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A B S T R A C T 

Convection in stars and planets must be maintained against viscous and Ohmic dissipation. Here, we present the first systematic 
investigation of viscous dissipation in simulations of rotating, density-stratified plane layers of convection. Our simulations 
consider an anelastic ideal gas, and employ the open-source code Dedalus. We demonstrate that when the convection is sufficiently 

vigorous, the inte grated dissipativ e heating tends towards a value that is independent of viscosity or thermal dif fusi vity, but 
depends on the imposed luminosity and the stratification. We show that knowledge of the dissipation provides a bound on the 
magnitude of the kinetic energy flux in the convection zone. In our non-rotating cases with simple flow fields, much of the 
dissipation occurs near the highest possible temperatures, and the kinetic energy flux approaches this bound. In the rotating 

cases, although the total integrated dissipation is similar, it is much more uniformly distributed (and locally balanced by work 

against the stratification), with a consequently smaller kinetic energy flux. The heat transport in our rotating simulations is in 

good agreement with results previously obtained for 3D Boussinesq convection, and approaches the predictions of diffusion-free 
theory. 

Key words: convection – hydrodynamics – stars: interiors. 
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 I N T RO D U C T I O N  

onvection occurs in the interior of every main-sequence star and
n many planets, and must be maintained against a finite amount
f viscous and Ohmic dissipation. In a steady state, the dynamics
nd the dissipation are therefore linked; constraints on one yield
onstraints on the other. 

Many authors have explored this link. For example, the widely
mployed theory of Rayleigh–B ́enard convection developed by
rossmann & Lohse ( 2000 ) relies on the exact relationship between
iscous dissipation and heat transport (Shraiman & Siggia 2000 );
n their model, the heat transport depends crucially on whether the
iscous and thermal dissipation occur primarily in the bulk of the
onv ectiv e domain or in the boundary layers that form at its top and
ase. Jones, Mizerski & Kessar ( 2022 ) have recently explored an
xtension of this theory to the density-stratified case, with the spatial
istribution of the dissipation again playing a vital role. In the stellar
ontext, Anders et al. ( 2022 ) have shown that the magnitude of the
issipation within a convection zone strongly influences the amount
f conv ectiv e o v ershooting into adjacent stable layers. The form
nd magnitude of the dissipation are likewise crucial in a variety of
fforts to go ‘beyond mixing length theory’ (MLT) (e.g. Canuto 1997 ;
iallet et al. 2013 ; Kupka, Ahlborn & Weiss 2022 ; Meakin & Arnett
010 , Arnett et al. 2015 ). In the Sun, where the form and magnitude
 E-mail: m.k.m.browning@e x eter.ac.uk (MKM); 
aura.currie@durham.ac.uk (SRWL) 
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f conv ectiv e flows in the deep conv ection zone are currently the
ubject of much debate (e.g. Vasil, Julien & Featherstone 2021 ),
he total dissipation may provide important constraints on the flows
Ginet 1994 ). Ohmic dissipation, in particular, is thought to limit the
epth of zonal winds in Jupiter (Liu, Goldreich & Stevenson 2008 ;
aspi et al. 2018 , 2020 ), may constrain magnetism in the interiors of

ow-mass stars (Browning et al. 2016 ), and could influence the radii
f hot Jupiters (Batygin & Stevenson 2010 ). 
The purpose of this paper is to provide new constraints on the
agnitude and spatial distribution of the viscous dissipation that
ay be occurring in stellar convection zones. Few prior works have

ystematically investigated this in the astrophysically rele v ant case
f a gas with density and temperature stratification, and none have
one so when rotation is also present. Here, we study this issue
ithin one of the simplest possible systems that captures convection,

otation, and stratification, by conducting a series of hydrodynamic
imulations of stratified (anelastic) convection in a rotating Cartesian
omain, situated at a fixed latitude. The vast majority of the simu-
ations presented here are 2D, although we compare some of these
esults to a very small number of 3D simulations. Many elements
hat are important in real stars – including, crucially, magnetic fields

are thus absent here. Ho we ver, this setup has the great advantage
hat it allows us to sample parameter regimes that would be difficult
r impossible to probe in equi v alent detail in a full 3D spherical
eometry. 
In particular, we are able to assess how the dissipation scales

ith luminosity, rotation rate, and stratification in the limit where
he dif fusi vities are small (i.e. when the conv ectiv e supercriticality is
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
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igh). In what follows, we argue that in this regime the dissipation rate
inte grated o v er the conv ection zone) depends only on the luminosity
nd the stratification, and is (at fixed supercriticality) independent of 
otation. Ho we ver, the spatial distribution of this dissipation – and 
ith it, many other aspects of the dynamics – does depend on rotation, 

s detailed below. 
In the remainder of this introduction, we summarize prior bounds 

n the viscous and Ohmic dissipation, and describe how our work 
xtends these. In Section 2 , we detail our simulation setup. In
ection 3 , we provide a brief, qualitative overview of the dynamics in
ur simulations. In Section 4 , we examine the magnitude and spatial
istribution of the dissipation in these simulations, and how these 
cale with the conv ectiv e driving, the stratification, and the rotational
nfluence. In Section 5 , we explore the links between the dissipation,
ynamics, and heat transport. We show there that knowledge of the 
issipation provides novel constraints on the kinetic energy flux. We 
lose in Section 6 with a summary of our results and their possible
strophysical implications. 

.1 Ov er view of prior work: bounds and constraints on 

issipati v e heating 

n the interior of a star, the microphysical diffusion of momentum, 
eat, or magnetic fields is typically very small compared to other 
hysical processes, so that the rele v ant non-dimensional numbers 
e.g. the Reynolds, Rayleigh, and magnetic Reynolds numbers) are 
sually very large (e.g. Kulsrud 2005 ; Brun & Browning 2017 ;
ermyn et al. 2022 ). This need not imply, ho we ver, that viscous
nd Ohmic dissipation are negligible. 

To place our discussion on a firmer footing, and to highlight some
f the aims of our work, we briefly describe the thermodynamic 
onstraints on the dissipation here. More complete discussions can 
e found in He witt, McK enzie & Weiss ( 1975 , hereafter HMW75 ), in
ackus ( 1975 ), Alboussi ̀ere & Ricard ( 2013 , 2014 ), and Alboussi ̀ere
t al. ( 2022 ). 

Consider a volume V of convecting fluid with an associated 
agnetic field B , enclosed by some surface S . Assume this surface

s impenetrable and either stress-free or no-slip, so that the normal 
omponent of the fluid velocity u , and either all components of u
r the tangential stress vanish on S . The local rate of change of total
nergy can be expressed by 

∂ 

∂ t 

(
ρe + 

1 

2 
ρu 2 + 

B 

2 

2 μ0 
− ρ� 

)

= −∇ ·
[
ρ

(
e + 

1 

2 
u 2 −� 

)
u + 

( E × B ) 

μ0 
+ P u − τ · u − k∇T 

]
+ H 

(1) 

ith e the fluid’s internal energy, ρ its density, � the gravitational 
otential satisfying g = ∇ � , P the pressure, τ ij is the contribution
o the total stress tensor from irreversible processes, k is the thermal
onductivity, T is the temperature, H is the rate of internal heat
eneration (e.g. by nuclear fusion or radioactive decay) or cooling 
e.g. by any processes not included in the conductive term), and 

0 is the permeability of free space. We have assumed the MHD 

pproximation holds, so that E = −u × B + η∇ × B , where η =
/( μ0 σ ) is the magnetic dif fusi vity and σ is the electrical conductivity
e.g. Priest 2014 ). Physically, the rate of total energy change at a point
s given by the sum of the net inward flux of energy (the divergence
erms in equation ) and the rate of internal heat generation. 

The first global constraint is that total energy is conserved, but 
his yields little insight into the magnitude of the dissipative heating. 
ntegrating (1) over V gives ∫ 
S 

k 
∂ T 

∂ x i 
d S i + 

∫ 
V 

H d V = 0 , (2) 

ssuming both a steady state and that the electric current, j = ( ∇ ×
 )/ μ0 , vanishes everywhere outside V . Equation ( 2 ) implies that the
et flux out of V is equal to the total rate of internal heating and
ooling. But dissipative terms do not appear in this equation; viscous
nd ohmic heating do not contribute to the o v erall heat flux. 

To constrain the dissipation, we turn instead to the internal energy
quation, which can be written as (

∂ e 

∂ t 
+ ( u · ∇) e 

)
= ∇ · ( k∇T ) − P ( ∇ · u ) 

+ τij 

∂ u i 

∂ x j 
+ 

j 2 

σ
+ H . (3) 

ssuming a steady state and integrating over the fluid volume V, it
an be shown that ∫ 
V 

( u · ∇) P d V + � = 0 (4) 

here the total dissipative heating rate, � , is defined as 

 = 

∫ 
V 

(
τij 

∂ u i 

∂ x j 
+ 

j 2 

σ

)
d V . (5) 

he first and second terms inside the integral represent the contri-
utions due to viscous and Ohmic ef fects, respecti vely. Equation
 4 ) implies that the total dissipativ e heating, inte grated o v er the
olume, is exactly balanced by the work done against the background
tratification (Currie & Browning 2017 ). 

Equi v alently, from the first law of thermodynamics, we have 

 d S = d e − P 

ρ2 
d ρ (6) 

here s is the specific entropy, implying that 

T 

(
∂ s 

∂ t 
+ ( u · ∇) s 

)
= ∇ · ( k∇T ) + τij 

∂ u i 

∂ x j 
+ 

j 2 

σ
+ H . (7) 

ollowing HMW75 , we can divide this equation by T , and integrate
 v er volume to find ∫ 
S 

k 

T 
∇T · d S + 

∫ 
V 

k 

∣∣∣∣∇T 

T 

∣∣∣∣
2 

d V + 

∫ 
V 

1 

T 

(
H + τij 

∂ u i 

∂ x j 
+ 

j 2 

σ

)
d V = 0 . (8) 

Physically, this equation expresses the fact that there is a flux of
ntropy in and out of the domain (first term), and that entropy can
e generated in the bulk by conduction (second term) or by heating
ithin the domain (third term). If the inward flux of entropy at the
ottom is less than the outward flux of entropy out the top – as
ccurs if there is a temperature contrast across the domain – then the
ifference must be made up by entropy generation in the convection 
one (either by conduction or dissipation). 

In HMW75 , this equation is used to derive an upper limit on the
otal amount of dissipative heating that can occur in a convective 
ayer of depth d . This is given by 

 ≡ � 

L 

< 

T 0 − T top 

T top 
, (9) 

here T top and T 0 denote the upper and lower boundary values of the
emperature, respectively, and L is the luminosity through the layer. 
his upper limit corresponds to the case in equation ( 8 ) where there

s negligible entropy generation by conduction or heating, and where 
he dissipation occurs at the highest possible temperature (i.e. at the
ottom of the domain). In this case, as discussed in HMW75 , the
MNRAS 528, 6720–6734 (2024) 
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otal dissipative heating rate is bounded not by L , but by L d / H T , with
 T a suitably defined temperature scale height. 
In general, ho we ver, it cannot be assumed that dissipation occurs

t the highest possible temperatures. For example, the dissipation
ould be distributed more uniformly throughout the layer, or it
ould be concentrated predominantly in boundary layers. In these
ituations, E could, in principle, be much smaller than the upper
ound of equation ( 9 ). 
Prior simulations have shown that in certain circumstances con-

ection can approach a version of this bound. HMW75 demonstrated
hat for the specific case of a Boussinesq liquid without magnetism,
he integrated dissipation approached a value of order the bound at
igh enough Rayleigh numbers Ra (measuring the ratio of buoyancy
riving to viscous and thermal dissipation). Jarvis & McKenzie
 1980 ) expanded on this by investigating the case of compressible
onvection in the infinite Prandtl number Pr (defined as the ratio of
iscous to thermal dif fusi vities) regime, appropriate for convection
ithin the Earth’s mantle. Currie & Browning ( 2017, hereafter
B17 ) extended these results to a gas at finite Pr , as appropriate

or convection in stellar interiors. In a series of 2D hydrodynamic
imulations without rotation, they found that the total dissipative
eating in their calculations obeyed a tighter, but purely empirical
ound, specifically (defining E ≡ � / L , with � is the total viscous
eating and L is the luminosity) 

 = 

d 
ˆ H T 

(10) 

here 

ˆ 
 T = 

H T , 0 H T , top 

H T ,z ∗
(11) 

s a modified thermal scale height involving the scale height at
he top and bottom boundaries ( H T, top and H T, 0 , respectively), and
ome vertical height z ∗, defined such that half of the fluid mass
ies abo v e and below z ∗. The y sho wed that for suf ficiently high
upercriticalities, the value of E appeared to approach equation ( 10 )
symptotically. 

Yet not all conv ectiv e systems actually approach these upper
ounds. Recently Alboussi ̀ere et al. ( 2022 ), studying 2D convection
ith an unusual equation of state in which entropy was a function

olely of density, found much lower levels of dissipation than
uggested by equation ( 10 ) in most cases. They attributed the
ifference in part to the different boundary conditions adopted in
heir work; in particular, they showed that for their equation of state,
igh levels of dissipation (approaching the bound in equation 10 )
ere only realized in cases with rigid walls (as employed in CB17 ),

nd not in those with periodic boundary conditions. 
Together, these prior results demonstrate that dif ferent v alues of

he total dissipative heating are possible in stratified convection. A
entral aim of this paper is to provide constraints on how much
issipation actually occurs, for the astrophysically rele v ant case of
n ideal gas with rotation. 

 M E T H O D O L O G Y  

.1 Model setup 

e model a layer of fluid contained between impermeable, free-
lip boundaries at z = 0 and d and assume that the horizontal
oundaries are periodic. Our coordinate system is such that the
orizontal coordinates, x and y , correspond to longitudinal and
atitudinal directions, respectively, and the vertical coordinate, z,
NRAS 528, 6720–6734 (2024) 
orresponds to the radial axis. In the majority of our simulations, we
etain all three components of velocity but assume all variables are
ndependent of x , so that those simulations are 2D (ho we ver, for a few
ases in Section 5.5 , we relax this constraint and consider the fully 3D
ase). Gravity acts in the ne gativ e z-direction. To driv e conv ection,
e impose a flux F at the bottom boundary and fix entropy at the

op. Note that for our 2D simulations, F has units of energy per time
er length (rather than per area, as in the 3D cases) and F is related
o luminosity, L , by F = L / A where, in 2D cases, A is the horizontal
ox length and in 3D cases A is the horizontal cross-sectional area. 
To investigate the effects of rotation on such a conv ectiv e layer

e consider a tilted f -plane, where the rotation vector takes the form
= (0 , 	 cos α, 	 sin α) where 	 is the rotation rate, and α is the

atitude. We conducted cases at α = 90 ◦ and 45 ◦; for clarity, in almost
ll of our discussion below, we focus on cases at α = 90 ◦, which
orresponds to a vertical rotation vector, aligned with gravity and
epresentative of polar latitudes on a spherical body. 

To allow for the effects of a density stratification, we use the
nelastic equation set under the Lantz–Braginsky–Roberts approxi-
ation (Lantz 1992 ; Braginsky & Roberts 1995 ). This is expected to

e valid when the flows are sufficiently subsonic and the stratification
s nearly adiabatic. We diffuse entropy instead of temperature (see
iscussions in e.g. Lecoanet et al. 2014 ). We also consider only
he hydrodynamical problem, so there is no Lorentz force and all
issipation is viscous. 
The go v erning equations (in dimensionless form) are as follows: 

∂ u 

∂ t 
+ ( u · ∇) u 

= −∇ 

(
p 

ρ̄

)
+ 

Ra F 

P r 
ˆ s ̂  e z − T a 1 / 2 	 × u + 

1 

ρ̄

∂ 

∂ x j 
τij , (12) 

 · ( ̄ρu ) = 0 , (13) 

 r ̄ρT̄ 

(
∂ s 

∂ t 
+ ( u · ∇ ) s 

)
= ∇ · ( ̄ρT̄ ∇s) + 

P r 2 θ

Ra F 
τij 

∂ u i 

∂ x j 
, (14) 

here u = ( u, v, w) is the fluid velocity, s is the specific entropy, p is
he pressure, ρ̄ and T̄ are the reference state density and temperature,
espectively (defined in 17 ), and 

ij = ρ̄

(
∂ u i 

∂ x j 
+ 

∂ u j 

∂ x i 
− 2 

3 
δij ∇ · u 

)
. (15) 

hese quantities are all dimensionless and were obtained from their
imensional counterparts using d as the characteristic length-scale,
 

2 / ν as the characteristic time-scale (where ν is the kinematic
iscosity), and ν/ d as the characteristic velocity. Specific entropy
as characteristic scale Fd 

κρ0 T 0 
, where ρ0 and T 0 are the values of the

eference state density and temperature at the bottom of the domain,
espectively, and κ is the thermal diffusivity. The characteristic scales
or p , density, and temperature are ρ0 ν

2 / d 2 , ρ0 , and T 0 , respectively.
uminosity has scale FA , where A has either characteristic scale d in
D or d 2 in 3D. Equations ( 12 )–( 14 ) contain several dimensionless
arameters defined as follows: 

 r = 

ν

κ
, T a = 

4 	2 d4 

ν2 
, R a F = 

g d4 F 

νκ2 ρ0 c p T 0 
, θ = 

g d 

c p T 0 
, 

(16) 

here c p is the specific heat capacity at constant pressure and g is the
cceleration due to gravity. In this work, we take ν, κ , c p , and g to be
onstant (i.e. they do not vary with depth). Pr is the Prandtl number
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Table 1. Input parameters and selected output quantities for sample simula- 
tions presented in this paper. 

N ρ Ra F / Ra c Ra c Ta Ro c α E Nu 

1.4 3.16 × 10 1 6.74 × 10 5 10 8 0.46 90 ◦ 0.82 8.61 
1.4 1.78 × 10 2 6.74 × 10 5 10 8 1.09 90 ◦ 0.92 15.3 
1.4 5.62 × 10 2 6.74 × 10 5 10 8 1.95 90 ◦ 0.95 19.6 
1.4 10 3 6.74 × 10 5 10 8 2.60 90 ◦ 0.98 22.1 
1.4 10 4 6.74 × 10 5 10 8 8.21 90 ◦ 1.05 35.0 

Notes. Indicated are the number of density scale heights across the layer 
( N ρ ), the supercriticality of the simulation Ra F / Ra c , the critical Rayleigh 
number Ra c , the Taylor number T a , the conv ectiv e Rossby number Ro c , the 
latitude α (for rotating cases only), and the output quantities E and Nu . Full 
machine-readable table available online. 
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nd is taken to be unity throughout this study. Ta is the usual Taylor
umber (quantifying Coriolis forces relative to viscous effects) and 
a F is a flux-based Rayleigh number. Alongside Ra F , it will also
e useful to consider the traditional Rayleigh number defined as 

a = 

g d 3 δs 

κν
, where � s is the entropy difference across the layer. Ta

nd Ra F will be varied to examine solutions at different rotation rates
nd at different levels of convective driving. 

The reference state is taken to be a time-independent, hydrostatic, 
deal gas given by 

¯
 = (1 − θz) , ρ̄ = (1 − θz) m , (17) 

here m = 

3 
2 is the polytropic index. 

We will refer to the number of density scale heights across our
ayer, N ρ , to quantify the degree of stratification. This is defined as 

 ρ = ln 
ρ̄0 

ρ̄top 
= −m ln (1 − θ) . (18) 

In dimensionless terms the boundary conditions amount to en- 
orcing ∂ s 

∂ z 
= −1 at z = 0 and s = 0 at z = 1. The impermeable and

tress-free boundary conditions become, respectively, w = 0 and 
∂ v 
∂ z 

= 0 on z = 0, 1 (for the 3D simulations in Section 5.5 , we also
ave ∂ u 

∂ z 
= 0). 

We solve this system using the pseudo-spectral code Dedalus 
Burns et al. 2020 ). Our simulations at low and moderate Ra F 
enerally use 256 grid points in the horizontal and 128 in the vertical
ith an aspect ratio of 2 (i.e. the box is twice as wide as it is tall);

t higher Ra F , higher resolutions were required (with up to 640 grid
oints in the vertical direction), and in a few of the highest resolution
ases (at Ta = 10 11 ) we have considered an aspect ratio of 1.075
nstead. The 3D cases in Section 5.5 have an aspect ratio of 2. 

The simulations were initialized either by imposing very small 
ntropy perturbations on a motionless base state, or (for some cases 
t higher Ra F ) from an evolved state at lower Ra F . 

It is convenient to specify the buoyancy driving in a conv ectiv e
ystem by reference to the value of Ra F at which convection first
ccurs, the critical Rayleigh number Ra c . To find Ra c , we constructed
n eigenvalue problem (EVP) solver using Dedalus (Burns et al. 
020 ), from which we obtain a grid of growth rates for a given input
ange of Ra F and k y values, where k y is the horizontal wavenumber.

e then used the open-source Eigentools package (Oishi et al. 2021 )
o find Ra c (taking into account only those modes that would fit into
he finite computational domain). Rotation and stratification both 

odify the values of Ra c (see e.g. Chandrasekhar 1967 ; Mizerski &
obias 2011 ). For the parameters studied here, Ra c then varies from
f the order of 100 (for e.g. cases at N ρ = 4, Ta = 0) to nearly 10 8 

for cases at Ta = 10 11 ). 

 OV ERVIEW  O F  RESULTING  DY NA MIC S  

he conv ectiv e flows in this system are influenced by rotation,
y stratification, and by the level of buoyancy driving. We have 
onducted simulations that sample a wide variety of possible states 
ithin this multidimensional parameter space. We consider cases 

anging from the nearly Boussinesq limit ( N ρ = 0.2, with a density
ontrast from top to bottom of only 1.22) up to stronger stratifications
ith N ρ = 4 (density contrast of 55). The energy passing through

he system is quantified by the flux-based Rayleigh number Ra F , 
s defined abo v e; our simulations sample both laminar flows near
onv ectiv e onset (with Ra F close to Ra c ) and more turbulent states
hat have Ra F ∼ 10 6 Ra c . The rotation rate in our simulations is
uantified by the Taylor number defined abo v e, which varies between
a = 10 and 10 11 . The Ekman number is also commonly used
o quantify the influence of rotation relative to viscosity; Ek =
a −1/2 , so here varies from 3.16 × 10 −1 to 3.16 × 10 −6 . We
onducted simulations at latitudes of 90 ◦ and 45 ◦, but in almost
ll the figures below have chosen to focus on cases at 90 ◦ for clarity.
None of the key quantities reported in this paper, or their scalings
ith Ra F and Ta , appeared to depend significantly on the choice of

atitude.) Table 1 lists the input parameters and ke y-deriv ed quantities
or a small number of these simulations; the full table is available
nline. At each N ρ , simulations were performed at a range of loga-
ithmically spaced supercriticalities. For cases performed at a fixed 
upercriticality (e.g. Figs 3 and 6 ), they were instead logarithmically
paced in Ta . 

Increasing the rotation rate stabilizes the system against con- 
ection, increasing the value of Ra c . Thus, for simulations at
onstant Ra F , increasing Ta in isolation would eventually result 
n a system that no longer convects. In much of our discussions
elow, we therefore choose to compare simulations at varying Ta but
onstant supercriticality, Ra F / Ra c . We also quantify rotation using
o c = 

√ 

Ra F / ( T aP r) (as in e.g. Hindman, Featherstone & Julien 
020 ; see also Gilman 1978 ), which assesses the buoyancy driving
elative to the Coriolis force (see Anders et al. 2019 for a discussion
f how this relates to other measures of rotation). We sample both
apidly rotating cases (with some ha ving v olume-a veraged values of
o c < 1) and ones in which rotation has little dynamical role ( Ro c 

1). 
Many different types of flow are possible within this parameter 

pace. Three illustrativ e e xamples can be seen in Fig. 1 , which
hows the specific entropy s for (top row) a non-rotating case at
 a F = 10 4 R a c with a moderate density stratification ( N ρ = 1.4),

middle row) a rotating case ( Ta = 10 8 ) with the same stratification
ut Ra F = 56.2 Ra c ≈ 3.8 × 10 7 , and (bottom row) a rotating case
 Ta = 10 8 ) at Ra F = 10 4 Ra c ≈ 6.8 × 10 9 . 

In our non-rotating simulations, for which a typical case is shown
n the topmost panel of Fig. 1 , the convection tends to consist of a
mall number of conv ectiv e cells, and to be steady in time. These
imple flow patterns persist to surprisingly high values of Ra F in the
etup investigated here (as also seen in Boussinesq simulations with 
tress-free boundaries in, e.g. Wang et al. 2020 ); in some other prob-
em formulations (e.g. with fixed entropy or temperature boundary 
onditions), the flow tends to become visibly turbulent at lower values 
f Ra (see examples in e.g. Rogers, Glatzmaier & Woosley 2003 ;
nders & Brown 2017 ). When rotation is dynamically significant, 

s shown in the middle panel, the conv ectiv e patterns tend to align
ith the axis of rotation in accordance with the Taylor–Proudman 

heorem. Rotating cases at the same Ta but even higher Ra F (as shown
n the bottom panel), in which the Coriolis force is small relative to
MNRAS 528, 6720–6734 (2024) 
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M

Figure 1. Specific entropy s in three cases sampling different parameter 
re gimes. All cases hav e N ρ = 1.4; top panel is a non-rotating case ( Ta = 0) 
with Ra F = 10 4 Ra c ; middle panel has Ta = 10 8 and Ra F = 56.2 Ra c ; bottom 

panel has Ta = 10 8 and Ra F = 10 4 Ra c . 
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nertia, exhibit time-dependent flow with structure on many spatial
cales. 

Most of our simulations behav e, qualitativ ely, like one of the three
xamples in Fig. 1 . The non-rotating simulations (as sampled in
he top panel) represent one extreme; the rotating, very high- Ra F 
ases (as in the bottom panel) are another. The single-celled case is
resumably not realized in any actual star, but serves as a useful limit,
howing what can occur when a conv ectiv e plume travels almost
nimpeded from the top to the bottom of the domain; in this limit
as we demonstrate below), most of the dissipation occurs in the
ottom boundary layer. The cases with rotation are more realistic,
xhibiting flow and dissipation throughout the domain. Below, we
 xplore (for sev eral dif ferent stratifications) ho w the dissipation and
ynamics vary in between these extremes, as a function of rotational
nfluence. 

 T H E  M AG N I T U D E  A N D  SPATIAL  

ISTRIBU TION  O F  V I S C O U S  DISSIPATION  

.1 The maximum value of viscous dissipation at high Ra F 

ere, we examine whether the high levels of dissipation found in
B17 are realized in rotating cases as well. We find that, for the

evels of stratification examined here, the total amount of dissipative
eating in the rotating simulations appears to approach a similar
pper bound to that realized in non-rotating calculations. The models
ere were conducted with a different aspect ratio than in CB17
here the horizontal layer size is twice its depth, whereas in CB17
hey were equal) and different boundary conditions (here periodic,
mpermeable in CB17 ), so we also indirectly show that these results
NRAS 528, 6720–6734 (2024) 
re, for an ideal gas equation of state, not directly dependent on these
actors. 

Fig. 2 shows E for a representative selection of cases at dif-
erent Ra F and Ta , for three different stratifications. For our non-
imensional setup, E is given by 

 = 

P r 2 θ

ARa F 

∫ 
V 

τij 

∂ u i 

∂ x j 
d V . (19) 

ecall that A is now non-dimensional, and so for our 2D simulations
t is equal to the aspect ratio of the layer, while for the 3D cases,
 is equal to the aspect ratio squared. The horizontal lines in
ig. 2 show the value of equation ( 10 ) at each value of N ρ . At
igh enough supercriticalities, both the rotating and non-rotating
ases appear to approach this limiting value, which is dependent
n the layer depth and stratification but independent of Ra F (and
ikewise also independent of viscosity or diffusivity). We have
ound no cases that exceed this value, but (because it is only an
mpirical bound) cannot rule out the possibility that it would be
xceeded at higher Ra F or for other parameter re gimes. We hav e
isplayed example cases at Ta = 10 8 ; our cases at Ta = 10 11 and
atitude 45 ◦ exhibit identical behaviour. Both the rotating and non-
otating cases shown here exceed E = 1 (i.e. the total integrated
issipativ e heating e xceeds the imposed luminosity) at high enough
a F . Ho we ver, we cannot rule out different asymptotic values of E

or the rotating and non-rotating cases, as discussed in more detail
elow. 
It is clear from Fig. 2 that the empirical bound on dissipative

eating given by equation ( 10 ) is approached only for sufficiently
igh Ra F / Ra c , and that the value of Ra F / Ra c needed to reach the
pper bound is different for each N ρ . The largest N ρ cases have
ot quite reached the asymptotic upper limit as they have not been
erformed at a high enough supercriticality. 
A complementary view but instead focused on the influence of

otation is provided by Fig. 3 , which shows E for a selection of cases
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Figure 3. The values of E for a range of rotation rates. All cases have a fixed 
supercriticality of Ra F / Ra c = 10 2 ; we consider stratifications of N ρ = 0.5, 
1, and 1.4. The labels show the range of the conv ectiv e Rossby number Ro c 
for increasing values of Ta at each stratification. All simulations shown are at 
latitude 90 ◦, except for the point at Ta = 10 11 which is at 45 ◦. 
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t fixed supercriticality (here Ra F = 10 2 Ra c ) and three different
 ρ but varying Ta (i.e. with varying rotational influence relative 

o viscous effects). In the regime probed here, it is clear that the
resence of rotation does not greatly alter the volume-integrated 
agnitude of viscous dissipation despite significant changes in the 

ynamics. 
Note that because rotation stabilizes the system against convection, 

he high- Ta cases shown here have appreciably higher Ra F than non-
otating cases at the same supercriticality. We have that Ra c ∝ T a 2 / 3 

Chandrasekhar 1967 ), so for example, cases at Ta = 10 11 require
a F about 10 7 times higher than non-rotating equi v alents to reach

he same supercriticality. The conv ectiv e flow fields in the rotating
ases are, at equi v alent Ra F / Ra c , more complex than in the non-
otating cases, but they eventually asymptote to similar levels of 
iscous dissipation. Further, the cases shown here span a range of
onv ectiv e Rossby numbers, from Ro c ≈ 22 in the lowest Ta cases to
0.3 at Ta = 10 11 , and so sample both cases in which rotation plays

ittle dynamical role (with Ro c � 1) and those in which it is more
ignificant ( Ro c < 1). 

.2 Entropy generation by dissipation and conduction 

n the previous section, we suggested that in both rotating and 
on-rotating cases, the total viscous dissipation at first increases 
ith increased buoyancy driving (higher Ra F ) and then plateaus 

t or below a fixed value ( 10 ) that depends on the layer height
nd stratification but is independent of the rotation rate or dif-
usivities. Here, we begin to explore how this arises. To do so,
e consider entropy generation by conduction and dissipation at 
arying Ra F . 

In a steady state, the energy entering the convection zone at the
ottom boundary (by conduction) must equal the energy leaving at 
he top boundary (also by conduction). The top boundary is at a
ower temperature than the bottom one, so the conductive entropy 
ux out the top is larger than the entropy flux entering the domain;

he difference must be made up by entropy generation within the 
omain, associated with either conduction or viscous dissipation. For 
ur simulations (employing entropy diffusion and without magnetic 
elds), this implies that 

 = 

∫ 
V 

[
∇ ·

(
ρ̄T̄ ∇s 

T̄ 

)
+ 

ρ̄T̄ ∇ s · ∇ T̄ 

T̄ 2 
+ 

P r 2 θ

Ra F 

1 

T̄ 
τij 

∂ u i 

∂ x j 

]
d V , 

(20) 

nd so 

A (e N ρ/m − 1) ︸ ︷︷ ︸ 
d S out−in ) 

= 

∫ 
V 

ρ̄T̄ ∇ s · ∇ T̄ 

T̄ 2 
d V 

︸ ︷︷ ︸ 
d S cond 

+ 

P r 2 θ

Ra F 

∫ 
V 

1 

T̄ 
τij 

∂ u i 

∂ x j 
d V 

︸ ︷︷ ︸ 
d S diss 

, (21) 

hich follows from equation ( 14 ) after integration (using the diver-
ence theorem and the constraint of mass conservation). We have 

lso used 

[
− ρ̄T̄ ∂ s 

∂ z 

T̄ 

]z= 1 

z= 0 

= e N ρ/m − 1. For reference, we note that the

imensional equi v alent of equation ( 21 ), retaining entropy diffusion,
ould be 

 

(
1 

T top 
− 1 

T 0 

)
= 

∫ 
V 

κρ̄T̄ ∇ s · ∇ T̄ 

T̄ 2 
d V + 

∫ 
V 

1 

T̄ 
τij 

∂ u i 

∂ x j 
d V , (22) 

nd the dimensional equi v alent for temperature dif fusion, and in-
luding magnetism and internal heating, is equation ( 8 ). 

In Fig. 4 , we examine the terms in ( 21 ) for a series of calculations
t varying Ra F , N ρ , and Ta . In all cases, the sum of the terms, on
he right hand side of equation ( 21 ) (d S cond and d S diss ), correctly
atches d S out − in , the mismatch between the entropy flux at the top

nd bottom boundaries. As Ra F increases, the relative contributions 
f conduction (d S cond ) and dissipation (d S diss ) change: at low Ra F ,
oth processes contribute to the entropy balance, whereas at high 
nough Ra F there is negligible entropy generation by conduction 
ithin the bulk. 
MNRAS 528, 6720–6734 (2024) 
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In the non-rotating cases, the bulk becomes nearly isentropic at
igh Ra F , so that the conductive entropy generation term d S cond 

s then confined mainly to thin thermal boundary layers whose
idth (discussed in Section 5.4 ) decreases with Ra F . Thus d S cond 

cales roughly with the width of these boundary layers; as shown in
ection 5.4 , the largest (top) boundary layer width scales as Ra 

−1 / 4 
F 

n our simulations. We have therefore plotted a corresponding Ra 
−1 / 4 
F 

ependence in Fig. 4 to guide the eye; in the non-rotating cases d S cond 

ppears to follow this trend reasonably well. (The line is not a fit; it is
hosen to pass through the fourth data point for illustrative purposes.)
he behaviour in the rotating cases is more complicated, as discussed
elow, partly because, in these cases, the entropy gradient (and hence
lso dS cond ) is non-zero in the bulk. 

These trends are linked to the values of E explored above. We
av e o v erplotted the measured values of E at each Ra F in Fig. 4 .
he simulations with the highest E values are those in which entropy
eneration by conduction is negligible; further, in non-rotating cases,
he Ra F -dependence of E is well matched by the Ra F -dependence of
 S diss (which, in turn, is linked to the width of the thermal boundary
ayers as noted abo v e). 

These results also help us understand why simulations must be run
t much higher Ra F to reach the ‘dissipative asymptote’ when the
tratification is strong (i.e. at high N ρ). The purely conductive state
as 

 S cond = d S out−in = A (e N ρ/m − 1) , (23) 

hich increases with increasing N ρ . 
Ho we ver, kno wledge of d S diss alone is not sufficient to determine

he actual value of E at each Ra F . In the limit of high Ra F , when
 S cond is negligible, we know that 

 S diss = 

P r 2 θ

Ra F 

∫ 
V 

1 

T̄ 
τij 

∂ u i 

∂ x j 
d V = d S out−in = A (e N ρ/m − 1) . (24) 

eanwhile, recall that E = 

Pr 2 θ
Ra F A 

∫ 
V 

τij 
∂ u i 
∂ x j 

d V , so the highest pos-
ible E value consistent with the known d S diss occurs if all the
issipation is at the highest possible temperature. As noted in
ection 1 , the firm upper bound of HMW75 corresponds to this

imit. More generally, the value of E actually attained depends on
oth the magnitude of the dissipative entropy generation term d S diss 

nd on where it occurs. For example, if −τij ∂ u i / ∂ x j ≡ Q 0 were

onstant throughout the domain, we would have E = − Pr 2 θ
Ra F 

Q 0 , with

 S diss = − Pr 2 θ
Ra F 

Q 0 A 

∫ 1 
0 (d z/ ̄T ), which (upon substituting for T̄ and

nte grating) giv es 

 S diss = −P r 2 

Ra F 

Q 0 AN ρ

m 

. (25) 

quating this to dS out − in allows us to solve for Q 0 in this limit. This,
n turn, allows calculation of E for this situation, 

 = 

mθ

N ρ

(e N ρ/m − 1) , (26) 

hich reduces to E ≈ θ = 1 − e −N ρ/m , if N ρ is small. 
Our rotating cases at very high Ra F , which have Ro c > 1 and

xhibit intricate flow fields, exhibit E close to the value predicted by
quation ( 26 ), though they slightly exceed it at the highest Ra F we
av e probed. The y al w ays remain below the limit of equation ( 10 ).
 or e xample, at N ρ = 1.4, equation ( 26 ) yields E ≈ 1.00, whereas
quation ( 10 ) gives E ≈ 1.21 and equation ( 9 ) yields E ≈ 1.54; our
ighest Ra F , Ta = 10 8 simulation at that stratification, shown in Fig. 2 ,
as E ≈ 1.05. In comparison, many of our non-rotating simulations
which have simpler flow fields) exhibit values of E that exceed
NRAS 528, 6720–6734 (2024) 
quation ( 26 ), the predicted value of E for uniform dissipation. For
xample, at N ρ = 2, equation ( 26 ) would yield E ≈ 1.54, whereas
ur highest Ra F non-rotating simulations at that stratification have
 ≈ 2.08. This is closer to, but does not exceed, the limit described
y equation ( 10 ), which for the same stratification is 2.15. (We have
ound no cases that exceed the empirical bound in equation 10 , which
s al w ays tighter than the firm bound of equation 9 . For example, at
 ρ = 2, the latter is 2.8, which is significantly larger than in our
ighest Ra F cases.) 
If the dissipation were uniformly distributed throughout the

omain, equation ( 26 ) would provide a useful bound on E . Some
f our simulations exceed this bound, so evidently, in at least these
ases, the dissipation is not uniform: a disproportionate amount must
ccur at higher temperatures, allowing E to be higher than suggested
y equation ( 26 ) while still satisfying the entropy constraint that
 S diss = d S out − in . In the following section, we explore how and
hen this occurs. 

.3 The spatial distribution of dissipation 

ere, we determine where the dissipation occurs in our simulations.
e show – in particular by examination of a ‘dissipation half-height’

defined to be the height by which half of the dissipation occurs) – that
he non-rotating cases at high Ra F which approach the CB17 upper
ound correspond to situations in which much of the dissipation
ccurs close to the bottom of the domain and there is negligible
ntropy generation by conduction in the bulk. In rotating cases, the
issipation is more uniformly distributed throughout the interior. 
We begin by defining L diss ( z) = A 

∫ z 
0 Q diss d z ′ , where Q diss is

he horizontal average of − Pr 2 θ
Ra F 

τij ∂ u i / ∂ x j (the local dissipative
eating). Here, L diss represents the total dissipative heating up to
eight z, so if the heating were uniformly distributed throughout the
nterior (with Q diss a constant) L diss / L would be a linear function
f height, increasing from zero at the lower boundary to −E
t the top. Qualitatively, we find that L diss ( z) is close to linear
or our rotating cases; the dissipative heating is nearly uniform
hroughout the domain. In our non-rotating cases, by contrast, much
f the dissipation occurs near the lower boundary. Examples, and a
iscussion of how these are linked to the buoyancy work and to the
ynamics, can be found in Section 5.1 . 
A simple, quantitative assessment of the sites where dissipation

ccurs is provided by Fig. 5 , which shows what we call the
dissipation half-height’ z diss in a range of cases. We define this
s the location at which L diss reaches half its maximum (absolute)
alue. That is 

| L diss ( z diss ) | 
L 

= 

∫ z diss 

0 
Q diss d z = 

E 

2 
. (27) 

f the convection and dissipation were uniform throughout the
omain, z diss would be 0.5; meanwhile, if the dissipation occurs
redominantly at the lower boundary, z diss will tend towards the width
f the lower dynamical boundary layer. In both the rotating and non-
otating cases, z diss declines at first with increasing supercriticality:
ore and more of the dissipation occurs close to the bottom boundary.

n the non-rotating cases it appears to level out (i.e. is approximately
onstant) at high enough Ra F . In the non-rotating cases studied
ere – that is, in 2D and at Pr = 1 specifically – at high enough
a F the flow consists of a steady cell of convection. Thus, there is
issipation around the single do wnflo w plume, and in the top and
ottom dynamical boundary layers, but very little elsewhere in the
ulk. In this limit, z diss is related to the point at which the flow is bent
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Figure 5. Values of z diss for a range of non-rotating and rotating simulations 
at a range of stratifications, N ρ . All rotating cases shown are at latitude 90 ◦. 

Figure 6. Values of z diss for a range of simulations at fixed supercriticality, 
Ra F = 10 2 Ra c for stratifications of N ρ = 0.5, 1.0, and 1.4 and a range of Ta. 
All cases shown are at latitude 90 ◦, except for the point at Ta = 10 11 which 
is at 45 ◦. 
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rom the vertical towards the horizontal, and this occurs progressively 
earer the lower boundary at moderate Ra F . 
In the rotating cases, the dissipation is more uniformly distributed 

hroughout the domain, so z diss is (at an y giv en Ra F ) higher than in
he non-rotating cases. Ho we ver, z diss still declines as Ra F increases.
ote that at fixed Ta , as sampled here, increasing Ra F / Ra c implies
ecreasing rotational influence on the dynamics, so that the cases at 
igh Ra F and lower z diss have a higher Rossby number. 
A complementary view is provided by Fig. 6 , which examines 

he value of z diss in a series of cases at the same supercriticality
a F = 10 2 Ra c but varying Ta . Here, we find that z diss increases with

ncreasing Ta (i.e. with increasing rotation rate). That is, stronger 
otation leads to more of the dissipation occurring in the bulk of
he domain, far from the lower boundary. There is a fairly sharp
ransition between a ‘low- z diss ’ state at low Ta (high Rossby number)
o a ‘high- z diss ’ state for higher Ta ; beyond this, z diss increases slowly
ith increasing Ta (i.e. with increasing rotational influence). This 
ransition is connected to the transition from single-cell states (as 
chieved in non-rotating cases or at very low Ta ) to much more
ntricate, time-dependent flows realized at higher Ta and Ra F . 

These changes in the spatial distribution of the dissipation must 
e linked to changes in the flow field. Since the local dissipative
eating is related to the stress tensor τij ∂ u i / ∂ x j , changes in either
he magnitude of u , or in the characteristic length-scales present
n the flow, will affect Q diss . Both these quantities are expected to
epend on rotation rate (e.g. Aurnou, Horn & Julien 2020 ; Currie
t al. 2020 ; Nicoski, O’Connor & Calkins 2023 ), so it is natural that
he dissipation exhibits some dependence on this as well. Ho we ver,
 diss must obey the bounds described in Section 4.2 at all rotation
ates. 

Flows in 3D, or in real stars, are bound to exhibit more complexity
t all rotation rates, and so we do not expect the numerical values
f z diss (for example) to be the same in such cases. Equi v alently,
he relative proportion of bulk and boundary dissipation might 
ell be different. (In the context of stellar convection, with no

mpermeable boundaries, the equi v alent of ‘boundary’ dissipation 
ight be conv ectiv e plumes that are dissipated only when they reach

djacent stably stratified layers.) The extremely low- z diss states seen 
ere at low Ta are also unlikely to be realized in any real star, since
hey occur only for single-cell flows with little bulk dissipation. 
o we v er, we e xpect that both the thermodynamic bounds discussed
ere, and the general trend towards increasing dissipation in the bulk
t higher rotation rates, may be robust. 

 L I N K S  BETWEEN  DY NA MIC S,  H E AT  

RANSPORT,  A N D  DI SSI PATI ON  

n a steady state, dissipation and dynamics are linked, so insight
nto either one yields constraints on the other. Here, we briefly
xplore how systematic variations in the go v erning parameters of
his problem (namely Ra F , Ta , and N ρ) lead to changes in the energy
ransport and in the flow fields, and we explore how these are related
o changes in the magnitude and spatial distribution of the dissipation.
ur discussion here is also intended to help place our work in context
ith a large body of previous research on heat transport in both non-

otating and rotating convection. 
In stellar astrophysics, the main purpose of a conv ectiv e theory is

o provide estimates of the entropy gradient needed to carry a certain
uminosity outwards (e.g. Gough & Weiss 1976 ). For example, in
tandard stellar evolution theory, the radius of a star depends on its
pecific entropy, and how this varies with depth (see e.g. discussions
n Ireland & Browning 2018 ). There is also substantial astrophysical
nterest in properties of the flow itself – for example, its magnitude at
ach depth – since these, in turn, will affect mixing, the transport of
eat and angular momentum, and the generation of magnetic fields. 
ence, we focus our discussions here on the heat transport, on the

elated question of how entropy varies with height in our simulations,
nd on the magnitude of the flows themselves. In Section 5.2 ,
e demonstrate that a quantity of particular interest, the kinetic 

nergy flux, can be estimated given knowledge of the dissipative 
eating. 

.1 Energy balances and transport terms 

n this section, we begin to quantify the links between energy
ransport in our simulations, and where the dissipation occurs. 

One view of this is provided by Fig. 7 , which assesses the energy
ransport in two example calculations. The top panels consider 
 non-rotating case at N ρ = 4 and Ra F = 10 5 Ra c ; the bottom
MNRAS 528, 6720–6734 (2024) 



6728 S. R. W. Lance, L. K. Currie, and M. K. Browning 

M

Figure 7. Fluxes of energy provided by different transport terms in the total 
energy equation (left panels) and internal energy equation (right panels), for 
example, 2D cases at (top panel) N ρ = 4 without rotation and (bottom panel) 
N ρ = 1.4 with rotation ( Ta = 10 8 ). 
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nes are for a rotating case with N ρ = 1.4, Ra F = 17.8 Ra c ,
nd Ta = 10 8 . 

We assess the transport in two complementary ways. The
ight panels show the terms arising in the following equation,
hich arises after integration and manipulation of the total energy

quation (equation 3 ): 

 = FA = P r 

∫ 
S z 

ρ̄T̄ sw d S 

︸ ︷︷ ︸ 
L conv = AF conv 

+ 

∫ 
S z 

−ρ̄T̄ 
∂ s 

∂ z 
d S 

︸ ︷︷ ︸ 
L cond = AF cond 

+ P r 

∫ 
V z 

−s ̄ρ( u · ∇) ̄T d V 

︸ ︷︷ ︸ 
L buoy = A 

∫ z 
0 Q buoy dz ′ 

+ 

P r 2 θ

Ra F 

∫ 
V z 

−τij 

∂ u i 

∂ x j 
d V 

︸ ︷︷ ︸ 
L diss = A 

∫ z 
0 Q diss dz ′ 

, (28) 

here the volume integrals are over the volume enclosed between
 

′ = 0 and z and the surface integrals are over the bounding surfaces
f that volume. The conv ectiv e heat flux ( F conv ) is defined by the
rst term; the conductive heat flux ( F cond ) by the second; the third
nd fourth terms define heating and cooling terms ( Q diss and Q buoy )
rising from the viscous dissipation and from work done against the
ackground stratification, respectively (as also discussed in Section
.3 ). As noted in CB17 , these latter two terms must balance when
nte grated o v er the entire layer, but the y do not hav e to balance at
ach depth. 

The left panels instead arise from considering the total energy
alance (i.e. including kinetic energy as well as internal), which in a
teady state may be written as (see e.g. Viallet et al. 2013 ) 

 = FA = 

∫ 
S z 

P r ̄ρsw + 

P r 2 θ

Ra F 
ρ̄w ̃  p d S 

︸ ︷︷ ︸ 
L e = AF e 

+ 

∫ 
S z 

−ρ̄T̄ 
∂ s 

∂ z 
d S 

︸ ︷︷ ︸ 
L cond = AF cond 

+ 

P r 2 θ

Ra F 

∫ 
S z 

1 

2 
ρ̄| u 

2 | w d S 

︸ ︷︷ ︸ 
L KE = AF KE 

+ 

P r 2 θ

Ra F 

∫ 
S z 

−( τij u i ) · ˆ e z d S 

︸ ︷︷ ︸ 
L visc = AF visc 

, (29) 
NRAS 528, 6720–6734 (2024) 
efining the enthalpy flux ( F e ), the kinetic energy flux ( F KE ), and
he viscous flux ( F visc ). It is common for global-scale simulations
f stellar convection to decompose the transport in this way (e.g.
rowning, Brun & Toomre 2004 ; Featherstone & Hindman 2016 ).

n the notation here, and in Fig. 7 , positive fluxes are defined to be
ertically upwards. 

Whether considering the total or internal energy equations, in a
teady state the sum of the transport terms must equal L , the total
uminosity, which is constant throughout the layer. The sum of the
ransport terms is indicated in Fig. 7 by a solid line, which is indeed
onstant with depth in all the sampled cases. In general, we use L ( z)
s a gauge of whether a given simulation has been evolved for a
ong enough time, and av eraged o v er long enough intervals, for the
esults to be time-independent. We evolved all cases in this paper
ong enough for L ( z) to vary by less than one per cent across the
ayer, and for other aspects of the dynamics (e.g. the kinetic energy
volution) to equilibrate as well. This means that the simulations were
volved for typically tens of viscous diffusion times, and averaged
 v er intervals ranging from 0.1 to several diffusion times. 
The energy transport differs substantially in our non-rotating

nd rotating cases. The top row in Fig. 7 is an example of what
an occur in non-rotating, stratified cases: Here (left panel), the
nthalpy flux exceeds the total flux in magnitude; this excess is
ompensated largely by a ne gativ e (inward-directed) kinetic energy
ux. Broadly similar transport has been observed in simulations
f stratified convection for decades (see e.g. Hurlburt, Toomre &
assaguer 1984 in 2D; Stein & Nordlund 1989 ; Featherstone &
indman 2016 ). Transport by conduction is small throughout the

ayer, outside of narrow boundary layers. 
By contrast, in the example rotating case (bottom row) the kinetic

nergy flux is negligible; the enthalpy flux is approximately equal
o the total luminosity, with conductive transport small outside the
oundary layers. At this particular Ra F , the conductive boundary
ayers are still relatively large, and there is evident asymmetry
etween the top boundary layer and the bottom one (which have
ifferent widths). 
The connection between this transport and the viscous dissipation

s made clearer by comparison to the right panels of Fig. 7 , which
onsiders the internal energy decomposition for the same cases. In
ll cases, the buoyancy work is fairly evenly distributed throughout
he domain – that is, outside of the bottom boundary layer L buoy 

ises linearly towards the top domain. The rotating case has fairly
niform dissipative heating, with L diss also nearly linear. But in the
on-rotating case, the dissipative heating L diss is non-uniform: More
f the dissipation is occurring near the bottom boundary. At the
pper boundary, both L buoy / L and L diss / L must approach + / − E ,
espectiv ely, and the y do so in both cases; what differs in the rotating
nd non-rotating simulations is the spatial distribution of L diss . The
onv ectiv e luminosity L conv , as defined and plotted here, is often
arger than the total luminosity in the non-rotating cases, in accord
ith the fact that L diss is greater in magnitude than L buoy throughout
uch of the convection zone. In the rotating cases, where there

s approximate local balance (as well as an exact global balance)
etween the dissipative heating and the ‘cooling’ by buoyancy work,
he conv ectiv e luminosity is closer to unity. 

.2 Predicting the kinetic energy flux from the viscous 
issipation 

he transport revealed here differs in some important ways from that
nvisioned in MLT, and some of these differences are connected to
here the viscous dissipation occurs. In this section, we consider
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he kinetic energy flux, which is not explicitly included in classical 
LT (e.g. Gough & Weiss 1976 ) but is a robust feature of stratified

onvection in stellar environments. Generally, we find that the 
nthalpy flux exceeds the total luminosity by a considerable amount, 
nd is compensated for by the inward-directed KE flux. Ho we ver,
rior work has not clearly established what sets the amplitude of these 
uxes. Might it be possible, for example, for a star like the Sun to have
 thousand solar luminosities moving outwards in the enthalpy flux, 
nd 999 moving inwards via the KE flux? In this section, we show that
nowledge of the viscous dissipation can answer this question, and 
ore generally provide constraints on the magnitude of the kinetic 

nergy flux. 
Following CB17 , we define F other = 

∫ z 
0 ( Q buoy + Q diss )d z ′ , so 

hat if conduction is negligible the total flux F ≈ F conv + F other .
qui v alently, F other = F p + F KE + F visc , where F p = 

1 
A 

∫ 
S z 

wp d S.
ence, F other is equi v alent to the steady-state transport associated 
ith processes other than the conv ectiv e flux as defined abo v e.
utside of the boundary layers, prior work has found that F KE is
enerally larger in magnitude than F p or F visc (e.g. Viallet et al.
013 ), so that in the bulk F other ≈ F KE . 
If the local dissipation and buoyancy work terms do balance at 

ach depth, then F other is zero. This, in turn, implies negligible kinetic
nergy flux. This is approximately the state attained in some of our
otating cases: There, both L diss and L buoy are linear in z, and of
imilar magnitude, so that F other � F . 

In our non-rotating 2D cases, by contrast, the concentration of 
uch of the dissipative heating near the bottom boundary implies 
 substantial mismatch between dissipative heating and buoyancy 
ork throughout much of the bulk, so F other is no longer negligible.
his, in turn, requires a substantial kinetic energy flux. 
We can use these ideas to place simple bounds on the magnitude

f the kinetic energy flux. Consider the extreme case in which 
one of the viscous dissipation occurs in the bulk (i.e. it is all in
 comparati vely narro w bottom boundary layer). At some depth just
bove this boundary layer, nearly all the integrated viscous heating 
ill have occurred, but very little of the integrated work will have;

n the notation employed here, L buoy / L will be close to zero, while
 diss / L will be nearly equal to its value at the top of the domain.
he latter is bounded by E = d / ˆ H T , as discussed abo v e, so we have
 other / L ≈ E just abo v e the bottom boundary. Hence, if the ‘other’

ransport is dominated by the KE flux (rather than L p or L visc ) we
xpect the maximum absolute value of L KE / L to be bounded by the
alue of E at each stratification. 

We examine this prediction in Fig. 8 , which shows the maximum
bsolute value of the kinetic energy flux in a series of calculations
t varying N ρ at high supercriticality ( Ra F ≥ 10 4 Ra c ), along with
he limiting value of E given by equation ( 10 ) and the actual value
f E attained in the simulation. For cases at N ρ of two or less, the
easured E values adhere closely to the limiting value (indicated 

y the black line); at the highest N ρ , the measured values are lower
han the theory. The KE flux closely tracks the measured value of
 at each stratification (lying slightly below it), in keeping with the
imple model described abo v e. 

These results suggest that at high enough Ra F the maximum 

ossible amplitude of the kinetic energy flux may be estimated 
imply by calculating E = d / ˆ H T (equation 10 ). Our non-rotating
ases, which consist of simple unicellular flows, actually approach 
his limit. Ho we v er, (as noted abo v e) in rotating cases, the dissipative
eating more nearly balances the buoyancy work at each height, 
eading to significantly smaller kinetic energy fluxes. Likewise, more 
omplex flows (as likely realized at higher Ra F in real stars) likely
ead to smaller KE fluxes as well. We speculate, though, that the
imits on the KE flux developed here are unlikely to be exceeded by
eal conv ectiv e flows. F or this to occur, the dissipation and buoyanc y
 ork w ould hav e to be ev en more imbalanced than in our single-
lume non-rotating cases; for uniform buoyancy work, this would 
equire the dissipation to be concentrated to an even smaller part of
he domain than in these simulations. 

.3 Entr opy pr ofiles and Nusselt number scalings 

n previous sections, we saw that the energy transport in our simu-
ations – and, in particular, the relative contributions of conduction 
nd convection – varied in response to changes in the key controlling
arameters N ρ , Ra F , and Ta . Here, we explore how these variations
rise, and, in particular, how they are link ed to the entrop y gradients
stablished by the convection. 

In our w ork, entrop y is fixed at the upper boundary; at the lower
oundary, its gradient is fixed. Recall also that we have assumed that
onductive transport is proportional to entropy gradients (rather than 
emperature gradients). Together, these imply that in the absence 
f convection, we would expect a linear specific entropy profile, 
xtending from s = 0 at the top to � s cond at the bottom. For the
odels considered here, � s cond is 

s cond = 

1 

θm 

[e N ρ − 1] . (30) 

If convection occurs, a smaller total entropy contrast between 
he top and bottom boundaries, � s , is required to carry the same
mposed F . In our simulations the total � s , and its variation with
eight, are functions of N ρ , Ra F , and Ta . We assess these for two
llustrative cases in Fig. 9 , which shows 〈 s 〉 ( z) (where 〈 · 〉 denotes a
orizontal average) for both a rotating case (at Ta = 10 8 and Ra F =
7.8 Ra c ) and a rotating one (with Ra F = 10 4 Ra c ) at N ρ = 1.4.
n both cases, conduction must carry all the energy within some
istance of the boundaries, so there are steep entropy gradients at
he top and bottom of the domain; the entropy gradient is smaller in
he bulk. The total � s across the layer is similar in the two cases,
ut its spatial variation is different: In the non-rotating, the interior
s nearly isentropic ( 〈 s 〉 is close to a vertical line), whereas in the
otating case there is a visible, finite slope to 〈 s 〉 throughout the
ulk. 
MNRAS 528, 6720–6734 (2024) 
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Figure 9. Horizontally averaged specific entropy as a function of depth in 
two example cases, both at N ρ = 1.4. The solid (orange) line is for a rotating 
case at Ta = 10 8 and the dashed (blue) line is for a non-rotating case ( Ta = 

0). 
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To analyse these trends quantitatively, we turn to an average
easure of the heat transport o v er the domain (rather than to its spatial

ariation). In studies of Rayleigh–B ́enard convection, it is customary
o encapsulate this via the Nusselt number Nu , a dimensionless
easure of the heat transport relative to that provided by conduc-

ion. There is no universally accepted definition of Nu that makes
ense for all boundary conditions, stratifications, and with/without
otation, but sensible definitions have the property that they are large
hen convection is efficient, and tend to one as the convection
anishes (i.e. as all transport becomes conductiv e). F or the mix ed
x ed-flux, fix ed-entropy boundary conditions here, we choose to
dopt 

u = 

�s cond 

�s 
(31) 

s our definition of Nu . This is a global measure of the efficiency of
he conv ectiv e flow – more efficient convection should have a smaller
 s across the layer, and so a higher Nu – but normalized to the � s cond 

hat would be required to carry the flux in the absence of convection.
his is akin to the definition for Boussinesq convection adopted by,

or example, Kazemi, Ostilla-M ́onico & Goluskin ( 2022 ). 
The resulting measures of Nu are plotted for a sample of cases with

arying Ra F , N ρ , and Ta in Fig. 10 . We have also overplotted several
reviously proposed scaling relations, as discussed below. We have
hosen here not to normalize each case by Ra c , primarily because
a c varies so much across the simulations sampled here; in general,
ach ‘track’ of simulations shown begins with Ra F of the order of 10
imes critical at that N ρ and Ta . 

First, consider the non-rotating, weakly stratified cases at N ρ =
.5. These are well matched by the power-law Nu ∝ Ra 

1 / 4 
F , which

s obtained if transport within the bulk is entirely by convection,
ransport within narrow thermal boundary layers is by conduction,
nd the width of the boundary layers is set by the requirement that
hey be marginally stable against convection (Malkus 1954 ). The
caling at higher N ρ appears to be slightly less steep than this. For
omparison, we hav e o v erplotted Nu ∝ Ra 

2 / 9 
F . This scaling would

rise if Nu ∝ Ra 2/7 (from Ra F = NuRa ), as has often been reported
NRAS 528, 6720–6734 (2024) 
n non-rotating experiments and simulations (see e.g. discussions in
iggia 1994 ; Grossmann & Lohse 2000 ). None of our data are con-
istent with the so-called ‘ultimate regime’ scaling Nu ∝ ( RaPr ) 1/2 

e.g. Chavanne et al. 1997 ), which has been conjectured to apply at
ery high Ra . 

The rotating cases exhibit steeper Nu ( Ra F ) scalings. Fig. 10 shows
 series of cases at fixed Ta = 10 8 and a smaller number of cases at
a = 10 11 . Note that the cases at Ta = 10 11 are situated at 45 ◦ rather
han 90 ◦. At moderate Ra F (where Ro c is small) the dependence of
u on Ra F appear to be reasonably well described by the o v erplotted

caling Nu ∝ Ra 
3 / 5 
F . At higher Ra F , when rotation is unimportant

ynamically (large Ro c ), the Ta = 10 8 cases latch on to the non-
otating scalings. The slope of the Nu ( Ra F ) relation is similar for the
ases at Ta = 10 8 and 10 11 . Note that for fixed Ta , increasing Ra F 
s equi v alent to increasing Ra F / Ra c , so a plot of Nu as a function of
a F / Ra c would exhibit the same slope. 
This behaviour is consistent with prior results in different settings.

 or e xample, the transition from a steep ‘rotating’ Nu ( Ra ) relation
o a shallower ‘non-rotating’ one was reported by (King et al. 2009 )
o occur in plane-layer experiments and accompanying Boussinesq
imulations (with fixed temperature and no-slip boundaries); see
lso discussions in King, Stellmach & Buffett ( 2013 ) and Aurnou
t al. ( 2020 ). Simulations in spherical shells (see discussions in
astine, Wicht & Aubert 2016 ; Long et al. 2020b , discussing
x ed-temperature, and fix ed-flux simulations, respectiv ely) likewise
xhibit similar trends. 

Interestingly, the Nu ∝ Ra 
3 / 5 
F scaling seen in our rotating cases

s in accord with the expectations of rotating MLT (Stevenson 1979 ;
arker, Dempsey & Lithwick 2014 ; Currie et al. 2020 ). The same

caling law also arises in the classical ‘CIA balance,’ which supposes
 dynamical balance between Coriolis, inertial, and buoyancy terms
n the momentum equation (Aurnou et al. 2020 ; Vasil et al. 2021 ) and
n asymptotic theories of convection at low Rossby number (Julien
t al. 2012 ). In these theories, the transport is predicted to follow
u ∝ ( Ra F / Ra c ) 3/5 ∝ ( Ra F Ta −2/3 ) 3/5 , which (upon substituting in

he definitions for Ra F , Nu , and Ta ) is diffusion-free. This suggests
hat in the rapidly rotating limit the dif fusi ve boundary layers are
laying a less significant role in the heat transport. In dimensional
erms, this scaling implies that the entropy gradient in the bulk of
he convection zone becomes steeper when rotation is more rapid,
caling as d s /d z ∝ 	4/5 , with 	 is the angular velocity. 

.4 Boundary layers and the link to dissipation 

he trends explored above arise partly from the varying influence
f viscous and thermal boundary layers in our simulations. In this
ubsection, we explore how the widths and other properties of these
oundary layers vary as the supercriticality of the convection, the
ensity stratification, and the rotational influence are changed. We
lso discuss the manner in which the boundary layers, heat transport,
ow amplitudes, and dissipation are linked – and demonstrate
xplicitly that knowledge of some of these aspects constrains the
thers. 
Many different definitions of the boundary layers have been em-

loyed in the literature on Boussinesq convection, but our inclusion
f rotation, our use of a fixed-flux thermal boundary condition at the
ottom boundary, and our adoption of stress-free velocity boundary
onditions together implies that some of these definitions are not
ele v ant (see discussion in Long et al. 2020a ). We choose here to
dopt the simple method suggested by Long et al. ( 2020a ), defining
he width of these layers (near the top and bottom of the domain)
o be the points at which the adv ectiv e and conductiv e contributions
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Figure 10. Dimensionless heat transport (Nusselt number) as a function of Ra F for a sample of rotating and non-rotating cases at different N ρ . 
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o the heat transport are equal. Inside the boundary layer conduction 
ominates the heat transport; outside it convection does. Long et al. 
 2020a ) demonstrate that this method gives sensible results in a
ariety of Boussinesq settings (with and without rotation), though to 
ur knowledge it has not been previously employed to study anelastic 
onvection simulations. 

At the top and bottom boundaries conduction must carry all the 
nergy (because in our simulations the v ertical conv ectiv e v elocity
oes to zero there, and because near-surface radiative cooling has 
een ignored). The value of the horizontally averaged entropy 
radient d 〈 s 〉 /d z at the bottom boundary is therefore determined by
he energy flux entering the domain. At the top boundary, the entropy
s fixed (rather than its gradient), but in a steady state the simulation

ust still develop a sufficiently large entropy gradient to carry the 
ame energy flux out the top boundary . Specifically , because we have
ssumed that conduction diffuses entropy, we must have 

 = F cond = −ρ̄T̄ 
d 〈 s〉 
d z 

(32) 

t both the top and bottom boundaries. (As elsewhere, all variables 
ere are dimensionless; the dimensional version would have a factor 
f κ , on the right hand side of the equation.) Because we are
onsidering stratified convection, the density at the top of the domain 
s smaller than at the bottom, so we expect the entropy gradients
 〈 s 〉 /d z that develop will be greater at the outer boundary than at the
nner one. 

We now suppose that within the conductive boundary layers 
 〈 s 〉 /d z is approximately uniform, and equal to 

d 〈 s〉 
d z 

≈ �s bl 

δbl 
≈ − F 

ρ̄T̄ 
(33) 

here � s bl is the entropy jump across the boundary layer and δbl is
ts width, ρ̄ and T̄ are e v aluated at the top or bottom of the domain
for the top and bottom boundary layers, respectively), and where 
e have assumed conduction carries all the flux within the boundary 

ayer. 
In Fig. 11 (top panel), we compare the resulting predictions for
 s bl / δbl to measurements in example simulations. We show the ratio

f � s bl / δbl in the bottom boundary layer to that in the top; the
MNRAS 528, 6720–6734 (2024) 
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orizontal lines denote 

ρ̄top ̄T top 

ρ̄0 ̄T 0 
(34) 

or each stratification, which this ratio should approach (per equation
3 , and given that F is the same at both boundaries). The agreement
etween the measured values and the estimated value is good at high
a F for all stratifications shown, in both rotating and non-rotating
ases. At low Ra F , the agreement is less good. With increasing N ρ

he boundary layers become increasingly asymmetric, so that for
xample in cases with N ρ = 2, � s bl / δbl is more than 25 times
arger in the top boundary layer than in the bottom. This, again,
s a consequence of the much smaller densities and temperatures
t the top of these stratified domains, which then require a much
arger entropy gradient to carry the imposed flux out the top
oundary. 
In the bottom panel of Fig. 11 , we show how the top and bottom

oundary layer widths vary with Ra F , for example, cases at N ρ = 1.4.
s expected, the boundary layers grow thinner at higher Ra F . The

op and bottom boundary layers appear to follow slightly different
rends: We have overplotted δbl ∝ Ra 

−1 / 4 
F , which appears to match

he top boundary layer data well, and Ra 
−1 / 3 
F , which matches the

ottom boundary layer well. 
These findings are consistent with, and aid in understanding, our

ndings for the dynamics and heat transport (i.e. Nu ( Ra F ) scalings)
n previous sections. In the non-rotating cases at high Ra F nearly the
ntire � 〈 s 〉 across the whole domain occurs in the top and bottom
oundary layers; hence, their width determines the o v erall Nusselt
umber for the entire domain. (In rotating cases, the entropy contrast
cross the bulk can approach or exceed that in the boundary layers;
ee discussions in, e.g. Barker et al. 2014 ; Currie et al. 2020 .) The top
oundary layer is, in our stratified calculations, probably the more
estrictive of these because it is thicker; we expect thus expect that
n these calculations the Nusselt number should scale approximately
s the height of the layer divided by the width of this boundary
ayer. Here, this implies that Nu should scale as Ra 

1 / 4 
F , which is in

greement with many of our findings for the non-rotating cases in
ection 5.3 abo v e. 
The steeper heat-transport scalings exhibited by rotating cases are

inked to where dissipation occurs. This is because the dissipation
nd the work done against the background stratification must balance;
his balance gives rise to the exact relationship in Boussinesq con-
ection between the Nu ( Ra F ) relationship and the viscous dissipation
Shraiman & Siggia 2000 ), and to a more complex analogue of this in
he anelastic case (as shown recently by Jones et al. 2022 ). Changes
n where the dissipation occurs – which, in turn, arise because the
onv ectiv e v elocities and length-scales change in the presence of
otation, as discussed abo v e – thus also giv e rise to changes in the
eat transport. 

This link between dissipation and transport has led some prior
uthors to separate the viscous dissipation into ‘bulk’ and ‘boundary’
ontributions – see for example, Grossmann & Lohse ( 2000 ), Jones
t al. ( 2022 ), and Gastine et al. ( 2016 ) – and to posit that transitions in
he heat transport correspond to changes between bulk-dominated or
oundary-dominated dissipation (Grossmann & Lohse 2000 ). In our
imulations, we cannot usefully divide the dissipation in this way;
ecause the boundary layers as defined here become very thin at high
a F / Ra c , the dissipation is almost al w ays ‘b ulk-dominated.’ We ha ve
rgued abo v e that z diss pro vides, for our setup, a more meaningful
istinction between cases where the dissipation is concentrated near
he boundaries and those where it is distributed throughout the
omain. We find that cases that fall on the rotating scaling relation
NRAS 528, 6720–6734 (2024) 
u ∝ ( Ra F / Ra c ) 3/5 systematically have larger z diss than those which
ollow the non-rotating heat transport scalings ( Nu ∝ Ra 

1 / 4 
F ). 

.5 Comparison to fully three-dimensional flows 

he simulations presented in the preceding figures were restricted
o two spatial dimensions (i.e. assuming axisymmetry in one di-

ension). In this section, we provide a preliminary view of whether
he key quantities assessed in this paper – namely the o v erall lev els
f dissipation (as measured by E ) and its spatial distribution (as
ncapsulated by z diss and by the spatial distribution of L diss ) – are
ifferent in 2D and 3D cases. 
In Fig. 12 , we examine the energy transport in two example 3D

ases and their closest 2D equi v alents. We display both non-rotating
ases (bottom panel, at Ra F ≈ 2.3 × 10 4 ≈ 100 Ra c ) and rotating ones
top panel, at Ta = 10 6 , Ra F = 3.3 × 10 5 ≈ 10 Ra c , at 45 o latitude).
he 2D/2.5D cases have the same Ra F as the 3D ones. All cases have
 ρ = 1.4, and an aspect ratio of 2:1 (i.e. the horizontal dimensions
xtend twice as far as the vertical one). The 3D cases were run
t resolutions of 256 × 256 × 128, and evolved for more than a
iffusion time. In the figure, data from the 2D cases are o v erplotted
s symbols, with data from the 3D cases as lines. 

It is clear that the energy transport in the 3D cases is very similar to
hat realized in the 2D/2.5D cases. In the non-rotating case, for exam-
le, L diss has a steep slope near the lower boundary, and a smaller one
n the bulk; this reflects the fact that much of the dissipation is occur-
ing near the lower boundary. In the rotating case, L diss is less sharply
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eaked, reflecting the more even distribution of dissipation through- 
ut the bulk. In both cases, the other transport terms ( L cond , L buoy ,
 conv , and the total transport L ) are also quite similar in 2D and 3D. 
The other bulk quantities of interest to us – E and z diss – are also

imilar in 2D and 3D. The rotating 3D case shown here has (time-
veraged) E = 0.69 and z diss = 0.61; the corresponding 2.5D case
ad E = 0.66 and z diss = 0.60. The non-rotating 3D case has E = 0.80
nd z diss = 0.21; the corresponding 2D case had E = 0.82 and z diss =
.17. Crucially, this suggests that in 3D cases, z diss exhibits a similar
ependence on rotation as it did in 2.5D: Namely, it is significantly
arger when rotation is present (because more of the dissipation is
istributed in the bulk in that case) than in the non-rotating case
where much of the dissipation is concentrated near the boundaries). 

These results suggest that the key quantities examined in this paper 
ay not be too sensitive to the assumption of axisymmetry. We defer
 more detailed study of the 3D cases to later work. 

 DISCUSSION  A N D  C O N C L U S I O N S  

e have presented the first systematic investigation of viscous 
issipation in a rotating, stratified plane layer of convection, stud- 
ed here within the anelastic approximation for an ideal gas. We 
ave shown that, for fixed convective supercriticality Ra F / Ra c and 
oderate stratification, the total dissipative heating does not depend 

ppreciably on rotation rate. Ho we ver, the spatial distribution of
he dissipation does vary with rotation, and this has a number of
mportant consequences for the dynamics and heat transport. 

The total dissipation is thermodynamically bounded by equation 
 9 ), which corresponds to the case in which there is negligible entropy
eneration by conduction in the bulk of the domain and all the
issipation occurs at the highest possible temperature. In practice, 
e have not found any cases in which the dissipation exceeded the

ighter, empirical bound of equation ( 10 ), which does not depend
irectly on the dif fusi vities or on rotation rate. Our non-rotating
ases, which exhibit simple mono-cellular flows, approach the latter 
ound at high enough Ra F / Ra c . These represent an extreme case in
hich very little dissipation occurs in the bulk of the convection zone,

o we regard them as a limit on E that is unlikely to be exceeded by
ore realistic flows. 
In rotating cases, the viscous dissipation is more uniformly 

istributed throughout the layer than in corresponding non-rotating 
ases. In the non-rotating simulations, much of the dissipation occurs 
ear the bottom of the computational domain, so that although there 
s a global balance between dissipation and work done against the 
ackground stratification, these quantities do not balance at each 
epth. We defined a new quantity z diss , the height at which half
he total viscous dissipation has occurred, which encapsulates the 
patial distribution of the dissipation in a simple way, and used it to
haracterize our simulations in different regimes. 

We have shown that the heat transport scalings ( Nu ( Ra F )) in our
otating cases appear to be consistent with theoretical diffusion- 
ree predictions arising from either ‘rotating MLT’ (Stevenson 1979 ; 
arker et al. 2014 ; Currie et al. 2020 ) or, equi v alently, from a
onjectured balance between Coriolis, inertial, and buoyancy forces 
e.g. Gastine et al. 2016 ; Aurnou et al. 2020 ; Vasil et al. 2021 ). Prior
ork has shown this in other settings (mainly within the Boussinesq

pproximation). 
We have shown that these changes in heat transport are linked to

here in the domain the dissipation occurs. This is similar to the
ase in Boussinesq convection, where prior work (e.g. Grossmann & 

ohse 2000 ) has established that the Nu ( Ra F ) heat transport relation

O

aries depending on whether the dissipation is ‘bulk’ or ‘boundary’ 
ominated, and broadly in line with very recent theoretical predic- 
ions for the anelastic case (Jones et al. 2022 ). Here, the situation is

ore complex than in the Boussinesq case because of the background
tratification, but the same basic trends appear to hold. In particular,
e find that cases which follow the ‘rotating’ heat transport relation

re those for which z diss is especially high. 
We also established that, for the setup examined here, the thermal

oundary layers in our simulations are asymmetric – the top one 
eing considerably larger than the bottom – and that the thicknesses 
f the top and bottom boundary layers scale differently with Ra F . 
Finally, we hav e e xplored the link between dissipation and the

inetic energy flux. We developed a simple model of the kinetic
nergy flux in our non-rotating cases – based on the idea that
issipation approaches the upper bound at high enough Ra F , and that
uch of the dissipation occurs near the lower boundary – and showed

hat it provided a reasonably accurate prediction of the maximum 

ne gativ e) kinetic energy flux attained in our simulations for each
tratification at high enough Ra F . We have argued that this provides an
pper bound on the kinetic energy flux achie v able by real convection.
If our results are applicable to real stars, one conclusion is that

apidly rotating stars should exhibit less conv ectiv e o v ershooting
nto adjacent stably stratified regions than slowly rotating ones. From 

he perspective adopted here, this is because in rotating convection 
ones the buoyancy work at each depth is more nearly balanced 
ocally (rather than just globally) by dissipation. Equi v alently, the

ore rapidly rotating cases have more dissipation per unit volume in
he bulk (all else being equal). For a fixed stratification, this will imply
following the discussion in e.g. Anders et al. 2022 ) that conv ectiv e
otions in rotating stars will have less kinetic energy when they

each the boundary of the Schwarzschild-unstable region, so they 
ill penetrate less deeply into the adjacent layers. 
Similarly, we expect a smaller kinetic energy flux in rotating stars

nd planets than in non-rotating ones. The dynamical consequences 
f this are not yet clear, but we intend to explore them in the future. 
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