Ray Transformer

had a more pronounced impact on performance, with a 2.61% reduction in

PSNR, a 2.82% decrease in SSIM, and a 27.08% rise in LPIPS. This highlights

the Ray Transformer’s critical role in maintaining high-quality synthesis.
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Furthermore, removing the global ray sampling point coordinate embedding

also negatively affected the results, leading to a 2.08% reduction in PSNR,

a 2.23% decrease in SSIM, and a 16.67% increase in LPIPS. Sequentially

applying the Ray Transformer and the Cross-time Transformer slightly im-

proved some metrics compared to using the full module configuration, with

a 0.11% increase in PSNR and a 0.53% rise in SSIM, while maintaining sta-

ble LPIPS. Therefore, our experiments demonstrated that the absence of

key components, especially the Ray Transformer and the global ray sam-

pling point coordinate embedding, significantly compromises view synthesis

quality. In Figure 7, the absence of global ray sampling point coordinate

embedding resulted in stripes in the dynamic synthesis region. Although the

other two experiments have a minimal impact on the model, the differences

are discernible.

4.5.3. Evaluate the temporal module

PSNR↑ SSIM↑ LPIPS↓

w/ GSTF 21.36 0.6597 0.260

w/o GSTF 20.76 0.6129 0.350

Table 5: Evaluation of GSTF module for Dy-

namic region on the Nvidia Dynamic Scene

Dataset [44] (Balloon 2 scene).

To demonstrate the effectiveness

of our proposed frequency-domain

timing module, as summarized in

Table 4. Specifically, A) without

using Cross-time Transformer, B)

Global Spatio-Temporal Filter mod-

ule. The model without CTT shows

a 1.11% improvement in PSNR, a

0.41% improvement in SSIM, and a 33.33% reduction in LPIPS compared to

the full model. Conversely, without GSTF, although the PSNR improves by

0.1%, SSIM increases by 2.34%, and LPIPS decreases by 16.67%. In the Full
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model, we observe more substantial improvements. Compared to A), the Full

model shows a 1.2% increase in PSNR, a 1.11% improvement in SSIM, and

a 20.00% reduction in LPIPS. In comparison to B), the Full model exhibits

a 0.1% increase in PSNR, a 0.23% decrease in SSIM, and a 4.00% reduction

in LPIPS. This indicates that simultaneous utilization of CTT and GSTF

significantly enhances the quality of the novel view, with a more pronounced

improvement in perceptual quality. From the perspective of the error metric,

there may not be a significant disparity between the two approaches, but

utilizing them simultaneously can be complementary and enhance quality of

novel view.

4.5.4. Evaluate the GSTF module

Figure 9: The left is the vanilla feature maps

extracted from Resnet34 [43]. In contrast,

the right displays a feature map refined us-

ing our GSTF module. This comparison

clearly demonstrates that our GSTF module

enhances the extraction of high-frequency de-

tails, such as texture and contour, while ef-

fectively filtering out low-frequency informa-

tion.

In Figure 9, we present a visual

comparison between baseline fea-

tures extracted from Resnet34 and

the features refined by our GSTF

module. Our GSTF is designed with

the specific goal of capturing de-

tailed contours and high-frequency

texture information, ensuring the

preservation of sharp textures in the

reconstructed view. A quantitative

evaluation in Table 5 further under-

scores the impact of the GSTF mod-

ule, particularly in the context of dy-

namic scenes. The results reveal a
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substantial 2.1% increase in PSNR,

a noteworthy 4.68% improvement in SSIM, and a significant 25.38% reduc-

tion in LPIPS when utilizing the GSTF module (w/ GSTF ) compared to

the configuration without GSTF (w/o GSTF ). In Table 4, the GSTF module

makes a marginal contribution to the overall improvement. This is primarily

because our GSTF is applied to dynamic areas, which represent just one-fifth

of the total in the Balloon 2 evaluation scene.

4.5.5. Ablation study qualitative results

Figure 10: Limitations of our model, take the

Nvidia Dynamic Scene Dataset [44] (Balloon

1 and truck scene) as an example.

The Figure 8 illustrates our

primary contributions, the Global

Spatio-Temporal Filter (GSTF) and

Ray-Based Cross-Time (RBCT) mod-

ules. These modules play pivotal

roles in enhancing the quality of syn-

thesized views. In the absence of the

RBCT module, the resulting synthe-

sized view lacks intricate surface de-

tails and may exhibit noticeable ar-

tifacts. Conversely, in the absence of

the GSTF module, the synthesized view experiences a loss of edge informa-

tion, resulting in a perceptible blurring effect.

4.6. Limitations

As shown in Figure 10, compare with the ground truth, we can observe

that in the playground scene, the rendering of the railings and balloon ropes
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appears to be blurred. This is because we are using multi-frame aggregation

of feature vectors, which enables us to aggregate more information but also

results in some details that may be discarded or merged into other features,

making it impossible to fully express the original data. Moreover, due to the

small non-rigid deformations of these parts, our method cannot handle them

well, resulting in blurring when rendering new views. In the truck scene,

we only input the adjacent 2 frames of the current frame. Therefore, when

the time is changed for rendering after the 1st frame with a fixed sequence

number, the synthesis effect of the long sequence of unseen frames is not

optimal. For example, the synthesis result of the 11th frame in the figure

shows that the hidden car behind the truck is very blurred due to the lack

of feature vector information provided by adjacent frames.

5. Conclusion

In this work, we aim to introduce a novel dynamic neural render field

framework for dynamic monocular videos, which enables high-quality ren-

dering of novel views. To achieve this goal, we extend recent ideas in multi-

view aggregation to time-varying NeRF, enabling the modeling of complex

motion. Specifically, we introduce RBCT and GSTF modules to model mo-

tion from the time domain and frequency domain, respectively. Our exper-

imental results show that these proposed modules significantly improve the

performance of time-varying NeRF with multi-view aggregation when ren-

dering new views. While our work represents a promising exploration of

time-varying NeRF for multi-view aggregation, there are still some limita-

tions. It is worth noting that our current method may not perform well when
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rendering novel views of long sequences of videos. One potential solution to

improve performance is to increase the length of the aggregate view, but

this approach requires significant computing resources. Fortunately, recent

developments such as TensoRF and 3D Gaussian splatting offer potential

solutions to these challenges.
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