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Abstract4

A graph is temporally connected if a strict temporal path exists from every vertex u to every
other vertex v. This paper studies temporal design problems for undirected temporally
connected graphs. Given a connected undirected graph G, the goal is to determine the
smallest total number of time-labels |λ| needed to ensure temporal connectivity, where |λ|
denotes the sum, over all edges, of the size of the set of labels associated to an edge. The basic
problem, called Minimum Labeling (ML) can be solved optimally in polynomial time. We
introduce the Min. Aged Labeling (MAL) problem, which involves connecting the graph
with an upper-bound on the maximum label, theMin. Steiner Labeling (MSL) problem,
focusing on connecting specific important vertices, and the age-restricted version of MSL,
Min. Aged Steiner Labeling (MASL). We show that MAL is NP-complete, MASL
is W[1]-hard, and while MSL remains NP-hard, it is FPT with respect to the number of
terminals.

Keywords:5

Temporal graph, Graph Labeling, Foremost Temporal Path, Temporal Connectivity,6

Steiner Tree.7

1. Introduction8

A temporal (or dynamic) graph is a graph whose underlying topology is subject to dis-9

crete changes over time. This paradigm reflects the structure and operation of a great variety10

of modern networks; social networks, wired or wireless networks whose links change dynam-11

ically, transportation networks, and several physical systems are only a few examples of12

networks that change over time [25, 38, 40]. Inspired by the foundational work of Kempe et13

al. [27], we adopt here a simple model for temporal graphs, in which the vertex set remains14

unchanged while each edge is equipped with a set of integer time-labels.15

Definition 1 (temporal graph [27]). A temporal graph is a pair (G, λ), where G = (V,E)16

is an underlying (static) graph and λ : E → 2N is a time-labeling function which assigns to17

every edge of G a finite set of discrete time-labels.18
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In our work we require the underlying graph G to be a simple graph, although in general19

this does not have to be the case. Whenever t ∈ λ(e), we say that the edge e is active or20

available at time t. Throughout the paper we may refer to “time-labels” simply as “labels”21

for brevity. Furthermore, the age (or lifetime) α(G, λ) of the temporal graph (G, λ) is the22

largest time-label used in it, i.e., α(G, λ) = max{t ∈ λ(e) : e ∈ E}. One of the most23

central notions in temporal graphs is that of a temporal path (or time-respecting path) which24

is motivated by the fact that, due to causality, entities and information in temporal graphs25

can “flow” only along sequences of edges whose time-labels are strictly increasing, or at least26

non-decreasing.27

Definition 2 (temporal path). Let (G, λ) be a temporal graph, where G = (V,E) is the28

underlying static graph. A temporal path in (G, λ) is a sequence (e1, t1), (e2, t2), . . . , (ek, tk),29

where (e1, e2, . . . , ek) is a path in G, ti ∈ λ(ei) for every i = 1, 2, . . . , k, and t1 < t2 < . . . < tk.30

A vertex v is temporally reachable (or reachable) from vertex u in (G, λ) if there exists31

a temporal path from u to v. If every vertex v is reachable by every other vertex u in32

(G, λ), then (G, λ) is called temporally connected. Note that, for every temporally connected33

temporal graph (G, λ), we have that its age is at least as large as the diameter dG of the34

underlying graph G. Indeed, the largest label used in any temporal path between two anti-35

diametrical vertices cannot be smaller than dG. Temporal paths have been introduced by36

Kempe et al. [27] for temporal graphs which have only one label per edge, i.e., |λ(e)| = 137

for every edge e ∈ E, and this notion has later been extended by Mertzios et al. [33] to38

temporal graphs with multiple labels per edge. Furthermore, depending on the particular39

application, both variations of temporal paths with non-decreasing [6, 27, 28] and with40

strictly increasing [15, 31, 33] labels have been studied. In this paper we focus on temporal41

paths with strictly increasing labels. Due to the very natural use of temporal paths in various42

contexts, several path-related notions, such as temporal analogues of distance, diameter,43

reachability, exploration, and centrality have also been studied [1, 2, 3, 8, 10, 17, 18, 19, 22,44

30, 37, 41].45

Motivated by the need of restricting the spread of epidemic, Enright et al. [15] studied the46

problem of removing the smallest number of time-labels from a given temporal graph such47

that every vertex can only temporally reach a limited number of other vertices. Deligkas et48

al. [12] studied the problem of accelerating the spread of information for a set of sources to49

all vertices in a temporal graph, by only using delaying operations, i.e., by shifting specific50

time-labels to a later time slot. The problems studied by Deligkas et al. [12] are related but51

orthogonal to our temporal connectivity problems. Various other temporal graph modifica-52

tion problems have been also studied, see for example [6, 11, 13, 16, 39]. Furthermore, some53

non-path temporal graph problems have been recently introduced too, including for example54

temporal variations of maximal cliques [7, 42], vertex cover [4, 23], vertex coloring [32, 36],55

matching [34], and transitive orientation [35].56

The time-labels of an edge e in a temporal graph indicate the discrete units of time57

(e.g., days, hours, or even seconds) in which e is active. However, in many real dynamic58

systems, e.g., in synchronous mobile distributed systems that operate in discrete rounds, or in59

unstable chemical or physical structures, maintaining an edge over time requires energy and60
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thus comes at a cost. One natural way to define the cost of the whole temporal graph (G, λ)61

is the total number of time-labels used in it, i.e., the total cost of (G, λ) is |λ| =
∑

e∈E |λe|.62

In this paper we study temporal design problems of undirected temporally connected63

graphs. The directed version has already been investigated, as detailed shortly. The basic64

setting of these optimization problems is as follows: given an undirected graph G, what is65

the smallest number |λ| of time-labels that we need to assign to the edges of G such that66

(G, λ) is temporally connected? As it turns out, this basic problem can be optimally solved67

in polynomial time, thus answering to a conjecture made by Akrida et al. [2]. However,68

exploiting the temporal dimension, the problem becomes more interesting and meaningful69

in its following variations, which we investigate in this paper. First we consider the problem70

variation where we are given along with the input also an upper bound of the allowed age71

(i.e., maximum label) of the obtained temporal graph (G, λ). This age restriction is sensible72

in more pragmatic cases, where delaying the latest arrival time of any temporal path incurs73

further costs, e.g., when we demand that all agents in a safety-critical distributed network are74

synchronized as quickly as possible, and with the smallest possible number of communications75

among them. Second we consider problem variations where the aim is to have a temporal76

path between any pair of “important” vertices which lie in a subset R ⊆ V , which we call77

the terminals. For a detailed definition of our problems we refer to Section 2.78

Here it is worth noting that the latter relaxation of temporal connectivity resembles the79

problem Steiner Tree in static (i.e., non-temporal) graphs. Given a connected graph80

G = (V,E) and a set R ⊆ V of terminals, Steiner Tree asks for a smallest-sized subgraph81

of G which connects all terminals in R. Clearly, the smallest subgraph sought by Steiner82

Tree is a tree. As it turns out, this property does not carry over to the temporal case.83

Consider for example an arbitrary graph G and a terminal set R = {a, b, c, d} such that G84

contains an induced cycle on four vertices a, b, c, d; that is, G contains the edges ab, bc, cd, da85

but not the edges ac or bd. Then, it is not hard to check that the only way to add the smallest86

number of time-labels such that all vertices of R are temporally connected is to assign one87

label to each edge of the cycle on a, b, c, d, e.g., λ(ab) = λ(cd) = 1 and λ(bc) = λ(cd) = 2.88

The main underlying reason for this difference with the static problem Steiner Tree is89

that temporal connectivity is not transitive and not symmetric: if there exists temporal90

paths from u to v, and from v to w, it is not a priori guaranteed that a temporal path from91

v to u, or from u to w exists.92

Temporal network design problems have already been considered in previous works.93

Mertzios et al. [33] proved that it is APX-hard to compute a minimum-cost labeling for94

temporally connecting an input directed graph G, where the age of the graph is upper-95

bounded by the diameter of G. This hardness reduction was strongly facilitated by the96

careful placement of the edge directions in the constructed instance, in which every vertex97

was reachable in the static graph by only constantly many vertices. Unfortunately this can-98

not happen in an undirected connected graph, where every vertex is reachable by all other99

vertices. Later, Akrida et al. [2] proved that it is also APX-hard to remove the largest num-100

ber of time-labels from a given temporally connected (undirected) graph (G, λ), while still101

maintaining temporal connectivity. In this case, although there are no edge directions, the102
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hardness reduction was strongly facilitated by the careful placement of the initial time-labels103

of λ in the input temporal graph, in which every pair of vertices could be connected by only104

a few different temporal paths, among which the solution had to choose. Unfortunately105

this cannot happen when the goal is to add time-labels to an undirected connected graph,106

where there are potentially multiple ways to temporally connect a pair of vertices (even if107

we upper-bound the largest time-label by the diameter).108

Summarizing, the above technical difficulties seem to be the reason why the problem of109

adding the minimum number of time-labels with an age-restriction to an undirected graph to110

achieve temporal connectivity remained open until now. In this paper we overcome these dif-111

ficulties by developing a hardness reduction from a variation of the problemMax XOR SAT112

(see Theorem 13 in Section 3) where we manage to add the appropriate (undirected) edges113

among the variable-gadgets such that simultaneously (i) the distance between any two ver-114

tices from different variable gadgets remains small (constant) and (ii) there is no shortest115

path between two vertices of the same variable gadget that leaves this gadget.116

Our contribution and road-map. In the first part of our paper, in Section 3, we117

present our results on Min. Aged Labeling (MAL). This problem is the same as ML,118

with the additional restriction that we are given along with the input an upper bound on the119

allowed age of the resulting temporal graph (G, λ). Using a technically involved reduction120

from a variation of Max XOR SAT, we prove that MAL is NP-complete on undirected121

graphs, even when the required maximum age is equal to the diameter dG of the input static122

graph G.123

In the second part of our paper, in Section 4, we present our results on the Steiner tree124

versions of the problem, namely on Min. Steiner Labeling (MSL) and Min. Aged125

Steiner Labeling (MASL). The difference of MSL from ML is that, here, the goal is to126

have a temporal path between any pair of “important” vertices which lie in a given subset127

R ⊆ V (the terminals). In Section 4.1 we prove that MSL is NP-complete by a reduction128

from Vertex Cover, the correctness of which requires showing structural properties of129

MSL. Here it is worth recalling that, as explained above, the classical problem Steiner130

Tree on static graphs is not a special case of MSL, due to the requirement of strictly131

increasing labels in a temporal path. Furthermore, we would like to emphasize here that,132

as temporal connectivity is neither transitive nor symmetric, a straightforward NP-hardness133

reduction from Steiner Tree to MSL does not seem to exist. For example, as explained134

above, in a graph that contains a C4 with its four vertices as terminals, labeling a Steiner135

tree is sub-optimal for MSL.136

In Section 4.2 we provide a fixed-parameter tractable (FPT) algorithm for MSL with137

respect to the size of the labeling |λ| and number |R| of terminal vertices, by providing a138

parameterized Turing reduction to Steiner Tree parameterized by the number of termi-139

nals. Steiner Tree is known to be fixed-parameter tractable with respect to the number140

of terminal vertices [14]. The proof of correctness of our reduction, which is technically quite141

involved, is of independent interest, as it proves crucial graph-theoretical properties of min-142

imum temporal Steiner labelings. In particular, for our algorithm we prove in Lemma 15143

that, for any undirected graph G with a set R of terminals, there always exists at least one144
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Graph restrictions Age non-restricted Age restricted

Directed graphs open APX-hard [33]

Directed acyclic graphs
poly. time solvable poly. time solvable
(see Theorem 7) (see Theorem 7)

Undirected cycles
poly. time solvable poly. time solvable
(see Theorem 5) (see Lemma 2)

Undirected graphs
poly. time solvable NP-hard
(see Theorem 5) (see Theorem 13)

Steiner labeling, NP-complete, FPT w.r.t. |R| W[1]-hard w.r.t. |λ|, |R|
undirected graphs (see Theorems 14 and 16) (see Theorem 17)

Table 1: An overview of previously known results, our results, and open problems. Rows 2–5 concern ML
(second column) and MAL (third column), while row 6 concerns MSL (second column) and MASL (third
column).

minimum temporal Steiner labeling (G, λ) which labels edges either from (i) a tree or from145

(ii) a tree with one extra edge that forms a C4.146

In Section 4.3 we prove that MASL is W[1]-hard even with respect to the number of147

time-labels of the solution. This also implies that MASL is W[1]-hard with respect to the148

number |R| of terminals, since the number of time-labels in the solution is a larger parameter149

than the number |R| of terminals.150

Finally, we complete the picture by providing some auxiliary results in our preliminary151

Section 2. More specifically, in Section 2.1 we prove that ML can be solved in polynomial152

time, and in Section 2.2 we prove that the analogue minimization versions of ML and MAL153

on directed acyclic graphs are solvable in polynomial time.154

For an easier overview of the area, we also outline all of the known and new results in155

Table 1.156

2. Preliminaries and notation157

Given a (static) undirected graph G = (V,E), an edge between two vertices u, v ∈ V158

is denoted by uv, and in this case the vertices u, v are said to be adjacent in G. If the159

graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to denote the oriented160

edge from u to v (resp. from v to u). A tree is a connected graph that does not contain161

any cycles. A subtree T of a graph G is a subgraph of G that is also a tree. The age of a162

temporal graph (G, λ) is denoted by α(G, λ) = max{t ∈ λ(e) : e ∈ E}. A temporal path163

(e1, t1), (e2, t2), . . . , (ek, tk) from vertex u to vertex v is called foremost, if it has the smallest164

arrival time tk among all temporal paths from u to v. Note that there might be another165

temporal path from u to v that uses fewer edges than a foremost path. A temporal graph166

(G, λ) is temporally connected if, for every pair of vertices u, v ∈ V , there exists a temporal167

path P1 from u to v and a temporal path P2 from v to u. Furthermore, given a set of168

terminals R ⊆ V , the temporal graph (G, λ) is R-temporally connected if, for every pair of169
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vertices u, v ∈ R, there exists a temporal path from u to v and a temporal path from v to170

u; note that P1 and P2 can also contain vertices from V \ R. Now we provide the formal171

definitions of our four decision problems.172

Min. Labeling (ML)

Input: A static graph G = (V,E) and
k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G, λ),
where |λ| ≤ k?

Min. Aged Labeling (MAL)

Input: A static graph G = (V,E)
and two integers a, k ∈ N.
Question: Does there exist a temporally
connected temporal graph (G, λ),
where |λ| ≤ k and α(λ) ≤ a?

173

Min. Steiner Labeling (MSL)

Input: A static graph G = (V,E),
a subset R ⊆ V and k ∈ N.
Question: Does there exist a temporally
R-connected temporal graph (G, λ),
where |λ| ≤ k?

Min. Aged Steiner Labeling (MASL)

Input: A static graph G = (V,E),
a subset R ⊆ V , and two integers a, k ∈ N.
Question: Does there exist a temporally
R-connected temporal graph (G, λ),
where |λ| ≤ k and α(λ) ≤ a?

174

Note that if the temporal paths are allowed to admit non-decreasing time-labels all prob-175

lems are solved by simply assigning label 1 to all (necessary) edges. Therefore, ML and176

MAL can be solved in polynomial time, while MSL and MASL reduce directly to Steiner177

Tree. Observe also that for MAL, whenever G is not connected or the input age bound a178

is strictly smaller than the diameter d of G, the answer is NO. Thus, we always assume in179

the analysis of MAL that G is a connected graph and a ≥ d, where d is the diameter of the180

input graph G. For simplicity of the presentation, we denote by κ(G, d) the smallest number181

k for which (G, d, k) is a YES instance for MAL.182

Observation 1. For every graph G with n vertices and diameter d, we have that κ(G, d) ≤183

n(n− 1).184

Proof. For every vertex v of G = (V,E), consider a BFS tree Tv rooted at v, while every edge185

from a vertex u ̸= v to its parent in Tv is assigned the time-label dist(v, u), i.e., the length186

of the shortest path from v to u in G. Note that each of these time-labels is smaller than or187

equal to the diameter d of G. Clearly, each BFS tree Tv assigns in total n− 1 time-labels to188

the edges of G, and thus the union of all BFS trees Tv, where v ∈ V , assign in total at most189

n(n− 1) labels to the edges of G.190

The next lemma shows that the upper bound of Observation 1 is asymptotically tight191

as, for cycle graphs Cn with diameter d, we have that κ(Cn, d) = Θ(n2).192

Lemma 2. Let Cn be a cycle on n vertices, where n ̸= 4, and let d be its diameter. Then193

κ(Cn, d) =

{
d2, when n = 2d

2d2 + d, when n = 2d+ 1.
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Proof. Let V (Cn) = {v1, v2, . . . , vn} be the vertices of Cn. In the following, if not specified194

otherwise, all subscripts are considered modulo n. We distinguish two cases, depending on195

the parity of n.196

Case 1: n is odd. Let n = 2d+1. Then, for each vertex vi ∈ V (Cn), there are exactly two197

distinct vertices vi+d and vi−d at distance d from vi. In particular, there exists a unique path198

of length d from vi to vi+d, and thus the only way that a temporal path (with labels at most199

d) can exist from vi to vi+d is that the jth edge (for every j = 1, . . . , d) of the unique path200

of length d from vi to vi+d contains the label j. Due to symmetry, by just considering every201

vertex vi of Cn, it follows that every edge of Cn must contain each of the labels 1, 2, . . . , d.202

Therefore κ(Cn, d) ≥ nd = 2d2 + d.203

Conversely, in the labeling of Cn, where every edge contains every label in {1, 2, . . . , d},204

clearly the age of the temporal graph is d and there exists a temporal path from every vertex205

to every other vertex. Therefore κ(Cn, d) ≤ nd = 2d2 + d, and thus κ(Cn, d) = 2d2 + d when206

n = 2d+ 1.207

Case 2: n is even. Let n = 2d. Then, for each vertex vi ∈ V (Cn), there is exactly208

one vertex vi+d at distance d from vi, and exactly two distinct vertices vi+d−1 and vi−d+1 at209

distance d − 1 from vi. In particular, there exists a unique path of length d − 1 from vi to210

vi+d−1, and thus the only way that a temporal path (with labels at most d) can exist from vi211

to vi+d−1 is that the jth edge (for every j = 1, . . . , d− 1) of the unique path of length d− 1212

from vi to vi+d−1 contains the label j or the label j + 1.213

We will now prove that, without loss of generality, for every two consecutive edges vi−1vi214

and vivi+1, the total number of labels of these two edges is at least d, i.e., |λ(vi−1vi)| +215

|λ(vivi+1)| ≥ d. Suppose otherwise that |λ(vi−1vi)| + |λ(vivi+1)| ≤ d − 1. Then there exists216

some a ∈ {1, 2, . . . , d} such that neither of the edges vi−1vi and vivi+1 contains label a. First,217

let a = 1. Then any temporal path from vi to vi+d will have to start with label at least 2,218

and thus cannot arrive at vi+d by time d, a contradiction. Second, let a = d. Similarly, any219

temporal path from vi+d to vi will have to arrive at vi by time d − 1. However, this is not220

possible, as the distance between vi+d and vi in Cn is d, a contradiction.221

Now let 2 ≤ a ≤ d − 1. Then, the only way that a temporal path (with labels at most222

d) can exist from vertex vi−a to vertex vi−a+d−1 is that the edges vi−1vi and vivi+1 contain223

the label a + 1 and the label a + 2, respectively, as both these edges cannot contain label224

a by assumption. Similarly, the only way that a temporal path (with labels at most d) can225

exist from vertex vi−a+1 to vertex vi−a+d is that the edge edges vi−1vi and vivi+1 contain the226

label a − 1 and the label a + 1, respectively. By symmetry it follows that edge vivi+1 also227

contains label a − 1 (by just considering vertices vi+a to vertex vi+a−d+1). That is, for the228

two consecutive edges vi−1vi and vivi+1 we have that229

a− 1, a+ 1 ∈ λ(vi−1vi) ∩ λ(vivi+1) (1)

Summarizing, consider two consecutive edges vi−1vi and vivi+1. The union λ(vi−1vi) ∪230

λ(vivi+1) of their labels always contains labels 1 and d. The only possibility that this union231

is missing some label a is that both λ(vi−1vi) and λ(vivi+1) contain both labels a − 1 and232

a+1. Furthermore, it follows that it is not possible that two consecutive labels a, a+1 miss233
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from the union λ(vi−1vi) ∪ λ(vivi+1). Therefore |λ(vi−1vi)| + |λ(vivi+1)| ≥ d. Thus, as there234

are n
2
disjoint pairs of consecutive edges, it follows that κ(Cn, d) ≥ n

2
d = d2.235

Conversely, consider the labeling where, for every i = 1, . . . , d, the edge v2i−1v2i (resp. the236

edge v2iv2i+1) contains all the odd (resp. all the even) labels within the set {1, 2, . . . , d}.237

It is straightforward to check that, with this labeling, there exists a temporal path (with238

maximum label at most d) from every vertex to every other vertex. Therefore κ(Cn, d) ≤239

n
2
d = d2, and thus κ(Cn, d) = d2.240

2.1. A polynomial-time algorithm for ML241

As a first warm-up, we study the problem ML, where no restriction is imposed on the242

maximum allowed age of the output temporal graph. It is already known by Akrida et al. [2]243

that any undirected graph can be made temporally connected by adding at most 2n − 3244

time-labels, while for trees 2n − 3 labels are also necessary. Moreover, it was conjectured245

that every graph needs at least 2n − 4 time-labels [2]. Here we prove their conjecture true246

by proving that, if G contains (resp. does not contain) the cycle C4 on four vertices as a247

subgraph, then (G, k) is a YES instance of ML if and only if k ≥ 2n− 4 (resp. k ≥ 2n− 3).248

The proof is done via a reduction to the gossip problem [9] (for a survey on gossiping see249

also [24]).250

The related problem of achieving temporal connectivity by assigning to every edge of the251

graph at most one time-label, has been studied by Göbel et al. [21], where the relationship252

with the gossip problem has also been drawn. Contrary to ML, this problem is NP-hard [21].253

That is, the possibility of assigning two or more labels to an edge makes the problem com-254

putationally much easier. Indeed, in a C4-free graph with n vertices, an optimal solution to255

ML consists in assigning in total 2n− 3 time-labels to the n− 1 edges of a spanning tree. In256

such a solution, one of these n− 1 edges receives one time-label, while each of the remaining257

n− 2 edges receives two time-labels. Similarly, when the graph contains a C4, it suffices to258

span the graph with four trees rooted at the vertices of the C4, where each of the edges of259

the C4 receives one time-label and each edge of the four trees receives two labels. That is, a260

graph containing a C4 can be temporally connected using 2n− 4 time-labels.261

The gossip problem considers a set A of n agents, each possessing a unique secret. Two262

agents x, y ∈ A can communicate by making a phone call, denoted as an unordered pair263

(x, y). During their conversation, they share all the information they currently know. The264

objective is to determine a minimum sequence of phone calls that results in all agents knowing265

all secrets. We focus on a specific variation of the gossip problem where each agent can call266

only a specific subset of agents from A. This problem can be modelled using a graph267

G = (V,E), where each agent x ∈ A is represented by a vertex vx ∈ V and for every allowed268

phone call between agents x and y we add an edge vxvy to the set of edges E of G. The goal269

is to find a minimum sequence of edges in G such that, by following this sequence, all agents270

end up knowing all the secrets.271

The above gossip problem is naturally connected to ML. The only difference between272

the two problems is that, in gossip protocols, all calls are non-concurrent, while in ML we273

allow concurrent temporal edges, i.e., two or more edges can appear at the same time slot t.274
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Therefore, in order to transfer the known results from gossip to ML, it suffices to prove that275

in ML we can equivalently consider solutions with non-concurrent edges (see Lemma 4).276

From the set of agents A and a sequence of calls C = c(1), c(2), . . . , c(m) we build a277

temporal graph GC = (G, λ) using the following procedure. For every agent x ∈ A we create278

a vertex vx ∈ V (G) and for every allowed phone call between agents x and y we add an edge279

vxvy to E(G). We now label edges of G using the following procedure: for every phone call280

c(i) ∈ C between its two corresponding agents xi, yi we add the label i to the edge (vxi
vyi)281

of GC. In the end, the labeling λ is completely determined by the sequence of phone calls.282

Observation 3. If the sequence c(1), c(2), . . . , c(m) of m phone calls results in all agents283

knowing all secrets, then the above construction produces a temporally connected temporal284

graph GC = (G, λ) with |λ| = m.285

Now note that the temporal graph GC produced by the above procedure has the special286

property that, for every time-label t = 1, 2, . . . ,m, there exists exactly one edge labeled with287

t. In the next lemma we prove the reverse statement of Observation 3.288

Lemma 4. Let (G, λ) be an arbitrary temporally connected temporal graph with |λ| = m289

time-labels in total. Then there exists a sequence c(1), c(2), . . . , c(m) of m phone calls that290

results in all agents knowing all secrets.291

Proof. Let (G, λ) be an arbitrary temporally connected temporal graph. W.l.o.g. we may292

assume that, for every t = 1, 2, . . . , α(G, λ), there exists at least one edge e such that t ∈ λ(e).293

Indeed, if such an edge does not exist in (G, λ), we can replace in (G, λ) every label t′ > t294

by t′ − 1, thus obtaining another temporally connected graph with a smaller age.295

Now we proceed as follows. Let t ∈ {1, 2, . . . , α(G, λ)} be an arbitrary time step within296

the lifetime of (G, λ), and let Et be the set of edges of G that appear at time t in (G, λ).297

Let us denote with kt = |Et|. We now order edges from Et in an arbitrary order, so we get298

et1, e
t
2, . . . , e

t
kt
, where eti ∈ Et. We repeat this for all t in the lifetime of (G, λ) and get an299

ordering OE = E1, E2, . . . , Eα(G,λ) = e11, e
1
2, . . . , e

1
k1
, e21, . . . , e

α(G,λ)
kα(G,λ)

of all edges e in G, that300

receive at least one label in the temporal graph (G, λ). Note that some edges repeat in this301

ordering (as one edge can have multiple labels and therefore appears in multiple sets Ei).302

We now create a new labeling λ′ of G, where the i-th edge in the ordering OE receives the303

label i. This results in a temporal graph (G, λ′), where each label occurs in exactly one edge.304

Note that every temporal path in (G, λ) corresponds to a temporal path in (G, λ′) with the305

same sequence of edges, and vice versa.306

Finally we create the required sequence of phone calls as follows: for every i = 1, 2, . . . ,m,307

if (G, λ′) contains the edge e with time-label i, we add a phone call c(i) between the two308

endpoints of the edge e. Since both (G, λ) and (G, λ′) are temporally connected, it follows309

that the sequence c(1), c(2), . . . , c(m) of calls results in every agent knowing every secret.310

This completes the proof.311

Now denote with f(n) the minimum number of calls needed to complete gossiping among312

a set A of n agents, where only a specific set of pairs of agents B ⊆
(
A
2

)
are allowed to make313
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a direct call between each other. Let G0 = (A,B) be the (static) graph having the agents314

in A as vertices and the pairs of B as edges. Then it is known by Bumby [9] that, if G0315

contains a C4 as a subgraph then f(n) = 2n− 4, while otherwise f(n) = 2n− 3. Therefore316

the next theorem follows by Observation 3 and Lemma 4 and by the results of Bumby [9].317

Theorem 5. Let G = (V,E) be a connected graph. Then the smallest k ∈ N for which (G, k)318

is a YES instance of ML is:319

k =

{
2n− 4, if G contains C4 as a subgraph,

2n− 3, otherwise.

We now present a procedure to obtain labelings that achieve the bounds from Theorem 5,320

for an example see Figure 1. Let G be a connected graph, we distinguish two cases, one321

where G contains no C4 and the second one where there is at least one C4 as a subgraph322

in G.323

Labelings for graphs G with no C4. We start by finding a spanning tree T of G (for324

example, by using a BFS algorithm). We can now in linear time determine the diameter325

dT of the tree T , and two vertices vs and vt that are exactly dT apart. Let us denote with326

Pd = (vs = v0, v1, v2, . . . , vd−1, vd = vt) the path between vertices vs and vt. We now label327

the path Pd as follows: for all i ∈ {1, 2, . . . , d− 1} the edge ei = vi−1vi receives the labels i328

and 2d − i, and the edge ed = vd−1vt receives only the label d. We have now created two329

temporal paths between vs and vt, one starting at vs at time 1 and finishing at vt at time d,330

and the other starting at vt at time d and finishing at vs at time 2d − 1. Clearly all the331

vertices of Pd can reach each other.332

Let v be a leaf of T that is not in Pd. We now denote with Pv the path connecting v to333

Pd, more precisely, let vi ∈ Pd be the first vertex of Pd that is on a unique path from v to334

vt in T . Then Pv = (v = u0, u1, u2, . . . , uk = vi) for some k ≥ 1. We now label each edge335

fj = uj−1uj of Pv, where j ∈ {1, 2, . . . , k}, with the labels j and 2d − j. Note that since336

the diameter of T is d it follows that the distance between v and vt is at most d, therefore337

k+ i ≤ d (resp. k+ (d− i) ≤ d). Thus, there exists a temporal path from v to vt starting at338

time 1, reaching vertex vi ∈ Pv ∩ Pd at time k, continuing to vt with the edge vivi+1 at the339

time i + 1 and finishing at time d. Similarly, there is a temporal path from vt to v starting340

at time d, reaching vertex vi via the edge vivi+1 at time 2d − (i + 1), continuing towards v341

at time 2d− k and finishing at time 2d− 1.342

We repeat the above procedure to label all of the remaining edges of T . Afterwards, there343

is a temporal path from every vertex v to vt (arriving at time d) and there is a temporal344

path from vt to all other vertices v (starting at time d). Recall that vt is a leaf of T and345

let vd−1 denote its neighbor. We can construct a temporal walk from a vertex v to another346

vertex v′ as follows. Start at v and move along the temporal path from v to vt until vd−1.347

The arrival time at vd−1 is strictly smaller than d. Now consider the temporal path from vt348

to v′. This temporal path visits vd−1 and continues from this vertex at a time strictly larger349

than d. It follows that we can obtain a temporal walk from v to v′ through vd−1.350
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This procedure assigns exactly one label to edge vdvd−1, and exactly two labels to every351

other edge of T . Therefore, we end up with a labeling λ of G, that uses 2n− 3 labels.352

Labelings for graphs G that contain a C4. We first find a C4 in G, C = (a, b, c, d).353

Then, we contract C to a single vertex p, i.e., we remove the C4 from G and add a vertex p354

that is connected to all of the vertices in G that have at least one neighbor in the removed355

C4, and create a graph Gp. In Gp we find a spanning tree Tp rooted at p. Having determined356

Tp, we can now construct the spanning subgraph H of G, that is a tree with a C4. We do357

this as follows; we iterate over edges e = (vivj) ∈ E(Tp) and distinguish two cases. First, if358

p /∈ e then we add e to H, second, if p ∈ e (w.l.o.g. p = vi) then we add to H the edge from359

vj to one of the vertices a, b, c, d (we know that at least one such edge exists in G, if there is360

more than one such edge we arbitrarily chose one).361

We have now created a spanning subgraph H of G which is a C4, C = (a, b, c, d) together362

with 4 subtrees, each rooted in a distinct vertex of C. Denote these trees as Ta, Tb, Tc, Td. We363

note that these subtrees are allowed to be formed just by the root. For a vertex u ∈ {a, b, c, d}364

we label edges of a tree Tu by starting at a leaf vertex v in Tu and travel towards the root u,365

using the unique path P Tu
v,u between v and u in Tu, where the first edge of P Tu

v,u (incident to366

v) receives the label 1, second edge the label 2, etc., up to the last edge (incident to u) that367

receives the label dv, where dv is the length of the path P Tu
v,u. We now repeat this procedure368

for all the leaf vertices in Tu. At this point, we have assigned at least one label to each369

edge of Tu. On edges with more than one label we keep the highest label and discard all370

others. We end up with a labeling λ of the tree Tu, where each edge has exactly one label371

and for each vertex in Tu there exists a temporal path to the root vertex u. Let us denote372

with du the value of the highest label we have assigned to any of the edges in Tu. We repeat373

this procedure for every u ∈ {a, b, c, d}. Now, let rH = maxu∈{a,b,c,d}{du} be the maximum374

label we have used on any of the edges of all Tu (for u ∈ {a, b, c, d}) so far. We label the375

edges of the C4 as follows: λ(ab) = λ(cd) = rH + 1 and λ(ad) = λ(bc) = rH + 2. All of the376

above results in the existence of a temporal path from each vertex v ∈ V (H) to all of the377

four vertices {a, b, c, d} of the C4. Moreover, note that each such temporal path reaches the378

vertices of the C4 by the time rh + 2. If we now ensure the existence of a temporal path379

from each vertex u ∈ {a, b, c, d} of the C4 to all of the vertices in its corresponding tree Tu,380

where the starting time of the temporal path is at least rH + 3, then we have successfully381

constructed the labeling λ that temporally connects all pairs of vertices. To achieve this we382

do the following: every edge with a label i, that is not a part of a C4, gets the second label383

2rH+3− i. It is not hard to see that these new labels now ensure the existence of a temporal384

path from each u ∈ {a, b, c, d} to every vertex in its corresponding Tu using a temporal path385

that starts at time rH + 3 or later.386

Our procedure results in a labeling λ of H that admits a temporal path among all pairs387

of vertices. The labeling assigns just 1 label to all four edges of the C4 and exactly 2 labels388

to all other edges, which achieves the bound of 2n− 4 labels in total.389

2.2. A polynomial-time algorithm for directed acyclic graphs390

As a second warm-up, we show that the minimization analogues of ML and MAL on391

directed acyclic graphs (DAGs) are solvable in polynomial time. More specifically, for the392
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(a) An example of a labeling that temporally connects a graph
that contains a C4, where the C4 edges receive one label and
all other edges of a spanning tree receive two labels.

(b) An example of a labeling that temporally connects a graph
that does not contain a C4, where one edge receives one label
and all other edges of a spanning tree receive two labels.

Figure 1: An example of labeling meeting bounds from Theorem 5 for a graph containing a C4 (Figure 1a)
and a graph without a C4 (Figure 1b). We mark the edges of a spanning tree or spanning tree with a C4

with a solid line and all other edges with a dashed line.

minimization analogue of ML we provide an algorithm which, given a DAG G = (V,A) with393

diameter dG, computes a temporal labeling function λ which assigns the smallest possible394

number of time-labels on the arcs of G with the following property: for every two vertices395

u, v ∈ V , there exists a directed temporal path from u to v in (G, λ) if and only if there exists396

a directed path from u to v in G. Moreover, the age α(G, λ) of the resulting temporal graph397

is equal to dG. Therefore, this immediately implies a polynomial-time algorithm for the398

minimization analogue of MAL on DAGs. We want to point out that these results contrast399

the APX-hardness for the minimization analogue of MAL on general directed graphs, proven400

in [33], while the more relaxed version of ML remains still open. For notation uniformity, we401

call these minimization problems MLdirected and MALdirected, respectively. First we define a402

canonical layering of a DAG, which is useful for our algorithm.403

Definition 3. Let G = (V,A) be a DAG with n vertices, m arcs, and diameter d. A partition404

L0, L1, L2, . . . , Ld of V into d+1 sets is a canonical layering of G if, for every 0 ≤ i ≤ d, the405

set Li contains all the source vertices in the induced subgraph Gi := G[{Li, Li+1, . . . , Ld}].406

An example of a canonical layering of a DAG G is illustrated in Figure 2.407

. . .

L0 L1 L2 Ld

Figure 2: Example of a canonical layering.

Lemma 6. Let G = (V,E) be a DAG with n vertices and m arcs. We can produce the408

canonical layering of G in O(n+m) time.409
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Proof. First we initialize an auxiliary vertex subset S = ∅ and a counter sv = 0 for every410

vertex v. We start by computing the vertices of L0 in O(n + m) time by just visiting all411

vertices and arcs of G; L0 contains all vertices u such that N−(u) = ∅. Now, for every i ≥ 0412

we proceed as follows. For every arc (u, v), where u ∈ Li, we add v to S and we increase413

the counter sv by 1. Then we set Li+1 = {v ∈ S : sv = |N−(v)|}. Before we continue to the414

next iteration i + 1, we reset the set S to be ∅, and we iterate until we reach all vertices of415

G, i.e., until we add every vertex u to one of the sets L0, L1, . . . , Ld.416

It is easy to check that the above procedure is correct, as at every iteration i+ 1 (where417

i ≥ 0) we include to Li all vertices v which have zero in-degree in the graph induced by the418

vertices in V \
⋃i

k=1 Lk. Furthermore, the running time is clearly O(n+m) as we visit each419

vertex and arc a constant number of times.420

We use the canonical layering to prove the following result.421

Theorem 7. Let G = (V,E) be a DAG with n vertices and m arcs. Then MLdirected(G)422

and MALdirected(G) can be both computed in O(n(n+m)) time.423

Proof. For the purposes of simplicity of the proof, we denote by κ(G) the optimum value424

of MLdirected with the DAG G as its input. First we calculate the canonical layering425

L0, L1, . . . , Ld of G in O(n + m) time by Lemma 6. For simplicity of the presentation,426

denote by Gv the induced subgraph of G that contains v and all vertices that are reachable427

by v in G with a directed path. Let dv be the diameter of Gv; note that dv is the length of the428

longest shortest directed path in G that starts at v. For every vertex u ∈ V , we define the429

set Lu
0 = {u} and we initialize the set Su = N+(u). Then, similarly to the proof of Lemma 6,430

we iterate over all vertices v ∈ Su = N+(u) and over all vertices w ∈ N+(v). Whenever we431

encounter a vertex w ∈ N+(v)∩N+(u), we remove w from Su. At the end of this procedure,432

the set Su contains exactly those vertices v ∈ N+(u), for which there is no directed path of433

length two or more from u to v in G. The above procedure can be completed in O(n(n+m))434

time, as for every vertex u, we iterate at most over all arcs in G a constant number of times.435

Now we define the labeling λ of G as follows: Every arc (u, v) ∈ A, where u ∈ Li, v ∈ Lj,436

and v ∈ Su, gets the label λ((u, v)) = j. Note here that 1 ≤ λ((u, v)) ≤ d for every arc of437

G, and thus the age α(G, λ) of the resulting temporal graph is equal to the diameter d of G.438

We will prove that |λ| = κ(G). To prove that |λ| ≤ κ(G), it suffices to show that every label439

of λ must participate in every temporal labeling of G which preserves temporal reachability.440

In fact, this is true as the only arcs of G, which have a label in λ, are those arcs (u, v) such441

that there is no other directed path from u to v. That is, in order to preserve temporal442

reachability, we need to assign at least one label to all these arcs.443

Conversely, to prove that |λ| ≥ κ(G), it suffices to show that λ preserves all temporal444

reachabilities. For this observe first that every directed path P = (a, . . . , b) in G can be445

transformed to a directed path P ′ = (a, . . . , b) such that, for every arc (u, v) in P ′, there is446

no other directed path from u to v in G apart from the arc (u, v) (i.e., there is no “shortcut”447

from u to v in G). Therefore, since every arc in P ′ is assigned a label in λ and these labels448

are increasing along P ′, it follows that λ preserves all temporal reachabilities, and thus449
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|λ| ≥ κ(G). Summarizing, |λ| = κ(G) and the labeling λ can be computed in O(n(n +m))450

time.451

Finally, since α(G, λ) = d, the obtained optimum labeling for ML is also an optimum452

labeling for MAL (provided that the upper bound a in the input of MAL is at least d).453

3. MAL is NP-complete454

In this section we prove that it is NP-hard to determine the number of labels in an455

optimal labeling of a static, undirected graph G, where the age, i.e., the maximum label456

used, is equal to the diameter d of the input graph. It is worth noting here that, for any457

x ≥ 1, the complexity of MAL remains open in the case where the age is allowed to be at458

most d+ x.459

To prove the NP-hardness we provide a reduction from the problem Monotone Max460

XOR(3) (or MonMaxXOR(3) for short). This is a special case of the classical Boolean461

satisfiability problem, where the input formula ϕ consists of the conjunction of monotone462

XOR clauses of the form (xi ⊕ xj), i.e., variables xi, xj are non-negated. If each variable463

appears in exactly r clauses, then ϕ is called a monotone Max XOR(r) formula. A clause464

(xi ⊕ xj) is XOR-satisfied (or simply satisfied) if and only if xi ̸= xj. In Monotone Max465

XOR(r) we are trying to compute a truth assignment τ of ϕ which satisfies the greatest466

possible number of clauses.467

Max-Cut on cubic graphs reduces to MonMaxXOR(3) using the following reduc-468

tion. Given a cubic graph G for each vertex v ∈ V (G) create a variable xv in the Mon-469

MaxXOR(3) formula ϕG. For every edge uv ∈ E(G), add the clause (xv ⊕ xu) to ϕG. It470

is easy to see that computing a maximum cut in G (i.e., a partition of V (G) into two sets471

A and A such that the number |{uv ∈ E(G) : u ∈ A, v ∈ A}| of edges between A and A472

is maximized), is equivalent with computing a maximum number of satisfied clauses in ϕG.473

Since Max-Cut is known to be NP-hard even in cubic graphs [5], we conclude the following.474

Theorem 8. MonMaxXOR(3) is NP-hard.475

We now describe our reduction fromMonMaxXOR(3) to the problemMinimum Aged476

Labeling (MAL), where the input static graph G is undirected and the desired age of the477

output temporal graph is the diameter d of G. Let ϕ be a monotone Max XOR(3) formula478

with n variables x1, x2, . . . , xn and m clauses C1, C2, . . . , Cm. Note that m = 3
2
n, since each479

variable appears in exactly 3 clauses. From ϕ we construct a static undirected graph Gϕ480

with diameter 10, and prove that there exists a truth assignment τ which satisfies at least481

k clauses in ϕ, if and only if there exists a labeling λϕ of Gϕ, with |λϕ| ≤ 7n2 + 49n − 8k482

labels, where the maximum used label is 10.483

High-level construction. For each variable xi, 1 ≤ i ≤ n, we construct a variable gadget Xi484

that consists of a “starting” vertex si and three “ending” vertices tℓi (for ℓ ∈ {1, 2, 3}); these485

ending vertices correspond to the appearances of xi in three clauses of ϕ. In an optimum486

labeling λϕ, in each variable gadget there are exactly two labelings that temporally connect487

starting and ending vertices, which corresponds to the True or False truth assignment of488
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the variable in the input formula ϕ. For every clause (xi ⊕ xj) we identify corresponding489

ending vertices of Xi and Xj (as well as some other auxiliary vertices and edges). Whenever490

(xi ⊕ xj) is satisfied by a truth assignment of ϕ, the labels of the common edges of Xi and491

Xj in an optimum labeling coincide (thus using few labels); otherwise we need additional492

labels for the common edges of Xi and Xj.493

Detailed construction of Gϕ. For each variable xi from ϕ we create a variable gadget Xi494

(for an illustration see Figure 3), that consists of a base BXi on 11 vertices, BXi =495

{si, ai, bi, ci, di, ei, ai, bi, ci, di, ei}, and three forks F 1Xi, F
2Xi, F

3Xi, each on 9 vertices,496

F ℓXi = {tℓi , f ℓ
i , g

ℓ
i , h

ℓ
i ,m

ℓ
i , fi

ℓ
, gi

ℓ, hi
ℓ
,mi

ℓ}, where ℓ ∈ {1, 2, 3}. Vertices in the base BXi are497

connected in the following way: there are two paths of length 5: siaibicidiei and siaibicidiei,498

and 5 extra edges of form yiyi, where y ∈ {a, b, c, d, e}. Vertices in each fork F ℓXi (where499

ℓ ∈ {1, 2, 3}) are connected in the following way: there are two paths of length 4: tℓim
ℓ
ih

ℓ
ig

ℓ
if

ℓ
i500

and tℓimi
ℓhi

ℓ
gi

ℓfi
ℓ
, and 4 extra edges of form yiyi

ℓ, where y ∈ {m,h, g, f}. The base BXi of501

the variable gadget Xi is connected to each of the three forks F ℓXi via two edges eif
ℓ
i and502

eifi
ℓ
, where ℓ ∈ {1, 2, 3}.503

For an easier analysis we fix the following notation. Vertex si ∈ BXi is called start-504

ing vertex of Xi, vertices tℓi (ℓ ∈ {1, 2, 3}) are called ending vertices of Xi. Vertices505

ai, bi, ci, di, ei, f
ℓ
i , g

ℓ
i , h

ℓ
i ,m

ℓ
i (resp. ai, bi, . . .mi

ℓ) are called the left (resp. the right) vertices506

of Xi. A path connecting si, t
ℓ
i that passes only through the left (resp. the right) vertices is507

called the left (resp. right) si, t
ℓ
i-path. The left (resp. right) si, t

ℓ
i-path is a disjoint union of508

the left (resp. right) path on vertices of the base BXi of Xi, an edge of form eif
ℓ
i (resp. eifi

ℓ
)509

called the left (resp. right) bridge edge and the left (resp. right) path on vertices of the ℓ-th510

fork F ℓXi of Xi. The edges yiyi, where y ∈ {a, b, c, d, e, f ℓ, gℓ, hℓ,mℓ}, ℓ ∈ {1, 2, 3}, are called511

connecting edges.512

Connecting variable gadgets. There are two ways in which we connect two variable gadgets,513

depending on whether they appear in the same clause in ϕ or not.514

1. Two variables xi, xj do not appear in any clause together (for an illustration see Fig-515

ure 4). In this case we add the following edges between the variable gadgets Xi and516

Xj:517

• from ei (resp. ei) to f ℓ′
j and fj

ℓ′

, where ℓ′ ∈ {1, 2, 3},518

• from ej (resp. ej) to f ℓ
i and fi

ℓ
, where ℓ ∈ {1, 2, 3},519

• from di (resp. di) to dj and dj.520

We call these edges the inter-variable edges.521

2. Two variables appear in a clause together (for an illustration see Figure 5). Let C =522

(xi ⊕ xj) be a clause of ϕ, that contains the r-th appearance of the variable xi and523

r′-th appearance of the variable xj. In this case we identify the r-th fork F rXi of Xi524

with the r′-th fork F r′Xj of Xj in the following way:525
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Figure 3: An example of a variable gadget Xi in Gϕ, corresponding to the variable xi from ϕ.

• tri = tr
′

j ,526

• {f r
i , g

r
i , h

r
i ,m

r
i} = {fj

r′

, gj
r′ , hj

r′

,mj
r′} respectively, and527

• {fi
r
, gi

r, hi
r
,mi

r} = {f r′
j , gr

′
j , h

r′
j ,m

r′
j } respectively.528

Besides that we add the following edges between the variable gadgets Xi and Xj:529

• from ei (resp. ei) to f ℓ′
j and fj

ℓ′

, where ℓ′ ∈ {1, 2, 3} \ {r′},530

• from ej (resp. ej) to f ℓ
i and fi

ℓ
, where ℓ ∈ {1, 2, 3} \ {r},531

• from di (resp. di) to dj and dj.532

This finishes the construction of Gϕ.533

Remark 1. In our construction of Gϕ, the three “forks” F 1Xi, F
2Xi, F

3Xi of a variable534

gadget Xi (see Figures 3, 4, and 5) can be also interpreted as “clause gadgets”, in the535

following sense. Each fork in the construction corresponds to exactly two variables, say xi536

and xj, where the formula ϕ contains the clause (xi ⊕ xj). In the construction, this fork537
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Figure 4: An example of two non-intersecting variable gadgets and inter-variable edges among them.

Figure 5: An example of two intersecting variable gadgets Xi, Xj corresponding to variables xi, xj , that
appear together in some clause in ϕ, where it is the third appearance of xi and the first appearance of xj .

appears both as F h
i and as F ℓ

j , for some 1 ≤ h, ℓ ≤ 3, which is essentially the intersection of538

the two variable gadgets Xi and Xj.539

Before continuing with the reduction, we prove the following structural property of Gϕ.540
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Lemma 9. The diameter of Gϕ is 10.541

Proof. We prove this in two steps. First we show that the diameter of any variable gadget542

is 10 and then show that there exists a path of length at most 10 between any two vertices543

from two different variable gadgets, which proves the desired bound.544

Let us start with fixing a variable gadget Xi. A path from the starting vertex si to any545

ending vertex tℓi (ℓ ∈ {1, 2, 3}) has to go through at least one of the vertices from each of the546

following sets {ai, ai}, {bi, bi}, {ci, ci}, {di, di}, {ei, ei}, {f ℓ
i , fi

ℓ}, {gℓi , giℓ}, {hℓ
i , hi

ℓ}, {mℓ
i ,mi

ℓ},547

before reaching the ending vertex. The shortest si, t
ℓ
i path will go through exactly one548

vertex from each of the above sets, therefore it is of length 10. A path between any two549

ending vertices tℓ1i , t
ℓ2
i (where ℓ1, ℓ2 ∈ {1, 2, 3} and ℓ1 ̸= ℓ2), has to go through at least one550

of the vertices from each of the following sets {mℓ1
i ,mi

ℓ1},{mℓ2
i ,mi

ℓ2}, {hℓ1
i , hi

ℓ1},{hℓ2
i , hi

ℓ2},551

{gℓ1i , gi
ℓ1},{gℓ2i , gi

ℓ2}, {f ℓ1
i , fi

ℓ1},{f ℓ2
i , fi

ℓ2}, {ei, ei}. Similarly as before, the shortest path uses552

exactly one vertex from each set and is of size 10. It is not hard to see that the distance553

between any other vertex v ∈ Xi \ {si, tℓi} (where ℓ ∈ {1, 2, 3}) and the starting vertex or554

one of the ending vertices is at most 9, as vertex v lies on one of the shortest (si, t
ℓ
i) or555

(tℓ1i , t
ℓ2
i ) paths (where ℓ1, ℓ2 ∈ {1, 2, 3} and ℓ1 ̸= ℓ2), but it is not an endpoint of it. By the556

similar reasoning there exists a path between any two vertices u, v ∈ Xi \ {si, tℓi} (where557

ℓ ∈ {1, 2, 3}), of distance at most 9. Therefore, the diameter of Xi is 10.558

Now we want to show that the distance between any two vertices from different559

variable gadgets is at most 10. Let us start with the case where two variable gadgets560

Xi and Xj share no fork (i.e., xi and xj do not appear in the same clause of ϕ). A561

path between si and tℓj (for ℓ ∈ {1, 2, 3}) travels through at least one of the vertices562

from the following sets {ai, ai}, {bi, bi}, . . . , {ei, ei}, {f ℓ
j , fj

ℓ}, {gℓj, gjℓ}, . . . , {mℓ
j,mj

ℓ}. The563

shortest path goes through exactly one vertex in each of the sets, therefore it is of564

length 10. From this it also follows that there exists a path between any base vertex565

v ∈ BXi and fork vertex u ∈ FXj of length at most 10. Next, observe a path between566

si and sj that goes through at least one of the vertices from each of the following sets567

{ai, ai}, {bi, bi}, {ci, ci}, {di, di}, {dj, dj}, {cj, cj}, {bj, bj}, {aj, aj}. Again, the shortest path568

will use exactly one vertex in each set and is of distance 9. Therefore, all of the a, b, c, d569

vertices from Xi and Xj are at distance at most 9 from each other. Since the path570

(ei, f
1
j , ej) is of length 2 and (ei, di, dj, cj, bj, aj, sj) is of length 6 it follows that ei is571

at distance at most 3 from ej and 6 from sj. Therefore, all of the vertices from BXi572

and BXj are at distance at most 9 from each other. Lastly, a path between tℓ1i and tℓ2j573

(where ℓ1, ℓ2 ∈ {1, 2, 3}) travels through at least one of the vertices from the following574

sets {mℓ1
i ,mi

ℓ1}, {hℓ1
i , hi

ℓ1}, {gℓ1i , gi
ℓ1}, {f ℓ1

i , fi
ℓ1}, {ei, ei}, {f ℓ2

j , fj
ℓ2}, {gℓ2j , gj

ℓ2}, {hℓ2
j , hj

ℓ2},575

{mℓ2
j ,mj

ℓ2}. Since the shortest path visits exactly one vertex from each set, it is of length576

10. Similarly as before, it follows that there is a path between any two vertices u ∈ F ℓ1Xi577

and v ∈ F ℓ2Xj (where ℓ1, ℓ2 ∈ {1, 2, 3}) of distance at most 10. Therefore, we get that the578

diameter of a subgraph of Gϕ that contains any two variable gadgets that do not share a579

fork is 10. In the case when two variable gadgets Xi and Xj share a fork, it is not hard580

to see that the shortest path among any two vertices u ∈ Xi and v ∈ Xj does not become581
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grater than in the case when two variable gadgets do not share a fork.582

All together it follows that the distance among any two vertices in Gϕ is at most 10.583

In the following, let OPTMonMaxXOR(3)(ϕ) denote the size of an optimal solution for584

MonMaxXOR(3) on instance ϕ, and let OPTMAL(Gϕ, 10) denote the size of an optimum585

solution for MAL on instance (Gϕ, 10).586

Lemma 10. If OPTMonMaxXOR(3)(ϕ) ≥ k then OPTMAL(Gϕ, 10) ≤ 7n2 + 49n− 8k, where n587

is the number of variables in the formula ϕ.588

Proof. Let τ be an optimum truth assignment of ϕ, i.e., a truth assignment that satisfies at589

least k clauses of ϕ. We will prove that there exists a temporal labeling λϕ of Gϕ which uses590

|λϕ| ≤ 7n2+49n−8k labels, such that (Gϕ, λϕ) is temporally connected and α(Gϕ, λϕ) = 10.591

Recall that since ϕ is an instance of MonMaxXOR(3) with n variables it has m = 3
2
n592

clauses. We build the labeling λϕ using the following rules. For an illustration see Figure 6.593

1. If a variable xi from ϕ is set to True by the truth assignment τ , we label the edges in594

Xi in the following way:595

• all three left (si, t
ℓ
i)-paths, for all ℓ ∈ {1, 2, 3}, get the labels 1, 2, 3, . . . , 10, one on596

each edge,597

• similarly, all left (tℓi , si)-paths, get the labels 1, 2, 3, . . . , 10, one on each edge,598

• all connecting edges (i.e., edges of form yiyi, where y ∈ {a, b, c, d, e, f ℓ, gℓ, hℓ,mℓ})599

get the labels 1 and 10.600

If a variable xi from ϕ is set to False by the truth assignment τ , we label the edges601

in Xi in the following way:602

• all three right (si, t
ℓ
i)-paths, for all ℓ ∈ {1, 2, 3}, get the labels 1, 2, 3, . . . , 10, one603

on each edge,604

• similarly, all right (tℓi , si)-paths, get the labels 1, 2, 3, . . . , 10, one on each edge,605

• all connecting edges get the labels 1 and 10.606

Labeling λϕ uses 10 labels on the left (resp. right) path of the base BXi, 10 labels on607

the left (resp. right) path of each fork F ℓXi, where ℓ ∈ {1, 2, 3} and 10 + 3 · 8 labels608

on the connecting edges. All in total λϕ uses 74 labels on the variable gadget Xi.609

We now need to prove that there exists a temporal path among any two vertices in Xi.610

Suppose xi is set to True in the truth assignment τ of ϕ (the case of xi being False611

is analogous). By the construction of λϕ, there are temporal paths from si to any of612

the tℓi , where ℓ ∈ {1, 2, 3}, and vice versa. Labeling λϕ of Gϕ gives rise to the following613

temporal paths. There is a temporal path from the starting vertex si to the ending614

vertex tℓi , where ℓ ∈ {1, 2, 3}, which uses the left path of Xi, and labels 1, 2, . . . , 10.615

Similarly, it holds for the temporal (tℓi , si)-path. The temporal path connecting two616

ending vertices tℓ1i , t
ℓ2
i (where ℓ1, ℓ2 ∈ {1, 2, 3} and ℓ1 ̸= ℓ2), uses first the left path of617
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the fork F ℓ1Xi, with labels 1 to 5, to reach ei, and then continues on the left path of the618

fork F ℓ2Xi using labels 6 to 10. Since the temporal paths among starting and ending619

vertices use the left path of the gadget Xi it follows that all vertices on the left path620

reach all starting and ending vertices, and consequently, they also reach each other.621

Any remaining vertex, i.e., a vertex on the right path of the gadget Xi, can reach the622

starting vertex using first their corresponding connecting edge at time 1, and then the623

remaining part of the temporal path from tℓi (for ℓ ∈ {1, 2, 3}) to si. Similarly, it holds624

for the temporal paths towards all of the ending vertices. In the case of temporal paths625

from si (or t
ℓ
i) to the vertices on the right side of Xi, the temporal paths start with the626

edges of the left path of Xi at time 1 and finish using the corresponding connecting627

edge at time 10. Lastly, temporal paths among two vertices from the right path of628

Xi use as a first and last edge the corresponding connecting edge at time 1 and 10629

respectively, and a part of the (si, t
ℓ
i) or (tℓi , si)-temporal path. This proves that the630

labeling λϕ of Xi admits a temporal path among any two vertices in Xi.631

2. If two variable gadgets Xi and Xj do not share a fork, i.e., variables xi and xj are not632

in the same clause in ϕ, and are both set to True by τ , then we label the inter-variable633

edges as follows:634

• the edge didj, connecting the left path of BXi with the left path of BXj, gets635

labels 5 and 6,636

• three edges of the form eif
ℓ′
j (ℓ′ ∈ {1, 2, 3}) that connect the left path of BXi to637

the left paths of F ℓ′Xj get labels 5 and 6,638

• three edges of the form ejf
ℓ
i (ℓ ∈ {1, 2, 3}) that connect the left path of BXj to639

the left paths of F ℓXi get labels 5 and 6.640

We have assigned 14 labels to 7 inter-variable edges that connect both variable gadgets,641

while the number of labels assigned to each variable gadget remains the same. Note642

that the other three combinations (xi, xj are both False, one of xi, xj is True and643

the other False) give rise to the labeling λϕ that uses the same number of labels on644

both variable gadgets and inter-variable edges, where the labeled inter-variable edges645

are chosen appropriately. For an example see Figure 6a.646

Since labeling inter-variable edges does not change the labeling on each variable gadget,647

we know that there is still a temporal path among any two vertices from the same648

variable gadget. We need to prove now that there is a temporal path among any two649

vertices from Xi and Xj. First observe that there is a unique temporal path from650

si to tℓj (for ℓ ∈ {1, 2, 3}), that first uses the left path of the base of Xi with labels651

1, 2, 3, 4, 5, the inter-variable edge eif
ℓ
j with label 6 and continues to tℓj using the left652

path of the fork F ℓ
j with labels 7, 8, 9, 10. The reverse (tℓj, si)-temporal path uses the653

same edges with labels 1, 2, . . . , 10, as defined by λϕ. From the above it follows that654

there exists a temporal path from any vertex in the base of BXi to any vertex in a655

fork F ℓ
j and vice versa (note, if any of the starting/ending vertices is not on a left656

path of Xi or Xj we use corresponding connecting edges at time 1 or 10). Next,657
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we show that there is a temporal path between two ending vertices tℓ1i ∈ Xi and658

tℓ2j ∈ Xj (where ℓ1, ℓ2 ∈ {1, 2, 3}). More specifically, the (tℓ1i , t
ℓ2
j )-temporal path first659

uses the left side of the fork F ℓ1
i with labels 1, 2, 3, 4, 5 to reach the vertex ei ∈ Xi660

and then uses the inter-variable edge eif
ℓ2
j at time 6 and continues on the left side of661

the fork F ℓ2
j with labels 7, 8, 9, 10 to reach tℓ2j . Thus it holds that any vertex in any662

of the forks of Xi can reach any vertex in any of the forks of Xj. Note that the last663

temporal path proves also that ei ∈ Xi reaches all of the vertices in all of the forks664

of Xj (and vice versa). Let us now show that ei reaches also all the vertices in the665

base of Xj (and vice versa). First, the (ei, ej)-temporal path is of length 2, starts666

with the inter-variable edge eif
ℓ2
j at time 5 and finishes with the edge f ℓ2

j ej at time667

6. Second, ei reaches vertex sj using the temporal path that travels through vertices668

ei, di, dj, cjbj, aj, sj with labels 5, 6, 7, 8, 9, 10 on the respective edges. Conversely, the669

(sj, ei)-temporal path travels through the same vertices sj, aj, bj, cj, dj, di, ei with labels670

1, 2, 3, 4, 5, 6 on the respective edges. From the above three temporal paths it follows671

that ei in fact does temporally reach all of the vertices in the base of Xj and vice versa.672

Lastly, we want to prove that all of the remaining base vertices of Xi (i.e. vertices of673

form a, b, c, d) reach all of the remaining base vertices in Xj. To do so we just have to674

provide a temporal path from si to sj. This temporal path travels through the vertices675

si, ai, bi, ci, di, dj, cj, bj, aj, sj using labels 1, 2, 3, 4, 5, 7, 8, 9, 10 on the respective edges.676

All of the above proves that there exists a temporal path among any two vertices in677

Xi and Xj, when Xi and Xj share no fork.678

3. If two variable gadgets Xi and Xj share a fork, i.e., variables xi and xj are in the679

same clause, are both set to True and F rXi = F r′Xj, then we label the following680

inter-variable edges:681

• the edge didj connecting the left path of BXi and BXj gets labels 5 and 6,682

• two edges of the form eif
ℓ′
j (ℓ′ ∈ {1, 2, 3} \ {r′}) that connect the left path of BXi683

to the left paths of F ℓ′Xj get labels 5 and 6,684

• two edges of the form ejf
ℓ
i (ℓ ∈ {1, 2, 3} \ {r}) that connect the left path of BXj685

to the left paths of F ℓXi get labels 5 and 6.686

We have assigned 10 labels to 5 inter-variable edges that connect both variable gadgets.687

Note that the three other combinations (xi, xj are both False, one of xi, xj is True688

and the other False) give rise to the labeling λϕ that uses the same number of labels on689

inter-variable edges, where the labeled edges are chosen accordingly to the truth values690

of xi and xj. The only difference is in the labeling of the shared fork F rXi = F r′Xj.691

There are two possibilities, one when the truth value of xi and xj is the same and one692

when it is different, i.e., xi = xj or xi ̸= xj.693

a) Let us start with the case when xi ̸= xj. Then the labeling λϕ of F rXi coincides694

with the labeling of F r′Xj. Therefore λϕ uses 16 less labels on the shared fork.695
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b) In the case when xi = xj. The fork F rXi = F r′Xj gets labeled from both sides,696

i.e., all edges in the fork get 2 labels. Therefore λϕ uses 8 less labels on the shared697

fork.698

Identifying two forks F rXi = F r′Xj and labeling them using the union of both labelings699

on each fork, clearly preserves temporal paths among all the vertices fromXi (resp.Xj).700

What remains to check is that all vertices inXi reach all the vertices inXj. This follows701

from the same proof as in the previous case, where the paths between the two variable702

gadgets use the appropriate inter-variable edges. Note, since the fork F rXi = F r′Xj703

is in the intersection, the inter-variable edges from Xi (resp. Xj) to F rXi = F r′Xj do704

not exist. Therefore, the labeling λϕ admits a temporal path among any two vertices705

from the variable gadgets Xi, Xj, that have a fork in the intersection.706

Summarizing all of the above we get that the labeling λϕ uses 74 labels on each variable707

gadget and 14 labels on inter-variable edges among any two variables, from which we have708

to subtract the following:709

• 4 labels for each pair of inter-variable edges between two variables that appear in the710

same clause,711

• 16 labels for the shared fork between two variables, that appear in a satisfied clause,712

• 8 labels for the shared fork between two variables, that appear in a non-satisfied clause.713

Altogether this sums up to 74n + 14n(n−1)
2

− 4m− 16k − 8(m− k). As a result, given that714

τ satisfies a minimum of k clauses of ϕ, the labeling λϕ admits at most 7n2 + 49n − 8k715

labels.716

Before proving the statement in the other direction, we have to show some structural717

properties. Let us fix the following notation. Every temporal path from si to tℓi (resp. from718

tℓi to si) of length 10 in Xi is called an upward path (resp. a downward path) in Xi. Any part719

of an upward (resp. downward) path is called a partial upward (resp. downward) path. Note720

that, for any ℓ, ℓ′ ∈ {1, 2, 3}, ℓ ̸= ℓ′, a temporal path from tℓi to tℓ
′
i of length 10 is the union721

of a partial downward path on the fork F ℓ
i and a partial upward path on F ℓ′

i . If a labeling722

λϕ labels all left (resp. right) paths of the variable gadget Xi (i.e., both bottom-up from si723

to t1i , t
2
i , t

3
i and top-down from t1i , t

2
i , t

3
i to si with labels 1, 2 . . . , 10 in this order), then we724

say that the variable gadget Xi is left-aligned (resp. right-aligned) in the labeling λϕ. Note725

that if at least one edge on any of these left (resp. right) paths of Xi is not labeled with the726

appropriate label between 1 and 10, then the variable gadget is not left-aligned (resp. not727

right-aligned). The following technical lemma will allow us to prove the correctness of our728

reduction.729

Lemma 11. Let λϕ be a minimum labeling of Gϕ. Then λϕ can be modified in polynomial730

time to a minimum labeling of Gϕ in which each variable gadget Xi is either left-aligned or731

right-aligned.732
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(a) xi and xj do not appear together in any clause.

(b) xi and xj appear together in a clause, where xi appears with its third and xj with its first appearance. Here F 3Xi = F 1Xj

and t3i = t1j .

Figure 6: Example of the labeling λ on variable gadgets Xi, Xj and inter-variable edges between them, where
xi is True and xj False in ϕ. Note that edges that are not labeled are omitted.
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Proof. Let λϕ be a minimum labeling of Gϕ that admits at least one variable gadget Xi that733

is neither left-aligned nor right-aligned (i.e. Xi does not admit all left upward and downward734

paths, or all right upward and downward paths).735

First, we prove that there exists a fork F ℓXi of Xi that admits at least three partial736

upward or downward paths, i.e., it either has two partial upward paths (one on each side of737

the fork) and at least one partial downward path, or vice versa. For the sake of contradiction,738

suppose that each of the forks F 1Xi, F
2Xi, F

3Xi contains at most two partial paths. Then,739

since λϕ must have in Xi at least one upward and at least one downward path between si and740

tℓi , ℓ ∈ {1, 2, 3}, it follows that each fork F ℓXi has exactly one partial upward and exactly741

one partial downward path.742

Assume that each of the forks F 1Xi, F
2Xi, F

3Xi has both its partial upward and down-743

ward paths on the same side of Xi (i.e., either both on the left or both on the right side of744

Xi). If all of them have their partial upward and downward paths on the left (resp. right)745

side of Xi, then Xi is left-aligned (resp. right-aligned), which is a contradiction. Therefore,746

at least one fork (say F 1Xi) has its partial upward and downward paths on the left side of747

Xi and at least one other fork (say F 2Xi) has its partial upward and downward paths on748

the right side of Xi. But then there is no temporal path from t1i to t2i of length 10 in λϕ,749

which is a contradiction. Therefore there exists at least one fork F ℓXi (say, F
1Xi w.l.o.g.),750

in which (w.l.o.g.) the partial upward path is on the right side and the partial downward751

path is on the left side of Xi.752

Since the partial downward path of F 1Xi is on the left side of Xi, it follows that the753

partial upward path of each of F 2Xi and F 3Xi is on the left side of Xi. Indeed, otherwise,754

there is no temporal path of length 10 from t1i to t2i or t3i in λϕ, a contradiction. Similarly,755

since the partial upward path of F 1Xi is on the right side of Xi, it follows that the partial756

downward path of each of F 2Xi and F 2Xi is on the right side of Xi. But then, there is no757

temporal path of length 10 from t2i to t3i , or from t3i to t2i in λϕ, which is also a contradiction.758

Therefore at least one fork F ℓXi (say F 3Xi) of Xi admits at least three partial upward or759

downward paths.760

W.l.o.g. we can assume that the fork F 3Xi has two partial downward paths and at least761

one partial upward path which is on the left side of Xi. We distinguish now the following762

cases.763

Case A. The fork F 3Xi has no partial upward path on the right side of Xi. Then the764

base BXi has a partial upward path on the left side of Xi. Furthermore, each of the forks765

F 1Xi, F
2Xi has a partial downward path on the left side of Xi. Indeed, if otherwise F 1Xi766

(resp. F 2Xi) has no partial downward path on the left side of Xi, then there is no path with767

at most 10 edges from t1i (resp. t2i ) to t3i , a contradiction.768

Case A-1. The base BXi of Xi has no partial downward path on the left side of Xi; that is,769

there is no temporal path from vertex ei to vertex si with labels “6,7,8,9,10”. Then the base770

BXi of Xi has a partial downward path on the right side of Xi, as otherwise there would be771

no temporal path of length 10 from any of t1i , t
2
i , t

3
i to si. For the same reason, each of the772

forks F 1Xi, F
2Xi has a partial downward path on the right side of Xi.773

Case A-1-i. None of the forks F 1Xi, F
2Xi has a partial upward path on the left side of Xi.774

24



Then each of the forks F 1Xi, F
2Xi has a partial upward path on the right side of Xi, as775

otherwise there would be no temporal path of length 10 from si to t1i or t2i . For the same776

reason, the base BXi has a partial upward path on the right side of Xi. Therefore we can777

remove the label “5” from the left bridge edge eif
3
i of the fork F 3Xi, thus obtaining a labeling778

with fewer labels than λϕ, a contradiction.779

Case A-1-ii. Exactly one of the forks F 1Xi, F
2Xi (say F 1Xi) has a partial upward path on780

the left side of Xi. Then the fork F 2Xi has a partial upward path on the right side of Xi.781

Furthermore, the base BXi has a partial upward path on the right side of Xi, since otherwise782

there would be no temporal path of length 10 from si to t2i . In this case, we can modify the783

solution as follows: remove the labels “1,2,3,4,5” from the partial right-upward path of BXi784

and add the labels “6,7,8,9,10” to the partial left-upward path of the fork F 2Xi. Finally, we785

can remove the label “5” from the right bridge edge eifi
3
of the fork F 3Xi, thus obtaining a786

labeling with fewer labels than λϕ, a contradiction.787

Case A-1-iii. Each of the forks F 1Xi, F
2Xi has a partial upward path on the left side788

of Xi. In this case, we can modify the solution as follows: remove the labels “10,9,8,7,6”789

from the partial right-downward path of BXi and add the same labels “10,9,8,7,6” to the790

partial left-downward path of the base BXi. Finally, we can remove the label “5” from the791

right bridge edge eifi
3
of the fork F 3Xi, thus obtaining a labeling with fewer labels than λϕ,792

a contradiction.793

Case A-2. The base BXi of Xi has a partial downward path on the left side of Xi; that is,794

there is a temporal path from vertex ei to vertex si with labels “6,7,8,9,10”.795

Case A-2-i. None of the forks F 1Xi, F
2Xi has a partial upward path on the left side of Xi.796

Then the base BXi and each of the forks F 1Xi, F
2Xi have a partial upward path on the797

right side of Xi, as otherwise there would be no temporal paths of length 10 from si to798

t1i , t
2
i . Moreover, as none of F 1Xi, F

2Xi has a partial left-upward path, it follows that each799

of F 1Xi, F
2Xi has a partial downward path on the right side of Xi. Indeed, otherwise, there800

would be no temporal paths of length 10 between t1i and t2i . In this case, we can modify the801

solution as follows: remove the labels “1,2,3,4,5” from the partial left-upward path of BXi802

and add the labels “6,7,8,9,10” to the partial right-upward path of the fork F 3Xi. Finally,803

we can remove the label “6” from the left bridge edge eif
3
i of the fork F 3Xi, thus obtaining804

a labeling with fewer labels than λϕ, a contradiction.805

Case A-2-ii. Exactly one of the forks F 1Xi, F
2Xi (say F 1Xi) has a partial upward path806

on the right side of Xi. Then the fork F 2Xi has a partial upward path on the left side of807

Xi. Furthermore, the base BXi must have a partial right-upward path, as otherwise there808

would be no temporal path from si to t2i . In this case, we can modify the solution as follows:809

remove the labels “1,2,3,4,5” from the partial right-upward path of BXi and add the labels810

“6,7,8,9,10” to the partial left-upward path of the fork F 2Xi. Finally, we can remove the811

label “5” from the right bridge edge eifi
3
of the fork F 3Xi, thus obtaining a labeling with812

fewer labels than λϕ, a contradiction.813

Case A-2-iii. Each of the forks F 1Xi, F
2Xi has a partial upward path on the right side814

of Xi. Then we can simply remove the label “5” from the right bridge edge eifi
3
of the fork815

F 3Xi, thus obtaining a labeling with fewer labels than λϕ, a contradiction.816
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Case B. The fork F 3Xi has also a partial upward path on the right side of Xi. That is,817

F 3Xi has partial upward-left, upward-right, downward-left, and downward-right paths.818

Case B-1. The base BXi of Xi has no partial downward path on the left side of Xi. Then819

the base BXi of Xi has a partial downward path on the right side of Xi, as otherwise there820

would be no temporal path of length 10 from any of t1i , t
2
i , t

3
i to si. For the same reason, each821

of the forks F 1Xi, F
2Xi has a partial downward path on the right side of Xi.822

Note that Case B-1 is symmetric to the case where the base BXi of Xi has no partial823

right-downward (resp. left-upward, right upward) path.824

Case B-1-i. None of the forks F 1Xi, F
2Xi has a partial upward path on the left side of Xi.825

This case is the same as Case A-1-i.826

Case B-1-ii. Exactly one of the forks F 1Xi, F
2Xi (say F 1Xi) has a partial upward path on827

the left side of Xi. Then both the base BXi and the fork F 2Xi has a partial right-upward828

path, as otherwise there would be no temporal path of length 10 from si to t2i . In this case,829

we can always remove the label “6” from the left bridge edge eif
3
i of the fork F 3Xi (without830

compromising the temporal connectivity), thus obtaining a labeling with fewer labels than831

λϕ, a contradiction.832

Case B-1-iii. Each of the forks F 1Xi, F
2Xi has a partial upward path on the left side of Xi.833

That is, each of F 1Xi, F
2Xi has a partial left-upward and a partial right-downward path.834

The following subcases can occur:835

Case B-1-iii(a). None of the forks F 1Xi, F
2Xi has a partial right-upward path. Then each836

of the forks F 1Xi, F
2Xi has a partial left-downward path since otherwise there would not837

exist temporal paths of length 10 between t1i and t2i . Furthermore, the base BXi has a partial838

left-upward path, since otherwise there would not exist a temporal path of length 10 from839

si to t1i and t2i . In this case, we can remove the label “6” from the right bridge edge eifi
3
of840

the fork F 3Xi, thus obtaining a labeling with fewer labels than λϕ, a contradiction.841

Case B-1-iii(b). Exactly one of the forks F 1Xi, F
2Xi (say F 1Xi) has a partial right-upward842

path. Then the base BXi has a partial left-upward path since otherwise there would not843

exist a temporal path of length 10 from si to t2i . Similarly, the fork F 1Xi has a partial left-844

downward path since otherwise there would not exist a temporal path of length 10 from t1i to845

t2i . In this case, we can modify the solution as follows: First, remove the labels “10,9,8,7,6”846

from the partial right-downward path of BXi and add the labels “10,9,8,7,6” to the partial847

left-downward path of BXi. Second, remove the labels “5,6” from each of t two right bridge848

edges eifi
1
and eifi

3
of the forks F 1Xi and F 3Xi, respectively. Third, remove the label “5”849

from the right bridge edge eifi
1
of the fork F 2Xi. Finally, add the five labels “5,4,3,2,1” to850

the partial left-downward path of the fork F 2Xi. The resulting labeling λ∗
ϕ still preserves the851

temporal reachabilities and has the same number of labels as λϕ, while the variable gadget852

Xi is aligned.853

Case B-1-iii(c). Each of the forks F 1Xi, F
2Xi has a partial right-upward path. In this854

case, we can always remove the label “5” from the left bridge edge eif
3
i of the fork F 3Xi,855

thus obtaining a labeling with fewer labels than λϕ, a contradiction.856

Case B-2. The base BXi of Xi has partial left-downward, right-downward, left-upward,857

and right-upward paths. Then, due to symmetry, we may assume w.l.o.g. that the fork F 1Xi858
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has a left-upward path. Suppose that F 1Xi has also a left-downward path. In this case, we859

can modify the solution as follows: remove the labels “1,2,3,4,5” and “10,9,8,7,6” from the860

partial right-upward and right-downward paths of BXi and add the labels “6,7,8,9,10” and861

“5,4,3,2,1” to the partial left-upward and left-downward paths of the fork F 2Xi. Finally, we862

can remove the label “6” from the right bridge edge eifi
3
of the fork F 3Xi, thus obtaining a863

labeling with fewer labels than λϕ, a contradiction.864

Finally, suppose that F 1Xi has no partial left-downward path. Then F 1Xi has a partial865

right-down path since otherwise there would not exist any temporal path of length 10 from866

t1i to si. Similarly, the fork F 2Xi has a partial right-upward path since otherwise there would867

not exist any temporal path of length 10 from t1i to t
2
i . In this case, we can modify the solution868

as follows: First, remove the labels “1,2,3,4,5” and “10,9,8,7,6” from the partial left-upward869

and left-downward paths of BXi. Second, add the labels “6,7,8,9,10” to the partial right-870

upward path of the fork F 1Xi and add the labels “5,4,3,2,1” to the partial right-downward871

path of the fork F 2Xi. Finally remove the label “6” from the left bridge edge eif
3
i of the872

fork F 3Xi, thus obtaining a labeling with fewer labels than λϕ, a contradiction.873

Summarizing, starting from an optimum λϕ of Gϕ, in which at least one variable gadget is874

neither left-aligned nor right-aligned, we can modify λϕ to another labeling λ∗
ϕ, such that λ∗

ϕ875

has one more variable-gadget that is aligned and |λϕ| = |λ∗
ϕ|. Note that this modification can876

only happen in Case B-1-iii(b); in all other cases, our case analysis arrived at a contradiction.877

Note here that, by making the above modifications of λϕ, we need to also appropriately878

modify the bridge edges (within the variable gadgets) and the inter-variable edges (between879

different variable gadgets), without changing the total number of labels in each of these880

edges. Finally, it is straightforward that all modifications of λϕ can be done in polynomial881

time. This concludes the proof.882

Lemma 12. If OPTMAL(Gϕ, 10) ≤ 7n2 + 49n− 8k then OPTMonMaxXOR(3)(ϕ) ≥ k, where n883

is the number of variables in the formula ϕ.884

Proof. Let λϕ be an optimum solution to MAL(Gϕ, 10), which uses at most 7n2 + 49n− 8k885

labels. We will prove that there exists a truth assignment τ that satisfies at least k clauses of886

ϕ. Lemma 11 implies that every variable gadget of Gϕ is either left-aligned or right-aligned887

in λϕ. Throughout the proof, we consider an arbitrary variable gadget Xi, and we assume888

w.l.o.g. that Xi is left-aligned.889

First, we count the minimum number of labels needed in λϕ, so that all temporal paths890

among vertices of Xi exist. Recall that si is at distance 10 from any tℓi , where ℓ ∈ {1, 2, 3},891

and tℓi is at distance 10 from any tℓ
′
i , where ℓ′ ∈ {1, 2, 3} \ {ℓ}. Therefore, any temporal892

path connecting any two of the vertices in {si, t1i , t2i , t3i } is of length 10 and must use labels893

1, 2, 3, . . . , 10 along its edges (in this order). Which implies that the k-th edge on the path894

(si, ai, bi, ci, . . . ,m
ℓ
i , t

ℓ
i) admits at least the labels k, 11− k. In total, there must exist at least895

5 · 2 = 10 labels on the base BXi, at least 4 · 2 = 8 labels on each fork F ℓXi, and at least 2896

labels on each left-bridge edge eif
ℓ
i . That is, we have at least 10 + 3 · (8 + 2) = 40 labels to897

temporally connect the vertices {si, t1i , t2i , t3i } (and also all vertices within the paths among898

them at the left side of the variable gadget Xi). Furthermore, we need at least two labels899
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for each vertex y at the right side of Xi such that there is a temporal path to and from y in900

Xi, i.e., we need at least 17 · 2 = 34 more labels. That is, within the whole variable gadget901

Xi we need in total at least 40 + 34 = 74 labels in λϕ.902

Let Xj be a variable gadget in Gϕ that does not share a fork with Xi. W.l.o.g. we can903

assume that Xj is right-aligned (all other cases are symmetric). Using the arguing from904

above we know that the k-th edge of the path (sj, aj, bj, . . . ,mj
ℓ′ , tj

ℓ′
), where ℓ′ ∈ {1, 2, 3},905

admits at least the labels k, 11 − k. Observe that the shortest path between the starting906

vertex si of Xi and any of the ending vertices tℓ
′
j (ℓ′ ∈ {1, 2, 3}) of Xj is of length 10 and is907

of the form (si, ai, . . . , ei, fj
ℓ′

, . . . , tj
ℓ′
). Therefore, the inter-variable edge eifj

ℓ′

must admit908

at least the labels 5, 6. This proves that all of the fork vertices in F ℓ′Xj are reachable by909

the vertices of the base BXi, and vice versa. Next, we have to make sure that there are910

temporal paths among vertices from BXi and BXj. The temporal path from si to sj through911

vertices si, ai, . . . , di, dj, . . . , sj is of length 9. Except for the edge didj, all other edges are912

labeled, therefore didj has to admit either the label 5 or 6. Since these temporal paths do913

not pass through any of the e vertices of BXi and BXj, we still need to ensure that there is914

a temporal path from ei to ej and sj, and vice versa (because of the symmetry this is enough915

to argue that all of the base vertices of BXi and BXj reach each other). First, to temporally916

connect ei to ej we do not require any new labels as ei reaches ej using edges eifj
ℓ′

and917

fj
ℓ′

ej at times 5 and 6, respectively. The (ej, ei)-temporal path uses the same edges, but in918

the reverse order, first ejfj
ℓ′

at time 5 and then fj
ℓ′

ei at time 6. The (ei, sj) temporal path919

that requires the least amount of extra added labels to Xi and Xj is the path on vertices920

ei, di, dj, . . . , sj. This implies that the edge didj has to admit the label 6. Using the same921

path in the reverse direction, we get the temporal path from sj to ei that requires the edge922

didj to admit the label 5. Therefore, the edges didj, eifj
ℓ′

must all admit at least the labels923

5, 6. To sum up, to ensure the existence of a temporal path among two vertices from two924

variable gadgets that do not share a fork, a labeling must use at least 2 · (3 + 3) + 2 = 14925

extra labels on the inter-variable edges.926

Lastly, let Xj be a variable gadget in Gϕ that shares a fork with Xi. W.l.o.g. we can927

suppose that F 1Xi = F 1Xj. By the construction of Gϕ, there exists a temporal path between928

all vertices in the fork F 1Xi = F 1Xj and all vertices in Xi and Xj. As observed, these paths929

do not use the inter-variable edges. Using the same arguments as in the case when Xi and930

Xj do not share a fork, we get that a minimum labeling must use at least 2 · (2+2)+2 = 10931

labels on the inter-variable edges.932

The only thing left to inspect is the labeling in the intersecting fork. We distinguish the933

following two cases.934

• The variable gadget Xj is right-aligned. Then, by the construction of Gϕ, the fork935

F 1Xi = F 1Xj is labeled using the same labeling as in the variable gadget Xi. This936

“saves” 16 labels from the total number of labels used on variable gadgets Xi and Xj.937

• The variable gadget Xj is left-aligned. In this case, each edge in the fork F 1Xi = F 1Xj938

admits two labels. This “saves” only 8 labels from the total number of labels used on939
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variable gadgets Xi and Xj.940

From the labeling λϕ of Gϕ we construct a truth assignment τ of ϕ as follows. If a variable941

gadget Xi is left-aligned, we set xi to True and if it is right-aligned, we set xi to False.942

Suppose that the labeling λϕ satisfies exactly k∗ clauses. As previously noted, λϕ uses at943

least 74 labels on each variable gadget. Whenever two variable gadgets Xi, Xj do not appear944

in the same clause we need at least 14 extra labels on the inter-variable edges, and whenever945

Xi, Xj appear in the same clause we need at least 10 labels on the inter-variable gadgets.946

In the case where Xi, Xj appear in the same clause and both Xi and Xj are left-aligned947

(i.e. clause of ϕ is not satisfied) the common fork results in 8 less labels, while in the case948

where Xi is left-aligned and Xj is right-aligned (i.e. clause of ϕ is satisfied), the common949

fork results in 16 less labels. Consequently,950

|λϕ| ≥ 74n+ 14

(
n

2

)
− 14m+ 10m− 8(m− k∗)− 16k∗

= 67n+ 7n2 − 12m− 8k∗

= 7n2 + 49n− 8k∗.

In the above derived equation, we used the fact that ϕ has m = 3
2
n clauses. Since |λϕ| =951

OPTMAL(Gϕ, 10) ≤ 7n2 + 49n − 8k by the statement of the lemma, it follows that k∗ ≥ k,952

i.e., λϕ satisfies at least k clauses of ϕ.953

MAL is clearly in NP, since temporal connectivity can be checked in polynomial time [27].954

Hence, the next theorem follows directly from Theorem 8 and Lemmas 10 and 12.955

Theorem 13. MAL is NP-complete on undirected graphs, when the required maximum age956

is equal to the diameter of the input graph.957

4. The Steiner-Tree variations of the problem958

In this section, we investigate the computational complexity of the Steiner-Tree variations959

of the problem, namely MSL and MASL. First, we prove in Section 4.1 that the age-960

unrestricted problem MSL remains NP-hard, using a reduction from Vertex Cover. In961

Section 4.2 we prove that this problem is in FPT, when parameterized by the number |R|962

of terminals. Finally, using a parameterized reduction from Multicolored Clique, we963

prove in Section 4.3 that the age-restricted version MASL is W[1]-hard with respect to the964

number k of labels (which is a larger parameter than |R|), even if the maximum allowed age965

is a constant.966

4.1. Computational Hardness of MSL967

In this section, we prove that MSL is NP-complete.968

Theorem 14. MSL is NP-complete.969
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Proof. MSL is contained in NP, since temporal connectivity can be checked in polynomial970

time [27]. To prove that the MSL is NP-hard we provide a polynomial-time reduction from971

the NP-complete Vertex Cover problem [26].972

Vertex Cover

Input: A static graph G = (V,E), a positive integer k.
Question: Does there exist a subset of vertices S ⊆ V such that |S| = k and ∀e ∈ E

there exists a vertex u ∈ S such that u is an endpoint of e?

973

In the paper [26], the NP-hardness reductions for Vertex Cover produce an instance974

(G, k) such that (G, k − 1) is a NO-instance of Vertex Cover independently of whether the975

original instance of the problem that was reduced from is a YES- or a NO-instance. Hence, we976

can make the following assumption. Let (G, k) be an input of the Vertex Cover problem,977

then G does not admit a vertex cover of size k− 1. We denote |V (G)| = n, |E(G)| = m and978

construct (G∗, R∗, k∗), the input of MSL using the following procedure (for an illustration979

see Figure 7). The vertex set V (G∗) consists of the following vertices:980

• two starting vertices N = {n0, n1},981

• a “vertex-vertex” corresponding to every vertex of G: UV = {uv | v ∈ V (G)},982

• an “edge-vertex” corresponding to every edge of G: UE = {ue | e ∈ E(G)},983

• 2n+ 2m(6k +m) “dummy” vertices.984

The edge set E(G∗) consists of the following edges:985

• an edge between starting vertices, i.e., n0n1,986

• a path of length 3 between a starting vertex n1 and every vertex-vertex uv ∈ UV using987

2 dummy vertices, and988

• for every edge e = vw ∈ E(G) we connect the corresponding edge-vertex ue with the989

vertex-vertices uv and uw, each with a path of length 6k+m+1 using 6k+m dummy990

vertices.991

We set R∗ = {n0} ∪ UE and k∗ = 6k + 2m(6k +m+ 1) + 1. This finishes the construction.992

Note that G∗ is a graph with 3n+m+2m(6k+m)+2 vertices and 1+3n+2m(6k+m+1)993

edges. It is not hard to see that the described construction can be performed in polynomial994

time.995

We claim that (G, k) is a YES instance of the Vertex Cover if and only if (G∗, R∗, k∗)996

is a YES instance of the MSL.997

(⇒): Assume (G, k) is a YES instance of the Vertex Cover and let S ⊆ V (G) be a998

vertex cover for G of size k. We construct a labeling λ for G∗ that uses k∗ labels and admits999

a temporal path between all vertices from R∗ as follows.1000
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Figure 7: Illustration of the MSL instance produced by the reduction presented in the proof of Theorem 14,
where the blue vertices represent set R∗.

For the sake of easier explanation, we use the following terminology. A temporal path1001

starting at n0 and finishing at some ue is called a returning path. Contrarily, a temporal1002

path from some ue to n0 is called a forwarding path.1003

Let US be the set of corresponding vertices to S in G∗. From each edge-vertex ue there1004

exists a path of length 6k +m + 1 to at least one vertex uv ∈ US, since S is a vertex cover1005

in G. We label exactly one of these paths, using labels 1, 2, . . . , 6k +m + 1. Doing this for1006

all vertices ue ∈ UE we use m(6k +m + 1) labels. Now we label a path from each v ∈ US1007

to n1 using labels 6k +m + 2, 6k +m + 3, 6k +m + 4. Each path uses 3 labels, and since1008

S is of size k we used 3k labels for all of them. At the end we label the edge n0n1 with the1009

label ℓ∗ = 6k +m + 5. Using this procedure we have created a forwarding path from each1010

edge-vertex ue to the start vertex n0 and we used 3k +m(6k +m+ 1) + 1 labels.1011

To create the returning paths, we label paths from n1 to each vertex in US with labels1012

ℓ∗ +1, ℓ∗ +2, ℓ∗ +3. Now again, we label exactly one path from vertices in US to each edge-1013

vertex ue, using labels ℓ∗ +4, ℓ∗ +5, . . . , ℓ∗ +4+6k+m. We used extra 3k+m(6k+m+1)1014

labels and created a returning path from n0 to each vertex in UE.1015

Altogether, the constructed labeling uses k∗ = 6k + 2m(6k + m + 1) + 1 labels. What1016

remains to show is that there exists a temporal path between any pair of edge-vertices1017

ue, uf ∈ UE. We can construct a temporal walk W (possibly visiting the same vertex1018

multiple times) from ue to uf as follows. Starting at ue, we go along the forwarding path1019

from ue to n0 until we reach n1. By construction, we arrive at n1 at time ℓ∗−1. Now consider1020

the returning path from n0 to uf . This path goes through n1 and, by construction, arrives1021

at n1 at time ℓ∗. Hence, we can extend the temporal walk W from n1 to uf by following the1022

returning path from u1 onward.1023

(⇐): Assume that (G∗, R∗, k∗) is a YES instance of the MSL. We construct a vertex1024

cover of size at most k for G as follows.1025
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Consider the temporal paths connecting n0 to the vertices in UE. By the construction1026

of G∗ each temporal path from n0 to a vertex in UE passes through the set UV . Hence, for1027

each vertex ue ∈ UE there is some vertex uv ∈ UV such that uv is temporally connected to1028

ue. Now consider the temporal paths connecting the vertices in UE to n0. Similarly to the1029

argument above, by the construction of G∗ each temporal path from a vertex in UE to n01030

passes through the set UV . Hence, each vertex ue ∈ UE needs to be temporally connected to1031

some vertex in uv ∈ UV . Fix some ue ∈ UE. We can conclude that there is a uv ∈ UV such1032

that ue is temporally connected to uv by a temporal path of length 6k+m+1. Furthermore,1033

there is an uv′ ∈ UV such that uv′ is temporally connected to ue by a temporal path of1034

length 6k +m+ 1. If uv ̸= uv′ , then we attribute 12k +m+ 2 labels to vertex ue. However,1035

if uv = uv′ , then the temporal path of length 6k + m + 1 from ue to uv and the temporal1036

path of length 6k + m + 1 from uv to ue may share one time edge: Let Pve be the unique1037

path in G∗ of length 6k +m + 1 that connects uv and ue. Then the (uv, ue)-temporal path1038

(resp. (ue, uv)-temporal path) traverses the edges of Pve from uv (resp. ue) to ue (resp. uv),1039

where the edges of Pve are labeled strictly increasingly. Hence the two temporal paths may1040

share at most one time edge. Therefore, in this case, we attribute at least 12k + 2m + 11041

labels to ue. Overall, we attribute at least m(12k + 2m+ 1) labels to the vertices in UE.1042

For a vertex ue ∈ UE, we call a temporal path from ue to some uv ∈ UV of length1043

6k +m + 1 a forwarding path Fe for ue. Similarly, we call a temporal path from some uv′1044

to ue of length 6k + m + 1 a returning path Re for ue. For every ue we have exactly one1045

forwarding path and one returning path. This is true since every additional path would1046

require at least an additional 6k +m labels on the edges between UV and UE, and then at1047

most 1 label could be placed on the remaining edges, which would result in no temporal1048

paths between {n0, n1} and UV .1049

This allows us to make the following observation. We define a partial order <label on1050

the set P = {Fe, Re | e ∈ E} of forwarding and returning paths as follows. For two paths1051

P,Q ∈ P , we say that P <label Q if all labels used in P are strictly smaller than the smallest1052

label used in Q. We can observe that for any two e, e′ ∈ E with e ̸= e′ we have that1053

Fe <label Re′ since in order for ue to reach ue′ , the path Fe needs to be used before the path1054

Re′ . It follows that there is at most one edge e ∈ E such that Re <label Fe or Re and Fe are1055

incomparable with respect to <label, otherwise we would reach a contradiction to the above1056

observation. From this we can deduce that we attribute 12k + 2m+ 2 labels to each of the1057

edges e ∈ E with Fe <label Re, since Fe and Re cannot share any label. Furthermore, there1058

is at most one edge to which we can attribute 12k + 2m+ 1 labels, since, as argued earlier,1059

if Fe and Re are incomparable with respect to <label, they can share at most one time edge.1060

It follows now that we attribute at least m(12k + 2m+ 2)− 1 labels to the vertices in UE.1061

We now conclude that there are at most 6k + 2 labels used on the edges connecting the1062

sets N and UV . Next, we identify two (potentially intersecting) subsets of UV . We specify1063

U+
V ⊆ UV such that uv ∈ U+

V if and only if there exists a returning path Re for some e ∈ E1064

that starts in uv. Similarly, we specify U−
V ⊆ UV such that uv ∈ U−

V if and only if there exists1065

a forwarding path Fe for some e ∈ E that ends in uv. First, observe that it cannot happen1066

that |U+
V | > k and |U−

V | > k. If this was true then we would use at least 2(k + 1)3 labels1067
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on the edges connecting the sets N and UV , which would imply we have to attribute strictly1068

less than m(12k+2m+2)− 1 labels to the vertices in UE, which is not possible. Therefore,1069

at least one of the sets U+
V or U−

V is of size at most k. Assume that |U+
V | ≤ |U−

V | (the case1070

where |U+
V | > |U−

V | is symmetric). We claim that S = {v | uv ∈ U+
V } is a vertex cover of size1071

at most k for G. It is straightforward to see that S is a vertex cover for G: By the definition1072

of U+
V , for every e ∈ E there is a returning path Re starting in a vertex uv such that v is one1073

of the two endpoints of e. Hence, for every edge e ∈ E, one of its endpoints is contained in1074

S. In the remainder, we show that |S| ≤ k.1075

To this end, consider the temporal connections from n1 to the vertices in UE. Every edge-1076

vertex ue ∈ UE is temporally reachable from exactly one vertex-vertex uv ∈ UV through the1077

returning path Re. Hence, there needs to be a temporal path from n1 to uv that arrives in1078

uv sufficiently early, such that it can be extended to ue via the returning path Re. We call1079

this path from n1 to uv the short returning path R′
e of e. Similarly, consider the temporal1080

connections from the vertices in UE to n1. Every edge-vertex ue ∈ UE can reach exactly one1081

vertex uv ∈ UV via a forwarding path Fe. In order to reach n0, there needs to be a temporal1082

path from uv to n1 that starts sufficiently late, such that it can extend the forwarding path1083

from ue. We call this path from uv to n1 the short forwarding path F ′
e of e.1084

Analogous as before, we define a partial order <label on the set P ′ = {F ′
e, R

′
e | e ∈ E}∪P1085

of (short) forwarding and (short) returning paths. For two paths P,Q ∈ P ′, we say that1086

P <label Q if all labels used in P are strictly smaller than the smallest label used in Q. Now1087

consider two edges e, f ∈ E such that the forwarding path Fe ends in uv and the returning1088

path Rf starts in uv′ with v ̸= v′. Then, by the construction of G∗, there must be a temporal1089

path P from uv to n1 and a temporal path P ′ from n1 to uv′ , such that Fe, P , P ′, and Rf1090

can be concatenated to a temporal path from ue to uf . We can assume w.l.o.g. that P = F ′
e1091

and P ′ = R′
f . It follows that we must have Fe <label F

′
e <label R

′
f <label Rf whenever the end1092

vertex uv of Fe is different from the start vertex uv′ of Rf . Next, we categorize the short1093

forwarding and short returning paths by their start and end vertices, respectively. Define1094

F ′
v = {F ′

e | F ′
e starts at uv} and R′

v = {R′
e | R′

e ends at uv}. From what we proved above it1095

follows that for any P ∈ F ′
v and Q ∈ R′

v′ , where v ̸= v′, we must have P <label Q.1096

Assume now for contradiction that |S| > k which means that |U+
V | > k and |U−

V | > k.1097

We analyze the case where for all uv ∈ U−
V we have |F ′

v| = 1 and for all uv ∈ U+
V we have1098

|R′
v| = 1 and show that already this case yields a contradiction. From here on we denote1099

F ′
v = {F ′

v} and R′
v = {R′

v}. Similarly, as in arguments we made before, we have that for at1100

most one v ∈ V we can have that R′
v <label F

′
v or R′

v and F ′
v are incomparable with respect1101

to <label. Hence, at most one pair of paths, R′
v and F ′

v can share a time edge. Since |U+
V | > k1102

and |U−
V | > k implies that there are at least 2k + 2 paths, we have that 2k paths need three1103

labels each and at most one pair of paths needs five labels in total. However, this yields a1104

number of at least 6k + 5 labels, which is more than the 6k + 2 labels available for these1105

paths. Hence, the assumption that |S| > k leads to a contradiction, which proves that S1106

really is a vertex cover of size at most k.1107
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Figure 8: An example of an optimal labeling of an MSL instance, where the temporal (sub)-graph connecting
terminal vertices R = {a, e} is neither a tree nor a tree with a C4. Note that this is not a solution to ML,
as for example there is no temporal path from c to a or to g. Now, we can remove the labels from the edges
bg, gf, fe and add them (in the same order) to the edges bc, cd, de, respectively. This way, we obtain an
optimal solution, where the subgraph which has labeled edges is a tree (in this case even a path).

4.2. An FPT-algorithm for MSL with respect to the number of terminals1108

In this section we provide an FPT-algorithm for MSL, parameterized by the number |R|1109

of terminals. The algorithm is based on a crucial structural property of minimum solutions1110

for MSL: there always exists a minimum labeling λ that labels the edges of a subtree T1111

of the input graph G (where every leaf is a terminal vertex), and potentially one further1112

edge that forms a C4 with three edges of the subtree T . Here, recall a subtree T of G is a1113

subgraph of G that is also a tree.1114

Remark 2. Recall that in the case of ML (Theorem 5 and Bumby [9]), we also have that1115

there exist optimal solutions that label a spanning tree, and potentially one further edge that1116

forms a C4 with the edges of the spanning tree. Note however that, in the case of MSL,1117

we have a weaker requirement on labelings, namely that only terminal vertices need to be1118

temporally connected, instead of all vertices as in the case of ML. Therefore, in MSL we1119

have an additional difficulty: can the abundance of non-terminal vertices (i.e., of vertices1120

that do not need to be temporally connected) lead to a solution for an MSL instance that is1121

neither a tree nor a tree with a C4, but still has fewer labels than any solution that is either1122

a tree or a tree with a C4? As we prove in Lemma 15, this cannot happen, i.e., also in the1123

case of MSL it suffices to search for solutions that have this special topological structure. To1124

do so, we specify how an arbitrary optimal solution for MSL (see the example of Figure 81125

for an illustration) can be transformed into another optimal solution that is a tree or a tree1126

with a C4.1127

Intuitively speaking, this insight allows us to use an FPT-algorithm for Steiner Tree1128

parameterized by the number of terminals [14] to reveal a subgraph of the MSL instance1129

that we can optimally label using Theorem 5. Since the number of terminals in the created1130

Steiner Tree instance is larger than the number of terminals in the MSL instance by at1131

most a constant, we obtain an FPT-algorithm for MSL parameterized by the number of1132

terminals.1133
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Lemma 15. Let G = (V,E) be a graph, R ⊆ V a set of terminals, and k be an integer such1134

that (G,R, k) is a YES instance of MSL and (G,R, k − 1) is a NO instance of MSL.1135

• If k is odd, then there is a labeling λ of size k for G such that the edges labeled by λ1136

form a tree, and every leaf of this tree is a vertex in R.1137

• If k is even, then there is a labeling λ of size k for G such that the edges labeled by λ1138

form a graph that is a tree with one additional edge that forms a C4, and every leaf of1139

the tree is a vertex in R.1140

The main idea for the proof of Lemma 15 is as follows. Given a solution labeling λ, we1141

fix one terminal r∗ and then (i) we consider the minimum subtree in which r∗ can reach all1142

other terminal vertices and (ii) we consider the minimum subtree in which all other terminal1143

vertices can reach r∗. Intuitively speaking, we want to label the smaller one of those subtrees1144

using Theorem 5 and potentially adding an extra edge to form a C4; we then argue that the1145

obtained labeling does not use more labels than λ. To do that, and to detect whether it is1146

possible to add an edge to create a C4, we make a number of modifications to the trees until1147

we reach a point where we can show that our solution is correct.1148

Proof of Lemma 15. Assume there is a labeling λ for G that labels all edges in the subgraph1149

H of G with k labels such that all vertices in R are pairwise temporally connected. We1150

describe a procedure to transform H into a tree T by removing edges from H such that T1151

can be labeled with k labels such that all vertices in R are pairwise temporally connected.1152

Consider a terminal vertex r∗ ∈ R. Let H+
r∗ be a minimum subgraph of H and λ+

r∗ a1153

minimum sublabeling of λ for H+
r∗ such that r∗ can temporally reach all vertices in R \ {r∗}1154

in (H+
r∗ , λ

+
r∗). Let us first observe that H+

r∗ is a tree where all leaves are vertices from R and1155

λ+
r∗ assigns exactly one label to every edge in H+

r∗ .1156

First note that all vertices in (H+
r∗ , λ

+
r∗) are temporally reachable from r∗. If a vertex is not1157

reachable, we can remove it, a contradiction to the minimality of H+
r∗ . Now assume that H+

r∗1158

is not a tree. Then there is a vertex v ∈ V (H+
r∗) such that v is temporally reachable from r∗1159

in (H+
r∗ , λ

+
r∗) via two temporal paths P, P ′ that visit different vertex sets, i.e. V (P ) ̸= V (P ′).1160

Assume w.l.o.g. that both P and P ′ are foremost among all temporal paths that visit the1161

vertices in V (P ) and V (P ′), respectively, in the same order. Let the arrival time of P be1162

at most the arrival time of P ′. Then we can remove the last edge traversed by P ′ with all1163

its labels from (H+
r∗ , λ

+
r∗) such that afterwards r∗ can still temporally reach all vertices in1164

R \ {r∗}, a contradiction to the minimality of H+
r∗ . From now on, assume that H+

r∗ is a tree.1165

Assume that H+
r∗ contains a leaf vertex v that is not contained in R. Then we can remove v1166

from (H+
r∗ , λ

+
r∗) such that afterwards r∗ can still temporally reach all vertices in R \ {r∗}, a1167

contradiction to the minimality of H+
r∗ . Lastly, assume that there is an edge e = uv in H+

r∗1168

such that λ+
r∗ assigns more than one label to e. Let v be further away from r∗ than u in H+

r∗1169

and let P be a foremost temporal path from r∗ to v in (H+
r∗ , λ

+
r∗) with arrival time t. Then1170

we can remove all labels except for t from e and afterwards r∗ can still temporally reach all1171

vertices in R \ {r∗}, a contradiction to the minimality of λ+
r∗ .1172

Let H−
r∗ be a minimum subgraph of H and λ−

r∗ a minimum sublabeling of λ for H−
r∗1173

such that each vertex in R \ {r∗} can temporally reach r∗ in (H−
r∗ , λ

−
r∗). We can observe by1174

35



analogous arguments as above that H−
r∗ is a tree where all leaves are vertices from R and λ−

r∗1175

assigns exactly one label to every edge in H−
r∗ .1176

We define the following sets of edges:1177

• The set of edges only appearing in H+
r∗ : E

+
r∗ = E(H+

r∗) \ E(H−
r∗).1178

• The set of edges only appearing in H−
r∗ : E

−
r∗ = E(H−

r∗) \ E(H+
r∗).1179

• The set of edges appearing in both H+
r∗ and H−

r∗ : E
+−
r∗ = E(H+

r∗) ∩ E(H−
r∗).1180

• The set of edges appearing in both H+
r∗ and H−

r∗ that receive the same label from λ+
r∗1181

and λ−
r∗ : E

∗
r∗ = {e ∈ E+−

r∗ | λ+
r∗(e) = λ−

r∗(e)}.1182

We claim that there exists a labeling λ′ of size k for G such that there are two trees1183

H+
r∗ , H

−
r∗ such that H+

r∗ is a minimum subgraph of H and λ+
r∗ a minimum sublabeling of λ′

1184

for H+
r∗ such that r∗ can temporally reach all vertices in R \ {r∗} in (H+

r∗ , λ
+
r∗) and H−

r∗ is a1185

minimum subgraph of H and λ−
r∗ a minimum sublabeling of λ′ for H−

r∗ such that each vertex1186

in R \ {r∗} can temporally reach r∗ in (H−
r∗ , λ

−
r∗), and |E(H+

r∗)| + |E(H−
r∗)| − |E∗

r∗| = k − x1187

for some x ≥ 0 and1188

• |E∗
r∗| ≤ x+ 1 if k is odd, and1189

• if k is even, then |E∗
r∗| ≤ x+2 and there exist two edges e+, e− in H that each of them,1190

when added to H+
r∗ , H

−
r∗ , respectively, creates a C4 in H+

r∗ , H
−
r∗ , respectively.1191

We first argue that the statement of the lemma follows from this claim. Afterwards, we1192

prove the claim. Assume that |E+
r∗| ≤ |E−

r∗| (the case where |E+
r∗ | > |E−

r∗| is analogous).1193

Assume that |E∗
r∗| ≤ x+ 1. Then we clearly have1194

2|E(H+
r∗)| − 1 = 2|E+

r∗|+ 2|E+−
r∗ | − 1 ≤ |E(H+

r∗)|+ |E(H−
r∗)| − 1 = k − x+ |E∗

r∗ | − 1 ≤ k.

It follows that we can temporally label H+
r∗ with at most k labels such that all vertices in1195

H+
r∗ can pairwise temporally reach each other, using the result that trees with m edges can1196

be temporally labeled with 2m− 1 labels (see Theorem 5). Since we assume (G,R, k− 1) is1197

a NO instance of MSL it follows that k = 2m − 1 and hence this can only happen if k is1198

odd.1199

Assume that |E∗
r∗| ≤ x+2 and there exist two edges e+, e− in H that each of them, when1200

added to H+
r∗ , H

−
r∗ , respectively, creates a C4 in H+

r∗ , H
−
r∗ , respectively. Then we clearly have1201

2|E(H+
r∗)∪{e+}|−4 = 2|E+

r∗|+2|E+−
r∗ |−2 ≤ |E(H+

r∗)|+ |E(H−
r∗)|−2 = k−x+ |E∗

r∗|−2 ≤ k.

It follows that we can temporally label H+
r∗ together with edge e+ with at most k labels such1202

that all vertices in H+
r∗ with edge e+ can pairwise temporally reach each other, using the1203

result that graphs containing a C4 with n vertices can be temporally labeled with 2n − 41204

labels (see Theorem 5). Since we assume (G,R, k − 1) is a NO instance of MSL it follows1205

that k = 2n− 4 and hence this can only happen if k is even.1206
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Now we prove that there exists a labeling λ′ of size k for G such that there are two trees1207

H+
r∗ , H

−
r∗ such that H+

r∗ is a minimum subgraph of H and λ+
r∗ a minimum sublabeling of λ′

1208

for H+
r∗ such that r∗ can temporally reach all vertices in R \ {r∗} in (H+

r∗ , λ
+
r∗) and H−

r∗ is a1209

minimum subgraph of H and λ−
r∗ a minimum sublabeling of λ′ for H−

r∗ such that each vertex1210

in R \ {r∗} can temporally reach r∗ in (H−
r∗ , λ

−
r∗), and |E(H+

r∗)| + |E(H−
r∗)| − |E∗

r∗| = k − x1211

for some x ≥ 0 and |E∗
r∗| ≤ x+ 1.1212

Let H+
r∗ , H

−
r∗ be two trees such that H+

r∗ be a minimum subgraph of H and λ+
r∗ a minimum1213

sublabeling of λ′ for H+
r∗ such that r∗ can temporally reach all vertices in R\{r∗} in (H+

r∗ , λ
+
r∗)1214

and H−
r∗ be a minimum subgraph of H and λ−

r∗ a minimum sublabeling of λ′ for H−
r∗ such that1215

each vertex in R \ {r∗} can temporally reach r∗ in (H−
r∗ , λ

−
r∗). Furthermore, let |E(H+

r∗)| +1216

|E(H−
r∗)| − |E∗

r∗| = k − x for some x ≥ 0. We will argue that by slightly modifying the1217

labeling λ (and with that λ+
r∗ and λ−

r∗ , that way ultimately obtaining λ′) and H+
r∗ , H

−
r∗ , we1218

achieve that |E(H+
r∗)| + |E(H−

r∗)| − |E∗
r∗| = k − x′ for some x′ ≥ 0 and either |E∗

r∗| ≤ x′ + 11219

or |E∗
r∗| ≤ x′ + 2. We will argue that in the former case, we must have that k is odd, and1220

in the latter case we must have that k is even. Note that if |E∗
r∗| = 1 we are done, hence1221

assume from now on that |E∗
r∗ | ≥ 2.1222

We consider several cases. For the sake of presentation of the next cases, define the head1223

of a temporal path as the last vertex visited by the path and the extended head of a temporal1224

path as the last two vertices visited by the path. Furthermore, define the tail of a temporal1225

path as the first vertex visited by the path and the extended tail of a temporal path as the1226

first two vertices visited by the path.1227

Case A. Assume there is a temporal path P from r∗ to some r ∈ R \ {r∗} in H+
r∗ that1228

traverses two edges in E∗
r∗ . Let e, e

′ ∈ E∗
r∗ with e ̸= e′ such that there is a temporal path P1229

from r∗ to some r ∈ R\{r∗} in H+
r∗ that traverses w.l.o.g. first e and then e′ and a maximum1230

number α of edges lies between them in P and the distance β between r∗ and e is minimum.1231

Note that this implies that λ+
r∗(e) < λ+

r∗(e
′).1232

In the following we analyse several cases. In some of them we can deduce that the labeling1233

λ must use labels that are not present in λ+
r∗ or λ

−
r∗ that are unique to that case. This implies1234

that for each of these cases we can attribute one label outside of λ+
r∗ and λ−

r∗ to edge e or e′.1235

In some other cases we describe modifications that do not increase |E(H+
r∗) ∪ E(H−

r∗)|1236

and either1237

• strictly decrease β, or1238

• strictly decrease α and not increase β, or1239

• strictly decrease |E∗
r∗| and not increase α and β,1240

while preserving that1241

• H+
r∗ and H+

r∗ are trees with leaves in R, and1242

• λ+
r∗ and λ−

r∗ assign at most one label per edge.1243
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Whenever a modification satisfies the above requirements it is clear that it can only be1244

applied a finite number of times. Whenever we describe a case that requires modifications1245

that do not satisfy the above requirements, we explicitly show that these modifications can1246

only be applied a finite number of times as well. Overall this then shows that after a finite1247

number of modifications, none of the described cases will apply.1248

We partition the temporal path P into the part P1 from r∗ to e, the part consisting of1249

e itself, the part P2 between e and e′, the part consisting of e′ itself, and the part P3 from1250

e′ to r. Now in H−
r∗ we can have two different scenarios. For illustrations of all variations of1251

Case A see Figures 9 to 13.1252

Case A-1. There is a temporal path P ′ from some r′ ∈ R \ {r∗} to r∗ in H−
r∗ that traverses1253

both e and e′. Note that this implies that e is traversed before e′.1254

We partition the temporal path P ′ into the part P ′
1 from r′ to e, the part consisting of e1255

itself, the part P ′
2 between e and e′, the part consisting of e′ itself, and the part P ′

3 from e′1256

to r∗.1257

The analysis of each one follows from the observation that the labels in P ′
3 are larger1258

than the ones in P1.1259

Case A-1-i. Assume there is a path P̂1 in H+
r∗ starting at a vertex that is visited by P11260

and ending at r̂1 ∈ R \ {r∗} such that r̂1 = r′ or P̂1 and P ′
1 intersect in a vertex. For our1261

analysis, we treat these two cases the same since in both cases we can assume that r′ can1262

reach r̂1, in the latter through the intersection point. If there is a path P̂2 in H−
r∗ starting at1263

some r̂2 ∈ R \ {r∗, r′} and ending at the extended tail of P ′
2 or P ′

3, then the temporal path1264

P ∗ in (G, λ) from r̂2 to r̂1 either uses no labels from λ+
r∗ or no from λ−

r∗ .1265

Case A-1-ii. Assume there is a path P̂1 in H−
r∗ starting at r̂1 ∈ R \ {r∗} and ending at a1266

vertex that is visited by P ′
3, such that r̂1 = r or P̂1 and P3 intersect in a vertex. Again for1267

our analysis, we treat these two cases the same since in both cases we can assume that r̂11268

can reach r, in the latter through the intersection point. If there is a path P̂2 in H+
r∗ starting1269

at the extended tail of P1 or P2 and ending at some r̂2 ∈ R \ {r∗, r}, then the temporal path1270

P ∗ in (G, λ) from r̂1 to r̂2 either uses no labels from λ+
r∗ or no from λ−

r∗ .1271

Assume that one of the above two applies. We assume that there is no path P̂2 in H−
r∗1272

starting at some r̂2 ∈ R \ {r∗, r′} and ending at the extended tail of P ′
2 or P ′

3 in Case A-1-i1273

and that there is no path P̂2 in H+
r∗ starting at the extended tail of P1 or P2 and ending at1274

some r̂2 ∈ R \ {r∗, r}, since in both cases we can directly deduce that we need labels outside1275

of λ+
r∗ and λ−

r∗ . Then we modify λ in the following way without changing its connectivity1276

properties. First, we scale all labels in λ by a factor of |V |.1277

The idea is first to essentially switch the roles of P ′
1 and P̂1 in Case A-1-i and switch the1278

roles of P3 and P̂1 in Case A-1-ii. Assume Case A-1-i applies.1279

• We remove P̂1’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P̂1’s edges to H−
r∗ .1280

Add the edges between the (original) tail of P̂1 to e to H−
r∗ and add the respective1281

labels for those edges from λ+
r∗ also to λ−

r∗ . Add new labels for the edges of P̂1 to λ−
r∗1282

such that there is temporal paths from r′ to r∗ that does use edges from P ′
1.1283
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(a) Case A: an example of a path P from r∗ in H+
r∗ , that

traverses e, e′ ∈ E∗
r∗ .

(b) Case A-1: an example of P in H+
r∗ and P ′ in H−

r∗ , that
share e, e′ ∈ E∗

r∗ .

(c) Case A-1-i: P ∗ from r̂2 to r̂1 either uses no labels from
λ+
r∗ or no from λ−

r∗ . (d) Modification of Case A-1-i.

(e) Case A-1-ii: P ∗ from r̂1 to r̂2 either uses no labels from
λ+
r∗ or no from λ−

r∗ . (f) Modification of Case A-1-ii.

Figure 9: Cases A-1 – A-1-ii, where blue color corresponds to the labeling λ+
r∗ and red to λ−

r∗ .

• We remove P ′
1’s edges and labels from H−

r∗ and λ−
r∗ , respectively, add P ′

1’s edges to H+
r∗ ,1284

and add new labels for the edges of P ′
1 to λ+

r∗ such that there is a temporal path from1285

r∗ to r′.1286

Now assume Case A-1-ii applies. We make analogous modifications.1287

• We remove P̂1’s edges and labels from H−
r∗ and λ−

r∗ , respectively, add P̂1’s edges to H+
r∗ .1288
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Add the edges from the head of P̂1 to e′ to H+
r∗ and add the respective labels for those1289

edges from λ−
r∗ also to λ+

r∗ . Add new labels for the edges of P̂1 to λ+
r∗ such that there1290

is temporal paths from r∗ to r that does use edges from P3.1291

• We remove P3’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P3’s edges to H−
r∗ ,1292

and add new labels for the edges of P3 to λ−
r∗ such that there are temporal paths from1293

r to r∗.1294

Note that after the modifications H+
r∗ and H−

r∗ are still trees, and λ+
r∗ and λ−

r∗ still assign at1295

most one label per edge. Furthermore, we have that the modification do not increase the1296

sum of edges in both trees |E(H+
r∗) ∪ E(H−

r∗)|. Note that these modifications potentially1297

increase |E∗
r∗| and α. However, note that in both cases we strictly decrease β. From now on1298

assume that Cases A-1-i and A-1-ii do not apply.1299

We start with three further subcases. The analysis of each one follows from the observa-1300

tion that the labels in P ′
3 are larger than the ones in P1.1301

Case A-1-iii. Assume there is a path P̂ in H+
r∗ starting at a vertex that is visited by P11302

but is different from its tail and extended head and ending at some r̂ ∈ R \ {r∗, r}. Then1303

the temporal path P ∗ in (G, λ) from r′ to r̂ needs at least one label that is not contained in1304

λ+
r∗ or λ−

r∗ . More specifically, P ∗ either uses no labels from λ+
r∗ or no from λ−

r∗ .1305

Case A-1-iv. Assume there is a path P̂ in H−
r∗ starting at some r̂ ∈ R \ {r∗, r′} and ending1306

at a vertex that is visited by P ′
3 but is different from its extended tail and head. Then the1307

temporal path P ∗ in (G, λ) from r̂ to r needs at least one label that is not contained in λ+
r∗1308

or λ−
r∗ . More specifically, P ∗ either uses no labels from λ+

r∗ or no from λ−
r∗ .1309

Case A-1-v. Assume there is a path P̂1 in H+
r∗ starting at a vertex that is visited by P2 but1310

is different from its tail and extended head and ending at some r̂1 ∈ R\{r∗, r}. Furthermore,1311

assume there is a path P̂2 in H−
r∗ starting at some r̂2 ∈ R \ {r∗, r′} and ending at a vertex1312

that is visited by P ′
2 but is different from its extended tail and head. Then, if r̂2 ̸= r̂1 and1313

P2 ̸= P ′
2, or the starting vertex of P̂1 is by at least two edges closer to e than the starting1314

vertex of P̂2, the temporal path P ∗ in (G, λ) from r̂2 to r̂1 needs at least one label that is1315

not contained in λ+
r∗ or λ−

r∗ . More specifically, P ∗ either uses no labels from λ+
r∗ or no from1316

λ−
r∗ .1317

In the above three Cases A-1-iii to A-1-v we do not make any modifications, since we can1318

directly deduce that we need labels outside of λ+
r∗ and λ−

r∗ . For the remainder of this case1319

distinction, we assume that Cases A-1-iii to A-1-v do not apply.1320

We can further observe the following using analogous arguments as above.1321

Case A-1-vi. Assume there is a path P̂1 in H+
r∗ starting at the extended head of P1 and1322

ending at some r̂1 ∈ R\{r∗, r, r′}. If there is a path P̂2 inH−
r∗ starting at some r̂2 ∈ R\{r∗, r′}1323

and ending at a vertex from P ′
2 that is not its tail or a vertex from P ′

3, then, if r̂2 ̸= r̂1, the1324

temporal path P ∗ in (G, λ) from r̂2 to r̂1 either uses no labels from λ+
r∗ or no from λ−

r∗ .1325

Case A-1-vii. Assume there is a path P̂1 in H−
r∗ starting at some r̂1 ∈ R \ {r∗, r, r′} and1326

ending at the extended tail of P ′
3. If there is a P̂2 in H+

r∗ starting at a vertex from P1 or a1327

vertex from P2 that is not its head and ending at some r̂2 ∈ R \ {r∗, r}, then, if r̂1 ̸= r̂2, the1328

temporal path P ∗ in (G, λ) from r̂1 to r̂2 either uses no labels from λ+
r∗ or no from λ−

r∗ .1329
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(a) Case A-1-iii: P ∗ from r′ to r̂ either uses no labels from
λ+
r∗ or no from λ−

r∗ .
(b) Case A-1-iv: P ∗ from r̂ to r either uses no labels from
λ+
r∗ or no from λ−

r∗ .

(c) Case A-1-v: P ∗ from r̂2 to r̂1 either uses no labels from
λ+
r∗ or no from λ−

r∗ .
(d) Case A-1-vi: P ∗ from r̂2 to r̂1 either uses no labels from
λ+
r∗ or no from λ−

r∗ .

(e) Case A-1-vii: P ∗ from r̂1 to r̂2 either uses no labels from
λ+
r∗ or no from λ−

r∗ .

Figure 10: Cases A-1-iii – A-1-vii, where blue color corresponds to the labeling λ+
r∗ and red to λ−

r∗ .

First, assume that Case A-1-vi or Case A-1-vii or none of them apply. Then we modify λ1330

in the following way without changing its connectivity properties. First, we scale all labels1331

in λ by a factor of |V |.1332

The idea is first to essentially switch the roles of P1 and P ′
3.1333
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(a) Modification of Case A-1-vi. (b) Modification of Case A-1-vii.

(c) Modification when none of the cases A-1-vi or A-1-vii
apply.

Figure 11: Modifications for cases A-1-vi – A-1-vii, where blue color corresponds to the labeling λ+
r∗ and red

to λ−
r∗ .

• We remove P1’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P1’s edges to H−
r∗ ,1334

and add new labels for the edges of P1 to λ−
r∗ such that there are temporal paths from1335

both endpoints of e to r∗ that only use the new labels.1336

• We remove P ′
3’s edges and labels from H−

r∗ and λ−
r∗ , respectively, add P ′

3’s edges to H+
r∗ ,1337

and add new labels for the edges of P ′
3 to λ+

r∗ such that there are temporal paths from1338

r∗ to both endpoints of e that only use the new labels.1339

In both modification above, we assume w.l.o.g. that the smallest and the largest label assigned1340

to an edge of P1 by λ+
r∗ before the modification are equal the smallest and the largest label,1341

respectively, assigned to an edge of P ′
3 by λ+

r∗ after the modification. Symmetrically, we1342

assume w.l.o.g. that the smallest and the largest label assigned to an edge of P ′
3 by λ−

r∗1343

before the modification are equal the smallest and the largest label, respectively, assigned1344

to an edge of P1 by λ−
r∗ after the modification. Note that now there is a path from r∗ to r1345

in (H+
r∗ , λ

+
r∗) that does not use edges e and e′. Furthermore, there is a path from r′ to r∗ in1346

(H−
r∗ , λ

−
r∗) that does not use edges e and e′.1347

Now we have to adjust labels on e, e′, P2, and P ′
2, depending on whether Case A-1-vi,1348

Case A-1-vii or none of them apply.1349
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• If Case A-1-vi applies, then we remove e, e′, and the edges of P ′
2 and their labels from1350

H−
r∗ and λ−

r∗ , respectively. Furthermore, we exchange the labels of e and e′ and the1351

edges of P2 assigned by λ+
r∗ in a way that there is a temporal path from r∗ to r̂1 (see1352

Case A-1-vi) in (H+
r∗ , λ

+
r∗).1353

• If Case A-1-vii applies, then we remove e, e′, and the edges of P2 and their labels from1354

H+
r∗ and λ+

r∗ , respectively. Furthermore, we exchange the labels of e and e′ and the1355

edges of P ′
2 assigned by λ−

r∗ in a way that there is a temporal path from r̂1 (see Case1356

A-1-vii) to r∗ in (H−
r∗ , λ

−
r∗).1357

• If none of the Cases A-1-vi and A-1-vii apply, then we remove e its labels from H+
r∗1358

and λ+
r∗ , respectively, and we remove e′ its labels from H−

r∗ and λ−
r∗ , respectively. We1359

modify the labels of P2 assigned by λ+
r∗ is a way that all terminals that were reachable1360

from r∗ before the modifications can now be reached via e′. We modify the labels of P ′
21361

assigned by λ−
r∗ is a way that all terminals that could reach r∗ before the modifications1362

can now reach r∗ via e.1363

Note that after the modifications H+
r∗ and H−

r∗ are still trees, and λ+
r∗ and λ−

r∗ still assign at1364

most one label per edge. Furthermore, we have that the modification do not increase the1365

sum of edges in both trees |E(H+
r∗) ∪ E(H−

r∗)|. Lastly, and most importantly, we have that1366

at least one of H+
r∗ and H−

r∗ does contain both edges e and e′. It follows that we strictly1367

decrease |E∗
r∗| without increasing α.1368

It follows that after exhaustively performing the above modifications we have that if Case1369

A-1 applies, then one of the Cases A-1-iii to A-1-v has to apply.1370

Case A-2. There are two temporal paths P ′, P ′′ from some r′, r′′ ∈ R\{r∗}, respectively, to1371

r∗ in H−
r∗ such that P ′ traverses e and P ′′ traverses e′. We consider several different subcases.1372

Let e = uv and let u be the vertex that is closer to r∗ in H+
r∗ . Partition P ′ into P ′

1 from r′1373

to e, then e, and then P ′
2 from e to r∗.1374

Case A-2-i. Assume the head of P ′
1 is v.1375

We remove e and its labels from H−
r∗ and λ−

r∗ , respectively. To obtain a new path in1376

(H−
r∗ , λ

−
r∗), we traverse P ′

1, then traverse P2 (by modifying λ−
r∗ on P ′

1 accordingly) which lets1377

us reach P ′′ and then we traverse P ′′ to reach r∗.1378

Note that after the modifications H−
r∗ is still a tree and λ−

r∗ still assign at most one label1379

per edge. However, the size of E∗
r∗ changes, in particular it can increase, but the maximal1380

number α of edges between two edges from E∗
r∗ in P decreases by one.1381

Case A-2-ii. Assume the head of P ′
1 is u. Assume there is a path P̂ in H+

r∗ starting at a1382

vertex that is visited by P1 but is different from its tail and extended head and ending at1383

some r̂ ∈ R \ {r∗, r}, such that r̂ = r′ or P̂ and P ′
1 intersect in a vertex. For our analysis,1384

we treat these two cases the same since in both cases we can assume that r′ can reach r̂, in1385

the latter through the intersection point.1386

Case A-2-ii(a). Furthermore, assume there is a path P̂ ′ in H−
r∗ starting at some r̂′ ∈1387

R \ {r∗, r′} and ending at a vertex that is visited by P ′
2. Then the temporal path P ∗ in1388

(G, λ) from r̂′ to r′ either uses no labels from λ+
r∗ or no from λ−

r∗ .1389
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(a) Example of Case A-2-i. (b) Modification of Case A-2-i.

(c) Example of Case A-2-ii.
(d) Case A-2-ii(a): P ∗ from r̂′ to r′ either uses no labels from
λ+
r∗ or no from λ−

r∗ .

(e) Case A-2-ii(b): P ∗ from r̂′′ to r′ either uses no labels from
λ+
r∗ or no from λ−

r∗ .
(f) Modification of Case A-2-ii when A-2-ii(a) and A-2-ii(b)
do not apply.

Figure 12: Cases A-2-i – A-2-ii, where blue color corresponds to the labeling λ+
r∗ and red to λ−

r∗ .

Case A-2-ii(b). Furthermore, assume there is a path P̂ ′′ in H−
r∗ starting at some r̂′′ ∈1390

R \ {r∗, r′} and ending at a vertex that is visited by P ′′
2 . Then the temporal path P ∗ in1391

(G, λ) from r̂′′ to r′ either uses no labels from λ+
r∗ or no from λ−

r∗ .1392

Assume that Cases A-2-ii(a) and (b) do not apply. Then we modify λ in the following1393
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(a) Case A-2-iii: P ∗ from r̂′ to r either uses no labels from
λ+
r∗ or no from λ−

r∗ . (b) Modification of Case A-2-iii.

Figure 13: Case A-2-iii, where blue color corresponds to the labeling λ+
r∗ and red to λ−

r∗ .

way without changing its connectivity properties. First, we scale all labels in λ by a factor1394

of |V |.1395

The idea is to essentially switch the roles of P̂ and P ′
2.1396

• We remove P1’s and P̂ ’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P̂ ’s edges1397

to H−
r∗ . Add the edges from the tail of P̂ to r∗ to H−

r∗ and add labels for those edges1398

to λ−
r∗ such that there is a path from r′ to r∗ in (H−

r∗ , λ
−
r∗) that uses the newly added1399

labels.1400

• We remove P ′
1’s and P ′

2’s edges and labels from H−
r∗ and λ−

r∗ , respectively, add P ′
1’s and1401

P ′
2’s edges to H+

r∗ , and add new labels for the edges of P ′
1 and P ′

2 to λ+
r∗ such that there1402

is temporal path from r∗ to r̂ in (H+
r∗ , λ

+
r∗).1403

Note that after the modifications H+
r∗ and H−

r∗ are still trees, and λ+
r∗ and λ−

r∗ still assign1404

at most one label per edge. Furthermore, we have that the modification do not increase1405

the sum of edges in both trees |E(H+
r∗) ∪ E(H−

r∗)|. Lastly, and most importantly, we have1406

that the path from r∗ to r in H+
r∗ does not contain both edges e and e′. It follows that we1407

decreased α.1408

Case A-2-iii. Assume the head of P ′
1 is u. Assume there is a path P̂ in H+

r∗ starting at a1409

vertex that is visited by P1 but is different from its tail and extended head and ending at1410

some r̂ ∈ R \ {r∗, r, r′}. Then the temporal path P ∗ in (G, λ) from r′ to r̂ either uses no1411

labels from λ+
r∗ or no from λ−

r∗ . Furthermore, assume there is a path P̂ ′ in H−
r∗ starting at1412

some r̂′ ∈ R \ {r∗, r′} and ending at a vertex that is visited by P ′
2 but is different from its1413

extended tail and head. Then the temporal path P ∗ in (G, λ) from r̂′ to r either uses no1414

labels from λ+
r∗ or no from λ−

r∗ .1415

We again modify λ in a way that does not change its connectivity properties. First, we1416

scale all labels in λ by a factor of |V |. We essentially switch the roles of P1 and P ′
2.1417

We remove P1’s edges and labels from H+
r∗ and λ+

r∗ , respectively, add P1’s edges to H−
r∗ ,1418

and add new labels for the edges of P1 to λ−
r∗ such that there are temporal paths from both1419
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endpoints of e to r∗ that only use the new labels. We remove P ′
2’s edges and labels from1420

H−
r∗ and λ−

r∗ , respectively, add P ′
2’s edges to H+

r∗ , and add new labels for the edges of P ′
2 to1421

λ+
r∗ such that there are temporal paths from r∗ to both endpoints of e that only use the new1422

labels.1423

Note that now there is a path from r̂′ to r∗ in (H−
r∗ , λ

−
r∗) that does not use edge e. Further1424

note that after the modifications H+
r∗ and H−

r∗ are still trees, and λ+
r∗ and λ−

r∗ still assign at1425

most one label per edge. Furthermore, we have that the modification do not increase the sum1426

of edges in both trees |E(H+
r∗) ∪ E(H−

r∗)|. It follows that we strictly decrease |E∗
r∗| without1427

increasing α.1428

Now consider the case where we have a temporal path P from some r ∈ R \ {r∗} to1429

r∗ in H−
r∗ that traverses both e and e′ and two temporal paths P1, P2 from r∗ to some1430

r1, r2 ∈ R \ {r∗}, respectively, in H+
r∗ such that P1 traverses e and P2 traverses e′. This case1431

is analogous to the previously discussed case.1432

From now on we assume that Case A-2 does not apply.1433

Case B. From now on we assume that none of the above described cases apply. This means1434

that there is no path from r∗ to some r ∈ R \ {r∗} in H+
r∗ that traverses both e and e′ and1435

there is no path from some r′ ∈ R \ {r∗} to r∗ in H−
r∗ that traverses both e and e′. It follows1436

that for every e ∈ E∗
r∗ we have a path in H+

r∗ from r∗ to some r ∈ R\{r∗} that only traverses1437

e from the edges in E∗
r∗ and we have a path in H−

r∗ from some r′ ∈ R \ {r∗} to r∗ that only1438

traverses e from the edges in E∗
r∗ . All the following cases are illustrated in Figure 14.1439

Case B-1. Let e, e′ ∈ E∗
r∗ and let P1 be a path in H+

r∗ from r∗ to some r1 ∈ R \ {r∗} that1440

only traverses e from the edges in E∗
r∗ and let P2 be a path in H−

r∗ from some r2 ∈ R \ {r∗}1441

to r∗ that only traverses e from the edges in E∗
r∗ . Let P

′
1 be a path in H+

r∗ from r∗ to some1442

r′1 ∈ R \ {r∗} that only traverses e′ from the edges in E∗
r∗ and let P ′

2 be a path in H−
r∗ from1443

some r′2 ∈ R \ {r∗} to r∗ that only traverses e′ from the edges in E∗
r∗ .1444

Consider the case where all choices of P1, P2, P
′
1, P

′
2 with the above properties we have1445

r1 = r′2 or P1 and P ′
2 intersect in a vertex after they traversed e and e′, respectively. Again1446

for our analysis, we treat these two cases the same since in both cases we can assume that1447

r′2 can reach r1, in the latter through the intersection point. The case where all choices of1448

P1, P2, P
′
1, P

′
2 with the above properties we have r′1 = r2 or P ′

1 and P2 intersect in a vertex1449

after they traversed e′ and e, respectively, is symmetric.1450

Fix temporal paths P1, P2, P
′
1, P

′
2 with the above properties and r1 = r′2 or P1 and P ′

21451

intersect in a vertex after they traversed e and e′, respectively. Let P̂1 be the path segment1452

from e to the first vertex included in P ′
2 (excluding e) and let P̂ ′

2 be the path segment from1453

the last vertex included in P1 to e′ (excluding e′).1454

Case B-1-i. Assume |P̂1| ≤ |P̂ ′
2| (the opposite case is symmetric) and |P̂1| + |P̂ ′

2| ≥ 3 (not1455

both paths are only a single edge). We remove P̂ ′
2’s edges and e and the corresponding labels1456

from H−
r∗ and λ−

r∗ , respectively, such that there is a temporal path from r′2 to e that uses the1457

new labels.1458

Note that after the modifications H+
r∗ and H−

r∗ are still trees, and λ+
r∗ and λ−

r∗ still assign1459

at most one label per edge. Furthermore, we have that the modification do not increase the1460
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(a) Case B-1-i: |P̂1| ≤ |P̂ ′
2| and |P̂1|+ |P̂ ′

2| ≥ 3 . (b) Modification of Case B-1-i.

(c) Case B-1-ii(a): The edges e, e′, ê1, ê2 form a C4. (d) Case B-1-ii(b): e, e′, ê1, ê2 do not form a C4.

(e) Modification of Case B-1-ii-b. (f) Case B-2: r+ ̸= r+i and r− ̸= r−i .

Figure 14: Cases B-1 – B-2, where blue color corresponds to the labeling λ+
r∗ and red to λ−

r∗ .

sum of edges in both trees |E(H+
r∗) ∪ E(H−

r∗)|. Lastly, and most importantly, we have that1461

at least one of H+
r∗ and H−

r∗ does contain both edges e and e′.1462

Case B-1-ii. Assume |P̂1| = |P̂ ′
2| = 1, that is, both paths are only a single edge ê1 and ê2,1463

respectively.1464

Case B-1-ii(a). The edges e, e′, ê1, and ê2 form a C4. Then we are in the case that k is1465

even. In this case we set ê1 to be e+ and we set ê2 to be e−. One of these two edges will1466

be used to close the C4, depending on whether which of H+
r∗ and H−

r∗ has fewer edges. The1467

edges e and e′ stay in E∗
r∗ and will be the only two edges for which we cannot account a label1468

in λ that is not present in λ+
r∗ or λ−

r∗ . In this case we have that |E∗
r∗ | ≤ x′ + 2 is fulfilled.1469
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If Case B-1-ii(a) never applies, then we are in the case that k is odd and we have to be1470

able to account a label in λ that is not present in λ+
r∗ or λ−

r∗ for all but one edge in E∗
r∗ .1471

Case B-1-ii(b). The edges e, e′, ê1, and ê2 do not form a C4. Let e = uv and e′ = u′v′ and1472

let u and u′ be the vertices closer to r∗ in P1 and P ′
2, respectively. Then this means there is1473

either at least one edge e∗ between r∗ and u or between r∗ and u′. Consider the case where1474

e∗ is between r∗ and u and let e∗ = uu∗ for some vertex u∗. In this case e∗ is contained1475

in H+
r∗ . The other case is symmetric. Let e∗∗ be the edge between r∗ and u in H−

r∗ , that is1476

incident with u.1477

Note that λ+
r∗(e

∗) < λ+
r∗(e) < λ−

r∗(e
∗∗). We now make the following modification. We1478

remove label λ+
r∗(e

∗) and add a new label to ê2 in λ+
r∗ that is chosen in a way that allows for1479

a temporal path from r∗ to r1 via e′ and then ê2.1480

Case B-2. Fix some e ∈ E∗
r∗ and let P+ be a path in H+

r∗ from r∗ to some r+ ∈ R\{r∗} that1481

only traverses e from the edges in E∗
r∗ and let P− be a path in H−

r∗ from some r− ∈ R \ {r∗}1482

to r∗ that only traverses e from the edges in E∗
r∗ . For all ei ∈ E∗

r∗ \ {e} let P+
i be a path1483

in H+
r∗ from r∗ to some r+i ∈ R \ {r∗} that only traverses ei from the edges in E∗

r∗ and let1484

P−
i be a path in H−

r∗ from some r−i ∈ R \ {r∗} to r∗ that only traverses ei from the edges1485

in E∗
r∗ . Note that for all i ̸= i′ we have that r+i ̸= r+i′ and r−i ̸= r−i′ . Now consider edge ei.1486

If λ+
r∗(e) ≤ λ+

r∗(ei), then the temporal path in (G, λ) from r−i to r+ needs at least one label1487

that is not contained in λ+
r∗ or λ−

r∗ . If λ+
r∗(e) > λ+

r∗(ei), then the temporal path in (G, λ)1488

from r− to r+i needs at least one label that is not contained in λ+
r∗ or λ−

r∗ . This implies, if1489

Case B-1-ii(a) does not apply, that λ contains at least |E∗
r∗ |−1 labels that are not contained1490

in λ+
r∗ or λ−

r∗ and hence |E∗
r∗| ≤ x′ + 1. If Case B-1-ii(a) applies, then λ contains at least1491

|E∗
r∗| − 2 labels that are not contained in λ+

r∗ or λ−
r∗ and hence |E∗

r∗ | ≤ x′ + 2.1492

This finishes the proof.1493

Having Lemma 15, we can now give our algorithm for MSL. As mentioned before, it uses1494

an FPT-algorithm for Steiner Tree parameterized by the number of terminals [14] as a1495

subroutine. Recall the definition of Steiner Tree.1496

Steiner Tree

Input: A static graph G = (V,E), a subset of vertices R ⊆ V and a positive
integer k.

Question: Is there a subtree of G that includes all the vertices of R and that contains
at most k edges.

1497

Let (G,R, k) be an instance of MSL. Note that if G is C4-free, then Lemma 15 immedi-1498

ately implies that we can use an algorithm for Steiner Tree on the same input graph G1499

with the same terminal vertices R and check whether the resulting solution subtree has at1500

most k∗ = ⌈(k + 1)/2⌉ edges. In the case where G contains C4s, we have to determine first1501

whether there is a C4 in G that can be labeled in an optimal labeling. Formally, we show1502

the following.1503

Theorem 16. MSL is in FPT when parameterized by the number |R| of terminals.1504
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Proof. Assume we have access to an algorithm A for Steiner Tree that on input (G,R)1505

outputs the size of a minimum solution, that is, an integer k such that (G,R, k) is a YES1506

instance of Steiner Tree and (G,R, k − 1) is a NO instance of Steiner Tree.1507

Let (G,R, k) be an instance of MSL and let k∗ = A(G,R). For all C4’s in G let1508

kC4 = A(G,R∪V (C4)). If there exist a C4 in G such that kC4 = k∗, then (G,R, k) is a YES1509

instance of MSL if and only if k ≥ 2k∗ − 2. Otherwise (G,R, k) is a YES instance of MSL1510

if and only if k ≥ 2k∗ − 1.1511

We first show correctness, then we analyse the running time.1512

(⇐): Assume that our algorithm claims that (G,R, k) is a YES instance of MSL. We1513

prove that in this case (G,R, k) is indeed a YES instance of MSL.1514

First, consider the case where there exists a C4 in G such that kC4 = k∗. Then there1515

exists a subtree of G (a not necessarily induced subgraph of G that is a tree) connecting all1516

terminal vertices and containing three edges of the C4. We add the missing edge of the C41517

and label the subgraph using Theorem 5. This requires 2k∗− 2 labels and clearly afterwards1518

all terminals can pairwise reach each other. Hence, we have that if k ≥ 2k∗ − 2, and then1519

(G,R, k) is a YES instance of MSL.1520

Next, consider the case where there is no C4 in G such that kC4 = k∗. Then there1521

exist a subtree of G connecting all terminal vertices and containing k∗ edges. We label this1522

tree using Theorem 5. This requires 2k∗ − 1 labels and clearly afterwards all terminals can1523

pairwise reach each other. Hence, we have that if k ≥ 2k∗ − 1, and then (G,R, k) is a YES1524

instance of MSL.1525

(⇒): Assume that (G,R, k) is a YES instance of MSL. We prove that our algorithm1526

correctly determines that (G,R, k) is a YES instance of MSL.1527

Let kopt ≤ k such that (G,R, kopt) is a YES instance of MSL and (G,R, kopt − 1) is a1528

NO instance of MSL. By Lemma 15, we have that if kopt is odd, then there is a labeling λ1529

of size kopt for G such that the edges labeled by λ form a tree H, and every leaf of H is a1530

vertex in R. It is easy to see that H is a solution for the Steiner Tree instance (G,R).1531

Hence, A(G,R) outputs a lower bound k∗ for the number of edges in H. Furthermore, since1532

all leaves of H are terminals, we have that every vertex in (H, λ) can temporally reach every1533

other vertex. By Theorem 5 we know that then λ needs 2k∗ − 1 labels. This implies that1534

k ≥ kopt ≥ 2k∗ − 1 and the algorithm correctly determines that (G,R, k) is a YES instance.1535

Now assume that kopt is even. Then by Lemma 15 we have that there is a labeling λ of1536

size k∗ for G such that the edges labeled by λ form a graph H that is a tree H ′ with one1537

additional edge that forms a C4, and every leaf of H ′ is a vertex in R. For the C4 that is1538

formed we have that A(G,R ∪ V (C4)) outputs a lower bound k∗ for the number of edges1539

in H ′. Note that we have k∗ ≤ A(G,R), since otherwise 2k∗ − 2 > 2A(G,R) − 1, which1540

means by Theorem 5 that kopt < 2k∗ − 2. However, since all leaves of H ′ are terminals, we1541

have that every vertex in (H, λ) can temporally reach every other vertex. Hence, Theorem 51542

implies that kopt ≥ 2k∗ − 2. It follows that kopt < 2k∗ − 2 leads to a contradiction and we1543

have k ≥ kopt ≥ 2k∗ − 2 and the algorithm correctly determines that (G,R, k) is a YES1544

instance.1545

Running time: We can use the FPT-algorithm for Steiner Tree parameterized by the1546
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number of terminals by Dreyfus and Wagner [14] for algorithm A, by trying out values for k∗
1547

from 1 until we find that (G,R, k∗) is a YES-instance of Steiner Tree or k < 2k∗ − 1.1548

Note that this increases the running time of the algorithm by Dreyfus and Wagner [14] only1549

by a linear factor. Furthermore, we need to iterate over all C4s in G (there are at most1550

n4 of them). Each time we invoke A(G,R ∪ V (C4)), we increase the number of terminals1551

by at most four. It follows that overall we obtain an FPT running time for the number of1552

terminals as a parameter.1553

4.3. Parameterized Hardness of MASL1554

Note that, since MASL generalizes both MSL and MAL, NP-hardness of MASL is1555

already implied by both Theorems 13 and 14. In this section, we prove that MASL is1556

W[1]-hard when parameterized by the number k of labels, even if the restriction a on the1557

age is a constant. Note that the number of terminals can be upper-bounded by a function1558

of the number of labels, since by Theorem 5 we know that to temporally connect |R| at1559

least 2|R| − 4 labels are necessary. Hence, our results also implies that MASL is W[1]-hard1560

when parameterized by the number |R| of terminals, even if the restriction a on the age is a1561

constant.1562

To show our parameterized hardness result, we provide a parameterized reduction from1563

Multicolored Clique. This, together with Theorem 16, implies that MASL is strictly1564

harder than MSL (parameterized by the number |R| of terminals), unless FPT=W[1].1565

Theorem 17. MASL is W[1]-hard when parameterized by the number k of labels, even if1566

the restriction a on the age is a constant.1567

Proof. To prove that the MASL is W[1]-hard when parameterized by the number of labels,1568

even if the restriction on the age is a constant, we provide a parameterized polynomial-time1569

reduction from Multicolored Clique parameterized by the number of colors, which is1570

W[1]-hard [20].1571

Multicolored Clique

Input: A static graphG = (V,E), a positive integer k, a vertex-coloring c : V (G) →
{1, 2, . . . , k}.

Question: Does G have a clique of size k including vertices of all k colors?

1572

Let (G, k, c) be an input of the Multicolored Clique problem and denote |V (G)| =1573

n, |E(G)| = m. We construct (G∗, R∗, a∗, k∗), the input of MASL using the following pro-1574

cedure (for an illustration see Figure 15). The vertex set V (G∗) consists of the following1575

vertices:1576

• a “color-vertex” corresponding to every color of V (G): C = {ci | i ∈ {1, 2, . . . , k}},1577

• a “vertex-vertex” corresponding to every vertex of G: UV = {uv | v ∈ V (G)},1578

• an “edge-vertex” corresponding to every edge of G: UE = {ue | e ∈ E(G)},1579
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• a “color-combination-vertex” corresponding to a pair of two colors of V (G): W =1580

{ci,j | i, j ∈ {1, 2, . . . , k}, i < j}, and1581

• 2n+ 4m+ 5m+ 11
8
(k4 − 2k3 − k2 + 2k) + 11

2
(k3 − 3k2 + 2k) “dummy” vertices.1582

The edge set E(G∗) consists of the following edges:1583

• a path of length 3 (using 2 dummy vertices) between a color-vertex ci, corresponding1584

to the color i, and every vertex-vertex uv ∈ UV , where v is of color i in V (G), i.e.,1585

c(v) = i,1586

• for every edge e = vw ∈ E(G), where c(v) = i and c(w) = j, we connect the corre-1587

sponding edge-vertex ue with1588

- the vertex-vertices uv and uw, each with a path of length 3 (using 2 dummy1589

vertices),1590

- the color-combination-vertex ci,j, with a path of length 6 (using 5 dummy ver-1591

tices),1592

• a path of length 12 (using 11 dummy vertices), between each pair of color-combination-1593

vertices, and1594

• a path of length 12 (using 11 dummy vertices), between all pairs of color-vertices ci1595

and color-combination-vertices cj,k, where i /∈ {j, k}, i.e., we connect the color-vertex1596

of color i with all color-combination vertices of pairs of color that do not include i.1597

We set R∗ = C ∪ W , a∗ = 12 and k∗ = 6k + 6(k2 − k) + 6(k2 − k) + 3(k4 − 2k3 − k2 +1598

2k) + 12(k3 − 3k2 + 2k). Note that k∗ ∈ O(k4), hence the parameter number of labels of1599

the MASL instance is upper-bounded by a function of k. Furthermore, observe that the1600

restriction on the age is a constant. This finishes the construction. It is not hard to see1601

that this construction can be performed in polynomial time. At the end G∗ is a graph1602

with 3n + 10m + 1
2
(k2 + k) + 11

8
(k4 − 2k3 − k2 + 2k) + 11

2
(k3 − 3k2 + 2k) vertices and1603

3n+ 12m+ 3
2
(k4 − 2k3 − k2 + 2k) + 6(k3 − 3k2 + 2k) edges.1604

We claim that (G, k, c) is a YES instance of the Multicolored Clique if and only if1605

(G∗, R∗, a∗, k∗) is a YES instance of the MASL.1606

(⇒): Assume (G, k, c) is a YES instance of the Multicolored Clique. Let S ⊆ V (G)1607

be the set of vertices that form a multicolored clique in G. We construct a labeling λ for G∗
1608

that uses k∗ labels, which are not larger than a∗ = 12, and admits a temporal path between1609

all vertices from R∗ as follows.1610

Let US be the set of corresponding vertices to S in G∗. For each v ∈ S of color i we1611

label the three edges connecting ci to uv with labels 1, 2, 3, one per each edge, in order to1612

create temporal paths starting in ci and with labels 12, 11, 10, one per each edge, in order1613

to create temporal paths that finish in ci. For every edge vw = e ∈ E with endpoints in S1614

we label the path from both of its endpoint vertex-vertices uv, uw to the edge-vertex ue with1615

labels 4, 5, 6, one per each edge, and with labels 9, 8, 7, one per each edge. This ensures the1616
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Figure 15: Illustration of the MASL instance produced by the reduction presented in the proof of Theo-
rem 17. For better readability, some paths among the vertices in W and paths among ci ∈ C and cj,k ∈ W
(i ̸= j ̸= k), are not depicted.

existence of both temporal paths between ci and cj. More precisely, (ci, cj)-temporal path1617

(resp. (cj, ci)-temporal path) uses labels 1, 2, 3 to reach uv (resp. uw), from where it continues1618

with 4, 5, 6 to ue, then with 7, 8, 9 reaches uw (resp. uv) and finally with 10, 11, 12 it finishes in1619

cj (resp. ci). Note that since S is a multicolored clique then each vertex v′ ∈ S is of a unique1620

color i′ and all vertices in S are connected. Therefore, using the above construction for all1621

vertices in S, vertex ci reaches and is reached by every other color vertex cj through the1622

vertex-vertex uv. Even more, since there is an edge e connecting any two vertices v, w ∈ S,1623

there is a unique edge-vertex ue (and consequently a unique path), that is used for both1624

temporal paths between vertex-vertices uv, uw and their corresponding color-vertices. The1625

above construction clearly produces a temporal path (of length 12) between any two color-1626

vertices. This construction uses 2 · 3 labels between every color-vertex ci and its unique1627

vertex-vertex uv, where v ∈ S and c(v) = i, and 2 · 6 labels from each edge-vertex ue to1628

both of its endpoint vertex-vertices, where e is an edge of the multicolored clique formed by1629

the vertices in S. All in total we used 6k + 12
(
k
2

)
= 6k + 6(k2 − k) labels, to connect all1630

edge-vertices corresponding to edges formed by S with their endpoints vertex-vertices.1631

Now, let ci,j and ci′,j′ be two arbitrary color-combination-vertices. By the construction of1632

G∗ there is a unique path of length 12 connecting them, which we label with labels 1, 2, . . . , 121633

in both directions. This labeling uses 2 ·12 labels for each pair of color-combination-vertices,1634

hence all together we use 24 |W |(|W |−1)
2

labels, since |W | =
(
k
2

)
this is equal to 3(k4 − 2k3 −1635

52



k2 + 2k).1636

Finally, let ci′ and ci,j be two arbitrary color and color-combination-vertices, respectively.1637

In the case when i′ /∈ {i, j} there is a unique path of length 12 in G∗ between them (that1638

uses only the dummy vertices). We label this path with labels 1, 2, . . . , 12 in both directions.1639

This procedure uses 2 · 12 labels for each pair of such vertices, hence all together we use1640

24k
(
k−1
2

)
labels, which equals 12(k3 − 3k2 + 2k). In the case when i′ ∈ {i, j} (w.l.o.g. i′ = i)1641

we connect the vertices using the following path. In S there exists a unique vertex of color i,1642

denote it v. By the definition of S there is also vertex w ∈ S of color j, which is connected to1643

v with some edge, denote it e. Therefore, to obtain a (ci, ci,j)-temporal path, we first reach1644

uv from ci with labels 1, 2, 3, then continue to ue, using labels 4, 5, 6, from where we continue1645

to ci,j using the labels 7, 8, . . . , 12. The (ci,j, ci)-temporal path uses the same edges, with1646

labels in reversed order. This construction introduced 2 ·6 new labels on the path of length 61647

between the edge-vertex ue and the color-combination-vertex cij and reused all labels on the1648

(ci, ue)-temporal paths. Repeating this for every color-combination-vertex we use 2 · 6|W |1649

new labels, since |W | =
(
k
2

)
this is equal to 6(k2 − k).1650

All together λ uses 6k+6(k2− k)+ 6(k2− k)+ 3(k4− 2k3− k2+2k)+ 12(k3− 3k2+2k)1651

labels.1652

(⇐): Assume that (G∗, R∗, a∗, k∗) is a YES instance of the MASL and let λ be the1653

corresponding labeling of G∗. Before we construct a multicolored clique for G, we prove that1654

the distance between any two terminal vertices from R∗ in G∗ is 12.1655

Case A. Let ci, cj ∈ C be two arbitrary color-vertices and let e be an edge in G with1656

endpoints of color i and j, i.e., e = vw ∈ E(G) and c(v) = i, c(w) = j. There are two1657

options on how to reach cj from ci. One when the path connecting them passes through the1658

set UE and the other, when it passes through the set W .1659

Case A-1. If the path passes through the set E, we must first go through a vertex-vertex1660

uv, then we go to the edge-vertex ue, continue to the vertex-vertex uw and finish in cj. Since1661

all these vertices are connected with a path of length 3, we get that the distance of the whole1662

(ci, cj)-path is 12.1663

Case A-2. If the path passes through the set W , then we must go through the color-1664

combination-vertex ci,j. Since the path between any color-vertex and color-combination-1665

vertex is of length 12 (we prove this in the following paragraph), the whole (ci, cj)-path is of1666

length 24.1667

Therefore, the shortest path connecting two color-vertices is of length 12 and must go1668

through the appropriate edge-vertex.1669

Case B. Let ci,j and ci′ be two arbitrary vertices from the color-combination-vertices and1670

color-vertices. We distinguish two cases.1671

Case B-1. First, when i′ /∈ {i, j}. Then, by the construction of G∗, there exists a direct1672

path of length 12, connecting them. Any other (ci′ , ci,j)-path must either go from ci′ to some1673

color-combination-vertex ci′,j′ , which is then connected with a path of length 12 to the ci,j,1674

or go to one of the color-vertices and then continue to the ci,j. In both cases the constructed1675

path is strictly longer than 12.1676
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Case B-2. Second, when i′ ∈ {i, j}. Let c(v) = i and vw = e ∈ E(G) be such that c(w) = j.1677

Then there is a path from ci to ci,j that goes through the vertex-vertex uv (using a path of1678

length 3), continues to the edge-vertex ue (using a path of length 3), which is connected to1679

the color-combination-vertex ci,j (using a path of length 6). Hence the constructed (ci, ci,j)-1680

path is of length 12. There exists also another (ci, ci,j)-path, that goes through some other1681

ci,j′ color-combination-vertex, but it is longer than 12.1682

Case C. Let ci,j and ci′,j′ be two arbitrary color-combination-vertices. By construction of1683

G∗, there is a path of length 12 connecting them. Any other (ci,j, ci′,j′)-path, must use at1684

least one vertex-vertex, which is at distance 9 from the color-combination-vertices (therefore1685

the path through it would be of length at least 18), or a color-vertex, which is at distance1686

12 from the color-combination-vertices. In both cases the constructed path is strictly longer1687

than 12.1688

It follows that the distance between any two terminal vertices inR∗ is 12, hence a temporal1689

path connecting them must use all labels from 1 to 12. Using this property we know that1690

any labeling that admits a temporal path among each pair of terminal vertices must use all1691

labels 1, 2, . . . , 12 on the temporal paths between any two color-combination-vertices ci,j and1692

ci′,j′ , and between a color-vertex ci′ and a color-combination-vertex ci,j, where i′ /∈ {i, j}.1693

This is true as by construction there are unique paths of length 12 connecting each pair of1694

them. For these temporal paths we must use 2 · 12 |W |(|W |−1)
2

labels (since |W | =
(
k
2

)
this is1695

equal to 3(k4 − 2k3 − k2 + 2k)) and 2 · 12k
(
k−1
2

)
labels (which equals 12(k3 − 3k2 + 2k)).1696

Therefore, the labeling λ can use only 6k + 6(k2 − k) + 6(k2 − k) labels to connect all other1697

terminals.1698

Let us now observe what happens with the temporal paths connecting remaining temporal1699

vertices. To create a temporal path starting in a color-vertex ci and ending in some other1700

color-vertex (or color-combination-vertex), λ must label at least 3 edges to allow ci to reach1701

one of its corresponding vertex-vertices uv. Similarly it holds for a temporal path ending1702

in ci. Since the path connecting ci to some other terminal is of length 12, the labels used1703

on the temporal paths starting and ending in ci cannot be the same. In fact the labels1704

must be 1, 2, 3 for one direction and 12, 11, 10 for the other. Therefore, λ uses at least 6k1705

labels on edges between vertices of C and UV . Extending the arguing from above, for ci1706

to reach some (suitable) edge-vertex ue (where v is one of the endpoints of e) the path1707

needs to continue from uv to ue and must use the labels 4, 5, 6 (or 9, 8, 7 in case of the1708

path in the opposite direction). From ue the path can continue to the corresponding color-1709

combination-vertex ci,j where it must use the labels 7, 8, . . . , 12, or to the vertex-vertex uv′1710

corresponding to the other endpoint of edge e (the edge e is between v and v′). This finishes1711

the construction of the temporal path from a color-vertex to the color-combination-vertex and1712

the temporal paths among color-vertices. It remains to connect a color-combination-vertex1713

with its corresponding color-vertices. The temporal path must go through some edge-vertex1714

ue, that is at distance 6 from it, therefore the labeling must use the labels 1, 2, . . . , 6. From1715

ue the path continues to the suitable vertex-vertex and then to the color-vertex. Using the1716

above labeling we see that λ must use at least 2 · 6|W | labels (which equals 6(k2 − k) labels)1717

on the edges between the color-combination-vertices in W and the edge-vertices in UE and1718

54



at least 2 · 6
(
k
2

)
labels (which equals 6(k2 − k) labels) on the edges between the edge-vertices1719

in UE and vertex-vertices in UV . Since all this together equals k
∗, all of the bounds are tight,1720

i.e., labeling cannot use more labels.1721

We still need to show that for every color-vertex ci there exists a unique vertex-vertex uv1722

connected to it such that all temporal paths to and from ci travel only through uv. By the1723

argument on the number of labels used, we know that there can be at most two vertex-vertices1724

that lie on temporal paths to or from ci. More precisely, one that lies on every temporal path1725

starting in ci and the other (possibly the same) that lies on every temporal path that finishes1726

in ci. Let now uv, uv′ be two such vertex-vertices. Suppose that uv lies on all temporal paths1727

that start in ci and uv′ on all temporal paths that end in ci. Now let ue be the edge-vertex1728

on a temporal path from ci to cj, and let uw be the vertex-vertex connected to cj and ue.1729

Therefore the (ci, cj)-temporal path has the following form: it starts in ci, uses the labels1730

1, 2, 3 to reach uv, then continues to ue with 4, 5, 6, then with 7, 8, 9 reaches uw and with1731

10, 11, 12 ends in cj. To obtain the (ci, ci,j)-temporal path we must label the edges from ue1732

to ci,j with the labels 6, 7, . . . , 12, since the edge-vertex ue is the only edge-vertex connected1733

to the color-combination-vertex ci,j that can be reached from ci (if there would be another1734

such edge-vertex, then the labeling λ would use too many labels on the edges between UV1735

and UE). Now, for the color-vertex cj to be able to reach the color-combination-vertex ci,j, it1736

must use the same labels between ue and ci,j (using the same reasoning as before). Therefore1737

the path from cj to ue (through) uw uses also the labels 1, 2, . . . , 6. But then for cj to reach1738

ci the temporal path must use the vertex-vertex uw, even more it must use the edge-vertex1739

ue and consequently the vertex-vertex uv, from where it would reach ci. This implies that we1740

must have that uv = uv′ . Therefore, every color-vertex ci admits a unique vertex-vertex uv1741

that lies on all (ci, cj) and (cj, ci)-temporal paths. For the conclusion of the proof we claim1742

that all vertices v corresponding to these unique vertex-vertices uv of color-vertices ci, form1743

a multicolored clique in G. This is true as, by construction, a temporal path between two1744

vertex-vertices uv, uw corresponds to the edge vw = e ∈ E(G). Since every vertex-vertex is1745

connected to exactly one color-vertex, this corresponds to the vertex coloring of V (G). In1746

G∗ there is a temporal path among any two color vertices, therefore the vertex-vertices used1747

in these temporal paths can be reached among each other, which means that they really do1748

form a multicolored clique.1749

5. Concluding remarks1750

In this paper we studied four natural temporal labeling problems. We distinguished the1751

settings where we have an age restriction on the labeling or not. Furthermore, we investigated1752

settings where the labeling has to temporally connect every vertex pair and settings where1753

only a given set of terminal vertices have to be pairwise temporally connected. One variant1754

(ML) is polynomial-time solvable, whereas the tree other variants (MAL,MSL, andMASL)1755

turn out the be NP-hard. For the latter two we also give parameterized complexity results1756

with respect to the number of labels and to the number of terminals as parameters. Our1757

work spawns several future research directions.1758
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Recall that a labeling λ satisfying MAL with the age restriction being the diameter of1759

the graph, is of the size O(n2) (see Observation 1). In Lemma 2, we show that on cycles,1760

the labeling uses Θ(n2) labels. Therefore, it would be interesting to study, for which graph1761

classes the optimal labeling uses o(n2) or O(n) labels. We show that MAL is NP-complete1762

when the upper age bound is equal to the diameter d of the input graph G. On the other1763

hand, if the upper age bound is 2r, where r is the radius of G, MAL can be computed in1764

polynomial time. Indeed, using the results of Section 2.1, it easily follows that if G contains1765

(or does not contain) a C4, then the labeling consists of 2n − 4 (or 2n − 3) labels. An1766

interesting question that arises now is: For which values of an upper age bound a, where1767

d ≤ a ≤ 2r, can MAL be solved efficiently? Furthermore, it would be interesting to analyse1768

the parameterized complexity of MAL. A canonical starting point would be to consider the1769

number of time labels as a parameter.1770

Our results for MSL and MASL also leave some open questions and several natural1771

future research directions. Recall that the number k of labels is a larger parameter than1772

the number of terminals. Hence, the parameterized complexity with respect to those two1773

parameters of MSL is resolved. For MASL it remains open whether we can obtain an XP1774

algorithm for those parameters.1775

More generally, it would be interesting to investigate structural parameterizations for1776

all NP-hard problem variants of this paper. We conjecture that all problem variants are1777

polynomial-time solvable if the input graph G is a tree. Consequently, parameters that1778

measure tree-likeness, such as treewidth, are promising candidates for obtaining FPT results.1779
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