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Abstract

We propose a distribution-free distance-based method for high
dimensional change points that can address challenging
situations when the sample size is very small'compared to the
dimension as in the so-called HDLSS data or. when non-sparse
changes may occur due to change in.many variables but with
small significant magnitudes. Our method-Can detect changes in
mean or variance of high dimensional observations as well as
other distributional changes. We present efficient algorithms that
can detect single and multiple high dimensional change points.
We use nonparametric metricSyincluding a new dissimilarity
measure and some new.distance and difference distance
matrices, to develop asprecedure to estimate change point
locations. We also introduce a nonparametric test to determine
the significance aof estimated change points. We provide
theoretical guaranties for our method and demonstrate its
empirical performance in comparison with some of the recent
methods far high dimensional change points. An R package called
HDDchangepoint 1S developed to implement the proposed method.

Keywords: Difference distance matrix; Dissimilarity measure, High dimensional

change point; High dimensional data; Wild binary segmentation.
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1 Introduction

Change point analysis is frequently used in various fields such as economics,
finance, engineering, genetics and medical research. The main objective is to detect
significant changes in the underlying distribution of a data sequence. The change
point problem is well studied for low dimensional data in the literature, however
change point analysis is challenging for high dimensional data which are growing in
different domains. A change could happen in a small or large subset of the variables
and with a small or large magnitude, but when the sample size is small compared to
the number of variables it is difficult to distinguish a significant change point from just

random variability.

In recent years there has been increasing interest in the so-called high-dimensional
low-sample-size (HDLSS) data where the sample size nis veryssmall while the
dimension p can be very large. The asymptotics for HDLSS data is/different than the

P>N=_%2)inthe sense that P = *

usual high dimensional asymptotic setting (i.e.,
but the sample size n can remain fixed (e.g., Hall et.al.,”2005; Jung

and Marron, 2009; Li, 2020). Detecting changé points is more challenging for HDLSS
data with small samples. In this paper, we‘will.see that recent methods for high
dimensional change points struggle to have a good performance with HDLSS data

where sample size is very small comparedto dimension.

A common strategy in the literature of high dimensional change points is to simplify
the problem by reducing the, dimension of data so a simpler algorithm such as a
univariate change point algarithm can be applied to the transformed data. This may
be done using random projection (e.g., Wang and Samworth, 2018; Hahn

et al., 2020), geemetric mapping (e.g., Grundy et al., 2020) or any other relevant
techniques suchas principal components (e.g., Xiao et al., 2019), factor analysis
(e.g., Barigozzi et al., 2018) and regularisation approaches (e.g., Lee

et al., 2016; Safikhani and Shojaie, 2022). This strategy relies on sparsity, often a
significant amount of sparsity, to maintain its oracle performance. Such techniques
may not be suitable for non-sparse change point problems. By non-sparse change
points, we mean the changes that can happen in many variables and with small

significant magnitudes.



Another strategy is to search for change point locations through dissimilarity
distances between pairs of observations. This may be done using appropriate
dissimilarity measures such as the interpoint distances (e.g., Li, 2020) or the
divergence measures based on Euclidean distance (e.g., Matteson

and James, 2014). Some authors including Garreau and Arlot (2018) and Chu

and Chen (2019) indirectly use interpoint distances to develop methods based on
counting the number of edges from a certain similarity graph constructed from
interpoint distances. The performance, especially power, of such methods generally
depends on distance measures and test statistics used, as also discussed in

Li (2020). In this paper, we aim to develop a novel powerful method for detecting
high dimensional change points based on dissimilarity measures, especially. suitable
for HDLSS data.

There has been a growing literature on change point analysis for high dimensional
data in recent years. We review some of the recent methods focusing on offline
change point detection. Chen and Zhang (2015), Garreauand Arlot (2018) and Chu
and Chen (2019) developed change-point detection methods using kernels and
similarity graphs. Wang and Samworth (2018) proposed a two-stage procedure
called inspect for estimation of change points, which is based on random projection
and sparsity. Their approach assumes-the mean structure changes in a sparse
subset of the variables and requires:the,normality assumption. Enikeeva

and Harchaoui (2019) suggested a method for detecting a sparse change in mean in
a sequence of high dimensional vectors. This method was studied for a single
change point detection/and was developed based on the normality assumption.
Grundy et al. (2020) used'geometric mapping to project the high dimensional data to
two dimensions, namely distances and angles. Their approach requires the normality
assumption. Liu.et al. (2020) developed a general data-adaptive framework by
extending the classical CUSUM statistic to construct a U-statistic-based CUSUM
matrix. Their approach is based on the independence assumption for variables and
is mainly studied for single change point detection. Li (2020) proposed an asymptotic
distribution-free distance-based procedure for change point detection in high
dimensional data. Using the random projection approach of Wang

and Samworth (2018), Hahn et al. (2020) proposed a Bayesian algorithm to



efficiently estimate the projection direction for change point detection. Yu

and Chen (2021) established a bootstrap CUSUM test for finite sample change point

inference in high dimensions. Follain et al. (2022) extended the random projection

approach to estimate change points with heterogeneous missingness. There have

also been a few other methods, some of which are reviewed in Liu et al. (2022).

Below we highlight the importance of our work and summarise our main

contributions.

i)

ii)

Change point detection for HDLSS data, when the sample size is very small,
is challenging and understudied. Also, many of the existing methodsfocused
on sparse change points (e.g., Wang and Samworth, 2018; Enikeeva

and Harchaoui, 2019; Follain et al., 2022). Our method can deal with non-
sparse high dimensional situations. Unlike existing metheds which mainly
detect changes in mean of high dimensional observations, our method can
detect changes in mean or variance of observations and other distributional
changes.

Unlike most of the recent methods for high dimensional change point
detection which require the normality assumption as reviewed above, our
approach does not require normality or any other distribution for variables. We
use novel nonparametric tools to develop a method to detect change point
locations.

Many of the recent methodsin the literature either used a
bootstrap/permutationiprocedure or derived asymptotic distribution to test
significance of:change points (e.g., Wang and Samworth, 2018; Yu

and Chen;2021). We establish both asymptotic and permutation procedures
for our. method to handle both small and large sample size situations.

Our strategy is to search for change point locations through an n x n matrix of
distances instead of the n x p matrix of observations. Because the nx n
matrix of distances has a smaller dimension which does not grow with p, it
would be easier mathematically and computationally to investigate the

distance matrix for a change point location.



We use the following notation throughout the paper. For a vector U € ®e , we write

p
lul = (S pu, 7)™

the Lg,norm as i1 . The infinity norm is defined as lul = max, 1y, 3

We write Y as the short version of square root. For a real-value constant &, notation

l2 1 denotes the absolute value of a, while for a set C, ¢ | denotes the cardinality of

C. Also, ©() and °() denote the usual big Oand little o notation. We sometimes

write © ) or ©"() to emphasise them for P = * . We write °*() and %) to

denote, respectively, the big Oin probability and the little oin probability. We use —

D

and — for convergence in probability and convergence in distribution, respectively.

We also define some more specific notation as we develop the paper.
2 Methodology

Let X Xo %o pe g sequence of independent p-dimensijonal random vectors with

FoFy F

unknown probability distributions n, respectivelysInthigh dimensional

i P >
settings we have

X=X X,

and that the p variables infeach observation

2 X0) gre potentially correlated.'We aim to develop a distribution-free
Fi Py Fy

approach, so we do not assume a parametriciform for the distributions
For the sake of clarity, we first presentthe proposed approach for detecting a single
change point in high dimensions and then extend the idea for multiple change point
detection in Section 3. The problem of detecting a single change point in general can

be formulated as the following hypothesis testing problem

where ris a'change point location, which is unknown too. When conducting this
single change point problem, we first estimate the change point location rand then
test for significance of the estimated change point.

Let X =[Xu Xz X, represent the entire data as an n x p matrix. As discussed in

the introduction, the problem of change point detection in high dimensional situations



is challenging, especially when nis very small compared to p. In our approach,
instead of searching in the n x p space, we translate the problem into the lower
dimensional space n x n without reducing the dimension of data. This is different
than the dimensionality reduction techniques such as random projection (e.g., Wang
and Samworth, 2018), geometric mapping (e.g., Grundy et al., 2020), principal
components (e.g., Xiao et al., 2019) and factor analysis (e.g., Barigozzi et al., 2018)
which reduce the dimension of data. We propose a distance-based method based on
dissimilarity measures to find the change point location in the original data X
through the distance matrix of X . The dimension of the observed data X is nx p
while the dimension of its distance matrix is 7% n, so it is easier mathematicallysand
computationally to investigate the distance matrix for a change point location as nis
small compared to pin high dimensions, especially in HDLSS data. \We desecribe the

idea in the sequel.

Let 4= 90X X0) pe g dissimilarity distance between observations X and © ,

d(-) js a suitable dissimilarity distance function for high dimensional vectors.

where
Since our proposal can be implemented with any suitable dissimilarity distance, we
discuss the choice of dissimilarity distance.measure after illustrating the main

mechanism. We use the dissimilarity measure. djto obtain the n x ndistance matrix

between all pairs of the observations XX, Xy as follows
|_d11 d12 dln—|
| : |
D = :
| |
Ldnl dn2 dnnJ
in which 9 = = 4w =9

To find the location of change point 7, we propose a procedure that finds an estimate
of rby finding the maximum distance between observations in the distance matrix D.

For this, we define the distance difference between each pair of the observations as

A =ld. —-d
ij ij

ij-1 L

A =0, i =1,...,n.

il



This gives the following n x n matrix of distance differences, which we call difference

distance matrix,

We then suggest an estimate of the change point location 7, based on the difference

distance matrix A, as follows

7 =arg max1gjgn{iz Aij}' (2)

i=1

The change point estimate 7 is the location of maximum slope among the column

sums of the difference distance matrix A (a simple illustrative example will be given
—3 A,=0

later in Figure 1). If M = J forall i=1-.n

or if they all are'equal, then we set

7=  where the empty set ¢ means no change point.is detected.

It is known that the Euclidean distance is not appropriate for high dimensional

situations. A modified version of Euclidean distance can be obtained by dividing it by

VP for convergence guarantees in high dimensions, as suggested by Hall

et al. (2005). One can use the modified Euclidean distance

d =d(X X )=pIx -x.| . .
i (X x)=r ' 1.2 or other Lgnorm distances in our approach.

However, a more general dissimilarity measure that takes into account the

information of distancesfrom all the n— 2 other observations can be defined as

g, = (XX )t [ x, - x, - Ix - x, L] 3)
n=72

1£i,

where ~© can be any appropriate distance function. We here suggest two simple

options for this. A natural multivariate option is to use the modified Euclidean

Ix. -x, l=plIx, -x |

distance function ' 2 or modified L4-norm

Ix —x | -p*lx x| L . : :
Xo=Xiho= P IXy = X0k A univariate option is to use a distance function based on

differences between the sample mean and variance of the observations. For this, let



p P
xipz pilzxij S;‘:\/pilz(xij_xip)z
= and =t

denote, respectively, the mean and

standard deviation of the £th observation X' =1 " We define

X=X = =X (5%, 75x)"  which quantifies the differences between the

sample mean and variance of each pair of observations.

The following theorem shows the dissimilarity measure 40X X5 g (3)isa

d(X, X ,)20,d(X;,X)=0d(X,X,)=d(X, X,

pseudometric, that is and

40X X5) = d(X X )+ d (X, X)), The proof along with all other technical proofs are

provided in Appendix A.

Theorem 1. The dissimilarity measure 40X X5

nx3.

in (3) is a pseudometricion X for

The following theorem indicates that proximity in terms of the modified Euclidean

distance implies proximity in terms of 4% %)

not hold.

, butsthe'converse implication does

Theorem 2. Consider the dissimilarity measure T X (3) and the Euclidean

. Ix. - x | . , X
distance ' 12 for each pair of observations Xi and ™. We have

1
d(xi,xj)SWHXi—XjHZ

4 (X4 X ) > 0 i X

In Section 4, we show. that i and X have the same distribution.

The computational cest of the dissimilarity measure 41X X3) s of order O(np). The

cost of computing=? X1 forall 1< <1 s 0("P) with n not being fixed. The
cost is O(p) with fixed nas in HDLSS data.

We here provide a simple illustrative example with one change point for which we
generate 5 observations from a standard multivariate normal distribution with p = 500
and another 5 observations from the same distribution but with the mean being

shifted by 0.5. Figures 1(a) and 1(b) visualise all elements of the distance matrix D



940 X5) in (3) with both the univariate

obtained using the dissimilarity measure
distance function based on differences of the sample mean and variance of
observations and the multivariate distance function based on the modified Euclidean
distance. From both plots, it can be seen that the observations from the first
distribution show a larger dissimilarity with the observations from the second
distribution, and vice versa, so both distance functions capture the change point
trend. More interestingly, Figure 1(c) visualises all elements of the matrix A based on

the dissimilarity measure (3), which indicates that the change point location (i.e.,

location 6) has the largest values Ay, Also, Figure 1(d) presents all the column.,sums
of A, which reveals the change point location exactly as in the proposed estimate.?
in (2). In Section 4, we will prove that 7 is consistent for the true change point;

denoted by m, under some assumptions.

We now construct a test statistic based on the change point estimate 7 to conduct
the test whether or not the change point estimate 7 is statistically significant. Our
proposed test statistic uses the information of djyand Ajbefore and after the change
point estimate 7 . For this, considering the hypothesis test (1), we first define two
sets of indices one for observations before.and one for observations after the change

point estimate 7 as follows

Vo={jil< j<r-1}, V. :={j:7 < j=n}.

+

The two sets ¥+ and ¥+ aré visualised in Figure 2, showing their connection with
the change point candidate 7=We then propose the following test statistic for testing

the significance of ghange-point estimate ©

T(?) = zz > (d,-d.)" 4

nIVRIWVIYD S S

where V: 57 =1 ang IV: =" =7 +1 a6 the cardinalities of V¢ and ¥ ¢ , respectively.

We will investigate the theoretical properties of the statistic T (%) in Section 4.

Intuitively, the test statistic T (¥) quantifies the differences between distances for the

observations before change point and the observations after change point. If there is



no change point then the differences will be small, and if there is a change point then

T(7) will deviate from 0. In fact, we will prove thatas P 7 ©

T |y =0, T@E)| .=« +0,),

where “ = is specified in Theorem 3 with © being the true change point. We can

therefore carry out the hypothesis test for a single change point and reject the null

hypothesis b for large values of T (7). For large n, we conduct the test using the

n,p—»> o

asymptotic distribution of T(?) under Ho, when . In Theorem 7, we will

prove that the asymptotic distribution of T (?) | denoted by ¢ ()| is a normal

distribution as "' P 7 * under some assumptions, so that
n|v;”V:| T(‘Z—)_ ijj’
( niv. v, zl JZV: ,Zv )
- — N (0,1),
\/Z Z, Z+Z Z, Z+Ciii’kll’

under Hb, where "' and ‘i are specified inithe statement of Theorem 7.

For small n, we use a permutation procedureibased on ' (7) to conduct the test.
Permutation testing is useful here because all the observations have the same
distribution under Ao and hence aré exchangeable or permutable. In each
permutation step, we randomly permute the indices of observations before and after
the change point estimate @ , while holding the change point location, to get a

random permutation sample. Based on R permutations, the approximate permutation

G, (1)

distribution of the test statistic, denoted by , is defined as

1 R
G, ()==NMT=<t), (5

)

T, (3)

where ') is the indicator function and is the test statistic calculated for the r

th permutation sample. The p-value of the permutation test, denoted by Poem g

given by



R

S (T (5)>T,.(9).,  (6)

r=1

. 1
= 1_ GTR (Tobs(T)) =
R

pperm

where To:: () is the test statistic for the observed sample. Our theoretical results

show that Fe (Peem = @) <@ gr ) 0 < @ <1 We will show the asymptotic and

permutation tests are equivalent asymptotically under Ao, that is G, (0= 6 (M) for all

tas "' P 2 * _Algorithm 1 summarises our proposed method for single change point

detection in high dimensional data.

Algorithm 1: Single change point detection

T

X =[X,, X,y X, ]

Input : A data sequence or matrix of observations
Output: Change point estimate 7 , or “NA” if there is no significant change point.
Step 1: Calculate the n x ndistance matrix Dfor the n x p datamatrix.X .

Step 2: Calculate the n x n difference distance matrix A.

Step 3: Calculate the change point estimate 7 . If 7 = @ sstopithe algorithm and return
“NA” for no detected change point. Otherwise, go tothe next step.

Step 4: Calculate the test statistic (7).

Step 5: Apply the permutation test based on." () if nis small, or the asymptotic test
if nis large, to test the significance of the change point estimate © .
Step 6: If it is significant, return the.change point estimate 7 . Otherwise, return “NA”

for no significant change point;

In addition to estimationiand hypothesis test for change point 7, we can also
construct confidence,interval for change point location rusing the change point
estimate %« Finding the exact or asymptotic distribution of the change point estimate
(2) is difficult’due to the absolute value functions in both the definition of Ajand the
dissimilarity measure dj;in (3). We instead obtain a permutation-based confidence
interval for 7. Unlike the above permutation procedure which conducts under Ao, we
here obtain a permutation sample by separately permuting observations before and
after the change point location ramong themselves. The reason is that observations
before the change point rhave the same distribution and observations after the

change point ralso have the same distribution. We calculate the change point



estimate (2) for each permutation sample from R permutations and denote these

100(1- a)%

permutation estimates by e B . Then, a confidence interval for

change point location ris

(2% =2, 28— 7.,,,) (7)
in which "« and ‘0« are, respectively, the (*/2) -th and ¢~ 2 /2) _th percentiles

of the R ordered permutation estimates.

3 Multiple change point detection

In this section, we extend our approach to detect multiple change points.dn high
dimensional data. The problem of detecting multiple change points in general can be

formulated as

1<rl<12<...<r <n
S

where are the unknown change point locations and sis the

number of change points, which is also unknown. If'the above null hypothesis is
rejected, the main objective will be to find the s change point estimates Tofprnfy
Similar to the illustrative example'in/Figure 1 for single change point, Figure 3 shows
how the dissimilarity measurey(3).and the proposed approach based on the
difference distance matrix.A'can be helpful for finding multiple change points (here
the same settings as-previous example but with two true change points at locations 6
and 11). To carry=out the problem of multiple change points, we use a recursive
binary segmentation procedure on the basis of our method for single change point
detection. We also demonstrate combining with the wild binary segmentation
procedure of Fryzlewicz (2014) at the end of this section. We sequentially apply the
proposed single change point method to uncover all significant change points in the

data according to our asymptotic or permutation test. Suppose that s change points

k=1,..

are detected sequentially and denoted by 7o S We use the notation 7+

because the detected change points using binary segmentation are not necessarily



in increasing order, when there are more than one change point. Note that

(7,0 Ty0eee s T,) =SOTL(F,, 7, ,;95).

The recursive binary segmentation starts with applying the single change point

algorithm to the data sequence [Xy X o X,

, and if a change point is detected
then the data sequence will be split to two segments (data sub-sequences) before
and after the detected change point in order to continue the same process with each
data sub-sequence separately for any further change points. Let bx and ex denote
the beginning and ending indices of observations for a data sub-sequence, say

[Xo Xar X, , for finding a potential change point 7« We apply the single

change point algorithm to this data sub-sequence and if a change point location 7

X, X, e, X
(X X «1 to two sub=sequences

]

is detected, we split the data sequence

L LS PR

respectively. We apply the single change point algorithm to each‘of these two sub-

before and after the change point 7 , say DX Xwreeen X

sequences to check for further change points. We continue the process until no

further change points are detected.

For multiple change point detection, we extend the formula of single change point

estimate (2) and write the estimate of the change point location yx as follows

7, =argmax, _ ., {;i Aij}, (9)

St e -b o +15)
where we note that > 72 and® = " | implying & ~ P *1= " When checking the
significance of the change point estimate 7 , we need to update both V' and V'
according to the change point estimate 7. For this, the two sets of indices for

observations_before and after the change point estimate 7 are expressed as

v, ={j:b, < js;?k—l},vgk:{j:;?ks i<e}.

To conduct the test for significance of 7 , the test statistic can be defined similarly as

1

T(G,) = Z > ¥ (d,-d,)%

(ek_b|<_|_:l')|v;;k ”V“|

i=b, jev; jev?
K IEV, T eV,



which simplifies to the test statistic (4) when A= 1. Algorithm 2 summarises our

method for multiple change point detection.

Algorithm 2: Multiple change point detection

T

=X X X1

Input : A data sequence or matrix of observations X

Output: A list of significant change point estimates (SEEEPTE '%s}, or “NA” if there is no
significant change point.
Step 1: Apply the single change point Algorithm 1 to the data sequence X . If there

is no significant change point, end the process and return “NA”. Otherwise, denote

the detected change point by 71 and go to next step.

Step 2: Split the data sequence to two sub-sequences before and afterthe detected
change point. Apply Algorithm 1 to each of the two sub-sequences separately to
check for further change points.

Step 3: Repeat Step 2 until no further sub-sequences have significant change points.

Step 4: Denote all the detected change points by {727 4%, 734 Return

(r,,7

20 T) = 80TU71, 7500 7.) ag a list of significant Ghange points.

We also incorporate the wild binary segmentation procedure of Fryzlewicz (2014) in

our proposal for multiple change points. For this, following the principle of wild binary

segmentation, we first randomly draw.a large number of pairs (-2 from the whole

1 >
argm axb;sjse:{—z A ii}

domain &'+ "} includingthe pair &™) | and find Bt iy for

each draw. The candidate change point location is the one that has the largest
(5.9
e, —b +1 Z !

k k i=b,

among all the draws. We test the significance of the change point
candidate using either the asymptotic or permutation test. If it is significant, the same
procedure will be repeated to the left and to the right of it. The process is continued
recursively until there is no further significant change point. The theory of wild binary
segmentation shows it performs at least as good as the standard binary

segmentation. Algorithm 2 then easily updates with the wild binary segmentation.



4 Asymptotic results

We study the asymptotic properties of our method for detecting single and multiple
high dimensional change points. We establish the theory with both the multivariate
modified Euclidean distance function and the univariate distance function based on
differences between the sample mean and variance of observations, although one
could see that the theory could similarly follow with other suitable distance measures
including other Lynorm distances. We study the situations when both nand p
approach infinity, as well as when p approaches infinity but 7 remains finite as in
HDLSS data.

(

To develop the asymptotic theory with 41X X0) pased on the multivariate modified

Euclidean distance function, according to Hall et al. (2005) we make the following

. : X = (XX, X )i=1,..4"
three assumptions on observations " (X X, o) :

max max E(Xi‘jl)<oo

(A1) Assume that *<i=n r<i=»

(A2) Assume "(ED/P = 4 gng LICPR U fortsthi=n,

p p
3> 3 Cov(X,, X,;)=o0(p>)
j=1 j'=1

(A3) Assume ¥

Alternatively, for using the univariate distance function based on differences between

the sample mean and variance‘of observations, we make the following assumptions.

max max E(Xi?)< ©

(B1) Assume that t=isnt=isr

2
py2 2 2 max maXx o.. < ©
i i) "= E(S i

(B2) Let Sus (X~ and define i ») | Assume i i

(B3) Forall “>0 and ' =1 " define



P P
A= E((Xij - ;ij)z)’Bi =2 E((Xii - ;ij)zl(| Xy = ;ij > 6Ai))’
j=1 j=1
P P
AL =X E(sT -0 = X E(S - oD IS - ol D),
j=1 j=1
, B
— >0 —X >0
and assume and A as P> >,
P P P P
ZZCOV(X”,X”,):o(pZ) ZZCOV(S;,Si?,)zo(pZ)
j=1 j'=1 i=1j=1
(B4) Assume i*V and *V as P 7~
SY ¥y ¥ cov(lx,-x BlIx, —x E)=0n
i=1 j=1 k=1 I=1
(B5) Assume ~ #i*ke! as "> » |

Assumptions (A1)-(A3) are required for the convergence of the modified Euclidean
distance used by Hall et al. (2005), Li (2020), and many others. Assumption (A3)
implies weak dependence among variables and is only needed.for the case of

correlated variables, which is trivial if the variables are.independent. Assumptions

p

(B1) and (B2) ensure bounded second moments for,.convergence of the mean X

and standard deviation Sx) . Assumption (B3).is thewsual Lindeberg condition which
is a common assumption for applying €entral limit theorem (a weaker condition
compared to Lyapunov condition). Assumptions (B4)-(B5) imply weak dependence
among variables and are only_ required for the case of correlated variables.

Assumptions (B4) guarantees,bounded covariances for the case of correlated

variables * , Which is artypical’assumption for dependent variables to satisfy the

conditions for centrallimit.theorem and weak law of large numbers. Assumption (B5)

Hxi_x,H2

is a similar covariance condition for i ® which can be simplified since

P P2 P P 2
Ix =% B 0y (s) —s))

|2

he 1~ . Note that Assumptions (B1) and (B2) imply
SYE(lx, - x )<w

=t . We also note that Assumptions (A3) and (B4)-(B5) hold for
variables with the p-mixing property (e.g., Utev, 1990) as well as with the spatial
dependence (e.g., Wang and Samworth, 2018), so we here consider a more general



dependence structure. For instance, under the spatial dependence

3 S Cov(X,,X,)=0(p")

Cov(X , X, ne e
ov( ij ”)ocp WIth'plSl,ltIS easytOShOW =]

X

If observations ©i and X have the same distribution, we can write

A=A, =2 _.ny=1__ vV i, jev_,

ﬂAziA::iA,ryij:=77+ v i,jeV:,

and also
;i:;j::/_lv—’gi:aj::av— v o i,jeVv_,
,L_tiz/jj::,L_tVHUi:Uj::UVt A i,jeV:,
p
— -1
_ — =Py My
. . = P =NE(S])® i = ' — Y
in which #1 = E(X:) ang 7 () for 1 =10 Notethat =t and
P
Glz = pilz Gli
it The following theorem concernsthe asymptotic behaviour of the
d (

C X X . . . :
dissimilarity measure 2% for high dimensional observations.

Theorem 3. Consider the data sequence Xy X2 X0 gnd dissimilarity measure
X X0 (3). Suppose that.zis.a change point so that Fo=e=F 2 Fo= =R
We have

d(X,,X;)=0,() Vegiev_ ,jevor VvV ieV  jeV,,

d(X,, X )=« _+0,(1)y V ieV ,jeV.or V ieV ,jeV_,

as P~ * | wherefor the modified Euclidean distance function, under Assumptions
(A1)-(A3),

2

K :ﬁ{(w; |—1)|M§; YA +’7i;v; _\/2/1; |«(1v: |—1)|M§; +/1§; +’7i;v; —xlza\j: 1}



while for the univariate distance function based on differences between the sample

mean and variance, under Assumptions (B1)-(B4),
K :l \/(EV; — ;V;)Z + (O'V; - O'V?)Z |

The next two theorems provide guaranties for consistency of the proposed single
change point estimate (2) for high dimensional observations when P ~ ® and nis

fixed, as well as when P ~ * and ndiverges too.

Theorem 4. Suppose that there is a true single change point 1o, 27, <N , sothat
Fo= =P P = =% Under the assumptions of Theorem 3, (a) we héve.as

P= < with any fixed n,

S A, =0,(1) if j#1,,

ZAij=KTO+OP(1) if j=r1,,

where ©+ = °W under Assumptions (A1)-(A2).or (B1)-(B2).

n

7= argmaxlsjsn{iz Aij}

(b) it follows For=0,) , hence the change point estimate Nia

is consistentforrpas ? 7 * .

From this theorem, the consistency of the proposed change point estimate holds
when P ™ “ and nis fixed'as in HDLSS data. In the following result, we show that

the consistency also holds when " = * as well, as one expects.

Theorem 5. Under the conditions in Theorem 4, we have as " > * and P 2 ©

1 n
Tax{—z A 1(j= TO)KTO}: 0, (1).
<i<n n 1

The next theorem studies the asymptotic limit of the proposed test statistic (4) under

the null hypothesis AHb as well as under the alternative hypothesis H.

S



Theorem 6. Suppose that there is a true single change point o, 270N and

consider the test statistic T (*) in (4) based on the change point estimate

1 n
7 = arg maxléisn{;Z Aij}

i=1 . Under the above assumptions, we have as P ~ ©

T | =0, T .=« +0,).

The following theorem proves that the asympfofic distribution of the fest stafistic (4)

/s a normal distribution under above conditions when both n and p go to infinity.

Theorem 7. Consider the test statistic ™ () jn (4) for testing a significant change
point. Under the null hypothesis Hp and the above assumpftions, we have .as = «

and P> ®

NIV [IVI(T()- my;
A (T vV Z Z Z ),
T,(7):= - N N(O,l),
\/z Z, Z+Z z zicijj’kll’
where T« (7) /s defined as standardised test'statistic. For the univariate distance

=V +V. +V +Vv %o0"(1)
1) 1 1) 1

. m...
function we have v and

= Cov(Ix, = x 2 Ix X A2 hx, - x 2 Tx - x 12)

= cov(lx, - x, 2 xgmx gy« cov(x, - x B2 Ix, - x . 2)

reov(lx, - x Balxpax yvcov(Ix, - x BIx, -x, [2),
where

(2(v.2.+v;2)+o”(1) ifizjkzli=k,j=1I,
*2 *2 p . . . . .
ii+v y/2+0° (1) ifi= jk=li=k,j=lI,
cov(lx, - xyl2Ix, - x I2)-
|(v“+v )/2+0(1) ifiz j,k=1li=k,j=1,

{o 1) otherwise,



v, = Var(X )+ Var(X]) = Var(s; )+Var(SXp)

and nd Vi ", For the multivariate

modified Euclidean distance function we have

|2 s

m, =B Ix —x By«septix -x, B

and

Coivnrrr :Cov(p’1HXi—Xj"§+p’1HX - X, 2,

ijj kil 71||X —X H2+pfl“Xk—Xl,H§)
=cov(ptlx, - x B plx, -x H)+Cov(p1"X -x Bt x =% 1)

ccov(ptIx, - x EoptIx, - x Eyscov(p 1Hxi—xj,||§,||xk—xl, ).

Remark. We use estimates of the constant quantities vyand ‘i to calculate i and
Ciprar . Following Slutsky’s theorem, the result of Theorem 7 also holds when

plugging in consistent estimates of the quantities vyand "i . For the univariate

distance case, we get a consistent estimate of var(x)

Assumption (B4))

in v;using (under

2

Var(X_ip)—izz Cov(X,, X, 2ZVar(X”)Jr (p )
p I=1 I'=1 p I=1
p’lz (X, —X_i'“)2 - p’lz Var(X,)— 0
and -1 -1 . Similarly, we get a consistent estimate of
Var(S) in Vi by first using (under Assumption (B4))

2 1 ’ P2
var((s¢)*) —p—zchv((x FX - X))
= i ar((x . X ") )+ P )
P a2 (10)
1.0 1’ )
=p— B((x, —x ) )—p—z (var(x,))* +o@)
1’ )
4 p—z E((x, - x ) - p(var(x ")) +o()
pilz (Xil - Xip)4 - pilz E((Xil - Xip)A)_> 0
and -1 1-1 , and then applying the delta method
Var(sy?) = 1p ~var((s?)?)
to obtain the required estimate as x) . Note that the last

equality in (10) is obtained by applying the Taylor expansion



(Var(X”))2 = (pVar(Xip))2 +2 pVar(Xip)(Var(X”) - pVar(Xi")) +o(p) _Also for the

modified Euclidean distance case, under Assumption (A3), we use the consistent

Edx, -x 1 and cov(lx, - x B lIx, —x,[)

estimates of as obtained in Li (2020).

We now study the optimality and detection power of the proposed method and obtain

conditions for optimal detection rates and full power.

Theorem 8. Consider the conditions in Theorem 3 and Theorem 7. We have, as

p—> x

7

P, T, () > Z - a,

alz)

2 2 2
K n K
)i o(-z,, — —2) 4 o),
C C C

2
c n

P .UT,(D)>2Z y=1-o(z

al2 al?2 *
c

where © s the CDF of standard normal distribution, z

C:\/Zn: Z Z ZHZ Z Ciiiane

«i2[s thesconresponding

g . . . . i= idVL irevink= evilrev? . C.., ,
critical point of standard normal distribution, e it AL with i
c =Y ¥ ¥ X XX Ciu
given in Theorem 7, and =t iev: eV " 'YV r with
S =c. b +b. . +b +b . .
Cunarr = S ¥ P TP T By T Bvw ywhare by is specified in the proof of theorem.

Under Assumptions (B4)-(B5) or (A3) the covariances are bounded asymptotically,

so cand ¢ are finite. So, withy* . 0 , the test is consistent and has full power as

n— x thatis,

wiz) > lasin — o and p - .

P, (T, () > 2

Also, with fixedrz.as in HDLSS data, the test is consistent if “~ diverges. The
following results demonstrate this for two cases when there is a change point in
mean and when there is change in variance of observations considering the sparsity

level and the change magnitude.

Corollary 1. Consider a change point in mean of high dimensional observations,

:/uik_/'ljk‘k:l’

. . . . e O, - ey
while variance remains unchanged, with the mean shift "¢ P for



all €V IV 1erSa=1k16 % 0} po the set of variables having a change point

2 1 2
Kro :_Z(Z 5k)
Kes,

with So =150 | being its cardinality or the sparsity level. Then, P and
(Y 50 1 p° (Y 50" 1p°
c kes c kes
P (T, (D) 2Z,,)=1-0(Z,,—- - Y+o(-z,,—- - ) +0(1).
! c c c c
(z 5k)2 > p’in’
Hence, with fixed n, the test is consistent if *<* . In particular, when

S _=mind

O =%mn forall® €S0 with "" x| the optimality is achieved if

P

or|é6_ . |> —.
ns

min I 0

S, >

0 min

n|o

Corollary 2. Consider a change point in variance of high dimensional 0bservations,

2 2
o, o k=

. . . . , = o o 1,...,
while mean remains unchanged, with the variance shift “ 3 ik P for

all €V TV 1erSo=1ki0# 0} potne set of variables having a change point in

S e,
K f _ kes, -
) s =S| ) . Yopi(o, +o )
this case with >0 "' >0 being the sparsity level. Then, ‘o © ., Hence,
> 0) >p"in’
similar to Corollary 1, with fixed n, thetestis consistent if *=* , where
S to . <o _
the assumption of finite variance implies AR . In particular, when ©x = ©min

=minw,
keso . the optimality is achieved if

min

(0]
forall ® €S0 with

p P
or |w > —.

S0 > min

nle ns

min | 0

We now demonstrate the consistency of multiple change point estimates from

Algorithm 2 for multiple high dimensional change point detection.

Theorem 9. Suppose there are s true change points

0 0 0 0
T, T ,...,15,2311<12<...<15£n

, so that

F=..=F, #F,=..=F, #F,=..=F, #F,=..=F, L
g g w2 w2 g . Assume the minimum



- z'io = Mn®
for some M > 0 and

R 0
min |z

spacing between change points satisfies ===+ "
¢ <1, Under the above assumptions, Algorithm 2 returns the change point estimates

(7127300 £.) = SOTU(F 17 e FL) fhatsaz‘/s/j/" (Ftp )= (7 rpet) =0, @)

0
min |z

il Tio |Z M ns
Note that the condition <i<s—

ensures that there are not too many

1/e

: N =T 1M :
change points to detect, because it implies that Lsiss-1 ! ) since

s < ( min | r’
0<s<n_ The following result shows that the asymptotic test and the permutation
test are equivalent asymptotically and that the permutation test is also unbiased

when "> ® gnd P~ .

Theorem 10. Consider the asymptotic test with the distribution S ) obtainedin
Theorem 7 as well as the permutation test with the approximate permutation

G, (1)

distribution in (5) and with the permutation-based p-value Posin i (6). Assume

the above assumptions hold. Under the null hypothesis Ho of no'change points, we

haveasn"—> > and? > ®

@ G, ()> G, (1) VI’

(b) PHO(pperm <a)<a V0L a<l

5 Numerical results

In this section, we evaluate the performance of the proposed methods under various
simulation scenarios and.in comparison with some of the recent methods in the
literature for high dimensional change points. We compare our methods with the
nonparametric method proposed by Matteson and James (2014), called E-divisive,
the method based on random projection developed by Wang and Samworth (2018),
called Inspect, and the nonparametric method of Li et al. (2019) for high dimensional
change points, called HDcpdetect. In the simulations, we set the tuning parameter
selection of these methods as the recommended defaults in their R packages. We
assess the performance of all the methods for detecting a single change point as
well as multiple change points under different scenarios, especially for the

challenging situation when nis very small compared to p as in HDLSS data. We



investigate the performance of our asymptotic and permutation tests using both the
univariate and multivariate distance functions. In the simulations we find that the
results of our method with the univariate and multivariate distance functions are quite
similar, so for simplicity of presentation and comparisons with the other methods, we
avoid presenting duplicate results unless when the results are different as in Section

5.4. Some simulation results are deferred to Appendix B due to space limitation.
5.1 Simulations for a single change in mean

We first start with the case of a single change point in mean of high dimensional
X Xy sy X

n

observations, where we generate data with nrandom observations
from a p-variate normal distribution, where the first 3n /5 observations afe generated

from N (#:E) and the other 2n/5 observations are generated from™ #2: =) we

consider different high dimensional settings with " €{45:90} gng™P €£500,1000,1500}

e{0,,(0.1x1,,,,0x1 ,),(0.2x15%, ,0%1 ,)}

. -0 0
as well as with “*~ “» and #2 where "~ °

1 . . :
and “* denote p-dimensional vectors of zeros and ones, respectively. We here set

2 ¢{0.5,1}

Y =
72" » where v

v % .
and " * represents,the covariance structure of data. In

2
p
the simulations, we consider two covariancee. structures: the uncorrelated structure

Vo =1 where 'v is the identity matrix'of size p, and the correlated autoregressive

_ p _ li-ijl]p
structure V¢ = v, 1. = Los ]”21. Note that the true change point location here is

= =0 vy .
M= H2=5 a5 it implies

7 =305+ for all scenarios, except.for the scenario when
there is no change point. We consider 250 replications for each simulation scenario
and use R =200 random permutations for the permutation test. We apply each of the
change point methads to the generated data sets and record, in addition to the
change point estimates, the frequency and average number of detected change
points over 250.replications for each method. The results on frequency and average
number of the change points detected are presented in Table 1. From the table, it
can be seen that all the methods perform well when there is no change point, but for
the cases with a true change point our proposed method based on both the
asymptotic and permutation tests performs better than all the other methods E-
divisive, Inspect and HDcpdetect. On average across the 250 replications, the

proposed method detects the change point in a higher frequency compared to the



other methods under all scenarios considered. We note that the method Inspect of
Wang and Samworth (2018) is not very competitive under such non-sparse high
dimensional scenarios because it requires sparsity and performs better with much
larger sample sizes nwhen pis very large (see Wang and Samworth, 2018; Hahn
et al., 2020; Follain et al., 2022). Also, Figure 4 presents the box plots of the
estimated change point from each of the methods over 250 replications. The box
plots show that the proposed method also produces a more accurate change point
estimate compared to the other methods. The performance of our method for the
correlated autoregressive structure is similar, so we skip the similar results because

of space limitation.
5.2 Simulations for multiple changes in mean

We next consider the case of multiple change points in mean of.high dimensional
observations, where we use the same simulation settings as«efore but here with
three true change points in the simulated data. For this, we 'generate data with n

X, X,

random observations X4 from a p-variate.normal distribution, where the

. . NiGu =0 ¥
first 3n /10 observations are generated from (. =0, )%) ,the next n/5

observations are generated from N (#::2) themext 30 /10 observations are

x)

generated from N (242 %) and the last-™.5 observations are generated from

NG#..2) 30 the three true change point locations here are

7 =8n/10+1 7, =n/2+1 gng Fa s 405 +1 e again use 250 replications for each

simulation scenario and apply the proposed method and the other methods to the
generated data sets. We‘here set the minimum segment length to 5. For each
method we calculate the frequency and average number of the correctly detected
change points aver 250 replications. We also calculate the total number of change
points detected (correct or incorrect detection). Table 2 shows the results on
frequency and average number of the correctly detected change points for each
method. From the results in Table 2, we can see that all the methods tend to perform
well in the cases when there is no change point. For the cases with three true
change points, our method based on both the asymptotic and permutation tests
outperforms all the other methods in all scenarios considered. The frequency of the

correctly detected change points, reported in the table, shows that the proposed



method detects the true change points more accurately compared to the other
methods. The performance of our method and the E-divisive by Matteson

and James (2014) improves when the dimension pincreases, but this is not the case
for the Inspect by Wang and Samworth (2018) as it relies on sparsity and tends to
improve with the sample size n (see Wang and Samworth, 2018; Hahn

et al., 2020; Follain et al., 2022). The average number of correctly detected change
points over the 250 replications is much closer to the actual number of true change
points for our method in the case of multiple change points too. The results on
average number of the total change points detected (correct or incorrect) are
reported in Figures 5(a) and 5(b), which suggest that our method does not over=

detect or under-detect change points.
5.3 Simulations for a change in variance

We then investigate the performance of the methods for detecting a change in
variance of observations while mean remains unchanged. We consider two

scenarios for this when the variance of observations is‘increased by 0.1 and 0.2, that

£, =0.5V c{0.6v 0.7V }

is * and x , While the'mean of observations is the same,
thatis #: = #2. The simulation results for all.the.methods considered are reported in
Table 3. From the results, one can see that our proposed method based on both the
asymptotic and permutation tests perform well in detecting such a change in
variance, but the other methods do‘not have power for detecting the change point

due to the variance of observations:

5.4 Simulations_for'change in distribution while mean and
variance remain unchanged

It is a challenging'problem for many methods in the literature to detect a change in
distribution while the mean and variance of observations remain unchanged

(see Zhang and Drikvandi, 2023). We consider two simulation scenarios for this with
n =45 and a change in distribution at location 28 when the variables for observations
are generated from N(0.573) ang 45) respectively, both having the same means
and variances, as well as from M1, 1) and EXP()  Considering the asymptotic limit

of the univariate distance function and the modified Euclidean distance, they might



not distinguish between distributions when their mean and variance are the same, so
we here also include the modified L1 norm distance to see how it performs in this
situation. Thus, we try our method with these three distance functions all using the
permutation test for a fair comparison. The simulation results over 250 replications,
which are reported in Table 4, show that all the methods perform quite poorly in this
case, except our method with the modified L1 norm distance function which performs
reasonably good in this challenging situation. This is because the asymptotic limit of
the L1 norm distance does not simplify to expressions just in terms of the mean and

variance of observations.

6 Real data application

We apply the proposed method to a real data application from the US stock return
data. The data set is available at https://www.finance.yahoo.comrand.can be
obtained using the R package Batchcetsymbols for different time periods. The data
we use here holds the daily closing prices of stocks from:the:S&P 500 index during
the first year of COVID-19 pandemic between 1st January 2020 and 30th June 2020,
which results in n= 125 time points and p = 496,stocks. This specific time period is
chosen because based on the experts analysis reported in Statista Research
Department (2022), the S&P 500 indexishowed much volatility and dropped by about
20% in early March 2020 entering into.a bear market. While the drop was the
steepest one-day fall since 1987, S&P:500 index began to recover at the start of
April 2020. Stock markets fellin the wake of the COVID-19 pandemic, with investors
fearing its spread could.destroy‘economic growth. Figure 6(a) shows a rough display
of the price changes-foriall.the stocks over this time period, where all the stock prices
are standardisedforwisualisation purpose. One can see the very steep drop around
early Mareh.2020;.as explained. The drop seems to be happened for a majority of
stocks with'some different magnitudes, suggesting a non-sparse high dimensional

change point problem here.

Figure 6(b) displays the dissimilarity visualisation of the S&P 500 data using the

dissimilarity measure 4% with both the modified Euclidean distance function

and the univariate distance function, which show a similar trend. Note that the

column sums of the two dissimilarity indices are drawn for those trading days in the



first half of 2020. The figure suggests that the trading days 13th and 16th March
2020 show the largest total dissimilarity from all the other observations and are

marked by vertical bars.

We first implement our distribution-free method, using our R package
HDDchangepoint, t0 find significant change points in this high dimensional data set.
Our method with the asymptotic test, using both distance functions, returns six
change point locations, namely 51, 57, 66, 95, 106, 112. The method with the
permutation test returns four change point locations, namely 51, 57, 66, 95. While
the two tests produce four common change points, the permutation test is a bit
conservative considering the dimension of data, which is in line with our numerical
results. The asymptotic p-values for these four significant change points are
5.64e-09,5.06e-04,1.27¢ - 05 gnq 2.50e - 07 respectively. Also, the same four
change points are obtained when we use 10 or 15 as the minimum:segment length
for the binary segmentation. We then apply the E-divisive method of Matteson

and James (2014) with the minimum segment length being,15, which detects seven
significant change points, namely 15, 37, 48, 68, 80, 95, 106. Also, the random
projection method of Wang and Samworth (2018).finds nine change point locations,
namely 18, 35, 44, 50, 65, 78, 99, 111, 124."The-HDcpdetect method of Li

et al. (2019) only finds two change pointlocations 48, 80. As in our numerical results,
HDcpdetect tends to detect fewer ehange/points when there are multiple change
points (see Figures 5(a) and 5(b)), and the random projection method shows a lower
accuracy in such high dimensional data with a small sample size (see Table 2).
Considering our simulation results especially those in Table 2 for multiple change
points, we believe our estimates of change point locations are more accurate,
especially the detected locations 51 and 57 which coincide with the steep drop in the
stock prices invearly March 2020 due to the COVID-19 impact on the market. Some

further results on our analysis of this data set is reported in Appendix C.

7 Concluding remarks

We have proposed a distance-based method for detecting single and multiple
change points in non-sparse high dimensional data. The proposed approach is

based on new dissimilarity measures and some proposed distance and difference



distance matrices, which does not require normality or any other specific distribution
for the observations. However, we note that our asymptotic tests require up to four
finite moments of the distribution. Our method is especially useful for change point
detection in HDLSS data when the sample size is very small compared to the
dimension of data. This is an understudied problem in the literature of high
dimensional change points. Our method can handle non-sparse high dimensional
situations where changes may happen in many variables and with small significant
magnitudes. We have introduced a novel test statistic to formally test the significance
of estimated change points and established its asymptotic and permutation
distributions to address both small and large sample size situations. We have shown
that our proposed estimates of change point locations are consistent for the,true
unknown change points under some standard conditions and that our‘proposed tests
are consistent asymptotically. Our simulation results showed that beth asymptotic
and permutation tests perform well compared to some of the.reeent methods for high
dimensional change points. Our R package #ppchangepoint foriimplementation of
the proposed method, including both the recursive binary segmentation and the wild
binary segmentation as well as the real data application,,can be obtained from
https://github.com/rezadrikvandi/HDDchangepoint®. The R package returns
significant change point estimates and,their cerresponding p-values, and it can also

be applied with any other dissimilarity'measure specified by the user.
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Table 1 Frequency and average number of the detected change points over 250

replications by each of the methods when there is one true change point, also

including the case with no change point.

Average
Number number of
of true Frequency of | detected
change the detected change
u, ny| p points |Method change points points
] 0 1
E 500 |0 Permutation||0.98 0.02 0.02
E 500 |0 Asymptotic (0.98 0:02 0.02
0, E 500 |0 E-divisive |[0.97 0.03 0.03
E 500 |0 Inspect 0.97 0.03 0.03
ESOO 0 HDcpdetect||0:98 0.02 0.02
E 10000 Permutation|(0.97 0.03 0.03
E 1000//0 Asymptotic {|0.96 0.04 0.04
0, E 1000j(0 E-divisive |0.95 0.05 0.05
E 1000//0 Inspect 0.94 0.06 0.06
E 1000//0 HDcpdetect|[0.96 0.04 0.04
E 1500110 Permutation||0.95 0.05 0.05
E 1600//0 Asymptotic [|0.95 0.05 0.05
0, E 1500|0 E-divisive |[0.96 0.04 0.04
E 1500)(0 Inspect 0.94 0.06 0.06
E 15000 HDcpdetect|[0.96 0.04 0.04
E 500 |1 Permutation||0.80 0.20 0.20
E 500 |1 Asymptotic ||0.73 0.27 0.27
(0.1x1,,,0x1 ) E 500 |1 E-divisive ||0.83 0.17 0.17
E 500 |1 Inspect 0.91 0.09 0.09




45|500 HDcpdetect||0.87 0.13 0.13
E 1000 Permutation||0.42 0.58 0.58
E 1000 Asymptotic (0.33 0.67 0.67
(0.1x1,,,,0x1 ) E 1000 E-divisive |[0.67 0.33 0.33
E 1000 Inspect 0.93 0.07 0.07
E 1000 HDcpdetect|0.71 0.29 0.29
E 1500 Permutation||0.16 0.84 0.84
E 1500 Asymptotic (0.13 0.87 0.87
(0.1x1,,,,0x1 ) E 1500 E-divisive |(0.38 0.62 0.62
E 1500 Inspect 0.93 0.07 0.07
E 1500 HDcpdetect|[0.49 0.51 0.51
E 500 Permutation||0.12 0.88 0.88
ESOO Asymptotic ||0.10 0.90 0.90
(0.2x1,,,,,0x1,,) E 500 E-divisive //0.14 0.86 0.86
E 500 Inspect 0.77 0.23 0.23
E 500 HDcpdetect|0.15 0.85 0.85
E 1000 Permutation||0.00 1.00 1.00
E 1000 Asymptotic ||0.00 1.00 1.00
(0.2x1,,,,,0x1_,) E 1000 E-divisive |0.03 0.97 0.97
E 1000 Inspect 0.72 0.28 0.28
E 1000 HDcpdetect||0.05 0.95 0.95
E 1500 Permutation||0.00 1.00 1.00
E 1500 Asymptotic ||0.00 1.00 1.00
(0.2x1,,,,,0x1,,) E 1500 E-divisive |[0.02 0.98 0.98
E 1500 Inspect 0.63 0.37 0.37
E 1500 HDcpdetect|[0.02 0.98 0.98




Table 2 Frequency and average number of the correctly detected change points

over 250 replications by each of the methods when there are three true change

points, also including the case with no change points.

Average
Frequency| number
Number| of the of
of true detected |detected
change change || change
u, n|| p | points ||Method points points
] 0 1 2.3
% 500 |0 Permutation|(0.97 0.03 0.00((0.00||0.03
% 500 |0 Asymptotic (0.97 0.03 0.00//0.00(/0.03
0, % 500 |0 E-divisive |(0.96 0.04 0.00//0.00(/0.04
% 500 |0 Inspect 0.95 0.05 0.00|/0.00||0.05
% 500 |0 HDcpdetect|/0.96 0.04 0.00|/0.00|0.04
% 1000//0 Permutation|(0.97 0.03 0.00//0.00(/0.03
% 1000//0 Asymptotic (0.96 0.04 0.00//0.00(/0.04
0, % 1000j(0 E-divisive |0.95 0.05 0.00|/0.00||0.05
% 1000j(0 Inspect 0.96 0.04 0.00|/0.00|0.04
% 1000j0 HDcpdetect||0.95 0.05 0.00|/0.00||0.05
% 1500/|0 Permutation|(0.96 0.04 0.00|/0.00|0.04
—96 15000 Asymptotic (|0.96 0.04 0.00//0.00(/0.04
0, 5(; 1500)(0 E-divisive ||0.96 0.04 0.00|/0.00|0.04
% 15000 Inspect 0.94 0.06 0.00|/0.00||0.06
% 1500)(0 HDcpdetect|[0.94 0.06 0.00|/0.00||0.06
% 500 |3 Permutation||0.32 0.46 0.20/0.02||0.92
% 500 |3 Asymptotic ||0.24 0.48 0.26(/0.02||1.06
(0.1x1,,,,0x1,.) % 500 |3 E-divisive ](0.30 0.56 0.12//0.02||0.86

3p/a?




90||500 |3 Inspect 0.56 0.38 0.06//0.00(/0.50
% 500 |3 HDcpdetect|[0.32 0.62 0.06//0.00(0.74
% 1000|;3 Permutation|(0.09 0.24 0.56/0.11(1.69
% 1000|3 Asymptotic ||0.06 0.27 0.50/0.17|1.77
(0.1x1,,,,0x1 ) % 1000|/3 E-divisive |[0.07 0.60 0.23|0.10(1.36
% 1000|/3 Inspect 0.46 0.45 0.09|/0.00(/0.63
% 1000|;3 HDcpdetect|[0.20 0.63 0.14/0.03(1.00
% 15003 Permutation|(0.00 0.05 0.19|/0476|2.71
% 15003 Asymptotic (0.00 0.05 0.15]/0.80(2.75
(0.1x1,,,,,0x1 ) % 15003 E-divisive ||0.05 0.25 0.46/0.24(1.89
% 1500(3 Inspect 0.22 0.58 0.19||0.01/0.99
% 1500(3 HDcpdetect|[0.08 0.44 0.38||0.10(1.50
% 500 |3 Permutation||0.00 0:02 0.18//0.80|2.78
% 500 |3 Asymptotic 000 0.02 0.16]/0.82||2.80
(0.2x1,,,,,0x1,,) % 500 (3 E-divisive ", 1(0.00 0.02 0.24|0.74(2.72
% 500 |3 Inspect 0.06 0.30 0.36/0.28(1.86
%500 3 HDcpdetect|[0.01 0.45 0.14(/0.40(1.93
% 1000|;3 Permutation|(0.00 0.00 0.00/|1.00(/3.00
% 1000/3 Asymptotic (0.00 0.00 0.00/|1.00(/3.00
(0.2x1,,,,0x1,,) % 1000(3 E-divisive |[0.00 0.00 0.14/0.86(2.86
9—0 10003 Inspect 0.00 0.13 0.57//0.30(2.16
% 1000|;3 HDcpdetect|[0.00 0.53 0.19||0.28(1.75
% 15003 Permutation|(0.00 0.00 0.00/|1.00(/3.00
% 15003 Asymptotic (0.00 0.00 0.00/|1.00(3.00
(0.2x1,,,,0x1,,) % 15003 E-divisive |(0.00 0.00 0.02/0.98(2.98
% 15003 Inspect 0.00 0.08 0.35|0.57(2.49
% 15003 HDcpdetect|[0.00 0.85 0.04(0.11)1.26




Table 3 Frequency and average number of the detected change points over 250

replications by each of the methods when there is a true change in variance of

observations.
N Frequency of the || Average number
detected change of detected
(n,, %) (1,.Z,) p |Method points change points
N 0 1

(0,,0.5V ) |1(0,,0.6V ) ESOO Permutation||0.87 0.13 0.13
(0,,0.5V){|(0,,0.6V ) E5OO Asymptotic [|0.85 0.15 015
(0,,0.5V){|(0,,0.6V ) E5OO E-divisive |0.98 0.02 0.02
(0,,0.5V ) {|(0,,0.6V ) E5OO Inspect 0.98 0.02 0.02
(0,,0.5V ) (1(0,,0.6V,) ESOO HDcpdetect|[0.99 0:01 0.01
(0,,0.5V ) |[(0,,0.6V ) E 1000j||Permutation||0.32 0.68 0.68
(0,,0.5V){|(0,,0.6V ) E1000 Asymptotic ||0.29 0.71 0.71
(0,,0.5V )[1(0,.,0.6V ) E1000 E-divisive ||0.96 0.04 0.04
(0,,0.5V ) 1(0,,0.6V ) £1000 Inspect 0.96 0.04 0.04
(0,,0.5V ) (1(0,,0.6V,) E 1000|HDcpdeteet|0.98 0.02 0.02
(0,,0.5V){|(0,,0.6V ) E 1500(|Permutation|/0.09 0.91 0.91
(0,,0.5V){|(0,,0.6V ) E1500 Asymptotic (|0.08 0.92 0.92
(0,,0.5V )[1(0,.,0.6V ) 51500 E-divisive |0.96 0.04 0.04
(0,,0.5V ) (1(0,,0.6V}) 51500 Inspect 0.97 0.03 0.03
(0,,0.5V ) [1(0,,0.6V ) E 1500(|HDcpdetect (0.97 0.03 0.03
(0,,0.5V ) [(04.0.7V ) ESOO Permutation||0.09 0.91 0.91
(0,,0.5V)[(0,,0.7V ) ESOO Asymptotic ||0.09 0.91 0.91
(0,,0.5V ) (1(0,,0.7V ) ESOO E-divisive |(0.86 0.14 0.14
(0,,0.5V ) [[(0,,0.7V ) ESOO Inspect 0.97 0.03 0.03
(0,,0.5V)[(0,,0.7V)) ESOO HDcpdetect||0.98 0.02 0.02
(0,,0.5V)[/(0,,0.7V ) E 1000{|Permutation|/0.00 1.00 1.00




(0,,0.5V ) 1(0,,0.7V ) E1000 Asymptotic (0.00 1.00 1.00
(0,,0.5V ) 1(0,,0.7V ) 51000 E-divisive |[0.72 0.28 0.28
(0,,0.5V ) (1(0,,0.7V ) 51000 Inspect 0.94 0.06 0.06
(0,,0.5V ) 1(0,,0.7V ) E 1000(|HDcpdetect (0.97 0.03 0.03
(0,,0.5V)[(0,,0.7V ) E 1500(|Permutation||0.00 1.00 1.00
(0,,0.5V)[/(0,,0.7V ) E15OO Asymptotic (|0.00 1.00 1.00
(0,,0.5V ) (1(0,,0.7V ) 51500 E-divisive |[0.49 0.51 0.51
(0,,0.5V ) 1(0,,0.7V ) 51500 Inspect 0.95 0.05 0.05
(0,,0.5V ) [(0,,0.7V ) E 1500(|HDcpdetect|0.96 0.04 0.04




Table 4 Frequency and average number of the detected change points over 250

replications by each of the methods when there is a change in distribution of

observations while their mean and variance remain the same.

Number of Average
true Frequency of | number of
Two different change the detected detected
distributions p points |Method change points ||change points
] 0 1
£5OO 1 Univariate |0.86 0.14 014
E 500 |1 L> norm 0.84 0.16 0.16
ESOO 1 L1 norm 0.74 0:26 0.26
N(0,5/3) g ]
{5) 45|500 |1 E-divisive 0.55 0.45 0.45
ESOO 1 Inspect 0.99 0.01 0.01
ESOO 1 HDcpdeteet|0.98 0.02 0.02
E 10001 Univariate, {|0.83 0.17 0.17
E 10001 La>norm  |0.80 0.20 0.20
E 1000|(1 L1norm  (0.69 0.31 0.31
N(0,5/3) g ]
{5) 45|11000(/1 E-divisive |0.51 0.49 0.49
E 1000j(1 Inspect 0.97 0.03 0.03
E 1000/(1 HDcpdetect|0.96 0.04 0.04
Zg 1500||1 Univariate |0.80 0.20 0.20
E 15001 L>norm  |0.77 0.23 0.23
E 1500(|1 L1 norm 0.66 0.34 0.34
N(0,5/3) g ]
{5) 45|11500(/1 E-divisive |0.50 0.50 0.50
E 1500|/1 Inspect 0.94 0.06 0.06




E 1500 HDcpdetect||0.94 0.06 0.06
E 500 Univariate |0.99 0.01 0.01
E 500 L2 norm 0.98 0.02 0.02
E 500 L1 norm 0.58 0.42 0.42

M1, 1) & ]

Exp (1) 45(500 E-divisive |0.99 0.01 0.01
E 500 Inspect 0.96 0.04 0.04
E 500 HDcpdetect||0.99 0.01 0.01
E 1000 Univariate |0.98 0.02 0:02
E 1000 L2 norm 0.95 0.05 0.05
E 1000 L1 norm 0.29 0.71 0.71

M1, 1) & ]

Exp (1) 45/1000 E-divisive |0.98 0.02 0.02
E 1000 Inspect 0.94 0.06 0.06
E 1000 HDcpdetect||0.98 0.02 0.02
E 1500 Univariate«{|0.96 0.04 0.04
E 1500 Lznorm 0.90 0.10 0.10
E 1500 L1 norm 0.09 0.91 0.91

M1, 1) & ]

Exp (L) 451500 E-divisive |0.92 0.08 0.08
E 1500 Inspect 0.93 0.07 0.07
E 1500 HDcpdetect||0.97 0.03 0.03
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