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Abstract

Psychological and neuroscientific research over the past two decades has shown that the

Bayesian causal inference (BCI) is a potential unifying theory that can account for a wide

range of perceptual and sensorimotor processes in humans. Therefore, we introduce the

BCI Toolbox, a statistical and analytical tool in Python, enabling researchers to conveniently

perform quantitative modeling and analysis of behavioral data. Additionally, we describe the

algorithm of the BCI model and test its stability and reliability via parameter recovery. The

present BCI toolbox offers a robust platform for BCI model implementation as well as a

hands-on tool for learning and understanding the model, facilitating its widespread use and

enabling researchers to delve into the data to uncover underlying cognitive mechanisms.

Introduction

It has been proposed that the human brain functions like a Bayesian statistical machine [1],

with the nervous system continuously processing uncertain sensory information from differ-

ent modalities to infer the causes of sensory observation. The Bayesian Causal Inference (BCI)

model [2] is a normative Bayesian framework that describes this process, wherein inferences

are made regarding both the causal structure (common cause vs. independent causes) and the

sources of the sensory inputs. In the BCI model, these inferences are coherently unified,

involving a competition between two hypotheses–were the sensory information generated by a

common cause or by independent causes–to account for observed sensory measurements.

During the past two decades, the BCI model has been extended and employed in a large

variety of perceptual and sensorimotor domains [3,4], including temporal numerosity judg-

ment [5,6], spatial localization judgment [2,7–9], size-weight illusion paradigm [10], rubber-

hand illusion paradigm [11–13], and heading perception [14]. Given this empirical evidence,

the BCI model has been recognized as a potential unifying framework in neuroscience [4].

Meanwhile, computational modeling methods have provided a new perspective to psychiatric

research as well [15–17], demonstrating how these models can deepen our understanding of

the pathophysiological processes underlying mental disorders and inform therapeutic
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interventions. Noel and colleagues emphasized the importance of causal inference in computa-

tional psychiatry [18,19].

Inspired by the substantial potential of the BCI model and the increasing demand for

Bayesian data analysis within the domain of neuroscience and psychology, we introduce the

Bayesian causal inference toolbox (BCI Toolbox), a zero-programming software package writ-

ten in Python, to the scientific community as a tool for understanding and using the BCI

model. The BCI Toolbox features a graphical user interface (GUI) for primary use and well-

studied mathematical functions for advanced use. To facilitate the use of the BCI model, the

GUI includes user-friendly model fitting and simulation functionalities. The software can be

installed from the online documentation (https://bcitoolboxrmd.readthedocs.io/en/latest/

index.html), GitHub (https://github.com/evans1112/bcitoolbox), or via PIP (https://pypi.org/

project/bcitoolbox).

Here, we provide an overview of the algorithm implementation and software architecture

of the BCI Toolbox and discuss the performance of the BCI model through parameter recov-

ery, further corroborating the model’s reliability.

Design and implementation

In principle, the general implementation is based on the Bayesian causal inference model of

multisensory perception [2]. To describe the basic structure of the model, we use the example

of hearing a sound and seeing a sight while estimating the location of the sound (sA). However,

the model is general and not specific to any sensory modalities or perceptual tasks. The

toolbox implementation allows for the combination of two sensations from any modalities

and supports a variety of perceptual tasks, as discussed in the following sections.

Fig 1A shows the generative model of BCI, wherein two possible causal structures, namely a

common cause and independent causes, can give rise to sensory inputs xA and xV. During the

inference stage of perception, these two hypotheses compete to explain the sensory observa-

tions in order to estimate the perceptual variables of interest, e.g., the location of the auditory

event (sA) and the location of the visual event (sV). As shown in Fig 1B, the underlying causal

structure of the stimuli is inferred based on the available sensory evidence and prior knowl-

edge. Each stimulus or event s in the world causes a noisy sensation xi of the event. We use the

generative model to simulate experimental trials and subject responses by performing Monte

Carlo simulations. Each sensation is modeled using the likelihood function p(xi|s). Trial-to-

trial variability is introduced by sampling from a normal distribution around the true locations

sA and sV, plus bias terms γA and γV for auditory and visual modalities, respectively [9]. This

simulates the corruption of auditory and visual sensory channels by independent Gaussian

noise with standard deviation σA and σV, respectively. In other words, the sensations xA and xV

are simulated by sampling from the distributions shown in Eqs 1 and 2.

xA � NðsA þ γA; sAÞ ð1Þ

xV � NðsV þ γV ; sVÞ ð2Þ

We assume there is a prior bias for the sensory information [20], modeled by a Gaussian

distribution centered at μP. The standard deviation of the Gaussian, σP, determines the

strength of the bias. Therefore, the prior distribution of sensory information is:

pðsÞ ¼ NðmP; sPÞ ð3Þ

As the causal structure is unknown to the nervous system, it must be inferred using sensory

information and prior knowledge. The probability of each causal structure is computed using
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Bayes Rule as follows:

p CjxA; xVð Þ ¼
pðxA; xV jCÞpðCÞ

pðxA; xVÞ
ð4Þ

The optimal estimate of source s in each modality depends on the causal structure. If the

sensations are produced by independent causes, the estimate of s is a weighted average of the

Fig 1. The general structure of the BCI model and simulation results of BCI Toolbox. (A) The generative model of BCI, assumes that there is either one

cause (C = 1) or two causes (C = 2), leading to the creation of the perceptual variables (s or sA and sV). (B) The structure of the hierarchical BCI model in the

BCI Toolbox. The causal structure is inferred by combining sensory likelihood and prior (prior stimulus expectation and pcommon. pcommon represents a priori
expectation of a common cause). The observer response is based on the inferred causal structure, and the decision-making strategy. (C) The one-dimensional

model simulation results (generated by pcommon = 0.5; σ1 = 3; σ2 = 8; σP = 30; μP = 0; s1 = -10; s2 = 10) from 3 different decision-making strategy using the BCI

Toolbox.

https://doi.org/10.1371/journal.pcbi.1011791.g001
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unisensory signal and the prior for s:

ŝðA;C¼2Þ ¼

xA
s2
A
þ

xp
s2
p

1

s2
A
þ 1

s2
p

; ŝðV;C¼2Þ ¼

xV
s2
V
þ

xp
s2
p

1

s2
V
þ 1

s2
p

ð5Þ

If the sensations are produced by a common cause, the estimate of s is a weighted average of

the both sensory signals and the prior for s:

ŝðA;C¼1Þ ¼ ŝðV;C¼1Þ ¼

xA
s2
A
þ

xV
s2
V
þ

xp
s2
p

1

s2
A
þ 1

s2
V
þ 1

s2
p

ð6Þ

As can be seen in Eq (4), the inference about the causal structure is probabilistic, and there-

fore, there is uncertainty associated with each causal structure. The optimal estimate of the

sources sA and sV depend on the goal of the perceptual system in a given task. If the goal is to

minimize the average error in the magnitude of the source estimates, i.e., a sum squared error

cost function, then optimal strategy for achieving this goal is model averaging, in which opti-

mal estimates corresponding to both causal structures are taken into account, however, pro-

portional to their respective probability [2,7].

ŝA ¼ pðC ¼ 1jxA; xVÞŝðA;C¼1Þ þ pðC ¼ 2jxA; xVÞŝðA;C¼2Þ

ŝV ¼ pðC ¼ 1jxA; xVÞŝðV;C¼1Þ þ pðC ¼ 2jxA; xVÞŝðV;C¼2Þ ð7Þ

However, there are other plausible cost functions. Indeed, Wozny et al. [7] showed that in a

spatial localization task many observers’ performance was more consistent with model selection
or probability matching strategies. If the nervous system’s goal is to optimize the inference of

causal structure, this would result in a decision strategy that selects the causal structure with

the highest posterior probability and estimates the sensory sources entirely based on the

selected causal structure. (Eq 8).

ŝA ¼
ŝðA;C¼1Þ if pðC ¼ 1jxA; xVÞ > 0:5

ŝðA;C¼2Þ if pðC ¼ 1jxA; xVÞ � 0:5

(

ŝV ¼
ŝðV;C¼1Þ if pðC ¼ 1jxA; xVÞ > 0:5

ŝðV;C¼2Þ if pðC ¼ 1jxA; xVÞ � 0:5
ð8Þ

(

Probability matching is a stochastic decision-making strategy wherein the nervous system

computes the posterior probabilities of potential causal structures (Eq 9). Subsequently, a

probabilistic selection mechanism is employed, whereby a decision regarding the endorsement

of either a common-cause or independent-cause hypothesis is made stochastically, as shown

in Eq 9.
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This strategy is optimal if learning is also a factor in the utility function [7].

ŝA ¼
ŝðA;C¼1Þ if pðC ¼ 1jxA; xVÞ > x

ŝðA;C¼2Þ if pðC ¼ 1jxA; xVÞ � x

(

ŝV ¼
ŝðV;C¼1Þ if pðC ¼ 1jxA; xVÞ > x

ŝðV;C¼2Þ if pðC ¼ 1jxA; xVÞ � x
ð9Þ

(

ξ 2 [0:1] uniform distribution and sampled on each trial.

More details on the model can be found elsewhere [2,8]; we point the interested reader to

earlier publications for additional information.

Graphical User Interface (GUI)

To enhance user experience, we created an intuitive Graphical User Interface (GUI) specifi-

cally for researchers. Fig 2 depicts the overall layout of the interface. The GUI currently pro-

vides two core functions: model simulation and model fitting, both of which are detailed

below. The GUI supports fitting partial data, for example, behavioral data where only single-

modality information is reported. However, it is important to note that the reliability of these

fitted parameters may be diminished in cases of partial data.

Model fitting

In this module, users can input behavioral data for model fitting. The BCI Toolbox supports

fitting two types of data: discrete and continuous. It can either maximize the likelihood of the

data given the model (equivalent to minimizing the negative likelihood) or minimize the

squared error between the model and data. Users have the flexibility to choose various decision

strategies, each associated with a different cost function [7]. Additionally, they can adjust

seven key parameters to customize the BCI model to their experimental paradigm. These

parameters include pcommon (the prior expectation of a common cause), μ1, μ2 (the mean of the

likelihood), σ1, σ2 (the standard deviation of the likelihood), γ1 and γ2 (perceptual bias). Each

parameter can be specified as a free parameter, or can be manually fixed at a value. The GUI’s

built-in plotting functions enable users to visualize the fitting results.

The user can choose between two methods for parameter optimization: a) the ‘Powell’ algo-

rithm from the ‘minimize‘function in the scipy package (https://scipy.org) or b) the

‘VBMC‘method from the pyvbmc package (https://acerbilab.github.io/pyvbmc/). The latter is

an approximate Bayesian inference method designed for fitting computational models with a

limited budget of potentially noisy likelihood evaluations. This makes it particularly useful for

computationally expensive models or for quick inference and model evaluation [21–23].

Model simulation

The simulation function enables users to explore the effects of different parameter values on

behavioral outcomes (i.e., response distributions), helping them develop an intuitive under-

standing of BCI. It also facilitates the investigation of BCI behavior under various parameter

or stimulus conditions, which is valuable for qualitatively comparing empirical data with the

model. In cases where data sets are missing or limited and reliable fitting isn’t possible, model

simulation can be used to qualitatively compare empirical and simulated data patterns. The

BCI Toolbox provides five parameters for use: pcommon, s2
1

(controlling the variance of modality

1 likelihood), s2
2

(controlling the variance of modality 2 likelihood) s2
p (controlling the variance
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of prior for perceptual variable of interest) and μP (the mean of the prior for perceptual vari-

able of interest). Upon setting these parameters and choosing the value of stimuli (e.g., the

location of each stimulus in a localization task) to observe, the toolbox generates and visualizes

the simulated data. Researchers can examine the resulting data and compare the perceptual

responses under the three decision-making strategies (model averaging vs. model selection vs.

probability matching, Fig 1C). The model simulation module supports one-dimensional con-

tinuous data simulation, two-dimensional continuous data simulation and one-dimensional

discrete data simulation.

Fig 2. An overview of the BCI Toolbox GUI. The GUI provides two main functions: model fitting and model simulation. In the model fitting section, the GUI

incorporates two data types: discrete and continuous data. In the model simulation section, the GUI incorporates one-dimensional and two-dimensional

simulations. For more details, see BCI Toolbox documentation: https://bcitoolboxrmd.readthedocs.io/.

https://doi.org/10.1371/journal.pcbi.1011791.g002
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Parameter recovery

The reliability of the BCI model was assessed through parameter recovery tests. To evaluate

the performance of our model, we first simulate synthetic data with known ground truth

parameters. We generated a set of 5 random parameters, where pcommon~ U(0,1), σ1~ U(0.1,3);

σ2~ U(0.1,3); σP~ U(0.1,3); μP~U(0,3.5). Subsequently, we generated synthetic data using these

parameters under the discrete data model structure (for numerosity task, non-negative) and

through model averaging.
Next, we used the BCI toolbox data fitting module to fit the model to the data. Using 10,000

as the number of simulations, minus log likelihood as the fit type, and model averaging as a strat-

egy, we fitted the synthetic data once using the Powell algorithm and once using the VBMC

method. Fig 3 shows the results of parameter optimization for each of these two methods.

Results

Here, for illustration purposes, we present an example of the results produced by the

toolbox for each of its two main functions: data fitting and model simulation. For the data fit-

ting, we used data from Experiment 5 in the study by Odegaard et al. [24], which is publicly

available. In this experiment, observers were presented with simple visual and auditory stimuli

at one of 5 possible positions along the azimuth and were asked to report the perceived loca-

tion of each stimulus in each trial. The responses were provided using a joystick along a con-

tinuous horizontal scale on the screen, making them continuous data. In that experiment,

participants’ spatial localization was tested using a test session as described above. Following

the test session, participants were passively presented with auditory-visual stimuli in an “adap-

tation” phase. Immediately after the adaptation phase, the participants were tested again in a

spatial localization test identical to the pre-adaptation test. The study reported a statistically-

Fig 3. Results of parameter recovery analysis. We generated 100 sets of synthetic data under 15 conditions by selecting random values for the 5 model

parameters using the discrete 1-dimensional model simulation module of the toolbox. Next, the synthetic data were fitted by the data fitting module of the

toolbox. In each panel, the estimated parameter value from data fitting is plotted against the ground-truth value of that parameter. R2 indicates the degree of

correlation between the estimated and true parameters. MSE indicates the mean of squared error between data and identity lines (solid lines). In all cases, the

model parameters were recovered well. (A) Results from using the Powell algorithm for parameter optimization. (B) Results from using the VBMC method for

parameter optimization.

https://doi.org/10.1371/journal.pcbi.1011791.g003
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significant increase in pcommon after adaptation. We analyzed the behavioral data from the spa-

tial localization tasks using the continuous one-dimensional data fitting module with 5 free

parameters (pcommon, σ1, σ2, σP and μP), the Powell parameter optimization method, and model
averaging. Fig 4A shows the results of data fitting for the pre-adaptation test. The

toolbox results replicated the finding of the Odegaard et al. [24] study, including the increase

in pcommon after adaptation (S1 Text).

Fig 4B shows the results of model simulation under four different parameter regimes in the

one-dimensional discrete module. As an example, we considered the temporal-numerosity

task, where the observer’s task is to report the perceived number of flashes and beeps. The

responses in this task are discrete. The number of flashes was set to 1 and the number of beeps

was set to 2. In the first row, we show the effect of pcommon on the responses by keeping all

other parameters the same but changing the value of pcommon. The left panel in the top row

shows the results for a small pcommon value (low tendency to integrate), whereas the right panel

in the top row shows the results for a large pcommon value (high tendency to integrate). Given

the higher precision of the auditory modality, the visual perception (perceived number of

flashes) is biased by the number of beeps. However, the degree of bias is influenced by the

value of pcommon, with a stronger bias (more illusion) observed in the case of higher tendency

for integration. The bottom row shows the effect of visual precision (σV) on the responses, by

keeping all parameters the same but changing the value of σV. Lower visual precision leads to a

stronger bias and a more pronounced illusion in the visual modality. These example simula-

tions illustrate BCI Toolbox’s utility as a tool for understanding the model and predicting

behavioral outcomes in different settings

Availability and future directions

We introduced a toolbox for the Bayesian causal inference model that supports the analysis

and simulation of behavioral data across a wide range of tasks in multisensory perception and

sensorimotor science. BCI Toolbox provides modeling tools for diverse experimental para-

digms and data types, offering various computational and optimization methods within the

Bayesian framework. Additionally, it can batch-process and visualize analysis results, enhanc-

ing the understanding and practical application of the BCI model.

Major advantages of BCI Toolbox

One of BCI Toolbox’s primary advantages is its user-friendly GUI, which enables and facili-

tates the use of hierarchical Bayesian causal inference models in neuroscience research, even

for researchers without computational training. The BCI Toolbox is suitable for new users to

learn and utilize the BCI model. The simulation section can be used for pedagogical purposes,

allowing users to intuitively understand the role of various parameters, which can help them

further understand the algorithm in the model. Moreover, the simulation functions are useful

for qualitative modeling, offering insights into system behaviors beyond mere reliance on

quantitative data.

Besides model simulation, the model fitting module is helpful in the quantitative analysis of

data, enabling precise parameter estimation and ensuring a more accurate representation of

underlying trends behind the behavioral data. The toolbox also offers a model comparison

option (using Bayesian Information Criterion, BIC) that enables a thorough comparison of the

three decision strategies. Additionally, it supports evaluations based on varying numbers of

free parameters.

In addition to the functional advances, we verified the reliability of the BCI model through

parameter recovery. The results show that the vast majority of the parameters can be well

PLOS COMPUTATIONAL BIOLOGY BCI Toolbox: Bayesian causal inference Toolbox

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011791 July 8, 2024 8 / 12

https://doi.org/10.1371/journal.pcbi.1011791


Fig 4. Examples of BCI toolbox outputs. (A) The model fitting results with continuous data from a spatial localization task. Each plot

corresponds to one of the stimulus conditions, with the first row plots representing unisensory auditory conditions (stimulus position

varying from left-most to right-most positions along azimuth from left to right), and first column representing unisensory visual

conditions, and all other plots corresponding to bisensory conditions. Positions of the auditory and visual stimuli are denoted using

broken red and blue vertical lines, respectively. The red and blue histograms represent the auditory and visual response distributions of a
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estimated by the model with an error margin of 5% or less. The current work provides compel-

ling evidence of the scientific validity and reproducibility of the BCI model, offering a reliable

data processing option for future cognitive neuroscience research. We have made the BCI

toolbox open source, and encourage researchers to extend and modify the BCI model based

on their specific research needs.

Potential limitations of BCI Toolbox

A notable constraint of the toolbox is the fixed number of variables in each model. Therefore,

users might face challenges in scenarios where flexible configurations or customizations of var-

iables are required, potentially hindering the adaptability of the tool for diverse research appli-

cations. Additionally, although current methods like computing log likelihood or sum of

squared errors are used in the BCI Toolbox to measure model-behavioral data discrepancies,

improvements are needed. The loss function in the brain is shaped by evolution or experience

to minimize specific costs, which varies among individuals and over time [4]. Therefore, we

will continue to explore additional possible methods of quantifying the error which may yield

better fits. Updates to the BCI Toolbox and its documentation will be provided in due course

to reflect these advancements [25].

In summary, the BCI Toolbox integrates the resources of cognitive neuroscience research

that BCI models can interpret in the past decade. It applies the latest algorithms and parameter

optimization methods, providing a convenient, reliable, and diverse data processing tool for

potential studies. By utilizing top-notch datasets and cutting-edge models, the present work

greatly enriches the computing community of cognitive neuroscience. We encourage fellow

community members to contribute to its improvement by suggesting improvements, report-

ing bugs, and offering bug fixes, new ideas, and innovative modifications.

Supporting information

S1 Text. Supplemental Results.

(DOCX)

S1 Fig. The binding tendencies (Pcommon) from the pre-test and the post-test localization

tasks. The half-violin plot shows the distribution of the binding tendencies estimated through

the BCI Toolbox. The purple and blue dots represent the individual subject Pcommon values

for pre-test and post-test, respectively. The dotted lines link the pre- and post-test data, and

the solid line links the mean values. Wilcoxon signed-rank test shows significantly different

binding tendencies for the pre- and post-tests. *p = .005.

(TIFF)

S1 Table. The optimized parameter values ± standard error estimated from behavioral

data using the BCI Toolbox. Wilcoxon signed-rank test shows significantly different binding

tendencies (Pcommon) for the pre- and post-tests. *p = .005.

(DOCX)

specific subject, respectively. The red and blue solid lines represent the model fits produced by the toolbox. (B) The simulation results for

one visual stimulus accompanied by two auditory stimuli. We used the fixed parameters (Weak tendency: pcommon = 0.2; Strong tendency:

pcommon = 0.8; σ1 = 1; σ2 = 0.5; σP = 1.5; μP = 1.5) to simulate how prior integration tendency influences multisensory numerosity

perception. We also used the fixed parameters (pcommon = 0.5; Low visual precision: σ1 = 1; high visual precision: σ1 = 0.5; σ2 = 0.5; σP = 1.5;

μP = 1.5) to simulate how unisensory precision influences multisensory numerosity perception.

https://doi.org/10.1371/journal.pcbi.1011791.g004
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