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Let λ denote the Liouville function. We show that for all N ≥ 11, the (non-trivial) convolution sum bound

∣∣∣∣∣
∑
n<N

λ(n)λ(N − n)

∣∣∣∣∣ < N − 1

holds. We also determine all N for which no cancellation in the convolution sum occurs. This answers
a question posed at the 2018 AIM workshop on Sarnak’s conjecture.

1 Introduction
1.1 Main result
The following problem was posed at the 2018 AIM workshop on Sarnak’s conjecture.

Problem 1.1. ((Problem 5.1 of [5]).) Prove that for every sufficiently large N the sum

Lλ(N) :=
∑

1≤n<N

λ(n)λ(N − n)

satisfies |Lλ(N)| < N − 1. (Actually, no range for N was given in the problem, and it is our
presumption that the bound was meant to be shown for large enough N.)

Obviously, the triangle inequality furnishes the trivial bound |Lλ(N)| ≤ N − 1. Thus, the problem is
to show any savings over this bound. This should be interpreted as an analogue of the binary Goldbach
problem for the Liouville function. Indeed, if N ≥ 4 is even and λ is replaced by the prime-supported
von Mangoldt function �1(n) := (log n)1n prime, then proving the existence of primes p, q with p + q = N
is equivalent to

L�1 (N) :=
∑
n<N

�1(n)�1(N − n) > 0,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnae149/7704606 by guest on 30 July 2024

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 13281 13076 a 13281 13076 a
 
mailto:smangerel@gmail.com
mailto:smangerel@gmail.com


2 | A. P. Mangerel

that is, showing any improvement over the trivial lower boundL�1 (N) ≥ 0. Problem 1.1 is far weaker than
what we expect to be true regarding the convolution sum Lλ(N). It is natural to compare the problem
at hand with what ought to follow from Chowla’s conjecture [1], namely that for all (fixed) h ≥ 1,

1
x

∣∣∣∣∣
∑
n≤x

λ(n)λ(n + h)

∣∣∣∣∣ = o(1) as x → ∞.

On the heuristic basis that the additively coupled values λ(n) and λ(N − n) ought to also be “almost
orthogonal” on average, Corrádi and Kátai [3] have conjectured that |Lλ(N)| = o(N) as N → ∞. As far as
we are aware, the only result in this direction is a theorem of De Koninck, Germán and Kátai [4], who
proved the conjecture of Corrádi and Kátai under the assumption that there are infinitely many Siegel
zeroes. Nevertheless, because N is a large shift, recent methods that have proven effective in bounding
binary correlations of multiplicative functions seem unsuited to the estimation of the convolution sum
Lλ(N), and thus the problem at hand remains non-trivial unconditionally. Our main theorem, whose
proof is completely elementary, solves Problem 1.1.

Theorem 1.2. If N ≥ 11 then |Lλ(N)| < N−1. Moreover, |Lλ(N)| = N−1 if and only if N ∈ {2, 3, 5, 10}.

Remark 1. In a previous version of this paper we proved that |Lλ(N)| < N−1 whenever N ≥ N0, for
some ineffective constant N0. We are most grateful to both Bryce Kerr and to the anonymous
referee for independently pointing out how to render our result effective, which had the
additional byproduct of shortening the paper.

1.2 Proof strategy
We briefly explain our strategy as follows. As we show below (see Lemma 2.1), in order to prove
Theorem 1.2 we may restrict to the case in which N = pk is a prime power, and it is instructive to
first consider the case k = 1. In this case, it is readily observed that if |Lλ(p)| = p − 1 in contradiction to
the claim, then λ(m)λ(p − m) is constant over all 1 ≤ m < p, in fact

λ(m)λ(p − m) = λ(p − 1)λ(1) = λ(p − 1).

But note that if χp =
(

·
p

)
denotes the Legendre symbol modulo p then the same is true of χp:

χp(m)χp(p − m) = χp(−1)χp(m)2 = χp(p − 1).

Inspired by this comparison, we seek to show that λ(m) = χp(m) in the fundamental domain [1, p − 1]
for χp. Using harmonic analysis over Z/pZ, the problem reduces to understanding the Fourier coeffi-
cients of n �→ λ(n)1[1,p−1](n), that is, exponential sums

Sλ(ξ) :=
∑

1≤n<p

λ(n)e(nξ/p), ξ (mod p),

where as usual e(t) = e2π it for t ∈ R. The corresponding sums with λ replaced by χp are the twisted Gauss
sums

τ(χp, ξ) :=
∑

1≤n≤p

χp(n)e
(

nξ

p

)
= χp(ξ)τ (χp, 1), ξ (mod p).

In particular, we have the dilation property that for each 1 ≤ d < p,

τ(χp, dξ) = χp(d)τ (χp, ξ) for all ξ (mod p).
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On a Goldbach-Type Problem for the Liouville Function | 3

We prove below (see Proposition 2.4) that whenever |Lλ(p)| = p − 1 a similar dilation property holds for
Sλ, that is, for each 1 ≤ d < p,

Sλ(dξ) = λ(d)Sλ(ξ) for all ξ (mod p). (1)

The upshot of this is that when d is a primitive root modulo p we may determine all of the sums Sλ(ξ),
ξ �= 0, which coincide precisely with the twisted Gauss sums given above. In this way, verifying (1) allows
us to determine that λ(n) = χp(n) for all 1 ≤ n < p. It turns out that, under the assumption |Lλ(p)| = p−1,
proving the dilation property (1) is equivalent to proving that

λ(m)λ(m + jp) = +1 whenever 1 ≤ m < p, 0 ≤ j < d and m ≡ −jp (mod d).

We prove that this property holds for all pairs of (m, j) in question using an iterative argument (see
Section 3). The rough idea of that argument is to

replace λ(m)λ(m + jp) by a prescribed sign multiplied by λ(m′)λ(m′ + j′p),

in which m′ ≡ −j′p (mod d) and 0 ≤ j′ < j; crucially, the parameter j has been decremented. Iterating this
procedure must eventually result in j′ = 0, in which case the product on the right-hand side is simply
+1. We are then able to calculate the original product λ(m)λ(m+ jp) to be +1 as well. Our argument may
be seen as extending the “periodic” behaviour imposed on λ by the relation λ(m)λ(p − m) = λ(p − 1) for
all m ∈ {1, . . . , p − 1}, to the larger domain [1, dp − 1]. Having showed that λ(n) = χp(n) for all n < p, we
return to the general prime power case N = pk, and deduce upper bounds both for p and for k. First, an
elementary result of Chowla, Cowles, and Cowles [2] implies that if p > 5 then there is a prime q < p that
is a quadratic residue modulo p. As a consequence of this and the above, |Lλ(p)| < p−1 for all p > 5, and
thus any N with |Lλ(N)| = N − 1 must be a product of powers of primes from the set {2, 3, 5}. Next, we
check by hand that |Lλ(p2)| < p2 − 1 for each of the latter three primes, from which we deduce also that
|Lλ(pk)| < pk −1 for any k ≥ 2. It follows that N must be squarefree, and hence divides 30. For the divisors
of 30 not belonging to the set {2, 3, 5, 10} it may be checked by hand that |Lλ(N)| < N − 1, as required.

Remark 2. One may also ask another natural Goldbach-type problem regarding the Liouville
function: given an even integer N ≥ 4, must there exist 1 ≤ a, b ≤ N with a + b = N, such that
λ(a) = λ(b) = −1? (We thank Mark Shusterman for pointing out this problem to us, which he
asked in the the MathOverflow post https://mathoverflow.net/questions/307479/goldbachs-
conjecture-for-the-liouville-function.) This is obviously implied by the binary Goldbach con-
jecture, and therefore a weakening of it. The methods of this paper appear to be far too rigid
to address this problem directly. Note, however, that even a result of the form

∣∣∣∣∣
∑
n<N

λ(n)λ(N − n)

∣∣∣∣∣ < N − g(N), (2)

where g : R → R is a (sufficiently quickly) increasing function satisfying g(x) = o(x), would
suffice to prove the existence of such a pair (a, b). Indeed, suppose otherwise. Then for any
1 ≤ n < N, (1 − λ(n))(1 − λ(N − n)) = 0. It follows that

0 =
∑

1≤n<N

(1 − λ(n))(1 − λ(N − n)) = N − 1 − 2
∑
n<N

λ(n) +
∑
n<N

λ(n)λ(N − n).

We deduce from this and the prime number theorem that, for example,

∣∣∣∣∣
∑
n<N

λ(n)λ(N − n)

∣∣∣∣∣ ≥ N − 1 − 2

∣∣∣∣∣
∑
n<N

λ(n)

∣∣∣∣∣ ≥ N − CNe−
√

log N,
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4 | A. P. Mangerel

for some absolute constant C > 0 and all N ≥ 3. Thus, the choice g(x) = Cxe−
√

log x would suffice
to this end. It is natural to ask to what extent the techniques in this paper may be perturbed
in order to prove a bound like (2). We plan to return to this problem in a future paper.

2 Reduction to the Prime Power Case
Assume that N ≥ 2 satisfies |Lλ(N)| ≥ N − 1. By the triangle inequality, we must have |Lλ(N)| = N − 1.
Our first lemma shows that we may restrict our attention to prime power values of N.

Lemma 2.1. Let N ∈ N and assume that there is a divisor d|N such that |Lλ(d)| < d − 1. Then
|Lλ(N)| < N − 1. In particular, if |Lλ(N)| = N − 1 then |Lλ(d)| = d − 1 for all d|N. Moreover, if
|Lλ(N)| = N − 1 then Lλ(d) = λ(d − 1)(d − 1) and λ(N − 1) = λ(d − 1) for all d|N, d ≥ 2.

Proof. Write N = md. Splitting the sum over n defining Lλ(N) according to whether m|n or not, the
triangle inequality implies

|Lλ(N)| ≤ |
∑
n<N
m|n

λ(n)λ(N − n)| + |
∑
n<N
m�n

λ(n)λ(N − n)|

≤ |
∑
k<d

λ(mk)λ(m(d − k))| + N − 1 − |{1 ≤ n < N : m|n}|

= |
∑
k<d

λ(k)λ(d − k)| + N − 1 − (d − 1) = |Lλ(d)| + N − d.

Thus, if |Lλ(d)| < d − 1 then |Lλ(N)| < d − 1 + N − d = N − 1, as required. For the second claim, since each
summand of Lλ(d) is ±1 and there are d − 1 terms in its support, we have |Lλ(d)| = d − 1 if and only if

λ(n)λ(d − n) = λ(1)λ(d − 1) = λ(d − 1) for all 1 ≤ n < d.

It thus follows that Lλ(d) = λ(d − 1)(d − 1), as claimed. Finally, since

λ(n)λ(N − n) = λ(N − 1) for all n < N,

specialising to n = km for k ∈ N, we find

λ(N − 1) = λ(km)λ(m(d − k)) = λ(k)λ(d − k) = λ(d − 1),

as required. �

In view of Lemma 2.1, we may analyse the condition |Lλ(N)| = N − 1 by considering the implied
constraints |Lλ(pj)| = pj − 1, whenever pj|N. In the next subsection we will obtain constraints both on
the size of p|N, as well as the multiplicity k such that pk||N.

2.1 Bounds on the size and multiplicity of prime divisors of N
In the sequel, write

Sλ(ξ) :=
∑

1≤n<p

λ(n)e(nξ/p), ξ ∈ Z/pZ.

For the purposes of illustration let us observe that the condition |Lλ(p)| = p−1 imposes rigid constraints
on the exponential sums Sλ(ξ). Indeed, we have that

1
p

∑
ξ (mod p)

Sλ(ξ)2 =
∑

1≤n,m<p

λ(n)λ(m)
1
p

∑
ξ (mod p)

e
(

(n + m)ξ

p

)
=

∑
1≤n<p

λ(n)λ(p − n) = Lλ(p),
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On a Goldbach-Type Problem for the Liouville Function | 5

since n + m ≡ 0 (mod p) with 1 ≤ n, m < p if and only if n + m = p. As noted in the proof of Lemma 2.1,
if |Lλ(p)| = p − 1 then

λ(m)λ(p − m) = λ(p − 1)λ(1) = λ(p − 1) for all 1 ≤ m < p. (3)

and also Lλ(p) = λ(p − 1)(p − 1). Therefore,

λ(p − 1)

p

∑
ξ (mod p)

Sλ(ξ)2 = p − 1 = 1
p

∑
ξ (mod p)

|Sλ(ξ)|2.

To motivate our forthcoming arguments, we explicitly observe the following relations, which will imply
further rigidity in the values of Sλ(ξ).

Lemma 2.2. Let p > 2 be prime and let 1 ≤ m < p. Suppose |Lλ(p)| = p − 1. Then,

(a) if m is odd then λ(p + m) = λ(m);
(b) if m ≡ p (mod 3) then λ(2p + m) = λ(m); and
(c) if m ≡ 2p (mod 3) then λ(2p − m) = λ(p − 1)λ(m).

Proof. (a) If 1 ≤ m < p is odd then (p ± m)/2 ∈ Z ∩ [1, p − 1], and we have

p = p + m
2

+ p − m
2

.

As |Lλ(p)| = p − 1, using (3) with m replaced by (p − m)/2 we get

λ(p − 1) = λ

(
p + m

2

)
λ

(
p − m

2

)
= λ(p + m)λ(p − m).

Since also λ(p − 1) = λ(m)λ(p − m), the first claim follows. (b) The argument here is similar: if m ≡ p
(mod 3) then (2p + m)/3, (p − m)/3 ∈ Z ∩ [1, p − 1] and also

p = 2p + m
3

+ p − m
3

,

whence we obtain by (3) that

λ(p − 1) = λ

(
2p + m

3

)
λ

(
p − m

3

)
= λ(2p + m)λ(p − m) = λ(p − 1)λ(2p + m)λ(m),

from which the claim follows. (c) Suppose m ≡ 2p (mod 3). Again, the above idea yields

λ(p − 1) = λ

(
2p − m

3

)
λ

(
p + m

3

)
= λ(2p − m)λ(p + m).

If m is odd then λ(p + m) = λ(m) by (a), and the claim follows immediately. Otherwise, if m is even then
note that since p > 2, p − m is odd and hence (a) again yields

λ(2p − m) = λ(p + (p − m)) = λ(p − m) = λ(p − 1)λ(m).

Thus, claim (c) follows in this case as well. �

The three relations given in Lemma 2.2 allows us to deduce the following.
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6 | A. P. Mangerel

Lemma 2.3. Let p > 3 and assume that |Lλ(p)| = p − 1. Then,

Sλ(3ξ) = Sλ(2ξ) = −Sλ(ξ) for all ξ (mod p). (4)

In particular, for any j, k ≥ 0 we have

Sλ(3j) = (−1)jSλ(1), Sλ(2k) = (−1)kSλ(1).

Proof. The second claim follows by induction on j and k from the former, so it suffices to prove (4). First,
note that as p > 3 the maps ξ �→ 2ξ and ξ �→ 3ξ are both bijections on Z/pZ. By Plancherel’s theorem,

1
p

∑
ξ (mod p)

|Sλ(mξ)|2 = 1
p

∑
ξ ′ (mod p)

|Sλ(ξ
′)|2 = p − 1 for all m ∈ {1, 2, 3}. (5)

Next, note that

1
p

∑
ξ (mod p)

Sλ(2ξ)Sλ(ξ) =
∑

m,n<p

λ(n)λ(m)
1
p

∑
ξ (mod p)

e
(

ξ
2n − m

p

)
=

∑
m,n<p

2n≡m (mod p)

λ(m)λ(n).

Among m, n < p with 2n ≡ m (mod p) we have that either 2n = m precisely when m is even, or else
2n = m + p precisely when m is odd. If 2n = m then

λ(n)λ(m) = λ(m/2)λ(m) = −λ(m)2 = −1,

while if 2n = p + m then by Lemma 2.2(a) we have

λ(n)λ(m) = λ

(
p + m

2

)
λ(m) = −λ(p + m)λ(m) = −1.

It follows that

1
p

∑
ξ (mod p)

Sλ(2ξ)Sλ(ξ) =
∑
m<p

m even

λ(m)λ(m/2) +
∑
m<p

m odd

λ(m)λ

(
p + m

2

)

= −
⎛
⎜⎝ ∑

m<p
m even

1 +
∑
m<p

m odd

1

⎞
⎟⎠ = −(p − 1).

This latter sum being real-valued, it follows from this and (5) that

1
p

∑
ξ (mod p)

|Sλ(2ξ) + Sλ(ξ)|2 = 1
p

∑
ξ (mod p)

(|Sλ(ξ)|2 + |Sλ(2ξ)|2 + 2Re(Sλ(2ξ)Sλ(ξ)))

= 2(p − 1) − 2(p − 1) = 0.

Therefore, Sλ(2ξ) = −Sλ(ξ) for all ξ (mod p), as claimed. The proof with 2 replaced by 3 follows similar
lines, using Lemma 2.2. Here, instead we must treat pairs 1 ≤ n, m < p with 3n ≡ m (mod p), or
equivalently 3n = m + jp, where 0 ≤ j < 3 and m + jp ≡ 0 (mod 3) in each case. (Note that as p > 3, the
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On a Goldbach-Type Problem for the Liouville Function | 7

residue classes 0, −p, −2p (mod 3) cover all integers 1 ≤ m < p.) Precisely,

1
p

∑
ξ (mod p)

Sλ(3ξ)Sλ(ξ) =
∑

m,n<p

λ(n)λ(m)
1
p

∑
ξ (mod p)

e
(

ξ
3n − m

p

)
=

∑
m,n<p

3n≡m (mod p)

λ(m)λ(n)

=

⎛
⎜⎜⎝∑

m<p
3|m

λ(m/3)λ(m) +
∑
m<p

m≡−2p (mod 3)

λ(m)λ

(
2p + m

3

)
+

∑
m<p

m≡−p (mod 3)

λ(m)λ

(
p + m

3

)⎞
⎟⎟⎠ .

By (b) and (c) of Lemma 2.2,

λ(m)λ(m/3) = λ(3)λ(m)2 = −1 if 3|m,

λ(m)λ

(
2p + m

3

)
= λ(3)λ(m)2 = −1 if m ≡ −2p ≡ p (mod 3),

λ(m)λ

(
p + m

3

)
= λ(m)λ(p − 1)λ

(
2p − m

3

)
= λ(3)λ(m)2 = −1 if m ≡ −p ≡ 2p (mod 3).

We thus conclude that

1
p

∑
ξ (mod p)

Sλ(3ξ)Sλ(ξ) = −

⎛
⎜⎜⎝∑

m<p
3|m

1 +
∑
m<p

m≡−2p (mod 3)

1 +
∑
m<p

m≡−p (mod 3)

1

⎞
⎟⎟⎠ = −(p − 1).

The claim that Sλ(3ξ) = −Sλ(ξ) for all ξ (mod p) now follows as it did with 2ξ . �

It is natural, then, to speculate that 2 or 3 may be replaced by other primes as well. In fact, we will
prove the following more general result in the next section.

Proposition 2.4. Let p be a prime with |Lλ(p)| = p − 1, and let 1 ≤ d < p. Then we have

Sλ(dξ) = λ(d)Sλ(ξ) for all ξ (mod p). (6)

Proposition 2.4 will be beneficial in light of the following result.

Lemma 2.5. Let p > 2 be a prime satisfying |Lλ(p)| = p − 1. Suppose 2 ≤ d < p is a primitive root
modulo p such that (6) holds. Then λ(n) = χp(n) for all n < p.

Proof. As d is a primitive root, every ξ �≡ 0 (mod p) can be written as ξ ≡ dk (mod p) for some 1 ≤ k ≤
p − 1, and thus Sλ(ξ) = Sλ(dk). By (6) and induction, it follows that Sλ(dk) = λ(d)kSλ(1) for all k ≥ 1. In
particular, |Sλ(ξ)| = |Sλ(1)| for all ξ �≡ 0 (mod p). On the basis of these observations, we first verify that
λ(d) = −1. Since p is odd,

0 =
∑

ξ (mod p)

Sλ(ξ) = Sλ(0) +
p−1∑
k=1

Sλ(dk) = Sλ(0) + Sλ(1)

p−1∑
k=1

λ(d)k

= Sλ(0) + (p − 1)Sλ(1)1λ(d)=+1. (7)

Now supposing λ(d) = +1 then we have Sλ(0) = −(p − 1)Sλ(1). On the other hand, since |Sλ(ξ)| = |Sλ(1)|
for all ξ �≡ 0 (mod p), we find using (5) that

p(p − 1) =
∑

ξ (mod p)

|Sλ(ξ)|2 = |Sλ(0)|2 + |Sλ(1)|2(p − 1) = |Sλ(1)|2((p − 1)2 + p − 1) = |Sλ(1)|2p(p − 1).
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8 | A. P. Mangerel

We deduce that |Sλ(1)| = 1, and thus |Sλ(0)| = p−1. But if p = 3 we have |Sλ(0)| = 0 �= 2 since λ(1) = −λ(2),
and for p > 3 we have

|Sλ(0)| =
∣∣∣∣∣∣

∑
1≤n<p

λ(n)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
3≤n<p

λ(n)

∣∣∣∣∣∣ ≤ p − 3 < p − 1,

a contradiction. Thus, we conclude that λ(d) = −1, and it follows further from (7) that Sλ(0) = 0. Next,
as d is a primitive root and χp is a non-principal character, χp(d) = −1. Hence,

Sλ(dk) = λ(d)kSλ(1) = (−1)kSλ(1) = χp(d)kSλ(1) for all k.

Now for each n < p, we have using Sλ(0) = 0 that

λ(n) =
∑
m<p

λ(m)1m≡n (mod p) = 1
p

∑
ξ (mod p)

e
(

− nξ

p

) ∑
m<p

λ(m)e
(

mξ

p

)
= 1

p

∑
ξ (mod p)

ξ �≡0 (mod p)

Sλ(ξ)e
(

− nξ

p

)
.

Reparametrising ξ ∈ (Z/pZ)× as dk (mod p) for 1 ≤ k ≤ p − 1, we get

λ(n) = 1
p

p−1∑
k=1

Sλ(dk)e

(
− ndk

p

)
= Sλ(1)

p

p−1∑
k=1

χp(d)ke

(
− ndk

p

)
= Sλ(1)

p

∑
ξ (mod p)

χp(ξ)e
(

− nξ

p

)
.

Using standard relations for Gauss sums, we readily find that for any n < p,

λ(n) = χp(n) · Sλ(1)τ (χp)

p
,

where, as usual,

τ(χp) :=
∑

a (mod p)

χp(a)e
(

a
p

)
.

If we set n = 1 then we plainly have Sλ(1)τ (χp) = p, and the claim follows. �

There are clearly two ways in which Lemma 2.5 may be used. One is to derive information about the
Liouville function using corresponding behaviour of Dirichlet characters; this appears hard to do since
we only know that λ and χp are comparable within the fundamental domain [1, p − 1]. The other way is
to obtain constraints on the behaviour of Dirichlet characters from the rigidity of the Liouville function,
in particular at primes. In this direction we deduce the following from a result of Chowla, Cowles, and
Cowles [2].

Proposition 2.6. If |Lλ(N)| = N − 1 then N|30.

Proof. By Lemma 2.1, we deduce that |Lλ(p)| = p−1 for each prime p|N. For each such p > 2 let 2 ≤ dp < p
be a primitive root modulo p. By Proposition 2.4, dp satisfies (6) for all ξ (mod p), and thus Lemma 2.5
implies that λ(n) = χp(n) for all n < p. In particular, for each prime q < p we have χp(q) = −1. Now
suppose p > 5. If p ≡ ±1 (mod 8) then by the law of quadratic reciprocity we have

χp(2) = (−1)
p2−1

8 = +1,

which is a contradiction. On the other hand, if p ≡ ±3 (mod 8) then from the elementary results of
[2] there is a prime q ≤ (p + 1)/4 < p such that χp(q) = +1, again a contradiction. It follows that p ∈
{2, 3, 5}, and thus N = 2a3b5c, for some non-negative integers a, b, c, not all zero. It remains to show that
0 ≤ a, b, c ≤ 1, from which the claim N|30 follows. Appealing once again to Lemma 2.1, it is sufficient
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to show that |Lλ(p2)| < p2 − 1 for each of p ∈ {2, 3, 5}. In order to do this it suffices to find, in each
case, distinct pairs (a1, b1) and (a2, b2) of positive integers with a1 + b1 = a2 + b2 = p2, yet λ(a1)λ(b1) =
−λ(a2)λ(b2). For p = 2 we have 1 + 3 = 2 + 2 = 4, and

λ(1)λ(3) = −1, λ(2)2 = +1.

For p = 3 we have 1 + 8 = 2 + 7 = 9, and

λ(1)λ(8) = −1, λ(2)λ(7) = +1.

For p = 5 we have 2 + 23 = 3 + 22 = 25, and

λ(2)λ(23) = +1, λ(3)λ(22) = −1.

The claim therefore follows. �

Proof of Theorem 1.2. By Proposition 2.6, we know that if |Lλ(N)| = N − 1 then N|30. It can be checked
by hand that |Lλ(N)| = N − 1 for each N ∈ {2, 3, 5, 10}. For instance, we have

Lλ(10) = 2(λ(1)λ(9) + λ(2)λ(8) + λ(3)λ(7) + λ(4)λ(6)) + λ(5)2 = 2 · 4 + 1 = 9.

It therefore remains to verify that |Lλ(N)| < N − 1 for each of N ∈ {6, 15, 30}. Similarly to the proof of
Proposition 2.6, we do this by finding distinct pairs (a1, b1), (a2, b2) of positive integers with a1 + b1 =
a2 + b2 = N, yet λ(a1)λ(b1) = −λ(a2)λ(b2). For N = 6 we have 1 + 5 = 3 + 3 = 6, and

λ(1)λ(5) = −1, λ(3)2 = +1.

For N = 15 we have 2 + 13 = 4 + 11 = 15, and

λ(2)λ(13) = +1, λ(4)λ(11) = −1.

For N = 30 we have 1 + 29 = 2 + 28 = 30, and

λ(1)λ(29) = −1, λ(2)λ(28) = +1.

The proof is now complete. �

3 Proof of Proposition 2.4
In this section we prove Proposition 2.4. As we show later, it suffices to consider the case when d is
prime. Having shown the cases d = 2 and 3 in Lemma 2.3, we focus here on d > 3.

3.1 An iterative argument for d = q prime
As previously, let p > 3 be a prime with |Lλ(p)| = p − 1. Let 3 < q < p be an odd prime. We wish to show
that

Sλ(qξ) = −Sλ(ξ) for all ξ (mod p).

As in the proof of Lemma 2.3, it suffices to show that

−(p − 1) = 1
p

∑
ξ (mod p)

Sλ(qξ)Sλ(ξ) =
∑

m,n<p

λ(m)λ(n)
1
p

∑
ξ (mod p)

e
(

ξ
qn − m

p

)

=
∑

m,n<p
qn≡m (mod p)

λ(m)λ(n).
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As before, we split the set of 1 ≤ m, n < p according to the choice of 0 ≤ j < q for which qn = m + jp; in
each case we have m ≡ −jp (mod q), and thus we must show that

− (p − 1) =
q−1∑
j=0

∑
m<p

m≡−jp (mod q)

λ(m)λ

(
m + jp

q

)
= −

q−1∑
j=0

∑
m<p

m≡−jp (mod q)

λ(m)λ
(
m + jp

)
.

Equivalently, it is our goal to prove that for every 0 ≤ j < q and 1 ≤ m < p we have

λ(m)λ(m + jp) = +1 whenever m ≡ −jp (mod q). (8)

For 1 ≤ r ≤ q − 1 we define the sets

Aq,r := {(m, j) ∈ {1, . . . , p − 1} × {0, . . . , q − 1} :
pq

r + 1
< m + jp <

pq
r

}, Aq,q := {(m, 0) : 1 ≤ m < p}.

Note that the sets {Aq,r}1≤r≤q partition the set of all pairs (m, j) ∈ {1, . . . , p − 1} × {0, . . . , q − 1}, in view of
the following observations:

(a) for each such pair, 1 ≤ m + jp < pq, and therefore must either satisfy 1 ≤ m + jp < p (so j = 0), or
else pq/(r + 1) ≤ m + jp < pq/r for some 1 ≤ r ≤ q − 1;

(b) as p and q are prime we can never have m + jp = pq/(r + 1) for any 1 ≤ r ≤ q − 1 unless r = q − 1,
but in this case m + jp = p is not solvable with 1 ≤ m < p − 1; and

(c) if (m, j) /∈ Aq,r for all 1 ≤ r ≤ q − 1 then 1 ≤ m + jp < p, equivalently, j = 0 and (m, 0) ∈ Aq,q.

For each 1 ≤ r ≤ q − 1 define a map ψr on pairs (m, j) ∈ Aq,r via

ψr(m, j) :=
(⌈

rm
p

⌉
p − rm, q − jr −

⌈
rm
p

⌉)
,

where, as usual, given t ∈ R we denote by 
t� the least integer k ≥ t.

Lemma 3.1. Let (m, j) ∈ Aq,r for some 1 ≤ r ≤ q − 1, and set (m′, j′) := ψr(m, j). The following
properties hold:

(a) m′ + j′p ≡ 0 (mod q) whenever m + jp ≡ 0 (mod q);
(b) m′ = {−rm/p}p = p

(
1 − {rm/p});

(c) (m′, j′) ∈ ⋃
r+1≤s≤q Aq,s; and

(d) if m + jp ≡ 0 (mod q) then λ(m + jp) = λ(r)λ(p − 1)λ(m′ + j′p).

In fact, (d) may be rewritten as

λ(m)λ(m + jp) =
[
λ(rm)λ

(
p

{
rm
p

})]
λ(m′)λ(m′ + j′p). (9)

Proof. (a) We observe that

m′ + j′p =
(⌈

rm
p

⌉
p − rm

)
+

(
q − jr −

⌈
rm
p

⌉)
p = p(q − jr) − rm = pq − r(m + jp), (10)

so that if m + jp ≡ 0 (mod q) then m′ + j′p ≡ 0 (mod q) as well. (b) Note that since r, m < p, rm/p /∈ Z.
Whenever α /∈ Z, we have


α� = α + 1 − {α} = α + {−α},
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so we therefore conclude that

m′ = p
(

rm
p

+
{
− rm

p

})
− rm = p

{
− rm

p

}
= p

(
1 −

{
rm
p

})
,

as required. (c) Using pq/(r + 1) < m + jp < pq/r together with (10), we deduce that

m′ + j′p < pq − r · pq
r + 1

= pq
(

1 − r
r + 1

)
= pq

r + 1

m′ + j′p > pq − r · pq
r

= 0.

Together with (b), the latter bound implies that 1 ≤ m′ < p. Furthermore,

j′ = q −
(

jr +
⌈

rm
p

⌉)
≥ q − 1 − r

p
(jp + m) > q − 1 − r

p
· pq

r
= −1,

so as j′ is an integer with j′ > −1, and 
rm/p� ≥ 1, we have 0 ≤ j′ < q. As 0 < m′ + j′p < pq/(r+1), it follows
that (m′, j′) ∈ Aq,s for some r + 1 ≤ s ≤ q, as required. (d) Since (m, j) ∈ Aq,r and q|(m + jp), we see that

1 ≤ m + jp
q

<
1
q

· pq
r

= p
r

.

It follows that (rm + rjp)/q ∈ Z ∩ [1, p − 1], and so using (3),

λ(m + jp) = λ(qr)λ
(

rm + rjp
q

)
= λ(qr)λ(p − 1)λ

(
p − rm + rjp

q

)
= λ(qr)λ(p − 1)λ

(
(q − rj)p − rm

q

)

= λ(r)λ(p − 1)λ

((⌈
rm
p

⌉
p − rm

)
+ p

(
q − rj −

⌈
rm
p

⌉))

= λ(r)λ(p − 1)λ(m′ + j′p),

as claimed. To prove (9), it suffices to note using (b) that

λ(m′) = λ(p − p{rm/p}) = λ(p − 1)λ(p{rm/p}),

after which the identity follows immediately from (d) upon multiplying both sides by λ(m). �

The upshot of Lemma 3.1(c) is that ψr maps Aq,r to a set of pairs (m′, j′) for which m′ + j′p has strictly
decreased (and in particular (m′, j′) belongs to Aq,r′ where r′ > r). We see therefore that by iteratively
composing maps ψr, r < q, we must eventually find an image pair in Aq,q, that is, where the j component
is 0. With this in mind, we introduce the following definition.

Definition 1. We say that the signature of a pair (m, j), 1 ≤ m < p and 0 ≤ j < q, is the tuple
(r1, . . . , rk) such that 1 ≤ r1 < r2 < · · · < rk < q, with

ψrk ◦ · · · ◦ ψr1 (m, j) = (m̃, 0) ∈ Aq,q,

for some 1 ≤ m̃ < p. (Here, we implicitly have that the indices ri are determined such that
(m, j) ∈ Aq,r1 , ψr1 (m, j) ∈ Aq,r2 , ψr2 ◦ ψr1 (m, j) ∈ Aq,r3 , and so on.)

Lemma 3.2. Let (m, j) have signature (r1, . . . , rk). Then

λ(m)λ(m + jp) =
k−1∏
i=0

λ(miri+1)λ

(
p

{
ri+1mi

p

})
,
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12 | A. P. Mangerel

where we have set

(m0, j0) := (m, j), (mi+1, ji+1) := ψri+1 (mi, ji) for 0 ≤ i ≤ k − 1.

Proof. By iteratively invoking (9), we obtain

λ(m)λ(m + jp) = λ(m0)λ(m0 + j0p) =
[
λ(m0r1)λ

(
p

{
r1m0

p

})]
λ(m1)λ(m1 + j1p)

=
1∏

i=0

[
λ(miri+1)λ

(
p

{
ri+1mi

p

})]
λ(m2)λ(m2 + j2p)

= · · · =
k−1∏
i=0

[
λ(miri+1)λ

(
p

{
ri+1mi

p

})]
λ(mk)λ(mk + jkp).

By the definition of signature, we have jk = 0, and thus λ(mk)λ(mk + jkp) = λ(mk)
2 = +1. The claim

follows. �

3.2 Periodicity via dilation
In connection with Lemma 3.1 we next show the following lemma, which shows that if Sλ satisfies the
dilation property in Proposition 2.4 with d = r < p then λ exhibits mod p periodicity in [1, rp − 1].

Lemma 3.3. Assume that 1 ≤ r < p satisfies

Sλ(rξ) = λ(r)Sλ(ξ) for all ξ (mod p). (11)

Then for any 1 ≤ m < p, λ(p{rm/p}) = λ(r)λ(m).

Proof. Note that by making the bijective change of variables ξ �→ r−1ξ (mod p) and rearranging, (11)
yields

Sλ(r−1ξ) = λ(r)Sλ(ξ) for all ξ (mod p).

From this, we derive that

0 = Sλ(r−1ξ) − λ(r)Sλ(ξ) =
∑
n<p

λ(n)e(nr−1ξ/p) −
∑
m<p

λ(mr)e(mξ/p)

=
∑
m<p

e
(
mξ/p

)
⎛
⎜⎜⎝ ∑

n<p
n≡rm (mod p)

λ(n) − λ(mr)

⎞
⎟⎟⎠ .

Since this holds for all ξ (mod p) we deduce that for all 1 ≤ m < p,

∑
n<p

n≡rm (mod p)

λ(n) = λ(m)λ(r). (12)

On the other hand, the condition n ≡ rm (mod p) with 1 ≤ n < p is equivalent to n = p{rm/p}. Combining
these two facts, we deduce that

λ(p{rm/p}) = λ(m)λ(r),

as claimed. �

We are now in a position to prove Proposition 2.4.
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Proof of Proposition 2.4. We proceed by induction on d. When d = 1 there is nothing to prove. Thus,
assume that for every 1 ≤ d < q the equation

Sλ(dξ) = λ(d)Sλ(ξ) holds for all ξ (mod p). (13)

We thus must establish (13) for d = q (provided q < p). First, we observe that if q is composite then
writing q = ab with 1 < a, b < q we have that for any ξ (mod p),

Sλ(qξ) = Sλ(a(bξ)) = λ(a)Sλ(bξ) = λ(a)λ(b)Sλ(ξ) = λ(q)Sλ(ξ),

as required. Hence, the claim holds whenever q is composite. Thus, we may assume that q is prime.
Assuming the induction hypothesis, we see that for any 1 ≤ r < q (necessarily coprime to p) we have

Sλ(rξ) = λ(r)Sλ(ξ) for all ξ (mod p).

By Lemma 3.3, we see that for any 1 ≤ m < p,

λ
(
p

{
rm/p

}) = λ(r)λ(m) = λ(rm), (14)

a fact that we will use momentarily. As discussed above, in order to prove (13) holds with d = q it suffices
to show that

λ(m)λ(m + jp) = +1 for all 0 ≤ j < q, 1 ≤ m < p with m ≡ −jp (mod q).

Now, given 1 ≤ m < p and 0 ≤ j < q, let (r1, . . . , rk) denote the signature of (m, j), recalling that 1 ≤ r1 <

· · · < rk < q. By Lemma 3.2, we have

λ(m)λ(m + jp) =
k−1∏
i=0

λ(miri+1)λ

(
p

{
ri+1mi

p

})
.

But since ri+1 < q for all 0 ≤ i ≤ k − 1, we know that (14) holds with each r = ri+1. Thus, every factor in
the right-hand product is simply +1, and hence λ(m)λ(m + jp) = +1, as required. Hence, (13) holds when
q is prime as well. The inductive claim therefore follows in all cases, and so by induction, the proof is
complete. �
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