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Abstract
Our work is dedicated to the introduction and investigation of a new asymptotic correlation
relation in the field of mean field models and limits. This new notion, order (as opposed to
chaos), revolves around a tendency for self organisation in a given system and is expected to
be observed in biological and societal models. Beyond the definition of this new notion, our
work will show its applicability, and propagation, in the so-called choose the Leader model.

Keywords Mean field limits · Asymptotic correlation · Order

Mathematics Subject Classification 82C22 · 60F99 · 92-10 · 35Q82 · 35B40

1 Introduction

1.1 Background and theMean Field Limit Approach

Systems that involvemany elements, be it a gas of particles or a herd of animals, are ubiquitous
in our day to day lives. It is no wonder, then, that we are fascinated with their investigation
and try to model and investigate the phenomena that define and evolve such systems.

Historically, we have three possible approaches to consider when dealing with such sys-
tems:

Microscopic approach in which we consider every element as an individual and find their
tracjectories by solving a (most likely than not) coupled system of ODEs. This approach is
the most accurate of the three, but also the most untenable due to the difficulty in solving
such high number of coupled equations.

Macroscopic approach in which we “zoom” out, both in space and time, and investigate
the resulting “fluid”. This method gets rid of statistically insignificant phenomena which we
won’t see in the behaviour of the ensemble as a whole. The equations we consider in this
case describe the evolution of the (physical) density of the resulting fluid.

Mesoscopic approach which combines the “best of both worlds” from the previous two
approaches. Themesoscopic approach considers an average element of the system and how it
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evolves, trying to keep themicroscopic picture while considering only statistically significant
phenomena.

The mesoscopic approach was first introduced around the late 19th century during the
golden age of the mathematical and physical investigation of the kinetic theory of gases.
It has since outgrown its initial setting and is now used to describe a plethora of physical,
chemical, biological and even societal and economical phenomena.

While nowadays we have many tools to solve mesoscopic equations, which are usually
non-linear by nature, one of the main problems we encounter when dealing with these equa-
tions is the question of their relationship to the (more established) microscopic setting. A
prime example to this issue, and what is now known as Hilbert’s 6th problem, is the question
of whether or not one can show that the famous Boltzmann equation can be attained from the
equations describing the motion of particles in a dilute gas. While a partial solution to this
question was given in the 1975 work of Lanford [11], a result that was recently revisited in
the work of Gallagher et al. [8], we are still lacking a full answer. The search for an answer
to this problem, however, helped pave the way to a new and extremely potent idea—the idea
of mean field limits.

In his 1956 work, [10], Mark Kac has suggested a different approach to tackle the issue
of the validity of the Boltzmann equation. Kac has proposed to provide a probabilistic jus-
tification to it, instead of an exact derivation, by considering the evolution of an “average”
model of a dilute gas that consists of N particles which undergo binary collisions.

Mathematically, Kac’s model (or Kac’s walk) is a jump process which describes the
evolution of the probability density of an ensemble of particles. The symmetric probability

density of the ensemble,1FN , which is defined on
(
S
N−1

(√
N

)
, dσN

)
where dσN is the

uniform probability measure on the (N−1)-dimensional sphere of radius
√
N , SN−1

(√
N

)
,

satisfies the so-called master equation

∂t FN (VN , t) = LN FN (VN , t) = N (Q − I )FN (VN , t) ,

where VN = (v1, . . . , vN ) ∈ S
N−1

(√
N

)
and the collision operator, Q, is given by

QF (VN ) = 1(
N
2

)
∑
i< j

1

2π

∫ 2π

0
FN

(
Ri, j,θ (VN )

)
dθ,

with

(
Ri, j,θ (VN )

)
l =

⎧⎪⎨
⎪⎩

vl l �= i, j,

vi (θ) = vi cos (θ) + v j sin (θ) , l = i,

v j (θ) = −vi sin (θ) + v j cos (θ) , l = j .

(1)

Boltzmann’s equation, Kac’s surmised, should arise as a limit, in some sense, of the
evolution equation for the first marginal of FN , FN ,1, which represents the behaviour of an
average particle in the system. A simple calculation shows that

∂t FN ,1(v) = 1

π

∫ π

−π

∫

R

(
FN ,2 (v(θ), w(θ)) − FN ,2(v,w)

)
dwdθ, (2)

where v (θ) andw (θ) are given by the same formula as that which defines vi (θ) and v j (θ) in
(1). Equation (2) is not very surprising as we expect that the evolution of an average particle

1 The symmetry of the probability density is necessary and intuitive—if we are considering an average model
we shouldn’t be able to distinguish between the elements.
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will be affected by its interaction with another particle, represented by the second marginal
FN ,2. Equation (2) is not closed, and if one attempts to find the equation for FN ,2 they will
find that it depends on the third marginal, FN ,3. One can continue this way and find the
so-called BBGKY2 hierarchy, which ends with the original master equation.

At this point in his analysis Kac introduced a truly novel idea which was inspired by the
original work of Boltzmann. Kac realised that the model we discussed above didn’t fully take
into account the fact that the gas we are considering is dilute. The dilutness implies that we
expect that any two given particles have very small chance to collide with one another and the
more particles we have in the system—the smaller the chance is. Intuitively speaking, what
we expect is that as N increases the particles become more and more independent. In other
word, for any fixed k ∈ N we have that the k−th marginal of FN , FN ,k , which represents the
behaviour of a group of k random particles, will become more tensorised with respect to a
limiting function, f , which represents the limiting behaviour of one average particle:

FN ,1(v1) ≈
N large

f (v1),

FN ,2(v1, v2) ≈
N large

f (v1) f (v2),

...

FN ,k(Vk) ≈
N large

f ⊗k (Vk) .

Kac has defined the above property, which we now call (molecular) chaos or chaoticity,
rigorously. This new notion provided Kac with the “closure condition” needed to take a limit
in (2). Kac has shown that his model remains chaotic if it starts as such, which is known as
propagation of chaos, and that the generating function for the evolved probability density
satisfies the famous Boltzmann-Kac equation

∂t f (v) = 1

π

∫ π

−π

∫

R

( f (v(θ)) f (w(θ)) − f (v1) f (v2)) dwdθ,

in the limit when N goes to infinity. While Kac’s original model only considered the case
where the velocities of the particles in the ensemble are assumed to be one dimensional, the
above has been extended to higher dimensions and more realistic models where the resulting
mean field equation is precisely the Boltzmann equation (see, for instance, [12]).

Kac’s model and approach have had ramification beyond their immediate success—
ushering the field of mean field models and limits. We notice that his procedure relied on
exactly two ingredients:

• An average model for a system of interacting elements. In our context this is an evolution
equation for the probability density of the ensemble of elements.3

• An asymptotic correlation relation. This relation expresses the emerging phenomena we
expect to get as the number of elements goes to infinity. For Kac’s model this relation
was chaoticity.

2 Bogoliubov–Born–Green–Kirkwood–Yvon.
3 There are various ways to attain many elements models—they can arise as the Liouville/master equation of
the ensemble following deterministic or probabilistic trajectorial equations, or as a proposed master equation
that relies on probabilistic reasoning. The former case is usually explored using the empirical measure and
the trajectorial equations include interactions between all the elements in the system, scaled by a factor of the
number of the elements, while the latter is based on ideas presented in our discussion of Kac’s model where
each interaction occurs only between two random elements (we refer to such models as mean field models).
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The simplicity of the above approach, sometimes called the mean field limit approach,
opened the flood gate to the investigation of various many element models which, in recent
decades, permeated into the realms of biology, chemical interactions and even sociology—
with examples which include swarming of animals, neural networks, and consensus amongst
people (see [1, 2, 4] as well as the review paper [7] and references within).

It may come as a surprise that while the mean field limit approach is used in various
settings, the only asymptotic correlation used to this day is that of chaoticity. This, however,
doesn’t seem appropriate in many biological and societal situations where we expect more
dependence than independence between the underlying elements. This suspicion has been
confirmed in recent works of Carlen et al. [5, 6] who have constructed an animal based model
which, after appropriate scaling, deviates from chaoticity. The need for a different type of
asymptotic correlation is the beginning of this work.

1.2 Chaos, Order, and Choose the Leader Model

We start this subsection by describing the Choose the Leader model, or CL model in short,
introduced in the works of Carlen et al. [5, 6]. This model will motivate our definition of a
new asymptotic correlation relation—order.

The CLmodel is, similarly to Kac’s model, a velocity based pair-interaction jump process
that describes the evolution of a system that revolves around a herd of animals or a biological
swarm.

The model consists of N animals who move in a planar domain. The velocity of each
individual is assumed to be of magnitude 1 and as such can be considered to be an element
of the circle S

1. At a random time, given by a Poisson stream with a rate λ > 0, a pair of
animals is chosen at random uniformly amongst all the animals and undergoes a “collision”:
one of the animals, again chosen at random uniformly between the two, adapts its velocity
to the second animal up to a small amount of “noise”. Mathematically, this means that if the
i-th and j-th animal interacted and the j-th animal decided to follow the i-th animal, we
have that post collision (

vi , v j
) −→ (vi , Zvi ) ,

where Z is an independent random variable with values on S
1 and a given density function g,

and where we have used the notation vw to indicate the velocity ei(Arg(v)+Arg(w)), considering
elements in S

1 to be of the form eiθ .
Following on the above convention on S

1 we can replace the velocity variables with
their respective angle on the circle and conclude that the state space of the model is the
N -dimensional torus, T N = [−π, π ]N (with the appropriate identification of the end points
of the intervals), and that the master equation of the above process, i.e. the equation for the
probability density of the ensemble on T N with respect to the underlying probability measure
dθ1...dθN

(2π)N
, is given by

∂t FN (θ1, . . . , θN ) = 2λ

N − 1

∑
i< j

{
g

(
θi − θ j

)

2

(
[FN ] j̃

(
θ1, . . . , θ̃ j , . . . , θN

)

+ [FN ]̃i
(
θ1, . . . , θ̃i , . . . , θN

) )
− FN (θ1, . . . , θN )

}
.

(3)

with

[FN ] j̃
(
θ1, . . . , θ̃ j , . . . , θN

) =
∫ π

−π

FN (θ1, . . . , θN )
dθ j

2π
.

123



The Emergence of Order in Many Element Systems Page 5 of 25    86 

where we have used the notation
(
θ1, . . . , θ̃ j , . . . , θN

)
for the (N − 1)-dimensional vector

which is attained by removing θ j from the original N -dimensional vector (θ1, . . . , θN ). We
will continue and use this notation throughout this paper.

From the description of the CLmodel it seems that as times passesmoremeetings between
the animals of the herdwill happen and consequently greater overall mutual adherencewill be
observed. The emergence of these correlation, however, may strongly depend on the number
of animals. Indeed, the more animals we have the less likely it is that any two given animals
will meet—increasing the time we’ll have to wait before we see any emerging pattern.

In their two papers [5, 6] Carlen et al. have addressed this issue. They showed that chaos
does propagate on every fixed time interval, but is broken when we rescale our time variable
as well as the noise intensity g. While seemingly odd, we shouldn’t be surprised that the
deviation from the adherence of the velocities may also depend on the number of the animals
when we think of biological/societal settings—it can be, for example, that the more animals
we have, the more anxious they get and consequently they align themselves more closely
when they meet.

This intuitive idea of adherence motivates our upcoming definition of order (Definition 5)
but before we move to it, and for the sake of completeness, we remind the reader the general
definition of chaoticity:

Definition 1 Let X be a Polish space. We say that a sequence of symmetric probability
measures, μN ∈ P

(
X N

)
with N ∈ N, is μ0−chaotic for some probability measure μ0 ∈

P (X ) if for any k ∈ N

�kμN
weak−→
N→∞ μ⊗k

0

where �kμN is the k−the marginal of μN . The weak convergence in the above refers to
convergence when integrating against bounded continuous functions.

It is worth to mention at this point that there are various notions of chaoticity. We refer
the interested reader to [9] for more information.

Carlen, Degond and Wennberg have shown the propagation of chaos in general pair-
interaction models in [6]. In particular they have proved the following:

Theorem 2 Assume that {FN (0)}N∈N is f -chaotic. Then for any t > 0 the solution to the CL
master equation (3) with initial datum {FN (0)}N∈N, {FN (t)}N∈N, is f (t)-chaotic. Moreover,
f (t) satisfies the equation

∂t f (θ, t) = (g ∗ f ) (θ, t) − f (θ, t) .

As was mentioned before, the breaking of chaoticity is achieved by rescaling the time
and intensity of the interaction in (3). The time would naturally be rescaled by a factor of
N to guarantee that in a (rescaled) unit time all pairs of animals have interacted once. The
scaling of the interaction, on the other hand, is motivated from a standard scaling on the
line—restricted to [−π, π ]:

Definition 3 Given a symmetric probability density on R with respect to the Lebesgue mea-
sure dx , g, and a scaling parameter ε > 0 we define the rescaled and restricted probability
density on T with respect to the underlying probability measure dθ

2π , gε , by

gε (θ) = 1

ε g̃ε

g

(
θ

ε

)

where

g̃ε = 1

2π

∫ π
ε

− π
ε

g(x)dx .
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We will assume from this point onwards that the probability density of our interaction
in the CL model is of the form described above and that its “generator”, g, is a symmetric
probability density with at least a finite third moment.

To simplify the presentation of what is to follow we will write f ∈ P (X , μ) when f
is a probability density on X with respect to the underlying measure μ. We will shorten the
above notation and say that f ∈ P (X ) when μ is clear from the setting. In the remainder of
our work we will consider the spaces T k with the inherent measure dθ1...dθk

(2π)k
, where k ∈ N.

Following the time rescaling t ′ = t
N (which we will still denote as t) and allowing the

interaction scaling parameter to depend on N , i.e. considering ε = εN in Definition 3, we
attain the general rescaled CL master equation:

∂t FN (θ1, . . . , θN ) = 2λN

N − 1

∑
i< j

{
gεN

(
θi − θ j

)

2

(
[FN ] j̃

(
θ1, . . . , θ̃ j , . . . , θN

)

+ [FN ]̃i
(
θ1, . . . , θ̃i , . . . , θN

) )
− FN (θ1, . . . , θN )

}
.

(4)

Carlen, Chatelin, Degond, and Wennberg have shown the following in [5]:

Theorem 4 Consider the rescaled CL master Eq. (4) with εN = 1√
N
and let {FN (t)}N∈N be

the family of their solutions. If
{
FN ,k (t)

}
N∈N converges weakly to a family { fk(t)}k∈N when

N goes to infinity for any k ∈ N and t > 0 then { fk(t)}k∈N is not chaotic, i.e. fk(t) �= f ⊗k
1 (t)

for k ≥ 2.

From the construction of the model and the discussion above we are not too surprised by
this result—asymptotic independence is not what we expect when the animals try to adhere
to one another. What we do expect, in a sense, is that if we allow the correlation to reach their
full potential then the entire herd moves in a single direction following a random leader.
This motivates the following new definition:

Definition 5 Let X be a Polish space. We say that a sequence of symmetric probability
measures, μN ∈ P

(
X N

)
with N ∈ N, is μ0−ordered for some probability measure μ0 ∈

P (X ) if for any k ∈ N

�k (dμN ) (θ1, . . . , θk)
weak−→
N→∞ dμ0 (θ1)

k−1∏
i=1

δθi (θi+1) (5)

where δa (·) is the delta measure concentrated at the point a. When μ0 has a density function
f with respect to an underlying measure on X , μ (i.e. when dμ0 (θ) = f (θ) dμ (θ)), we
will say that the sequence {μN }N∈N is f −ordered and simplify (5) by writing

�k (dμN ) (θ1, . . . , θk)
weak−→
N→∞ f (θ1)

k−1∏
i=1

δθi (θi+1) .

Remark 6 Since
k−1∏
i=1

δθi (θi+1) =
k∏

i=2

δθ1 (θi )

we can reformulate Definition 5 by requiring that

�k (dμN ) (θ1, . . . , θk)
weak−→
N→∞ dμ0 (θ1)

k∏
i=2

δθ1 (θi ) .

123



The Emergence of Order in Many Element Systems Page 7 of 25    86 

This formalisation of order highlights a bit more the concentration of the limit of �k (dμN )

on the diagonal. Additionally, if X also has a group operation, which we will denote by +,
we can rewrite (5) as

�k (dμN ) (θ1, . . . , θk)
weak−→
N→∞ dμ0 (θ1)

k−1∏
i=1

δ (θi+1 − θi ) (6)

where δ is the delta measure concentrated at 0. This is the case in our setting where X = T
with the underlying measure dθ

2π and we will use this notation from this point onwards.

Remark 7 As we are starting to mix between singular measures and probability densities we
may encounter notational issues. To simplify the presentation of this work, we will keep
using a density based notation with the understanding that

∫

T
h(θ)δ (θ − ϕ)

dθ

2π
= h (ϕ)

for all appropriate measurable functions.

Much like when considering the notion of chaoticity, an immediate question one must ask
is whether or not there are any ordered states. The answer to that is in the affirmative. Given
a Polish space X and μ0 ∈ P (X ) we can define the family

dμN (θ1, . . . , θN ) = dμ0 (θ1)

N−1∏
i=1

δθi (θi+1) ∈ P
(
X N

)

whose marginals clearly satisfy

�k (dμN ) (θ1, . . . , θk) = dμ0 (θ1)

k−1∏
i=1

δθi (θi+1) .

This shouldn’t come as a great surprise: since our notion or order speaks of an asymptotic
concentration along the diagonal, choosing a family that already has this property produces
an ordered state (this is, in a sense, equivalent to choosing a tensorised family of states in the
chaotic setting).

It is worth to note that since

dμ0 (θ1)

N−1∏
i=1

δθi (θi+1) = 1

N

N∑
j=1

dμ0
(
θ j

) ∏
i+1 �= j

δθi (θi+1)

our family {μN }N∈N is indeed symmetric.

Our goal in this work is to explore the newly defined notion of order and show that it is the
right asymptotic correlation relation for the rescaled CL model, at least when the interaction
is strong enough. Moreover, we will show that this notion propagates.

1.3 Main Results

Aswe’vementioned in the previous subsection, in order to see an emergence of a non-chaotic
phenomenon we need to rescale the time and the intensity of the underlying interactions in
the process. While the works of Carlen et al. discuss a specific choice of scaling intensity
εN , we have, in fact, three different possibilities.
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To see these possibilities more clearly, let us consider the evolution equation for the
first marginal. A simple integration of (4) together with the fact that for symmetric density
functions

[FN ] j̃
(
θ1, . . . , θ̃ j , . . . , θN

) = FN ,N−1
(
θ1, . . . , θ̃ j , . . . , θN

)

shows that the evolution of the k-th marginals, with k = 1, . . . , N , is given by the following
BBGKY hierarchy

∂t FN ,k (θ1, . . . , θk)

= 2λN

N − 1

∑
i< j≤k

{
gεN

(
θi − θ j

)

2

(
FN ,k−1

(
θ1, . . . , θ̃ j , . . . , θk

)

+ FN ,k−1
(
θ1, . . . , θ̃i , . . . , θk

) )
− FN ,k (θ1, . . . , θk)

}

+ 2λN (N − k)

N − 1

∑
i≤k

1

2

{ ∫

T
gεN (θi − θk+1) FN ,k

(
θ1, . . . , θ̃i , . . . , θk+1

) dθk+1

2π

− FN ,k (θ1, . . . , θk)

}

(7)

(for proof in the non-scaled case, see [5]). When k = 1 the above reads as

∂t FN ,1 (θ1, t) = λN

(∫ π

−π

gεN (θ1 − θ) FN ,1 (θ, t)
dθ

2π
− FN ,1 (θ1, t)

)
. (8)

As our underlying space is T = [−π, π] and the above is clearly a PDE which involves
convolution, we aremotivated to use Fourier analysis and see that on the Fourier side equation
(8) can be rewritten as

d

dt
F̂N ,1 (n, t) = λN

(
ĝεN (n) − 1

)
F̂N ,1 (n, t) , n ∈ Z. (9)

The solution to (9) is explicitly given by

F̂N ,1 (n, t) = eλN
(
ĝεN (n)−1

)
t F̂N ,1 (n, 0) , n ∈ Z. (10)

It can be shown that as long as g has a finite third moment

ĝεN (n) = 1 + m2

2
ε2Nn

2 + O
(
ε3N |n|3) , (11)

where m2 = ∫
R
x2g(x)dx which implies that

F̂N ,1 (n, t) = e−λ
(m2

2

(
Nε2N

)
n2+O

(
Nε3N n

3
))
t F̂N ,1 (n, 0) , n ∈ Z.

The above gives rise to three scaling options:

(i) Nε2N −→
N→∞ 0. In this case the interaction scaling ismore dominant than the time scaling.

This is the case where we expect correlation to form quickly and that order will emerge.
(ii) Nε2N = 1. This is the case discussed in [5, 6]. The scaled interaction and time are “bal-

anced” in a diffusive manner.4 Interestingly, in this case order, as defined in Definition

4 This intuition is reinforced by the fact that in this case we find that f̂1 = limN→∞ F̂N ,1 is given by

f̂1(n, t) = e−
λm2
2 n2t f̂1(n).

123



The Emergence of Order in Many Element Systems Page 9 of 25    86 

5, is not observed as we will show shortly. As a small remark we’d like to mention that
we could have replaced the condition Nε2N = 1 with Nε2N −→

N→∞ C where 0 < C < ∞.

(iii) Nε2N −→
N→∞ ∞. In this case the time scaling is more dominant than the interaction

scaling and as a result we don’t expect correlation to form quickly enough. We expect
that chaos will prevail here.

Our main results in this work concern themselves only with the first two cases as our goal
is to veer away from chaoticity. Before we state our main theorems we’d like to note that
the existence and uniqueness of solutions to (3) (and equivalently (4)) is immediate from the
form of the evolution equation(s) and the fact that the operators which govern them are linear
and bounded.5

Theorem 8 Let {FN (t)}N∈N be the family of symmetric solutions to (4). Assume in addition
that limN→∞ Nε2N = 0 and that

{
FN ,k (0)

}
N∈N converges weakly as N goes to infinity to a

family fk ∈ P
(
T k

)
for any k ∈ N.

Then for any t > 0 and any k ∈ N,
{
FN ,k(t)

}
N∈N converges weakly as N goes to infinity

to a family fk(t) ∈ P
(
T k

)
which satisfies

fk (θ1, . . . , θk, t)

= e−λk(k−1)t fk (θ1, . . . , θk)

+ 2λ
∫ t

0
e−λk(k−1)(t−s)

⎛
⎝ ∑

i< j≤k

fk−1
(
θ1, . . . , θ̃i , . . . , θk, s

)
δ
(
θi − θ j

)
⎞
⎠ ds.

(12)

In particular, we have that

lim
t→∞ fk(θ1, . . . , θk, t) = f1 (θ1)

k−1∏
j=1

δ (θi+1 − θi )

which is an f1−ordered family. Moreover, if {FN (0)}N∈N is f1−ordered then

fk (θ1, . . . , θk, t) = f1 (θ1)

k−1∏
j=1

δ (θi+1 − θi )

for all t > 0.

Remark 9 The family of measures given by (12) is indeed a family of probability measures.
To see that we notice that∫

T k
fk (θ1, . . . , θk, t)

dθ1 . . . dθk

(2π)k
= e−λk(k−1)t

∫

T k
fk (θ1, . . . , θk)

dθ1 . . . dθk

(2π)k

5 The CL master equation is of the form

∂t FN (VN , t) = 2λ

N − 1

∑
i< j

(
Q∗

i, j − I
)
FN (VN , t)

where Qi, j is a Markovian operator acting through the i−th and j−th components of FN alone. More
information can be found in [6].
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+2λ
∫ t

0
e−λk(k−1)(t−s)

⎛
⎝ ∑

i< j≤k

∫

T k−1
fk−1

(
θ1, . . . , θ̃i , . . . , θk, s

) dθ1 . . . d θ̃i . . . dθk

(2π)k−1

⎞
⎠ ds.

Assuming by induction that fk−1 (t) is a probability measure shows that
∫

T k
fk (θ1, . . . , θk, t)

dθ1 . . . dθk

(2π)k
= e−λk(k−1)t + λk (k − 1)

∫ t

0
e−λk(k−1)(t−s)ds = 1,

where we used the fact that 2
∑

i< j≤k 1 = k(k − 1).

Remark 10 The first result of Theorem 8 tells us that no matter which weakly converging
family we start with, the limit family will become ordered as time goes to infinity. We can
think about this as generation of order. It is interesting to note that a phenomena of generation
of chaos was also observed by Lukkarinen. More information can be found in [13].

We would also like to point out that the second result in the Theorem 8 describes the
propagation of order in the CL model as it states that for any k ∈ N and t > 0

lim
N→∞ FN ,k(t) = f1 (θ1)

k−1∏
j=1

δ (θi+1 − θi ) .

This capitalises on the fact that the interaction scaling is stronger then the time scaling, which
is enough to imply a time independent ordered state for all t > 0.

Theorem 11 Let {FN (t)}N∈N be the family of symmetric solutions to (4). Assume in addition
that Nε2N = 1. Then {FN (t)}N∈N is neither chaotic nor ordered for any t > 0.

Following on Theorem 8 we might wonder if the lack of order in this setting is resolved
when we allow time to go to infinity. While the next theorem answers this question in the
negative, it does show that there is hope for some sort of partial order (in terms of relative
concentration on the diagonal) to appear. We will discuss this a bit more in §5.

Theorem 12 Let {FN (t)}N∈N be the family of symmetric solutions to (4). Assume in addition
that Nε2N = 1 and that

{
FN ,1(0)

}
N∈N and

{
FN ,2(0)

}
N∈N converge weakly to f1 ∈ P (T )

and f2 ∈ P
(
T 2

)
respectively. Then for all t > 0

{
FN ,1(t)

}
N∈N and

{
FN ,2(t)

}
N∈N converge

to f1(t) ∈ P (T ) and f2(t) ∈ P
(
T 2

)
respectively which satisfy

lim
t→∞ f1(θ1, t) = 1, (13)

and
lim
t→∞ f2(θ1, θ2, t) = H (θ1 − θ2) (14)

where

H (θ) =
∑
n∈Z

2

m2n2 + 2
einθ = 1 + 4

∑
n∈N

cos (nθ)

m2n2 + 2
.

Remark 13 While it is possible to find f1(t) and f2(t) (as we will see in the proof of the
theorem), the focus of Theorem 12 is on the asymptotic behaviour with respect to time and
consequently we elected to exclude formulae from the statement.

Remark 14 As can be seen in the figure below
H is somewhat concentrated around 0, validating our intuition that some “type of order”

(or partial order) phenomenon may emerge here.
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Fig. 1 A plot of an approximation of H with m2 = 1 by the first 500 terms of the cosine series

1.4 The Organisation of the Paper

In Sect. 2 we will discuss some preliminaries that will help us prove our main results. Section
3 will be dedicated to the proof of Theorem 8while Sect. 4 will focus on Theorems 11 and 12.
We’ll conclude the work with some final remarks in Sect. 5 and an appendix which considers
some technical details.

2 Preliminaries

Looking at the BBGKY hierarchy of our (rescaled) CL model, given by (7), we immediately
notice that besides the fact that we are dealing with a closed linear hierarchy—it also involves
a simple convolution term. This motivates us to use Fourier analysis in our investigation of
the model, the application of which will be the focus of this short section.

In this section we will consider the following topics: the connection between weak con-
vergence and Fourier coefficients on T k and the meaning of order in the Fourier space, the
behaviour of the Fourier coefficients of gεN , and the recasting of our rescaled master equation
(4) in the Fourier space.

To simplify notations we will denote by gN = gεN from this point onwards.
We start with the following simple observation, which is presented without proof.

Lemma 15 Let
{
μ

(k)
N

}
N∈N be a sequence of probability measures on T k, and let μ(k) ∈

P
(
T k

)
. Then μ

(k)
N

weak−→
N→∞ μ(k) if and only if for any (n1, . . . , nk) ∈ Z

k

̂
μ

(k)
N (n1, . . . , nk) =

∫

T k
e−i

∑k
j=1 n j θ j dμ

(k)
N (θ1, . . . , θk) −→

N→∞ μ̂(k) (n1, . . . , nk) .
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We would like to remind the reader that when we consider a probability density fk ∈
P

(
T k

)
it is always with respect to the underlying measure dθ1...dθk

(2π)k
which means that

f̂k (n1, . . . , nk) =
∫

T k
fk (θ1, . . . , θk) e

−i
∑k

j=1 n j θ j
dθ1 . . . dθk

(2π)k
,

as expected.

TheMeaning of Order in the Fourier Space

Following on Lemma 15 we want to find out how an ordered state looks like in the Fourier
space:

Lemma 16 The family FN ∈ P
(
T N

)
, with N ∈ N, is f −ordered if and only if for any

(n1, . . . , nk) ∈ Z
k

F̂N ,k (n1, . . . , nk) −→
N→∞ f̂

⎛
⎝

k∑
j=1

n j

⎞
⎠ .

The proof of the above relies on the following simple observation:

Lemma 17 Let f ∈ P (T ) and let k ∈ N. Then μ ∈ P
(
T k

)
satisfies

dμ (θ1, . . . , θk) = f (θ1)

k−1∏
i=1

δ (θi+1 − θi )

if and only if μ̂ (n1, . . . , nk) = f̂
(∑k

j=1 n j

)
for any (n1, . . . , nk) ∈ Z

k .

Proof Since the Fourier coefficients of a measure determine it uniquely,
it is enough for us to show that the Fourier coefficient of μo = f (θ1)

∏k−1
i=1 δ (θi+1 − θi )

at (n1, . . . , nk) is f̂
(∑k

j=1 n j

)
. Indeed

μ̂o (n1, . . . , nk) =
∫

T k
f (θ1)

k−1∏
i=1

δ (θi+1 − θi ) e
−i

∑k
j=1 n j θ j

dθ1 . . . dθk

(2π)k

=
∫

T
f (θ1) e

−i
(∑k

j=1 n j

)
θ1 dθ1

2π
= f̂

⎛
⎝

k∑
j=1

n j

⎞
⎠ .

�
Proof of Lemma 16 The proof is an immediate application of Lemmas 15 and 17.

The Behaviour of the Fourier Coefficients of gN

The penultimate ingredient we need in our investigation of (4) and to show the appearance
of order is the following lemma:

Lemma 18 Let g ∈ P (R, dx) be such that its k-th moment, defined as

mk =
∫

R

|x |k g(x)dx,

123



The Emergence of Order in Many Element Systems Page 13 of 25    86 

is finite for some k > 2. Then for any ε < π
k√mk

and any n ∈ Z

∣∣∣ĝε(n) − 1 + m2

2
(nε)2

∣∣∣ ≤ 2εkmk

πk − εkmk
+ m3

3
(|n| ε)3 . (15)

The proof of the above is fairly straightforward and can be found in Appendix A for the
sake of completion.

Remark 19 Wewould like to point out that the approximation (11) follows immediately from
the above.6

Recasting of the (Rescaled) Master Equation for the CLModel in the Fourier Space

The last result of this section concerns itself with recasting (4) with the Fourier coefficients
of our given family of solutions. We would like to mention that as the underlying space is
compact and the generator of our master equation is a bounded linear operator, there is no
issue with interchanging the time derivative and spatial integration which we will perform in
order to move to the Fourier space.

Lemma 20 Let
{
FN ,k(t)

}
N∈N be the family of k-th marginals to the family of symmetric

solutions to (4), {FN (t)}N∈N. Then we have that

∂t F̂N ,k (n1, . . . , nk)

= 2λN

(N − 1)

∑
i< j≤k

{
ĝN (ni ) + ĝN

(
n j

)

2
F̂N ,k−1

(
n1, . . . , ni + n j , . . . , nk

)

− F̂N ,k (n1, . . . , nk)
}

+ λN (N − k)

(N − 1)
F̂N ,k (n1, . . . , nk)

∑
i≤k

(ĝN (ni ) − 1) ,

(16)

where
(
n1, . . . , ni + n j , . . . , nk

)
is attained by replacing ni with ni + n j and omitting n j

from the original vector (n1, . . . , nk) or, due to the symmetry of F̂N ,k−1, replacing n j with
ni + n j and omitting ni . Identity (16) can also be rewritten as

∂t F̂N ,k (n1, . . . , nk)

= λN

N − 1

⎛
⎝(N − k)

∑
i≤k

(ĝN (ni ) − 1) − k (k − 1)

⎞
⎠ F̂N ,k (n1, . . . , nk)

+ λN

N − 1

∑
i< j≤k

(
ĝN (ni ) + ĝN

(
n j

))
F̂N ,k−1

(
n1, . . . , ni + n j , . . . , nk

)
.

(17)

Proof We start by noticing that due to the symmetry of g we find that for any i < j ≤ k
∫

T k
gN

(
θi − θ j

)
FN ,k−1

(
θ1, . . . , θ̃ j , . . . , θk

)
e−i

∑k
l=1 nlθl

dθ1 . . . dθk

(2π)k

=
∫

T k
gN

(
θ j − θi

)
FN ,k−1

(
θ1, . . . , θ̃ j , . . . , θk

)
e−i

∑k
l=1 nlθl

dθ1 . . . dθk

(2π)k

6 Note that for any n ∈ Z \ {0} we have that ε3N ≤ ε3N |n|3 which shows that (15) indeed implies (11) when
n �= 0. If n = 0 we have the identity ĝN (0) = 1.
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= ĝN
(
n j

) ∫

Tk−1

FN ,k−1
(
θ1, . . . , θ̃ j , . . . , θk

)
e−i

∑k
l �= j, l=1 nlθl e−in j θi

dθ1 . . . d θ̃ j . . . dθk

(2π)k−1

= ĝN
(
n j

)
F̂N ,k−1

⎛
⎜⎝n1, . . . , ni + n j︸ ︷︷ ︸

i-th position

, . . . , ñ j , . . . , nk

⎞
⎟⎠ .

Similarly
∫

Tk

gN
(
θi − θ j

)
FN ,k−1

(
θ1, . . . , θ̃i , . . . , θk

)
e−i

∑k
l=1 nlθl

dθ1 . . . dθk

(2π)k

= ĝN (ni ) F̂N ,k−1

⎛
⎜⎝n1, . . . , ñi , . . . , ni + n j︸ ︷︷ ︸

j-th position

, . . . , nk

⎞
⎟⎠ .

The above implies that

FT k

( ∑
i< j≤k

{
gN

(·i − · j
)

2

(
FN ,k−1

(·1, . . . ,̃ · j , . . . , ·k
)

+ FN ,k−1 (·1, . . . ,̃ ·i , . . . , ·k)
)

− FN ,k (·1, . . . , ·k)
})

(n1, . . . , nk)

=
∑

i< j≤k

{
ĝN

(
n j

)

2
F̂N ,k−1

⎛
⎜⎝n1, . . . , ni + n j︸ ︷︷ ︸

i-th position

, . . . , nk

⎞
⎟⎠

+ ĝN (ni )

2
F̂N ,k−1

⎛
⎜⎝n1, . . . , ni + n j︸ ︷︷ ︸

j-th position

, . . . , nk

⎞
⎟⎠

− F̂N ,k (n1, . . . , nk)
}
.

(18)

where we used the notation of FT l ( f ) (n1, . . . , nl) = f̂ (n1, . . . , nl) when f ∈ P
(
T l

)
.

Next, due to the symmetry of FN , we see that for any i ≤ k
∫

T k

(∫

T
gN (θi − θk+1) FN ,k

(
θ1, . . . , θ̃i , . . . , θk+1

) dθk+1

2π

)
e−i

∑k
l=1 nlθl

dθ1 . . . dθk

(2π)k

= ĝN (ni )
∫

Tk

FN ,k
(
θ1, . . . , θ̃i , . . . , θk+1

)
e−i

∑k
l �=i, l=1 nlθl e−ini θk+1

dθ1 . . . d θ̃i . . . dθk+1

(2π)k

= ĝN (ni ) F̂N ,k (n1, . . . , nk) ,

and consequently

FT k

( ∑
i≤k

{ ∫ π

−π

gN (·i − θk+1) FN ,k (·1, . . . ,̃ ·i , . . . , θk+1)
dθk+1

2π

− FN ,k (·1, . . . , ·k)
}

(n1, . . . , nk) = F̂N ,k (n1, . . . , nk)
∑
i≤k

(ĝN (ni ) − 1) .

(19)
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Combining (18) and (19) with the BBGKY hierarchy (7) yields

∂t F̂N ,k (n1, . . . , nk) = 2λN

N − 1

∑
i< j≤k

{
ĝN

(
n j

)

2
F̂N ,k−1

⎛
⎜⎝n1, . . . , ni + n j︸ ︷︷ ︸

i-th position

, . . . , nk

⎞
⎟⎠

+ ĝN (ni )

2
F̂N ,k−1

⎛
⎜⎝n1, . . . , ni + n j︸ ︷︷ ︸

j-th position

, . . . , nk

⎞
⎟⎠ − F̂N ,k (n1, . . . , nk)

}
.

+ λN (N − k)

N − 1
F̂N ,k (n1, . . . , nk)

∑
i≤k

(ĝN (ni ) − 1) .

Since the fact that f is symmetric implies that so is f̂ we conclude (16).
To attain (17) we notice that

2
∑

i< j≤k

1 = k(k − 1)

and rearrange (16).
�

An immediate corollary of the above is the following:

Corollary 21 A recursive formula for the k-th marginals
{
FN ,k

}
N∈N is given by

F̂N ,k (n1, . . . , nk, t) = e− λN
N−1

(
(N−k)

∑
l≤k (1−ĝN (nl ))+k(k−1)

)
t F̂N ,k (n1, . . . , nk, 0)

+ λN

N − 1

∑
i< j≤k

(
ĝN (ni ) + ĝN

(
n j

)) ∫ t

0
e− λN

N−1

(
(N−k)

∑
l≤k (1−ĝN (nl ))+k(k−1)

)
(t−s)

F̂N ,k−1
(
n1, . . . , ni + n j , . . . , nk, s

)
ds.

(20)

Consequently

F̂N ,2 (n1, n2, t)

= e− λN
N−1

(
(N−2)

∑
l≤2(1−ĝN (nl ))+2

)
t F̂N ,2 (n1, n2, 0) + (ĝN (n1) + ĝN (n2))

e− λN
N−1

(
(N−2)

∑
l≤2(1−ĝN (nl ))+2

)
t − e−λN (1−ĝN (n1+n2))t

(N − 1) (1 − ĝN (n1 + n2)) − (N − 2)
∑

l≤2 (1 − ĝN (nl)) − 2
F̂N ,1 (n1 + n2, 0) ,

(21)

where we define eαt−eβt

α−β
to be teαt if α = β.

Proof (20) is a simple ODE solution to (17). Plugging the solution for the case k = 1 (which
is given by (10)) in the identity for k = 2 gives

F̂N ,2 (n1, n2, t) = e− λN
N−1

(
(N−2)

∑
l≤2(1−ĝN (nl ))+2

)
t F̂N ,2 (n1, n2, 0) +

λN

N − 1
(ĝN (n1) + ĝN (n2))

∫ t

0
e− λN

N−1

(
(N−2)

∑
l≤2(1−ĝN (nl ))+2

)
(t−s) F̂N ,1 (n1 + n2, s) ds

= e− λN
N−1

(
(N−2)

∑
l≤2(1−ĝN (nl ))+2

)
t F̂N ,2 (n1, n2, 0) + λN

N − 1
(ĝN (n1) + ĝN (n2))

(∫ t

0
e− λN

N−1

(
(N−2)

∑
l≤2(1−ĝN (nl ))+2

)
(t−s)eλN (ĝN (n1+n2)−1)sds

)
F̂N ,1 (n1 + n2, 0) .
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Using the fact that ∫ t

0
eα(t−s)eβsds = eαt − eβt

α − β
, (22)

with the convention that was mentioned in the statement of the corollary, we conclude (21).
�

With this in hand, we are ready to show our main theorems.

3 The Case of Strong Interactions

In this section we will show the emergence of order, and its propagation, in the case of strong
interaction in the CL model. We start by noticing that Corollary 21 in Sect. 2 gives us an
inkling to why Theorem 8 holds. Indeed, under the assumption that limN→∞ Nε2N = 0 we
can show that

lim
N→∞ N (1 − ĝN (n)) = 0

for any fixed n and consequently, using (21), we see that as long as FN ,1(0) and FN ,2(0)
converge weakly to f1 and f2 respectively we have that

f̂2 (n1, n2, t) = lim
N→∞ F̂N ,2 (n1, n2, t) = e−2λt f̂2 (n1, n2) + (

1 − e−2λt) f̂1 (n1 + n2)

= FT 2
(
e−2λt f2 (·1, ·2) + (

1 − e−2λt ) f1 (·1) δ (·2 − ·1)
)
(n1, n2) .

In other words

f2 (θ1, θ2, t) = e−2t f2 (θ1, θ2) + (
1 − e−2t) f1 (θ1) δ (θ2 − θ1)

which fits the statements of Theorem 8. Let us show the proof in the general case:

Proof of Theorem 8 Using Lemma 18, we find that
∣∣∣ĝN (n) − 1 − m2

2
ε2Nn

2
∣∣∣ ≤ Cε3N |n|3

for all n ∈ Z. Thus, if limN→∞ Nε2N = 0 we have that

0 ≤ N (1 − ĝN (n)) ≤
(m2

2
n2 + CεN |n|3

)
Nε2N ,

where we used the fact that the Fourier coefficient of any real and symmetric probability
density is always real and bounded in absolute value by 1.

We conclude from the above that for any n ∈ Z we have that

lim
N→∞ N (1 − ĝN (n)) = 0.

Next, we recall that Lemma 15 assures us that for any (n1, . . . , nk) ∈ Z
k we have that

lim
N→∞ F̂N ,k(0) (n1, . . . , nk) = f̂k (n1, . . . , nk) .

Moreover, since the Fourier coefficients of any probabilitymeasure are bounded uniformly by
1,we can apply theDominatedConvergence Theorem to our recursive formula, (20), and con-
clude that for any t > 0 and any k ∈ N, limN→∞ F̂N ,k (n1, . . . , nk, t) = f̂k (n1, . . . , nk, t)
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exists and satisfies7

f̂k (n1, . . . , nk, t) = e−λk(k−1)t f̂k (n1, . . . , nk)

+ 2λ
∑

i< j≤k

∫ t

0
e−λk(k−1)(t−s) f̂k−1

(
n1, . . . , ni + n j , . . . , nk, s

)
ds,

(23)
where we have used the fact that limN→∞ ĝN (n) = 1 for any n ∈ Z. This shows (12) due to
the uniqueness of the Fourier coefficients and the fact that

∫

T k
fk−1

(
θ1, . . . , θ̃i , . . . , θk

)
δ
(
θi − θ j

)
e−i

∑k
l=1 nlθl

dθ1 . . . dθk

(2π)k

=
∫

T k
fk−1

(
θ1, . . . , θ̃i , . . . , θk

)
e−i

∑k
l �=i, l=1 nlθl e−ini θ j dθ1 . . . d θ̃i . . . dθk

(2π)k−1

= f̂k−1
(
n1, . . . , ni + n j , . . . , nk

)
.

To show the convergence to an f1-ordered state as time goes to infinity we notice that, just
like the Lemma 15 and by utilising Lemma 16, it is enough for us to show that

lim
t→∞ f̂k (n1, . . . , nk, t) = f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠ .

We will achieve this by showing that for any k ≥ 2 there exists an explicit constant ck which
depends only on k such that

∣∣∣∣∣∣
f̂k (n1, . . . , nk, t) − f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠

∣∣∣∣∣∣
≤ cke

−2λt .

We start by noticing that for k = 1 (23) implies that

f̂1(n, t) = f̂1(n).

Consequently, for k = 2 we have that

f̂2 (n1, n2, t) = e−2λt f̂2 (n1, n2) + 2λ
∫ t

0
e−2λ(t−s) f̂1 (n1 + n2, s) ds

= e−2λt f̂2 (n1, n2) + 2λ

(∫ t

0
e−2λ(t−s)ds

)
f̂1 (n1 + n2)

= e−2λt f̂2 (n1, n2) + (
1 − e−2λt ) f̂1 (n1 + n2) ,

(24)

from which we find that
∣∣ f̂2 (n1, n2, t) − f̂1 (n1 + n2)

∣∣ ≤ 2e−2λt = c2e
−2λt .

We continue by induction: assume the claim holds for k − 1 ≥ 2 and consider k. Since

2λ
∑

i< j≤k

∫ t

0
e−λk(k−1)(t−s)ds = λk (k − 1)

∫ t

0
e−λk(k−1)(t−s)ds = 1 − e−λk(k−1)t

7 We need to be slightly careful here and employ an inductive argument to show that fk−1(t) is indeed a
probability measure first. This is a very straightforward argument and as such we skip the details here.
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we find that∣∣∣∣∣∣
f̂k (n1, . . . , nk, t) − f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠

∣∣∣∣∣∣
≤ e−λk(k−1)t

∣∣∣∣∣∣
f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠

∣∣∣∣∣∣
+

∣∣∣∣e−λk(k−1)t f̂k (n1, . . . , nk)

+2λ
∑

i< j≤k

∫ t

0
e−λk(k−1)(t−s)

⎛
⎝ f̂k−1

(
n1, . . . , ni + n j , . . . , nk, s

) − f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠

⎞
⎠ ds

∣∣∣∣

≤ 2e−λk(k−1)t + 2λck−1

∑
i< j≤k

∫ t

0
e−λk(k−1)(t−s)e−2λsds

= 2e−λk(k−1)t + λck−1k (k − 1)
e−2λt − e−λk(k−1)t

λ (k (k − 1) − 2)

where we have used (22) and the fact that 2
∑

i< j≤k 1 = k(k − 1). Since k ≥ 3 we see that
∣∣∣∣∣∣
f̂k (n1, . . . , nk, t) − f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠

∣∣∣∣∣∣
≤ 2e−λk(k−1)t + ck−1k (k − 1)

e−2λt

k (k − 1) − 2

≤
(
2 + ck−1k (k − 1)

k (k − 1) − 2

)
e−2λt = cke

−2λt .

We have thus shown the first statement of the theorem.
Next, we show the propagation of order by induction. Recall that according to Lemma 17

it will be enough for us to show that

f̂k (n1, . . . , nk, t) = f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠

for any t > 0 and (n1, . . . , nk) ∈ Z
k . Using Lemma 16 and the fact that {FN (0)}N∈N is

f1−ordered we conclude that

f̂2 (n1, n2) = lim
N→∞ F̂N ,2 (n1, n2, 0) = f̂1 (n1 + n2) .

Using the fact that f̂1(n, t) = f̂1(n) for all t > 0 together with the above and (24) we find
that

f̂2 (n1, n2, t) = e−2λt f̂2 (n1, n2) + (
1 − e−2λt ) f̂1 (n1 + n2) = f̂1 (n1 + n2) ,

which shows our base induction step. We now assume that

f̂k−1 (n1, . . . , nk−1, t) = f̂1

(
k−1∑
l=1

nl

)

for all t > 0 and (n1, . . . , nk−1) ∈ Z
k−1, where k − 1 ≥ 2. As in the case k = 2 we know

that the fact that {FN (0)}N∈N is f1-ordered implies that

f̂k (n1, . . . , nk) = lim
N→∞ F̂N ,k (n1, . . . , nk, 0) = f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠ .
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Using our recursive formula (23) we find that for any t > 0

f̂k (n1, . . . , nk, t)

= e−λk(k−1)t f̂k (n1, . . . , nk)

+ 2λ
∑

i< j≤k

∫ t

0
e−λk(k−1)(t−s) f̂k−1

(
n1, . . . , ni + n j , . . . , nk, s

)
ds

= e−λk(k−1)t f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠ + 2λ

∑
i< j≤k

∫ t

0
e−λk(k−1)(t−s) f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠ ds

= e−λk(k−1)t f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠ + 2λ

∑
i< j≤k

(∫ t

0
e−λk(k−1)(t−s)ds

)
f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠

= e−λk(k−1)t f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠ +

(
1 − e−λk(k−1)t

)
f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠ = f̂1

⎛
⎝

k∑
j=1

n j

⎞
⎠ .

The proof, and with it this section, is now complete �

4 The Case of Balanced Interactions

In this penultimate section, we consider the case where the interaction and time scaling are
balanced. Surprisingly, Corollary 21 in Sect. 2 not only gives us the intuition to why Theorem
8 is true but also gives us the means to show that in the case where Nε2N = 1 the solutions
to the rescaled CL model can’t be ordered. The key idea in showing this is expressed in the
following lemma:

Lemma 22 Consider a family of symmetric probability densities FN ∈ P
(
T N

)
with N ∈ N.

If {FN }N∈N is f −ordered then

lim
N→∞ F̂N ,2 (n,−n) = 1.

Proof Using Lemma 16 we see that if {FN }N∈N is f −ordered then

lim
N→∞ F̂N ,2 (n,−n) = f̂ (n + (−n)) = f̂ (0) = 1

as f ∈ P (T ). �

Proof of Theorem 11 The fact that {FN (t)}N∈N is not chaotic has been shown in the works of
Carlen et al. [5, 6]. To show the lack of order we start by noticing that in this setting, Lemma
18 implies that for any n ∈ Z

lim
N→∞ N (1 − ĝN (n)) = m2n2

2
.
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Consequently, assuming that
{
FN ,1(0)

}
N∈N and

{
FN ,2(0)

}
N∈N converge weakly to f1 and

f2 respectively and using (21), we find that for any t > 0,

lim
N→∞ F̂N ,2 (n1, n2, t) = e−λ

(m2
2

(
n21+n22

)+2
)
t f̂2 (n1, n2)

+
4

(
e−λ

(m2
2

(
n21+n22

)+2
)
t − e− λm2

2 (n1+n2)2t
)

m2
(
(n1 + n2)2 − n21 − n22

) − 4
f̂1 (n1 + n2)

In particular, for any n �= 0 and t > 0

lim
N→∞ F̂N ,2 (n,−n, t) = e−λ

(
m2n2+2

)
t f̂2 (n,−n) −

2
(
e−λ

(
m2n2+2

)
t − 1

)

m2n2 + 2

= e−λ
(
m2n2+2

)
t f̂2 (n,−n) +

2
(
1 − e−λ

(
m2n2+2

)
t
)

m2n2 + 2

≤ e−λ
(
m2n2+2

)
t +

2
(
1 − e−λ

(
m2n2+2

)
t
)

m2n2 + 2
= m2n2

m2n2 + 2
e−λ

(
m2n2+2

)
t + 2

m2n2 + 2

<
m2n2

m2n2 + 2
e−2λt + 2

m2n2 + 2
< 1.

Due to Lemma 22 we conclude that {FN (t)}N∈N can’t be ordered for any t > 0, which
completes the proof. �

We conclude this short section with the proof of Theorem 12.

Proof of Theorem 12 Much like our previous proof, we start with the fact that in our setting

lim
N→∞ N (1 − ĝN (n)) = m2n2

2
.

Identity (23) together with the fact that
{
FN ,1(0)

}
N∈N and

{
FN ,2(0)

}
N∈N converge weakly

to f1 and f2 respectively imply that

lim
N→∞ F̂N ,1 (n1, t) = lim

N→∞ eλN
(
ĝεN (n)−1

)
t F̂N ,1 (n, 0) = e− λm2

2 n2t f̂1(n),

and
lim

N→∞ F̂N ,2 (n1, n2, t) = e−λ
(m2

2

(
n21+n22

)+2
)
t f̂2 (n1, n2)

+
4

(
e−λ

(m2
2

(
n21+n22

)+2
)
t − e− λm2

2 (n1+n2)2t
)

m2
(
(n1 + n2)2 − n21 − n22

) − 4
f̂1 (n1 + n2) .

The convergence of the Fourier coefficients together with Lemma 15 imply the desired
convergence to f1(t) and f2(t) given by the inverse transform of the above limits.8 To show

8 More formally: if the Fourier coefficients of a given sequence of probability measures on T k converge then
the integration of that family against any trigonometric polynomial converges. As these polynomials are dense

in Cb

(
T k

)
with respect to the uniform norm we conclude that the integration of that family against any

bounded continuous function converges. This implies, according to the Riesz-Markov representation theorem
on compact spaces, that the limit functional must be an integration against a probability measure whose Fourier
coefficients are given by the limit of the Fourier coefficients of the original sequence.
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(13) and (14) we notice that

lim
t→∞ f̂1 (n1, t) =

{
1, n1 = 0,

0, n1 �= 0,
= FT (1) (n1)

and

lim
t→∞ f̂2(n1, n2, t) =

{
4

m2
(
n21+n22

)+4
, n1 + n2 = 0,

0, n1 + n2 �= 0,
=

{
2

m2n21+2
, n1 + n2 = 0,

0, n1 + n2 �= 0,
.

The latter implies (14) since (with the help of the Dominated Convergence Theorem) we
have that ∫

T 2

⎛
⎝∑

j∈Z

2

m2 j2 + 2
ei j(θ1−θ2)

⎞
⎠ e−in1θ1−in2θ2 dθ1dθ2

(2π)2

=
∑
j∈Z

2

m2 j2 + 2

∫

T 2
ei j(θ1−θ2)e−in1θ1−in2θ2 dθ1dθ2

(2π)2
=

∑
j∈Z

2δ j,n1δ j,−n2

m2 j2 + 2

where δi, j is the Kronecker delta, and consequently

FT 2 (H (·1 − ·2)) (n1, n2) =
{

2
m2n21+2

, n1 + n2 = 0,

0, n1 + n2 �= 0.

�

5 Final Remarks

On the Notion of Order

Our definition of order (Definition 5) wasmotivated by our expectation to see total adherence
in the CL and other models—a “perpendicular” behaviour to chaoticity. One might argue that
a more appropriate namewould be “perfect order” or “perfect alignment” to take into account
that some partial order/alignment can also manifest (as might be indicated by Theorem 12).
However, to keep our introduction of this new asymptotic notion more coherent we elected
to use the simpler term.

We would like to emphasise that the main idea behind the notion of order is that for any
k ∈ N the limit process retains only one degree of randomness (vs. chaoticity which has k
degrees of randomness). This means that this notion can be adapted to other situations where
we don’t necessarily expect that all the variables equal in the limit, but where one “average
element” completely determines the limiting behaviour of any finite group of elements (for
instance, a one dimensional chain of elements whose variables are always a fixed distance
from each other).

On the Generation of Order

As was mentioned in Remark 10, Theorem 8 guarantees the generation of order, though this
statement is not as strong as we would hope. In particular, in order to see order appearing we
need to consider the limiting marginals (i.e. take N to infinity) and then take time to infinity.
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It would be interesting to see if we can find an explicit function t(N ), that goes to infinity
when N goes to infinity, such that FN ,k (t (N )) converges to an ordered state as N goes to
infinity. We suspect that to achieve this one might need a stronger notion of convergence than
weak convergence of measures which is also quantitative.

Between Order and Chaos

The balanced setting, discussed in Theorems 11 and 12, poses an interesting “in between”
case between our order and suspected chaos.While no order is observed in this case, Theorem
12 suggests that there is still a chancewewill see some partial adherence, at least in the second
marginal, with deviations given by a fixed function. This motivates us to consider a potential
notion of partial order, where the delta functionals in (6) are replaced by some functions that
measure how close the variables may get. In other words �1 (dμN ) converges to a profile f
and �k (dμN ) converges to something of the form

1

k!
∑
σ∈Sk

f
(
θσ(1)

) k−1∏
i=1

h
(
θσ(i) − θσ(i+1)

)
,

for some h ∈ P (T ) and where Sk is the group of permutation of order k. It is unclear at
this point if the above is suitable to capture the behaviour of even the simple CL model in
the balanced scaling, but the investigation of such a notion is, in our opinion, an exciting
prospect which we will pursue.

Additional Models

The CL model did not only motivate the definition of the new notion of order—it was also
an ideal model to test it. One notable issue with this model, however, is its simplicity. In
particular, its BBGKY hierarchy is closed—something that doesn’t happen in most many
element models. It would be interesting to try and test the notion of order in other mean field
models that should exhibit strong adherence. Prime candidates are swarming models such as
the Bertin, Droz and Grégoire model, which was introduced in [3] and is mentioned in the
works of Carlen et al. [5, 6], and societal models such as the opinion models presented in the
review paper of Chaintron and Diez [7]. Following on ideas presented in the original works
on the CL model as well as in this paper, one would expect that the first step to deal with any
mean field model which may exhibit a phenomena of order would be to find the appropriate
scaling. This might not be as easy a feat as it is in the CL model and additional technical
difficulties are expected due to the coupled BBGKY hierarchy.

Appendix: The behaviour of Fourier Coefficients of Rescaled and
Restricted Probability Densities

In this appendix we will prove Lemma 18 by stating and proving two auxiliary lemmas.

Lemma 23 Let g ∈ P (R, dx). We define its ε-truncated Fourier transform induced from(
T , dθ

2π

)
, Fε (g), to be the function

Fε(g) (ξ) =
∫ π

ε

− π
ε

g(x)e−iξ xdx .
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Then for any n ∈ Z

ĝε(n) = Fε(g) (nε)

Fε(g) (0)
.

Moreover, if there exists k ∈ N such that

mk =
∫

R

|x |k g(x)dx < ∞

then for any n ∈ Z we have that

|ĝε(n) − F(g) (nε)| ≤ 2εkmk

πk − εkmk

whenever ε < π
k√mk

and where F (g) is the Fourier transform of g

F(g) (ξ) =
∫

R

g(x)e−iξ xdx .

Proof By the definition of gε and using the fact that

g̃ε = 1

2π
Fε(g) (0)

we have that

ĝε(n) = 1

2πε g̃ε

∫ π

−π

g

(
θ

ε

)
e−inθdθ = 1

Fε(g) (0)

∫ π
ε

− π
ε

g(x)e−inεxdx = Fε(g) (nε)

Fε(g) (0)
,

which gives us the first claim. To show the second claim we start by noticing that

|Fε(g) (ξ) − F(g) (ξ)| ≤
∫

|x |> π
ε

g(x)dx ≤ εk

πk
mk .

Consequently, since F (g) (0) = 1, we have that if ε < π
k√mk

|ĝε(n) − F(g) (nε)| =
∣∣∣∣
Fε(g) (nε)

Fε(g) (0)
− F(g) (nε)

∣∣∣∣

≤ 1

1 − |Fε(g) (0) − 1| (|Fε(g) (nε) − F(g) (nε)| + |Fε(g) (0) − 1| |F(g) (nε)|)

≤ 2 εk

πk mk

1 − εk

πk mk

= 2εkmk

πk − εkmk
.

The proof is now complete. �

Lemma 24 Let g ∈ P (R, dx) be a symmetric probability density such that mk, defined in
the above lemma, is finite for some k ∈ N such that k > 2. Then

∣∣∣∣F(g) (ξ) − 1 + m2ξ
2

2

∣∣∣∣ ≤
{

m3
3 |ξ |3 , k = 3,
m4
12 |ξ |4 , k > 3,

∀ξ ∈ R.
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Proof From the definition of m2 and the fact that g is symmetric we find that
∣∣∣∣F(g) (ξ) − 1 + m2ξ

2

2

∣∣∣∣ =
∣∣∣∣∣
∫

R

g(x)

(
e−iξ x − 1 − iξ x − (iξ)2 x2

2!

)
dx

∣∣∣∣∣

≤
∫

R

g(x)

∣∣∣∣cos (ξ x) − 1 + ξ2x2

2

∣∣∣∣ dx +
∫

R

g(x) |sin (ξ x) − ξ x | dx .

Since

max

{∣∣∣∣cos (t) − 1 − t2

2

∣∣∣∣ , |sin (t) − t |
}

≤ |t |3
3!

we see that if m3 < ∞ then
∣∣∣∣F(g) (ξ) − 1 + m2ξ

2

2

∣∣∣∣ ≤ m3

3
|ξ |3 .

If in addition we have that m4 < ∞ then, since

max

{∣∣∣∣cos (t) − 1 − t2

2

∣∣∣∣ ,
∣∣∣∣sin (t) − t + t3

3!
∣∣∣∣
}

≤ |t |4
4!

and since ∫

R

x3g(x)dx = 0

we can refine the above estimate to find that
∣∣∣∣F(g) (ξ) − 1 + m2ξ

2

2

∣∣∣∣ =
∣∣∣∣∣
∫

R

g(x)

(
e−iξ x − 1 − iξ x − (iξ)2 x2

2! − (iξ)3 x3

3!

)
dx

∣∣∣∣∣

≤
∫

R

g(x)

∣∣∣∣cos (ξ x) − 1 − ξ2x2

2

∣∣∣∣ dx +
∫

R

g(x)

∣∣∣∣sin (ξ x) − ξ x + ξ3x3

3!
∣∣∣∣ dx ≤ m4

12
|ξ |4 ,

which concludes the proof. �
Proof of Lemma 18 The proof is an immediate consequence of Lemmas 23 and 24.
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