
Advances in Engineering Software 196 (2024) 103732

A
0

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Enhancing lecture capture with deep learning
R.M. Sales a,b,∗, S. Giani b

a Whittle Laboratory, Cambridge University, Cambridge, United Kingdom
b Engineering Department, Durham University, Durham, United Kingdom

A R T I C L E I N F O

Keywords:
Convolutional neural network
Semantic image segmentation
Binary human segmentation
Learning rate optimisation
Lecture capture technology

A B S T R A C T

This paper provides an insight into the development of a state-of-the-art video processing system to address
limitations within Durham University’s ‘Encore’ lecture capture solution. The aim of the research described in
this paper is to digitally remove the persons presenting from the view of a whiteboard to provide students with
a more effective online learning experience. This work enlists a ‘human entity detection module’, which uses a
remodelled version of the Fast Segmentation Neural Network to perform efficient binary image segmentation,
and a ‘background restoration module’, which introduces a novel procedure to retain only background pixels
in consecutive video frames. The segmentation network is trained from the outset with a Tversky loss function
on a dataset of images extracted from various Tik-Tok dance videos. The most effective training techniques
are described in detail, and it is found that these produce asymptotic convergence to within 5% of the final
loss in only 40 training epochs. A cross-validation study then concludes that a Tversky parameter of 0.9 is
optimal for balancing recall and precision in the context of this work. Finally, it is demonstrated that the
system successfully removes the human form from the view of the whiteboard in a real lecture video. Whilst
the system is believed to have the potential for real-time usage, it is not possible to prove this owing to
hardware limitations. In the conclusions, wider application of this work is also suggested.
1. Introduction

In countries where internet access is almost universal, it has be-
come common practice for higher-education institutions to record
their lectures for students to access online. Whilst expensive software
and/or hardware is often required to ensure that lecture content is
recorded clearly, research generally shows that e-learning technologies
are worthwhile and contribute positively to student learning out-
comes [1]. At Durham University, the ‘Encore’ lecture capture system
is currently only capable of filming and uploading a lecturer’s com-
mentary and visual-projector slides; as of yet, no whiteboard teaching
is recorded. In certain disciplines where whiteboards remain the most
natural means of conveying knowledge and information, i.e. the STEM
subjects, this technological limitation could impact the overall quality
of learning. If teaching staff have to adopt less effective modes of
delivery just to accommodate recording, then the sensible response
would be to upgrade the ‘Encore’ system to capture whiteboards too.
But why stop there? With the accelerated transition towards web-based
learning, brought about in reaction to the Covid-19 pandemic [2], there
has never been a greater need for advanced e-learning technologies.
These circumstances provide the opportunity to further enhance the
‘Encore’ online lecture experience by creating a system that provides

∗ Corresponding author at: Whittle Laboratory, Cambridge University, Cambridge, United Kingdom.
E-mail address: rms221@cam.ac.uk (R.M. Sales).

students with a clear and unobstructed view of the whiteboard at all
times.

In response to this opportunity, the objective of this work was to
develop a real-time video processing system that could be used as part
of the lecture capture process to digitally remove the persons presenting
(the foreground) from the view of a whiteboard (the background). To
achieve this, it was necessary to divide the task into two more clearly
defined sub-tasks: first, to develop a system that can detect the location
of human beings within a frame of video and; second, to develop a
system to restore any whiteboard content that is currently obscured.
These were most easily managed with two separate computational
modules working in tandem.

Module I: Human entity detection
The human entity detection module was introduced to predict

which regions of a video frame are most likely to contain human
beings. There are, of course, several conventional computer vision
algorithms [3–6] that could potentially handle this seemingly straight-
forward task without human supervision. Yet, despite their gener-
ally lower complexity, these have been rendered obsolete due to
breakthrough discoveries in artificial intelligence (AI) over the last
vailable online 29 July 2024
965-9978/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.advengsoft.2024.103732
Received 11 May 2023; Received in revised form 7 July 2024; Accepted 8 July 202
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

4

https://www.elsevier.com/locate/advengsoft
https://www.elsevier.com/locate/advengsoft
mailto:rms221@cam.ac.uk
https://doi.org/10.1016/j.advengsoft.2024.103732
https://doi.org/10.1016/j.advengsoft.2024.103732
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2024.103732&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Advances in Engineering Software 196 (2024) 103732R.M. Sales and S. Giani

l

decade [7–11], as the latter typically offer superior performance in
both accuracy and reliability. The most compelling state-of-the-art
techniques now include variations of object detection and image seg-
mentation, both of which continue to show increasingly promising
results when implemented using deep convolutional neural network
(DCNN) architectures [12]. Whilst there is still considerable room
for improvement in terms of effectiveness and efficiency, the most
recent architectural contributions have demonstrated that real-time
detection and segmentation techniques are now fit for application even
on modest hardware [13]. Primarily because the latter offered greater
predictive exactness than object detection at only a fractionally higher
computational cost, the approach adopted in this work was to develop
a deep-learning-based binary semantic segmentation model.

Module II: Background restoration
The background restoration module was introduced to digitally

reconstruct the regions of the whiteboard that are identified by the
human entity detection module as being obscured. In essence, this
makes it possible to produce video footage where all teaching staff
appear to be removed, provided they have been completely identified
during segmentation. Instead of using complex artificial intelligence
techniques that generate synthetic imagery to replace spatio-temporal
holes in video frames, as in [14,15], a straightforward algorithm was
developed to recover the actual background (the whiteboard) as it was
last observed. In the context of recording a presenter’s writing on a
whiteboard in real-time, this approach is superior in terms of both
accuracy and computational expense: factors that are deemed far more
important than temporal coherence or aesthetics in this work.

Semantic segmentation and related work

Semantic segmentation is the task of assigning a label from a set
of categories, e.g. {‘human’, ‘car’, ‘tree’, ‘background’}, to each pixel
of an input image. Sometimes referred to as ‘‘dense prediction’’, this
is distinct from object detection and instance segmentation since: (𝑖)
it works at the individual pixel level rather than predicting bounding
boxes [16]; and (𝑖𝑖) it does not differentiate between multiple instances
of the same category. By working at the level of pixels, the segmen-
tation process preserves two-dimensional spatial information such as
the input width and height. It is therefore convenient to store the
output predictions as a segmentation mask: a bitmap image in which
the pixel values represent the predicted labels of the output in some
meaningful way. In the specific case of binary segmentation, the num-
ber of recognised categories is reduced to include only ‘true’ or ‘false’,
which this work uses interchangeably to represent ‘human’ and ‘back-
ground’ respectively. To allow for comparison, Fig. 1 presents an image
from the Tik-Tok image dataset [17] alongside its multi-class (multi-
coloured) and binary (black-and-white) segmentation masks. Whilst the
underlying mechanisms are identical, multi-class segmentation makes
superfluous predictions and is rejected in favour of the more efficient
binary approach.

The remainder of this section covers three topics of particular rele-
vance to the human entity detection module: efficient fully-convolutiona
networks (FCNs), accurate encoder–decoder models, and fast multi-
branch models.

Long et al. [18] were among the first to successfully apply FCNs
to semantic image segmentation. With their novel deep ‘skip’ archi-
tecture, which combines features from shallow layers containing fine
appearance information to deep layers containing coarse context in-
formation, they were able to efficiently predict segmentation masks.
Since FCNs are no more than CNNs without fully-connected layers, i.e.
they consist only of convolutional type layers interspaced with pooling
and activation functions, they are able to accept arbitrarily-sized inputs
and produce correspondingly-sized outputs. The main advantage is that
a FCN can be trained end-to-end (and make predictions) on whole-
image inputs, whereas an ordinary CNN cannot. Before this realisation,
2

Fig. 1. A comparison of semantic image segmentation: (i) an image of a person
dancing, alongside its (ii) multi-class ground truth and (iii) binary ground-truth
segmentation masks. Original image sourced from Kaggle [17].

researchers were reliant on slower and less effective patchwise training
and inference methods, with preprocessing and post hoc refinements
such as input shifting with output interlacing. A second advantage in
swapping out fully-connected layers for convolutional ones was the
reduction in network parameters and thus the more efficient learning of
features. In testing, Long et al. achieved state-of-the-art segmentation
on the PASCAL VOC 2011 [19], with inference taking less than one-fifth
of a second.

Not long afterwards, Noh et al. [8] introduced an encoder–decoder
model named DeconvNet. The general architecture, which has since
become a template for accurate segmentation models, combines an
ordinary downsampling convolutional network (an encoder) with a
novel upsampling deconvolutional network (a decoder). The structure
of the encoder, which is a truncated version of VGG-16 [7] with its
fully-connected layers removed, is simply mirrored about its deepest
layer to form the decoder. Instead of convolutional and pooling layers,
Noh et al. [8] proposed deconvolutional and unpooling layers with
switch variables as a means for the decoder to enlarge and densify
activation maps, without losing spatial structure. When applied to
an image, the convolutional network encodes features in the form
of a multi-dimensional feature tensor, which the decoder then uses
to predict a detailed segmentation mask. In a similar way to Long
et al., the filters of the shallowest deconvolution layers capture coarse
regions of shapes, whilst the deepest layers capture more complex
details and patterns. With this novel architecture, DeconvNet claimed
state-of-the-art accuracy performance on VOC 2012 [20].

To address the ever-present tradeoff between inference speed and
segmentation performance, Yu et al. [21] proposed the multi-branch
Bilateral Segmentation Network (BiSeNet). This novel architecture si-
multaneously forward-propagates an input image down two separate
and distinct computational paths, i.e. a spatial path and a context path,
to extract features at multiple scales without compromise. The shal-
lower spatial path employs a stack of three small-stride convolutions
to generate a high-resolution (1/8th-scale) feature map containing rich
detail information. The deeper context path uses the lightweight Xcep-
tion39 [22] module with global average pooling to efficiently encode
high-level semantic context information and provide a sufficiently large
receptive field. On top of these paths, Yu et al. introduce a new ‘Feature
Fusion Module’ as a means to efficiently combine the differently-scaled
feature outputs. By considering these at two distant spatial levels,
BiSeNet is able to capture the complementary information required to
predict detailed and accurate segmentation masks. Despite requiring
a complex training strategy with multiple loss functions, Yu et al.
managed to achieve 68.4% intersection over union (IOU) at 105 frames
per second when being tested at full-resolution on the CityScapes test
dataset [23].

In the remainder of this paper, Section 2 presents the theory and
methods used to develop the human entity detection and the back-
ground restoration modules; Section 3 gives a comprehensive account



Advances in Engineering Software 196 (2024) 103732R.M. Sales and S. Giani
Fig. 2. The human entity detection module is a remodelled version of Fast-SCNN [24] designed specifically for real-time binary semantic image segmentation. The tensor dimensions
show the remodelled network configured at 1/4 resoltion (512 × 256px).
of the experimental procedure used in training and testing; Section 4
presents and comments on the most relevant results, comparing these to
the state-of-the-art; while the Conclusions also suggest potential future
work.

2. Theory and methods

2.1. Human entity detection

The human-entity detection module (Fig. 2) is essentially a remod-
elled version of the state-of-the-art Fast Segmentation Neural Network
(Fast-SCNN) developed by Poudel et al. [24]. This network was cho-
sen as a starting point for several reasons: it is designed specifically
for faster than real-time semantic image segmentation; its capabilities
extend well to high-resolution images; and with only 1.11 million
parameters, it is well suited for deployment on general-purpose com-
puter hardware. In testing, the original Fast-SCNN has been shown to
achieve an astonishing 68% mean average precision (mAP) at 123.5
frames per second when performing segmentation at full resolution
(2048 × 1024px) on the CityScapes benchmark server [23]. Although
newer and potentially more advanced models have since been intro-
duced, this four-year-old network (December, 2023) remains highly
competitive in terms of accuracy, runtime and computational cost. This
enduring high level of performance can largely be attributed to the very
efficient arrangement of network modules and the authors’ intentional
use of low-memory components.

Fast-SCNN is a fully-convolutional neural network that embeds a
deep two-branch structure centrally within an encoder–decoder model.
Poudel et al. group this architecture into four back-to-back modules
which, from input to output, include: a novel ‘learning to downsample’
(LTD) module, a global feature extractor (GFE), a feature fusion module
(FFM), and a classifier.

2.1.1. Learning to downsample module
The LTD module employs a standard convolutional layer followed

by two depthwise separable convolutional layers, each with stride 2,
as a means of efficiently downsampling the input image. In imitation
of the spatial path from [21], this shallow block of layers quickly
and efficiently encodes rich detailed information at a high resolution.
Whereas two-branch-only architectures tend to extract similar low-level
features in the first few layers of each branch separately, the LTD
module computes features to be used in both branches simultaneously.
Not only does this arrangement efficiently share the most expensive
computation between the low and high-level branches, but it also saves
memory by reducing the spatial dimensions of the input to the GFE
by a factor of 8. The low-level output features from the LTD module
are to be passed directly into the GFE via an encoder–decoder-like skip
connection.
3

2.1.2. Global feature extractor
The GFE forward propagates high-resolution features from the

LTD module down shallow (high-resolution) and deep (low-resolution)
branches simultaneously. Since the spatial detail needed to recover
object boundaries is already extracted at this depth, the shallow branch
directly transmits its input to the FFM without modification. At the
same time, the deeper branch employs nine residual bottleneck mod-
ules, each with large receptive fields, in order to extract the high-level
coarse features required to convey global context information. These
residual bottleneck modules are adapted from MobileNet-V2 [25] and
use efficient depthwise separable convolutions to reduce the total
number of trainable parameters and FLOPS. At the end of the deep path,
Poudel et al. attach a spatial pyramid pooling (SPP) block, inspired by
Zhao et al. [26], as a means of aggregating context from various spatial
regions.

2.1.3. Feature fusion module
Both branches from the GFE meet in the FFM. It is here that

spatial detail is efficiently combined with context information, which is
necessary to produce detailed and accurate segmentation masks. A com-
bination of bilinear upsampling and convolutional type layers condition
the high-level and low-level feature maps into identically sized tensors
for their subsequent elementwise addition. In Fast-SCNN, addition is
the preferred method of fusion since it introduces no parameters and
has minimal computational cost.

2.1.4. Classifier
The feature map from the FFM enters the shallow and thus efficient

decoder-like classifier at 1/8th of the original input resolution. The
classifier employs two depthwise separable convolutional layers and
one pointwise convolutional layer, all with stride 1, so as to produce
a single-channel activation map of the same spatial dimensions. This
activation map is then enlarged by a factor of 8 via an upsampling
layer with bilinear interpolation, after which the final sigmoid layer
generates a detailed and accurate binary segmentation mask.

2.1.5. Remodelling fast-SCNN
The original Fast-SCNN model achieves faster than real-time per-

formance on an Nvidia Titan XP card with 12 GB of GDDR5 memory.
However, a number of modifications must be made to prepare it for
real-time segmentation on general-purpose hardware. If it were config-
ured at full-resolution on a lesser GPU, the concern is that Fast-SCNN
would take approximately 48 h to train and would be incapable of
making real-time predictions. The solution was simply to trade detail
for efficiency and reconfigure the model to accept 1/4 resolution inputs.
At a reduced size of 512 × 256px, each image demands only 1/16th of
its original memory footprint and thus inference becomes quicker and
training with large batches becomes more accessible.

A change of size would ordinarily pose no issue for a FCN. However,
Fast-SCNN uses a spatial pyramid pooling (SPP) block with fixed bin



Advances in Engineering Software 196 (2024) 103732R.M. Sales and S. Giani
Fig. 3. A black-box depiction of the flow of video frame information via the two
parallel computational modules (photograph of Dr C. Balocco kindly provided by Dr
S. Giani.).

sizes. The original authors provide no information on how to implement
this at any resolution, and so this work elects to build a compatable,
1/4 resolution, and memory efficient SPP block based on the 4-layer
pyramid of Zhao et al. [26]. This employs 2D average pooling with
variable stride and dynamic pool-size as a means to aggregate gridded
subregions of the input feature tensor. Four parallel layers with bins
arranged in 12, 22, 42, and 82 grids divide context information in both
spatial dimensions; a pointwise convolutional layer then condenses the
number of channels of each bin by a factor of its spatial size. Having
weighted each bin equally in terms of parameters, the features are
then upsampled with bilinear interpolation and concatenated with the
original SPP input.

The final change was the addition of dropout between the last
two depthwise separable convolutional layers so as to prevent co-
adaptation of features in the classifier. The dropout parameter was
set to a value of 0.3 during training to provide regularisation and
protect against overfitting [27]. In line with the original Fast-SCNN,
the remodelled version is very lightweight with just over 1.16 million
trainable parameters. The authors are pleased to provide additional
details upon request.

2.2. Background restoration

From a ‘black-box’ perspective, the background restoration module
sequentially accepts a stream of two inputs, 𝑥𝑡 and 𝑥∗𝑡 , from which
it generates one stream of outputs 𝑦𝑡. An additional internal vari-
able also functions with the sole purpose of retaining only the most
recent output, 𝑦𝑡−1, once it is brought into existence. The inputs in-
clude a three-channel RGB image, received directly from the camera,
and its corresponding single-channel grayscale segmentation bitmap,
as predicted by the human entity detection module. The restoration
module operates on information from both inputs, as well as the
internal variable and outputs a single three-channel image, for which
the background has been reconstructed, to the real world. The flow
of information through this computational module is shown diagram-
matically in Fig. 3. As this system operates on video, i.e. a sequence
of images and segmentation bitmaps, this procedure is simply repeated
for each successive frame of footage.

The restoration algorithm works by updating each pixel of each
channel of the internal variable 𝑦𝑡−1 to its most recently captured state
in 𝑥𝑡, provided that pixel does not fall within the obscured region
defined in 𝑥∗𝑡 . To be clear, 𝑦𝑡−1 is an ordinary RGB image containing
only the most recently unobstructed pixel values from the current set
of input images, 𝑋𝑡, where it is possible. Once this internal variable
has been updated, it is output as 𝑦𝑡. The result of multiple image
inputs is a sequence of video frames where all pixel regions containing
human entities have been replaced by the most up-to-date version of
the background they are currently obscuring. Conceptually, this is akin
to an ‘invisibility cloak’. When initialised, the background restoration
4

module produces an output frame, 𝑦0, that is identical to the original
input image, 𝑥0. Since the system begins with no prior knowledge as
to the view behind any obstructions, it must output what it ‘sees’.
Eventually, as the human entities move within, or even out of the
frame, the whole background is revealed and the module can output
a frame containing no obstructions at all. While the camera remains
stationary, which for most lecture-capture settings it will, this method
should produce no distortion.

The fact that images are digitally expressed as matrices with real-
integer entries makes them particularly well suited for both linear
algebraic transformations and bitwise boolean operations. In each of
the three channels, pixels have standard 8-bit unsigned integer lumi-
nance values ranging from 000000002 to 111111112 inclusive whereas
binary masks have binary values scaled up to 8-bits unsigned inte-
gers: either 000000002 or 111111112. Computationally, this makes the
procedure of updating pixels relatively straightforward. To begin, a
bitwise NOT operator is applied to the segmentation mask, 𝑥∗𝑡 , in
order to generate a temporarily inverted version where the foreground
and background pixel values are switched. A bitwise AND operator
then applies this inverted mask, independently and sequentially, to all
pixels of all three channels of the current input image. This produces
a modified image where the values of all pixels containing persons
are zeroed and those containing the background are unaltered. An
identical process takes place with the unaltered mask and the previous
output frame to produce an image where only the ‘old’ pixels in the
current region containing persons are preserved. As the disjoint union
of the non-zero regions of these images partition the domain, these
need only be summed to produce the new output frame. The following
pseudocode block, developed in this work, summarises the restoration
algorithm more formally.
Algorithm 1: The background restoration procedure.
Input : An image, 𝑥𝑡, and its predicted binary segmentation mask

𝑥∗𝑡 .
Output: An image, 𝑦𝑡, with its background restored.

for (𝑥𝑡, 𝑥∗𝑡 ) ∈ {(𝑥0, 𝑥∗0), (𝑥1, 𝑥
∗
1),… , (𝑥𝑛, 𝑥∗𝑛)} do

if 𝑡 = 0 then
𝑦𝑡 ← 𝑥𝑡

else
𝑦𝑡 ← UpdateFrame(𝑥𝑡, 𝑥∗𝑡 , 𝑦𝑡−1)

end
return 𝑦𝑡

end

Function UpdateFrame(𝑥𝑡, 𝑥∗𝑡 , 𝑦𝑡−1):
return ((𝑥𝑡 AND NOT 𝑥∗𝑡 ) ADD (𝑦𝑡−1 AND 𝑥∗𝑡 ))

end

To aid understanding, the restoration procedure for a single itera-
tion is depicted in diagrammatic form in Fig. 4.

2.3. Evaluation metrics

Before reporting the results, it is important to make clear which
metrics are genuinely useful in assessing the predictive performance
of the human entity detection module. In the context of binary image
segmentation, which is technically an extension of binary classification,
the binary accuracy metric provides relatively little valuable insight
since it is heavily reliant on the two classes being well-balanced [28].
To illustrate this point: if only 5% of an image contains pixels belonging
to the class ‘human’, then a model that always classifies the whole
image as ‘background’ would claim to achieve 95% binary accuracy.
This is clearly counterproductive as this ‘‘highly accurate’’ model is
equivalent to having no model at all. By basing the entire metric on the
absolute number of true positives and true negatives, binary accuracy
fails to draw any attention to the relative proportion of prediction



Advances in Engineering Software 196 (2024) 103732R.M. Sales and S. Giani
Fig. 4. The first cycle of the background restoration procedure: (bottom left) the
current mask capturing the first frame foreground, (bottom centre) the current mask
inverse capturing the second frame background, and (bottom right) a summation of the
two. Green and red outlines show the dancer’s position in the first and second frames
respectively. What remains of the foreground after one cycle is shaded blue.

errors, i.e. false positives and false negatives. In response to these
shortcomings, this study elects to use recall and precision metrics [29],
both of which are based on relative predictive performance:

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

and Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(1)

where 𝑇𝑃 , 𝐹𝑁 and 𝐹𝑃 are the numbers of pixels in a binary segmen-
tation mask that correspond to true positive, false negative and false
positive predictions respectively. When used in the context of this work,
recall quantifies the proportion of ground-truth human pixels that are
correctly identified as human, and precision quantifies the proportion
of all predicted human pixels that are correctly identified. In other
words, a model can have 100% recall regardless of the number of
false positive predictions provided it predicts every single human pixel.
Equally, a model can have 100% precision regardless of the number of
false negative predictions if it never predicts a non-human pixel. It is
technically possible to have a model that achieves both, i.e. it predicts
exactly ground truth, although this would be very unlikely. Clearly,
neither of these metrics is very useful on its own: instead, it is standard
practice to combine the two in a Dice Similarity Coefficient (DSC) [29],
which is defined as the harmonic mean of recall and precision:

DSC = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(2)

When training a segmentation model using real image data, there
exists a tradeoff between recall and precision that limits the ability
to maximise both simultaneously. The DSC is one way of finding
the balance point in this tradeoff if false positive and false negative
predictions are equally undesirable. Unfortunately, in the context of
this work, they are not. From a viewing student’s perspective, false
positive predictions go unnoticed whereas false negative predictions
pose a distraction. In other words, it would be acceptable for the model
to over-predict (high recall), but not to under-predict (high precision).
For these reasons, it is important to consider recall, precision and DSC
jointly.

3. Experimental procedure

This section addresses four technical points concerning the exper-
imental procedure: information regarding the feasibility of transfer
5

learning; the methods of training; details of implementation; and the
dataset.

3.1. Transfer learning

Transfer learning can often be used to leverage the positive training
outcomes of one study to the benefit of another [30]. The basic frame-
work involves finding a pre-trained model that works well on a similar
task, then re-initialising or fine-tuning certain parts of that model to
perform a more specific task. Not only can this technique hugely reduce
training times, but it can also provide a means to solve many specific
problems well, even with small quantities of training data. Unfortu-
nately, since no pre-trained versions of the Fast-SCNN network [24]
have yet been published, this work was obliged to train its human-
entity detection module from scratch. There are, however, several
advantages in this: not only did it provide the opportunity to modify
the underlying architecture without constraint, but it also allowed for
greater control over the most influential training hyperparameters.

3.2. Training

An empirical technique proposed by Smith [31] was used ahead
of training to quickly estimate reasonable lower and upper bounds
for the learning rate hyperparameter. This involved measuring batch
loss metrics for several hundred training batches whilst monotonically
increasing the learning rate from small to large values. The optimal
learning rate range was then obtained by plotting loss vs. the logarithm
of learning rate and identifying the region of greatest negative slope,
i.e. the steepest consistent drop in loss. This investigation revealed that
learning rates at or above 1 × 10−5 would ensure reasonable training
times and that rates at or below an upper bound of 2×10−1 would avoid
divergence in most circumstances. It is important to note that these
findings will vary considerably depending on the choice of network,
loss function, dataset, and batch size and are by no means a guideline
for other studies.

Following the recommendations of Poudel et al. [24], the Fast-SCNN
based human-entity detection module was trained using stochastic gra-
dient descent (SGD) with a momentum parameter of 0.9 for a total of
160 epochs. All experiments were run at quarter-resolution with a batch
size of 32. A learning rate scheduler was added and used throughout
training to implement a technique known as ‘learning rate annealing’.
This involved progressively decaying the learning rate between the
above-stated upper and lower bounds according to a degree-two poly-
nomial function. The intuition behind this was to transition from large
update steps that quickly but coarsely improve the initial parameter
values to smaller update steps that slowly converge towards locally
optimal values with much more exactness. Despite its relative simplicity
compared to adaptive or cyclical learning rate policies, in practice,
annealing is found to be one of the most reliable and effective means of
obtaining faster asymptotic convergence at no cost to test performance.

3.3. Loss function

Nearly all loss functions used in binary segmentation quantify the
agreement between predicted segmentation masks and their ideally
expected results, i.e. the ground truths, by considering each pixel
prediction as an independent binary classification [32]. As a result,
many contain mathematical terms that reflect the relative pixel-based
frequency of each of the four binary predictive outcomes: true positive,
true negative, false positive, and false negative. In the context of this
work, false negative predictions are highly undesirable since these
result in contamination of the output. Clearly, it is a benefit to train
using a loss function that allows the user to scale the importance of each
outcome individually. With this in mind, the human-entity detection



Advances in Engineering Software 196 (2024) 103732R.M. Sales and S. Giani
Table 1
Reference training settings and hyperparameters.

Hyperparameter Description

Optimiser SGD (with momentum = 0.9)
Learning rate 2.0 × 10−1 at start → 1.0 × 10−5 at finish
Scheduler Degree-two polynomial LR decay
Loss Tversky loss function (with 𝛽 = 0.9)
Duration 160 epochs + early stopping
Batch size 32

module was optimised using a parametric loss function based on the
popular Tversky Index [33]:

𝑇 𝐼 =
∑

𝑦𝑖�̂�𝑖
∑

𝑦𝑖�̂�𝑖 +
∑

𝛽𝑦𝑖(1 − �̂�𝑖) +
∑

(1 − 𝛽)(1 − 𝑦𝑖)�̂�𝑖
(3)

where 𝑦𝑖 is a normalised true pixel value {0, 1}, �̂�𝑖 is a normalised
predicted pixel value [0, 1], and 𝛽 is an adjustable weight coefficient
[0, 1]. The overall loss metric for each iteration is simply computed by
averaging the complement of the aforementioned Tversky Index over
the current training batch. A series of experiments on the validation
set revealed that setting 𝛽 = 0.9 leads to the desired balance between
precision and recall. For the full details of hyperparameter tuning, refer
to Section 4.1. For ease of reference, the most relevant training details
are summarised in Table 1.

3.4. Implementation

The remodelled Fast-SCNN architecture was built and trained in a
Python Jupyter Notebook using the TensorFlow 2.0 machine learning
library and Keras API. All training experiments were conducted over the
internet on free-to-use cloud-based virtual machines hosted by Google
Colab. Whilst this free service did not guarantee specific hardware
availability, the GPUs available included Nvidia K80s, T4s, P4s, and
P100s (up to 24 GB with 4992 CUDA cores) running both CUDA v11.2
and cuDNN for acceleration.

The complete system, which incorporates both the trained human
entity detection module and background restoration module, is an
ordinary Python script that was developed and tested in the Spyder
IDE using the OpenCV real-time computer vision library. All benchmark
experiments were run locally on a laptop installed with an Intel Core
i7 CPU, 8 GB of RAM, and an Nvidia Quadro P520 GPU (up to 2 GB
with only 384 CUDA cores) running CUDA v11.1 and cuDNN.

3.5. The dataset

The segmentation network was trained on a dataset of 2615 finely-
annotated high-resolution images extracted from a number of
anonymised Tik-Tok dance videos. The raw images were sourced from
a publicly available Kaggle archive [17] under a creative commons
license and, in general, depict at least one entirely unobscured indi-
vidual in a complex or unique dance pose. At a glance, there appears
to be a good balance of indoor and outdoor scenes, containing both
male and female individuals in bright and dark lighting conditions. The
segmentation masks also contain a good distribution of black and white
pixels with neither overpowering the other. To make the dataset usable,
each image-mask pair was standardised and then partitioned into one
of the training, testing or validation sets according to an 80:10:10
split. Standardisation included the resizing of each image-mask pair
to fit within a multiple of the network’s input resolution, namely
1024 × 512px, followed by some horizontal or vertical translation.
To prevent distortion, a common scaling factor was applied in both
directions and zero-padding was used to bulk out the surplus area.
To discourage the SPP layer from favouring central pixel sub-regions,
6

random samples from a uniform distribution were used to determine
Table 2
Reference Tik-Tok dataset augmentation details.

Augmentation Details/sample bounds

Rotation ±5 degrees in either direction
Zoom 40% enlarged → 100% unchanged
Height shift ±20 percent image height
Shear ±20 percent in any direction
Brightness 40% as bright → 50% brighter
Horizontal flip randomly applied

the extent of each translation. Both interventions aim to maximise the
model’s predictive ability over a wider range of use cases.

It is important to note that each image is a sample extracted
from a relatively small set of videos. Clearly, this will mean that
multiple images share broadly the same lighting, scenery, background,
and camera perspective. To combat this homogeneity and thus avoid
overfitting during training, extensive data augmentation techniques
were employed [34]. A mix of geometric transformations (translations,
rotations, zooms, shears, horizontal flips) and colour augmentations
(brightness scaling) were used to artificially increase the size and
overall quality of the training dataset. For ease of reference, the exact
augmentation details are summarised in Table 2.

4. Results and discussion

4.1. Training analysis

Training at one-quarter resolution on a Google Colab cloud-based
virtual machine took between five and six hours, with each epoch de-
manding approximately two minutes of computation. Multiple training
sessions were needed to fine-tune the hyperparameter values. Fig. 5
presents the training and testing curves for the loss, recall and precision
metrics corresponding to the best performing training session (see 4.2).
In this case, the hyperparameters and dataset augmentations were set
according to Table 1 and Table 2 respectively, and the Tversky loss
parameter was 0.9 throughout.

The training metrics consistently followed characteristic learning
trajectories as the model became increasingly exposed to the segmen-
tation task. By the end of the first training epoch, the Tversky loss
had already improved from a value of 1 to a value of approximately
0.47. In the same timeframe, the recall and precision metrics increased
from 0 to about 0.90 and 0.21 respectively. Within 40 epochs, each
metric had settled to within 5% of its final value. This unusually fast
convergence is largely attributed to the efforts made in finding optimal
upper and lower bounds for the learning rate hyperparameter, as well
as the adoption of an effective polynomial learning rate annealing
strategy. Apart from the anomalous spikes in loss at epochs 40 and 59,
the training curve shows no sign of divergence; and instead converges
asymptotically until training ends. This asymptotic nature indicates that
the model was incapable of further learning and confirms that 160
epochs were sufficient to avoid underfitting. The key points of note are
the usefulness of Smith’s method [31] in determining an optimal range
of learning rates, and the importance of a learning rate scheduler.

None of the test metrics showed any sign of improvement for the
first four training epochs, but all increased to surpass their training
counterparts by the end of epoch 9. This early ‘lag’ was observed at
the start of all sessions and would typically worsen at decreased initial
learning rates. In the absence of any similar results in the literature,
it is hypothesised that this phenomenon is connected to the high data
variance and relatively low number of images in the test dataset. From
epoch 9 onwards, both test loss and recall remained high relative
to training, whereas test precision fell and remained below training
precision. Generally, the test curves follow the same trajectory as the
training curves but with a small and broadly constant generalisation

gap. For both loss and recall, this gap should not be mistaken with



Advances in Engineering Software 196 (2024) 103732R.M. Sales and S. Giani
Fig. 5. Training and testing curves of loss (left), recall (centre) and precision (right) for the best performing training run.
Fig. 6. A cross-validation study on the effect of varying the Tversky loss function parameter (𝛽) between 0.1 and 0.9.
overfitting. Data augmentations were intentionally applied only to the
training dataset to allow for fair comparison between augmentation
settings. As a corollary, the model performed well on test images
with better per-epoch loss on the testing dataset. If the model were
overfitting on these two metrics, this gap would be positive, i.e. the
test loss and recall would be worse than the training loss and recall,
but this was not the case. There is, however, evidence to suggest that
the model overfits in terms of precision, as can be seen by the positive
generalisation gap in the lower subfigure of Fig. 5. Considering that the
Tversky loss function parameter (𝛽) was set to a value of 0.9 for this
particular training session, i.e. the objective was to favour recall over
precision, this seems perfectly reasonable. These results demonstrate
that the segmentation model trades generalisation in terms of precision
for generalisation in terms of recall, thus highlighting the importance
of the loss function in conveying the training objective.

4.2. Accuracy analysis

The sole purpose of hyperparameter fine-tuning is to find the hy-
perparameter values that yield the most optimal system, either directly
through training or indirectly through transfer learning. In this work,
the main aim was to identify a value for the Tversky loss parameter
that would result in a model best suited to the requirements of the
human entity detection module. Of primary interest was the balance
point between recall and precision. Fig. 6 shows the validation metrics
for a family of nine training experiments in which the Tversky loss
parameter was iterated through the set {0.1, 0.2, 0.3, . . . , 0.9}. In
each of these experiments, the human entity detection module was
trained from the outset for the entire 160 epoch duration, with all other
hyperparameters fixed. Each of the segmentation models were then
evaluated on the same validation dataset with no data augmentations.

The validation results exemplify the nature of the recall-precision
tradeoff and clearly demonstrate that it would not be possible to
train the segmentation model to maximise both metrics simultaneously.
Since the recall curve exhibits monotonic increasing behaviour and
the precision curve exhibits monotonic decreasing behaviour, both as
functions of the Tversky loss parameter, there is no increment in which
these improve together. The recall and precision metrics intersect at
𝛽 ≈ 0.4, i.e. slightly to the left of centre on the 𝑥-axis, which indicates
7

that either the model or the dataset is predisposed to generate more
false positives than false negatives. As anticipated, training with lower
values of 𝛽 leads to models with higher precision than recall, while
training with higher values of 𝛽 leads to models with higher recall than
precision. The maximum values of recall and precision were found to be
0.971 and 0.920 respectively. Although not included in Fig. 6, values at
either of the extremes were found to encourage fully-saturated outputs:
for 𝛽 = 0, the model learned to predict all pixels as false, while for 𝛽 = 1,
the model learned to predict all pixels as true. These findings embody
the issue of saturation raised in [29] since extreme parameter values
lead to loss functions that depend on precision or recall, but not both.

The Dice Similarity Coefficient (DSC) and Tversky Index (TI) amal-
gamate recall and precision to allow for model comparison using a
single representative value. The difference between the metrics is that
unlike the DSC, the TI weights false positive and false negative out-
comes relative to the Tversky loss parameter. Even with these metrics, it
is not clear which value of the loss parameter is best. The DSC achieved
a maximum value of 0.861 when 𝛽 = 0.4, and decreased continuously
towards each extreme, thus forming a peak-shaped profile. This de-
crease is noticeably steeper for higher values of 𝛽 as precision is lost
increasingly on that side of the domain: a minimum DSC of 0.728 was
achieved when 𝛽 = 0.9. In contrast, the TI achieved a minimum value of
0.857 when 𝛽 = 0.3, and increased to higher values in both directions,
thus forming a valley-shaped profile. This increase is noticeably steeper
for higher values of 𝛽 as the recall is highest on that side of the domain
and precision contributes very little to the TI: a maximum value of
0.912 was achieved when 𝛽 = 0.9.

Fig. 7 presents segmentation masks for models trained with five dif-
ferent Tversky loss parameter values, facilitating visual comparison and
providing justification for the preference of the TI over the DSC. No-
tably, at 𝛽 = 0.4, favoured by the DSC, the predicted segmentation mask
exposes almost the entire arms and feet of the ground truth subject.
In contrast, at 𝛽 = 0.9, favoured by the TI, the predicted segmenta-
tion mask fully encapsulates the subject’s entire body. Overlaying the
ground truth segmentation masks onto predicted segmentation masks
reveals that, for this specific application, higher recall is beneficial in
minimising output contamination. Given that only the segmentation
mask corresponding to 𝛽 = 0.9 fully encapsulates the ground truth, it is



Advances in Engineering Software 196 (2024) 103732R.M. Sales and S. Giani
Fig. 7. Binary segmentation masks for various settings of the Tversky loss parameter (𝛽). Original image from Kaggle [17].
Fig. 8. The complete system in action: (top row) still-image frames extracted from footage; (centre row) the corresponding raw system output; and (bottom row) the raw system
output with added dilation.
concluded that 0.9 is the most suitable Tversky loss parameter for the
human entity detection module.

4.3. Runtime benchmarking

The ‘complete system’ refers to the human entity detection and
background restoration modules, connected as shown in Fig. 3, with
resampling added on either side of the CNN. In all benchmarking
experiments, the segmentation model was trained with 𝛽 = 0.9 and with
all other hyperparameters and augmentations as described in Section 3.
When presented with any high-resolution video input, the complete
system will, so far as possible, compute and return a corresponding
high-resolution video output with all presenters removed. Fig. 8 dis-
plays individual frames taken from a typical lecture recording, both
before and after these were processed by the complete system. An
additional row of differently processed images is included in Fig. 8
to show the effect of ‘dilating’ binary masks prior to background
restoration. This drop-in ‘dilation’ feature simply convolves the segmen-
tation output with a 10-pixel-diameter kernel as a means of thickening
the outline of human forms without disproportionately increasing the
number of false positive outcomes.

Having inspected each of the video frames, it appears the system
successfully and consistently removes the presenter from the view of
the whiteboard. Whilst there are some ‘ghost pixels’ that follow the pre-
senter in a number of the output frames, these only appear in relatively
low numbers and do not impact greatly on the viewing experience. By
introducing dilation, these unwanted pixels are removed completely
(neglecting shadows) and the whiteboard can be seen clearly in all
examples.

The system demanded 2.32 GB of GPU memory during testing,
which was 0.32 GB more than the available hardware could provide,
and therefore was unable to run at full speed. To be considered as
real-time, the system’s combined per-frame inference and compute
times would need to translate to a frame rate greater than or equal to
typical video frame rates, i.e. 30 frames per second (FPS). By unloading
computation to the CPU, it was only possible to achieve a modest 10.98
8

FPS, regardless of dilation. This system could arguably be run in real-
time [24] with either slightly more computational power, or network
quantisation.

5. Conclusions

In the introduction to this paper, the separate roles of the "human
entity detection" and "background restoration" modules were defined.
In Section 2, the Fast Segmentation Neural Network [24] was then
described. This model was adapted to make its application to real-
time image segmentation more computationally efficient. Following
this, Section 3 provides an account of the most effective training
techniques as well as any relevant implementation details. Lastly, Sec-
tion 4 presents and critically assesses the key experimental results.
Overall, the research work described in this paper has demonstrated
the following:

• A system capable of removing presenters entirely from the view
of a whiteboard in lecture videos. This system is demonstrated in
almost (one-third) real-time.

• The importance of selecting a loss function that can be calibrated
to a specific learning objective. In this work, the Tversky loss pa-
rameter, 𝛽, was successfully used to fine-tune recall and precision
for the desired effect.

• The benefits of Smith’s method [31] in locating the optimal
learning rates prior to training, then applying these via a learning
rate scheduler. Convergence to within 5% was observed in 40
epochs as a result of these efforts.

• A novel procedure, using an algorithm expressed in pseudocode
form (Algorithm 1), that efficiently combines and updates video
frame pixels according to binary masks predicted by an artificial
intelligence segmentation model.

Future work should consider quantisation of the model to reduce
the GPU load to an acceptable level. Further testing would then be
required before introducing the system to Durham University’s ‘Encore’
system. In other fields, this work may offer development opportunities
in relation to wider education/presentation systems, as well as any



Advances in Engineering Software 196 (2024) 103732R.M. Sales and S. Giani
system where unwanted elements need to be removed from video
images.

CRediT authorship contribution statement

R.M. Sales: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Methodology, Investi-
gation, Formal analysis, Data curation, Conceptualization. S. Giani:
Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] Robertson B, Flowers MJ. Determining the impact of lecture videos on student
outcomes. Learn Teach 2020;13(2):25–40.

[2] Louis-Jean J, Cenat K. Beyond the face-to-face learning: A contextual analysis.
Pedagogical Res 2020;5(4):em0077.

[3] Nock R, Nielsen F. Statistical region merging. IEEE Trans Pattern Anal Mach
Intell 2004;26(11):1452–8.

[4] Tao W, Jin H, Zhang Y. Color image segmentation based on mean shift and
normalized cuts. IEEE Trans Syst Man Cybern B 2007;37(5):1382–9.

[5] Plath N, Toussaint M, Nakajima S. Multi-class image segmentation using condi-
tional random fields and global classification. In: Proceedings of the 26th annual
international conference on machine learning. ACM Press; 2009, p. 817–24.

[6] Zhao C. Image segmentation based on fast normalized cut. Open Cybern Syst J
2015;9:28–31.

[7] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. In: Bengio Y, LeCun Y, editors. 3rd international conference
on learning representations, conference track proceedings. 2015, URL http://
arxiv.org/abs/1409.1556.

[8] Noh H, Hong S, Han B. Learning deconvolution network for semantic segmenta-
tion. In: 2015 IEEE international conference on computer vision. IEEE Computer
Society; 2015, p. 1520–8.

[9] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomed-
ical image segmentation. In: 18th international conference of medical image
computing and computer-assisted intervention. Springer; 2015, p. 234–41.

[10] Paszke A, Chaurasia A, Kim S, Culurciello E. ENet: A deep neural network
architecture for real-time semantic segmentation. 2016, CoRR arXiv:1606.02147,
URL http://arxiv.org/abs/1606.02147.

[11] Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D. Image
segmentation using deep learning: A survey. 2020, CoRR arXiv:2001.05566, URL
https://arxiv.org/abs/2001.05566.

[12] Liu L, Ouyang W, Wang X, Fieguth PW, Chen J, Liu X, et al. Deep learning for
generic object detection: A survey. Int J Comput Vis 2020;128(2):261–318.

[13] Takos G. A survey on deep learning methods for semantic image segmentation
in real-time. 2020, CoRR arXiv:2009.12942, URL https://arxiv.org/abs/2009.
12942.
9

[14] Newson A, Almansa A, Fradet M, Gousseau Y, Pérez P. Towards fast, generic
video inpainting. In: Proceedings of the 10th European conference on visual
media production. ACM Press; 2013, p. 1–8.

[15] Kim D, Woo S, Lee J-Y, Kweon IS. Deep video inpainting. In: 2019 IEEE/CVF
conference on computer vision and pattern recognition. IEEE; 2019, p. 5785–94.

[16] Zou Z, Shi Z, Guo Y, Ye J. Object detection in 20 years: A survey.
2019, arXiv e-prints arXiv:1905.05055, URL https://ui.adsabs.harvard.edu/abs/
2019arXiv190505055Z.

[17] Segmentation Full Body TikTok Dancing Dataset, URL https://www.kaggle.com/
tapakah68/segmentation-full-body-tiktok-dancing-dataset.

[18] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic seg-
mentation. In: 2015 IEEE conference on computer vision and pattern recognition.
IEEE; 2015, p. 3431–40.

[19] Everingham M, Van-Gool L, Williams CKI, Winn J, Zisserman A. The PASCAL
Visual Object Classes Challenge 2011 (VOC2011) Results.

[20] Everingham M, Van-Gool L, Williams CKI, Winn J, Zisserman A. The PASCAL
Visual Object Classes Challenge 2012 (VOC2012) Results.

[21] Yu C, Wang J, Peng C, Gao C, Yu G, Sang N. BiSeNet: Bilateral Segmenta-
tion Network for Real-Time Semantic Segmentation. In: Ferrari V, Hebert M,
Sminchisescu C, Weiss Y, editors. 15th European conference of computer vision,
proceedings, part XIII. Lecture notes in computer science, Vol. 11217, Springer;
2018, p. 334–49.

[22] Chollet F. Xception: Deep learning with depthwise separable convolutions.
In: 2017 IEEE conference on computer vision and pattern recognition. IEEE
Computer Society; 2017, p. 1800–7.

[23] Cordts M, Omran M, Ramos S, Rehfeld T, Enzweiler M, Benenson R, et al.
The cityscapes dataset for semantic urban scene understanding. In: 2016 IEEE
conference on computer vision and pattern recognition (CVPR). IEEE Computer
Society; 2016, p. 3213.

[24] Poudel RPK, Liwicki S, Cipolla R. Fast-SCNN: Fast semantic segmentation
network. In: 30th british machine vision conference. BMVA Press; 2019, p. 289,
URL https://bmvc2019.org/wp-content/uploads/papers/0959-paper.pdf.

[25] Sandler M, Howard AG, Zhu M, Zhmoginov A, Chen L. MobileNetV2: Inverted
residuals and linear bottlenecks. In: 2018 IEEE conference on computer vision
and pattern recognition. IEEE Computer Society; 2018, p. 4510–20.

[26] Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. In: 2017
IEEE conference on computer vision and pattern recognition. IEEE Computer
Society; 2017, p. 6230–9.

[27] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout:
A simple way to prevent neural networks from overfitting. J Mach Learn Res
2014;15(56):1929–58, URL http://jmlr.org/papers/v15/srivastava14a.html.

[28] Sun Y, Wong AKC, Kamel MS. Classification of imbalanced data: a review. Int J
Pattern Recognit Artif Intell 2009;23(4):687–719.

[29] Hashemi SR, Salehi SSM, Erdogmus D, Prabhu SP, Warfield SK, Gholipour A.
Asymmetric loss functions and deep densely-connected networks for highly-
imbalanced medical image segmentation: Application to multiple sclerosis lesion
detection. IEEE Access 2019;7:1721–35.

[30] Torrey L, Shavlik J. In: Olivas ES, Guerrero JDM, Martinez-Sober M, Lopez AJS,
editors. Handbook of research on machine learning applications and trends:
algorithms, methods, and techniques. IGI Global; 2010, p. 242–6.

[31] Smith LN. Cyclical learning rates for training neural networks. In: 2017 IEEE
winter conference on applications of computer vision. IEEE; 2017, p. 464.

[32] Jadon S. A survey of loss functions for semantic segmentation. In: 2020 IEEE
conference on computational intelligence in bioinformatics and computational
biology. IEEE; 2020, p. 1–7.

[33] Yeung M, Sala E, Schönlieb C-B, Rundo L. A mixed focal loss function for han-
dling class imbalanced medical image segmentation. 2021, arXiv e-prints arXiv:
2102.04525, URL https://ui.adsabs.harvard.edu/abs/2021arXiv210204525Y.

[34] Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep
learning. J Big Data 2019;6(1):60.

http://refhub.elsevier.com/S0965-9978(24)00139-X/sb1
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb1
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb1
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb2
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb2
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb2
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb3
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb3
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb3
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb4
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb4
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb4
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb5
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb5
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb5
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb5
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb5
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb6
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb6
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb6
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb8
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb8
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb8
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb8
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb8
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb9
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb9
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb9
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb9
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb9
http://arxiv.org/abs/1606.02147
http://arxiv.org/abs/1606.02147
http://arxiv.org/abs/2001.05566
https://arxiv.org/abs/2001.05566
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb12
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb12
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb12
http://arxiv.org/abs/2009.12942
https://arxiv.org/abs/2009.12942
https://arxiv.org/abs/2009.12942
https://arxiv.org/abs/2009.12942
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb14
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb14
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb14
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb14
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb14
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb15
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb15
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb15
http://arxiv.org/abs/1905.05055
https://ui.adsabs.harvard.edu/abs/2019arXiv190505055Z
https://ui.adsabs.harvard.edu/abs/2019arXiv190505055Z
https://ui.adsabs.harvard.edu/abs/2019arXiv190505055Z
https://www.kaggle.com/tapakah68/segmentation-full-body-tiktok-dancing-dataset
https://www.kaggle.com/tapakah68/segmentation-full-body-tiktok-dancing-dataset
https://www.kaggle.com/tapakah68/segmentation-full-body-tiktok-dancing-dataset
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb18
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb18
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb18
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb18
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb18
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb21
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb22
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb22
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb22
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb22
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb22
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb23
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb23
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb23
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb23
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb23
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb23
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb23
https://bmvc2019.org/wp-content/uploads/papers/0959-paper.pdf
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb25
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb25
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb25
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb25
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb25
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb26
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb26
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb26
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb26
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb26
http://jmlr.org/papers/v15/srivastava14a.html
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb28
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb28
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb28
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb29
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb29
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb29
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb29
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb29
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb29
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb29
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb30
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb30
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb30
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb30
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb30
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb31
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb31
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb31
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb32
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb32
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb32
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb32
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb32
http://arxiv.org/abs/2102.04525
http://arxiv.org/abs/2102.04525
http://arxiv.org/abs/2102.04525
https://ui.adsabs.harvard.edu/abs/2021arXiv210204525Y
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb34
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb34
http://refhub.elsevier.com/S0965-9978(24)00139-X/sb34

	Enhancing lecture capture with deep learning
	Introduction
	Module I: Human Entity Detection
	Module II: Background Restoration

	Semantic Segmentation and Related Work

	Theory and Methods 
	Human Entity Detection
	Learning to Downsample Module
	Global Feature Extractor
	Feature Fusion Module
	Classifier
	Remodelling Fast-SCNN

	Background Restoration
	Evaluation Metrics

	Experimental Procedure
	Transfer Learning
	Training
	Loss Function
	Implementation
	The dataset

	Results and Discussion
	Training Analysis
	Accuracy Analysis
	Runtime Benchmarking

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


