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Abstract
Purpose Current methods for diagnosis of PD rely on clinical examination. The accuracy of diagnosis ranges between 73 and
84%, and is influenced by the experience of the clinical assessor. Hence, an automatic, effective and interpretable supporting
system for PD symptom identification would support clinicians in making more robust PD diagnostic decisions.
Methods We propose to analyze Parkinson’s tremor (PT) to support the analysis of PD, since PT is one of the most typical
symptoms of PDwith broad generalizability. To realize the idea, we present SPA-PTA, a deep learning-based PT classification
and severity estimation system that takes consumer-grade videos of front-facing humans as input. The core of the system is a
novel attention module with a lightweight pyramidal channel-squeezing–fusion architecture that effectively extracts relevant
PT information and filters noise. It enhances modeling performance while improving system interpretability.
Results We validate our system via individual-based leave-one-out cross-validation on two tasks: the PT classification task
and the tremor severity rating estimation task. Our system presents a 91.3% accuracy and 80.0% F1-score in classifying
PT with non-PT class, while providing a 76.4% accuracy and 76.7% F1-score in more complex multiclass tremor rating
classification task.
Conclusion Our system offers a cost-effective PT classification and tremor severity estimation results as warning signs of
PD for undiagnosed patients with PT symptoms. In addition, it provides a potential solution for supporting PD diagnosis in
regions with limited clinical resources.

Keywords Parkinson’s disease · Tremor type · Tremor rating · Deep learning · Channel attention

Introduction

Parkinson’s disease (PD) is the second most common pro-
gressive neurological disorder, affecting an estimated 10
million people globally [1]. It is characterized by the loss
of dopaminergic neurons within the substantia nigra region
of the brain, resulting in motor dysfunction [2]. Existing PD
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diagnosis is mainly based on the clinical assessment of PD
symptoms, medical history, l-dopa and dopamine responses
[3]. The clinical diagnostic accuracy is approximately 73–
84% [4] and may be affected by medical experts’ subjective
opinions and experiences. An automatic, efficient and inter-
pretable PD assessment system would support clinicians in
making more robust diagnostic decisions.

Recent research in PD diagnosis with machine learning
using human-centric visual, audio and movement features
has shown promising results. Models based on neuroimag-
ing [5] and cerebrospinal fluid biomarkers [6] provide an
accurate diagnosis but are costly and intrusive, making them
unsuitable for large-scale pre-diagnosis. Non-intrusivemeth-
ods with speech [7] are limited by their generalizability due
to the significant difference in language and pronunciation
for patients from different geographical areas. Although gait
disturbance is not typically the primary symptom of early-
onset PD [8, 9], over 70%of these patients exhibit at least one
form of tremor [9]. Hence, identifying Parkinson’s Tremor
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(PT) is seen as a more generalizable approach for assisting
in early PD diagnosis. To date, hand tremor-based studies
mostly rely on wearable sensor data [10]. However, the use
and setup ofwearable technologymay be time- and resource-
consuming [10]. Video-based analysis with consumer-grade
cameras is preferable as a more cost-effective solution with-
out disrupting the natural behavior of the participants.

We propose a novel open-source1 video-based deep learn-
ing system for PT classification and tremor severity estima-
tion to assist the pre-diagnosis of PD with PT symptoms. We
first extract the upper body human pose from videos as an
effective feature for tremor analysis. We then design a graph
neural network with a novel pyramidal channel-squeezing–
fusion (PCSF) architecture that learns the attention by
representing the joint-wise relevancy in a hierarchical man-
ner. Such attention values allow interpretation of the features
considered by the network for decision-making. Our solution
outperforms existing ones in PT analysis, achieving 91.3%
accuracy and 80.0% F1-score in PT classification, 76.4%
accuracy and 76.7% F1-score in tremor rating classification.

Compared with our preliminary work [11] that only
focuses on tremor-type classification, we have the following
technical improvements: (1) adapting the system for tremor
rating estimation; (2) supplementing our system with the
Eulerian video magnification to enhance the subtle tremors
for better feature extraction; (3) adding an examination
with the Nyquist limits to test whether the input videos
are suitable for tremor analysis; (4) improving pose extrac-
tion by employing the state-of-the-art AlphaPose algorithm
and conducting comprehensive experiments to evaluate its
performance improvement; (5) evaluating our system via
a more challenging individual-based leave-one-out cross-
validation to improve system robustness; and (6) conducting
extra experiments with ablation studies and visualizations.

Method

Figure 1 shows the overview of our system. Its input is a set
of videos showcasing a patient sitting in an upright posture,
performing various actions such as keeping arms parallel to
the ground. The human joint position features are extracted
from the videos using AlphaPose [12], a state-of-the-art pose
estimation algorithm. These features are then fed into the
spatial pyramidal attention network for PT-type and level
analysis (SPA-PTA).

Eulerian videomagnification

We employ Eulerian video magnification (EVM) as a signal
processing method [13] to enhance the subtle tremors and

1 https://github.com/zhz95/SPA-TPA.

reduce noise and artifacts in the videos. This is motivated
by previous research findings [11] that deep neural network
models paid more attention to human wrists during PT clas-
sification, indicating that magnifying subtle hand and wrist
motions can be beneficial for tremor feature learning. Before
applying EVM, we checked the Nyquist limits [14] to exam-
ine whether our video frequency is valid for tremor analysis.
Specifically, the video frame rate should be at least twice the
highest frequency of tremor motions. As existing research
[15] has shown that PT typically occurs between 3 and 7Hz,
our video with 30Hz fulfills the requirement.

Pose extraction

We extract the 2D pose features from the EVM-processed
videos by AlphaPose [12]. Compared to previous work using
OpenPose [11],AlphaPose is superior as it demonstrates 25%
improved pose estimation performance on average precision
and average recall metrics in multiple datasets. We prefer 2D
poses to 3D ones, as current 3D pose estimation techniques
are lessmature, and they generally introduce noise particular-
ity in the depth dimension [16], making them less suitable for
sensitive features like tremors.We useAlphaPose to estimate
17 COCO-format [12] body keypoints and extract (x, y, c)
features, where (x, y) represent the 2D coordinate and c is a
confidence score that reflects the estimation accuracy. Con-
sistent with previous work [11], we utilize the top half of the
body keypoints (shown in Fig. 5) for PT classification. It dis-
regards less relevant lower body features to enhance model
efficiency and reduce potential bias because of the observa-
tion that PT generally occurs on the upper body, specifically
on the hands and arms [17]. In addition, we omit the head
joints as the participants’ faces are generally obscured in
medical videos to preserve their privacy. Furthermore, we
normalize the pose to mitigate bias resulting from inherent
video differences. In order to mitigate global translations in
the pose, we align the mean location of the neck and two hip
joints as the global origin. Subsequently, all joint positions
are expressed as relative values to this established origin.

Classification network

We propose the SPA-PTA for PT analysis by the PT classifi-
cation task and an extended tremor severity estimation task.
SPA-PTA is composed of two graph neural network (GNN)
blockswith a spatial attentionmechanism, alongwith a novel
pyramidal channel-squeezing–fusion block designed to learn
the joint-wise relevancy.

GNN block with spatial attention mechanism

Weconsider using graph neural networks (GNN) for PT anal-
ysis, which are effective in modeling relational data, unlike
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Fig. 1 Framework of our system: We use EVM to enhance the subtle tremors in the original videos, and then pass videos to the pose extraction
process. We classify the extracted pose features by SPA-PTA with a novel PCSF design

images that are in a grid structure. In particular, human poses
can be considered as a relational graph structureG = (V , E)

[18], with the nodes representing the joints and the edges
representing the skeletal structure across time. Formally,
{V = vpq} represents the set of joint positions, where vpq is
the p-th joint at the q -th frame. The set of edges, E, consists
of (i) spatial edges connecting different joints in space and (ii)
temporal edges connecting the same joint across consecutive
frames.

We propose a spatial attention mechanism to enhance the
performance of classification and improve the interpretability
of our system. Specifically, it helps interpret the significant
joints that the network identifies during classification by
computing the attention weight of each joint per frame and
its temporal aggregation. Moreover, it allows the system to
learn the attention of the target joint by considering its rel-
evancy with other joints. The fundamental expression is as

hi = σ
(∑

j∈N i Wi
jx j âi j

)
where σ is an activation func-

tion,Wi
j is the learnable attention weight between the target

node i and the related node j, âi j is the corresponding element
in the adjacency matrix, x j is the input features of node j,N i

is the set of connected nodes for node i and hi is the updated
features of node i.

Pyramidal channel-squeezing–fusion block (PCSF)

We hypothesize that the relevancy between two joints
depends on their proximity according to the skeletal struc-
ture. This aligns with information gain analysis [19], which
proves that information gain diminishes exponentially as the
node distance increases. Furthermore, clinical observation
[20] suggests that PD patients typically experience PT on
only one side of the upper body. Therefore, the information
relevancy from one arm to another should be small.

To realize the hypothesis, we propose a novel lightweight
PCSF that better models the relevancy of joints from their
neighbors, thereby enhancing the network performance. As
shown inFig. 2, the output target node i’s attentionweightWi

is obtained from the joint-wise weights {Wi
d0

, . . . ,Wi
dmax}

after the squeezing-and-fusion process, where dn is the short-

est distance between the target node i and the relevant node
n, namelyHop-n. The visualization of information relevancy
in Fig. 2 guides the squeezing ratio, such that our method
overcomes the limitation of the GCN (graph convolutional
network) [21] that each joint shares the same weight.
The channel-squeezing block We propose following squeez-
ing operations to enhance the learning of PT-specific relevant
information while filtering noise, based on our hypothesis
motivatedby [19, 20].Wedistinguish nodes in different graph
distance by defining hop-0 node to be the self-node,Hop-1,2
nodes to be the short-range nodes and Hop-3,…,Hop-max
to be the long-range nodes. Suppose the node i is the target
node, and the node j is the relevant node of i, then node j’s
output channel size is formulated by Eq. (1):

Cout, j =

⎧⎪⎨
⎪⎩

Cin, | j − i | = 0,

pCin, 0 < | j − i | ≤ 2,

q |r−i |Cin, | j − i | > 2.

(1)

where p, q are channel-squeezing ratios for Hop-1,2 nodes
and Hop-3,…, max nodes, respectively. p, q ∈ [0, 1] and
p � q.Cout, j is the output channel size of node j. |·| denotes
the graph distance between nodes.
The channel–fusion block To hierarchically combine the dif-
ferent range information of the target node i, we fuse the
long-range features by fl and fuse all features by fa :

hi = fa[hself ,hshort, fl(hlong,k)]Wi (2)

where hlong,k is the feature of the long-range node k, hshort
and hself are features of short-range nodes and self-node,
respectively, andWi is the final weight matrix of target node
i.

Implementation details

As depicted in Fig. 1, our network employs two GNN blocks
with output channel sizes of 64 and 128, respectively. Each
block contains an LCN (locally connected network [22])
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Fig. 2 Proposed pyramidal channel-squeezing–fusion architectures

layer, a batch normalization layer, a LeakyReLU layer with
an alpha of 0.2 and a dropout layer with 0.2 rates. Follow-
ing the two GNN blocks, we employ a PCSF block, a global
average pooling layer and a fully connected layer. We adapt
cross-entropy loss in binary classification. To address the
class imbalance in multiclass classification, we use the focal
loss [23] instead. Our optimizer of choice is Adam. The best
performance of the PT binary classification task is achieved
by a learning rate of 0.01 (decays by 0.1), a batch size of 8
and a dropout of 0.2, at 500 epochs.

Experiments

To assess the efficacy of our proposed method, we conducted
validation testing on two separate evaluation examinations:
the PT classification examination and the tremor rating esti-
mation examination. We carried out our experiments using a
Ubuntu 18.04 PC with an NVIDIA 3080. The GPU memory
usage for training was minimal, averaging just 1.46 giga-
bytes. The training process for the TIM-TREMOR dataset
took approximately ten hours for the PT classification task
and twelve hours for the tremor rating estimation examina-
tion. They include the processes of EVM and extraction of
human pose features from RGB videos. In terms of real-time
application, the PT classification or tremor rating estimation
of a 33-s video with 1000 frames only took around 48s each,
which is a feasible time for interactive diagnosis.

The dataset

We test our system using the TIM-TREMOR dataset [24],
which is an open dataset consisting of 910 videos of 55 indi-
viduals performing 21 tasks. The videos are 18–112s long.
There are 572 videos depicting various forms of tremors,
including 105 for parkinsonian tremor (PT), 182 for essen-

tial tremor (ET), 88 for functional tremor (FT) and 197 for
dystonic tremor (DT). An additional 60 videos (NT) were
recorded without convincing tremors during the assessment.
The test 278 videos have inconclusive tremor classification
results and have been labeled as “Other.” For the tremor rat-
ing labels, eight levels from level 0 to 7 are assigned to the
individual’s left and right hands, evaluated by Bain and Find-
ley Tremor Clinical Rating Scale [25]. To ensure that there is
only one label per video and preserve the characteristics of
the video, we combine the labels for individual left and right
hands by taking the maximum value of both hands.

Setup

We eliminate inconsistent videos to minimize data noise,
specifically videos that only capture motion tasks for a lim-
ited number of participants. For the tremor-type classification
task only, we remove the videos with uncertain tremor-type
labels of “other.” Next, each video is clipped into 100-frame
samples, and the number of samples is determined by the
duration of the consecutive frames in which the participant
was visible and not obscured. Each sample was assigned
the label of the original video and treated as an individual
sample. We use a voting system to obtain the video-level
classification results, which increases the system’s robust-
ness and augments the training sample size [26].We evaluate
our proposed system through individual-based leave-one-out
cross-validation. It means each subclip for a single individ-
ual is used for testing and excluded from the training set
for each iteration. The subclips for each individual are never
separated by the training or testing set. The total number of
leave-one-out cross-validations are 39 and 55 for tremor-type
classification and tremor rating estimation, respectively.
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Fig. 3 Per-class multiclass tremor-type classification results

Fig. 4 Confusion matrices for PT classifications: (Left) binary; (Right)
multiclass

Evaluationmetrics

We report the mean values calculated among all leave-one-
out cross-validations with the following metrics: accuracy
(AC), sensitivity (SE), specificity (SP) and F1-score for the
binary classification; AC, macro-average F1-score, SE and
SP for the multiclass classification.

Tremor-type classification

For this experiment, we first evaluate our system on the
binary classification that distinguishes PT labels from non-
PT labels, and achieve 91.3% accuracy and 80.0% F1-score.
In addition, we validate our method on a more complex mul-
ticlass classification task for classifying five types of tremors
(PT,ET,DT, FT andNT).Our final system’s per-class tremor-
type multiclass classification performance is shown in Fig. 3.
It shows a fairly balanced performance on classifying PT, ET,
DT and NT, while FT has a lower SE and F1-score, which
may be caused by the smallest number of samples in this
class.Moreover, the corresponding confusionmatrices of the
two tasks are displayed in Fig. 4.

Comparison with baseline methods

As this paper is the first work that provides the individual-
level evaluation results, we implemented the following

video-based PT classification baselines to evaluate the effec-
tiveness of our system: (i) ST-GCN [18]: a spatial–temporal
GCNs for human pose data classification; (ii) CNN with 1D
convolutional layers (CNN-Conv1D) [27]; (iii) decision tree
(DT); and (iv) support vector machine (SVM) [27]. Note
that all baseline methods apply the same EVM and pose
extraction design. The results of our proposed SPA-PTA and
baselines are summarized in Table 1.

The binary classification result shows that our full system
consistently outperforms all other methods in all evalua-
tion metrics. Our AC, SE, SP and F1 achieve over 80% on
leave-one-out cross-validation, demonstrating the effective-
ness and stability of our system in this binary classification
task. It is noticeable that our system performs better with
only spatial convolution instead of a deeper spatial–temporal
convolution design like ST-GCN [18]. The outcome supports
that the suggested PCSF block effectively enhances classifi-
cation reliability and reduces the risk of overfitting in small
datasets.

While the full system is initially designed for binary classi-
fication, it presents effectiveness and generalizability in the
multiclass classification task, surpassing existing methods.
A small difference between AC, SE and SP shows that our
system performs consistently and effectively at identifying
the positive samples and excluding the negative ones. The
high macro-average SP exhibited trustworthy effectiveness
in correctly recognizing individuals who have a specific type
of tremor without wrongly recognizing it as other types of
tremor.

Ablation studies

We conduct an ablation analysis to assess the effectiveness of
the EVM, PCSF block and the entire attention module. From
the lower parts of Table 1, the positive effect of the PCSF
block and attention module can be illustrated by the decrease
in metrics when either the PCSF block or the entire atten-
tion module is removed in the two classification tasks. Also,
we find that the basic GNN architecture without attention
performs better than the CNN-Con1D model for both clas-
sification tasks. It highlights the efficacy of learning human
pose features in the graphdomain as opposed to theEuclidean
domain. Besides, the variant of “ours without attention” per-
forms slightly better than “ours without attention and EVM
preprocessing,” indicating that the use of EVM could effec-
tively enhance tremors.

Model interpretation

We present the visualization for the average attention value
of each body keypoint in Fig. 5a. It is interpreted as the
importance level our system considers during the classifi-
cation process. Our analysis reveals that the attention value
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Table 1 Comparisons on the
tremor-type classification task

Method Binary classification Multiclass classification

AC SE SP F1 AC SE SP F1

ST-GCN [18] 84.6 71.4 87.5 62.5 64.1 64.8 90.7 64.1

CNN-Conv1D 76.9 57.1 81.3 47.1 56.4 54.2 88.3 53.1

Decision Tree 69.2 57.1 71.9 40.0 51.3 49.4 87.6 36.7

SVM [27] 64.1 57.1 65.6 36.4 46.2 44.6 86.2 44.3

Ours-full 92.3 85.7 93.8 80.0 71.8 71.3 92.5 72.5

w/o PCSF 87.2 85.7 87.5 70.6 66.7 67.6 91.4 66.7

w/o Attention 82.1 71.4 84.4 58.8 61.5 63.1 90.0 62.4

w/o Attention & EVM 79.5 71.4 81.3 55.6 59.0 59.1 89.5 58.5

Best performance results are highlighted in bold

Fig. 5 (a) Average skeleton joints attention across all cross-validations in the PT classification experiment. (b) Attention visualization at a (b1)
successfully classified frame, and (b2) unsuccessful classified frame. The joint labels in (b) correspond to (a)

is significantly highest on the “RightWrist” and “LeftWrist,”
which suggests that our system prioritizes the wrists’ move-
ments during the task performance. Furthermore, the value
associated with the “Neck” is significantly lower than other
keypoints. It may be explained by the fact that the partici-
pants remained seated during the video recording, resulting
in a minimal global variance of the neck joint throughout the
experiment.

Tremor rating estimation

For this experiment, we train SPA-PTAwith different tremor
rating labels without further implementation (e.g., convert-
ing the classification layer to a regression layer) to validate
our system performance in the tremor rating estimation task.
Since the data with tremor ratings 4 and above is insufficient
for training via leave-one-out cross-validation (i.e., only 5
individuals out of 55), we validate our system on two dif-
ferent classification settings: (1) classifying ratings [1, 2, 3]
and (2) classifying ratings [1, 2, 3+]. The latter is generally a
more challenging task since the imbalanced data of the “3+”
rating brings bias compared to the former, which does not
contain such data (Figs. 6, 7).

Fig. 6 Confusion matrices for tremor rating estimation: (Left) [1, 2,
3+]; (Right) [1, 2, 3]

Comparison with Baseline methods

We compare our SPA-PTA to the same baselines in the
tremor-type classification task as shown in Table 2. SPA-
PTA significantly outperforms the baselines by achieving a
macro-average AC of 76.4%, SE of 77.3%, SP of 91.6%
and F1-score of 76.7%. An interesting finding is that the
machine learning-based method decision tree achieves sim-
ilar performance to two deep learning-based baselines (i.e.,
ST-GCN and CNN-Conv1D). It may inform us to tackle the
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Fig. 7 Per-class tremor rating estimation results

challenge of improving the deep learning models in a rela-
tively small dataset. In addition, although our current model
does not show strong robustness in the tremor rating esti-
mation task, the ablation studies from the rows of “Ours” in
Table 2 still demonstrate the effectiveness of our PCSF layer
and the attention mechanism design. It shows the potential of
improving our model and system performance with a more
specific architecture design with a more extensive dataset.

Ablation studies

Consistent results at the bottom of Table 2 from the same
ablation design as for the PT classification task validate the
effectiveness of each system component.

Model interpretation

We similarly visualize the average skeleton joints attention
across all cross-validation sets in Fig. 8. Two different data

Fig. 8 Average skeleton joint attention across all cross-validations in
tremor rating estimation task

preprocessing approaches provide similar attention results,
while theweights obtained by grouping [1, 2, 3] slightlymore
contribute to “Right Wrist” and “Left Wrist.” This may be
due to the increased proportion of low tremor rating videos
in this approach compared to grouping [1, 2, 3+]. In addition,
we notice that the attention weight distribution of the tremor
rating estimation examination is similar to that of the PT
classification examination, while the former aggregatesmore
attention on the “Right Wrist” and “Left Wrist” than other
joints.

Pose estimation evaluation

To evaluate the effectiveness of AlphaPose and quantify the
pose estimation error, we conduct the following experiments:

Quantitative comparison with ground truth data

To quantify the pose estimation error from different methods,
we employ the Lagrangian hand-tremor frequency estima-
tion method [24] to compare MAE (mean absolute error)
of the hand-tremor frequencies estimated by AlphaPose and
conventional OpenPose features [11] with ground truth (GT)
frequency obtained from accelerometer data. As suggested
in [24], tremor frequency calculated from reliable estimated

Table 2 Comparisons on the
tremor rating task

Classification labels [1, 2, 3+] [1, 2, 3]
Method AC SE SP F1 AC SE SP F1

ST-GCN [18] 67.3 68.1 89.0 66.5 68.0 67.7 90.5 65.7

CNN-Conv1D 60.0 59.8 86.5 58.7 60.0 60.5 87.9 58.3

Decision Tree 54.5 55.3 85.2 54.6 52.0 53.0 86.0 51.3

SVM [27] 49.1 41.1 81.5 43.8 48.0 49.5 85.2 47.1

Ours-full 76.4 77.3 91.6 76.7 74.0 73.5 92.0 72.0

w/o PCSF 70.9 71.5 89.7 70.7 70.0 68.6 90.5 68.2

w/o Attention 65.5 65.6 88.2 64.8 66.0 65.2 89.5 63.9

w/o Attention & EVM 63.6 64.8 87.6 63.3 64.0 64.1 88.9 62.5

Best performance results are highlighted in bold
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Table 3 MAE comparison between AlphaPose features and OpenPose
on the top-10 best-performing tasks

Task AlphaPose OpenPose

Rest 0.812 0.881

Rest in supination 0.834 0.930

2 Hz higher 0.605 0.635

2 Hz lower 0.617 0.622

Counting 0.729 0.790

Finger tapping 0.576 0.687

Playing piano 0.752 0.906

Months backward 0.814 0.838

Top top 0.786 0.823

Thumbs up 0.844 0.960

Average MAE 0.737 0.807

Better performance with lower MAE is in bold

pose features should be close to (i.e., ideally within 1 HZ
difference) the GT accelerometer data frequency. The MAE
from Table 3 indicates that AlphaPose consistently outper-
forms OpenPose on all listed tasks.

Qualitative pose visualization and comparison

The visualizations in Fig. 9 and the reference video images in
Fig. 10 show that AlphaPose outperforms OpenPose in esti-
mating joint positions. This is supported by the smoother
trajectory lines of AlphaPose, which are depicted by the

transparent colored lines. Figures 1, 2, 3, 4, 5 and 9 demon-
strate AlphaPose’s ability to track joint movement fluidly.
Specifically, in Fig. 5, AlphaPose demonstrates a hand tra-
jectory that aligns more closely with the anticipated tremor
pattern, which contrasts with OpenPose’s intermittent jump-
ing trajectory. This consistency suggests that AlphaPosemay
bemore reliable for tasks related to PTclassification. Further-
more, on the patient’s right side, particularly in Figs. 1 and
2, AlphaPose yields more consistent and stable outcomes,
reflecting the patient’s condition of resting with observable
tremors only in the left hand, as corroborated by Fig. 10.
Finally, the neck joint position of OpenPose is estimated by
the mean point of both shoulders, which is less accurate than
the estimated neck joint position of AlphaPose [12].

Classification performance comparison

We compare the effectiveness of AlphaPose and OpenPose
by evaluating their impacts on the system classification
performance. Table 4 demonstrates that using AlphaPose
features results in a remarkable and consistent improvement
over OpenPose features of approximately 1− 3% across the
classification tasks except for the binary tremor-type classifi-
cation. These results highlight the precision of AlphaPose in
delivering better pose-based features for classification tasks.

In this study, we utilize the pre-trained AlphaPose model,
opting not to retrain it due to the absence of GT 2D pose posi-
tion annotationswithin our dataset. The robust generalization
capability of the pre-trained AlphaPose model, as evidenced

Fig. 9 Estimated pose comparison between AlphaPose and OpenPose
for a sitting and resting PD patient with clinically identified PT on the
left side of the body. (a)–(c) are the estimated poses of an example video
from AlphaPose, OpenPose and both, respectively. Each colored line

with 0.05 transparency represents the connection between joints esti-
mated in each frame. Numbers 1 to 5 correspond to specific joints’ local
scaling for intuitive comparison. The raw video frames are referenced
in Fig. 10

123



International Journal of Computer Assisted Radiology and Surgery (2024) 19:831–840 839

Fig. 10 Raw videos referenced in Fig. 9 consist of consecutive images captured at intervals of 5 frames, approximately every 0.167s. The lower
right image is an aggregation of five transparent hand images, where the green dot shows the estimated trajectory of the left wrist joint during tremor

Table 4 Comparisons on the influence of classification performance
between AlphaPose and OpenPose

Method AC SE SP F1 AC SE SP F1

Tremor-type Binary Tremor-type Multiclass

AlphaPose 92.3 85.7 93.8 80.0 71.8 71.3 92.5 72.5

OpenPose 92.3 85.7 93.8 80.0 69.2 69.3 92.0 70.2

Tremor level [1,2,3+] Tremor level [1,2,3]

AlphaPose 76.4 77.3 91.6 76.7 74.0 73.5 92.0 72.0

OpenPose 72.7 74.0 90.4 73.6 72.0 72.5 90.4 70.1

Best performance results are highlighted in bold

by its superior performance across multiple diverse and
complex benchmark datasets [12], affirms its suitability for
our task. In the future, we are interested in comparing the
performance between pre-trained and tremor-specific pose
estimation models. This will entail the collection of the nec-
essary GT data to train a model adept at detecting the subtle
nuances characteristic of tremor movement patterns.

Conclusion and discussion

Our method effectively identifies PT in PD patients from
consumer-grade videos. The validity of our proposed sys-
tem on both PT classification and tremor severity estimation
tasks demonstrates that ourmethod is extensible in PT-related
analysis. Our non-intrusive system only relies on consumer-
grade videos as input, so it offers a potentially cost-effective
solution for supporting the pre-diagnosis of PD in regions
with inadequate medical resources. This work could also be

used for remote PD supplementary assessment in special sit-
uations to reduce the stress of the healthcare system (e.g., the
COVID-19 pandemic). Moreover, our system demonstrates
the potential to automatically monitor PT symptoms during
daily activities to support PD pre-diagnosis.

Our findings about PT analysis are preliminary, and the
limited number of people with PT and the limited range of
tremor levels included in this work may affect the gener-
alizability of the results. One of our future directions is to
evaluate our models using data collected from a larger and
more diverse group of Parkinson’s disease patients, cover-
ing a more balanced tremor-type distribution and a wider
range of tremor severity ratings. Upscaling the study is cru-
cial for developingmore robustmodels and for enhancing the
overall applicability and validity of the framework we have
presented. In addition, annotating the dataset based on PT
severity estimation performance by different scales, such as
the MDS-UPDRS3, by experienced raters will enable us to
improve the robustness of our model in the future. Moreover,
our current system performance is still challenged by pose
estimation algorithm error, such as depicted in blue Fig. 5b.
The attention of our system is incorrectly influenced by the
inaccurate position detection of the right elbow and blurred
right shoulder joints.
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