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A B S T R A C T   

Objective: Optical coherence tomography (OCT) investigations have revealed that the thickness of inner retinal 
layers becomes decreased in multiple sclerosis (MS) patients, compared to healthy control (HC) individuals. To 
date, a number of studies have applied machine learning to OCT thickness measurements, aiming to enable 
accurate and automated diagnosis of the disease. However, there have much less emphasis on other less common 
retinal imaging modalities, like infrared scanning laser ophthalmoscopy (IR-SLO), for classifying MS. IR-SLO uses 
laser light to capture high-resolution fundus images, often performed in conjunction with OCT to lock B-scans at 
a fixed position. 
Methods: We incorporated two independent datasets of IR-SLO images from the Isfahan and Johns Hopkins 
centers, consisting of 164 MS and 150 HC images. A subject-wise data splitting approach was employed to ensure 
that there was no leakage between training and test datasets. Several state-of-the-art convolutional neural net-
works (CNNs), including VGG-16, VGG-19, ResNet-50, and InceptionV3, and a CNN with a custom architecture 
were employed. In the next step, we designed a convolutional autoencoder (CAE) to extract semantic features 
subsequently given as inputs to four conventional ML classifiers, including support vector machine (SVM), k- 
nearest neighbor (K-NN), random forest (RF), and multi-layer perceptron (MLP). 
Results: The custom CNN (85 % accuracy, 85 % sensitivity, 87 % specificity, 93 % area under the receiver 
operating characteristics [AUROC], and 94 % area under the precision-recall curve [AUPRC]) outperformed 
state-of-the-art models (84 % accuracy, 83 % sensitivity, 87 % specificity, 92 % AUROC, and 94 % AUPRC); 
however, utilizing a combination of the CAE and MLP yields even superior results (88 % accuracy, 86 % 
sensitivity, 91 % specificity, 94 % AUROC, and 95 % AUPRC). 
Conclusions: We utilized IR-SLO images to differentiate between MS and HC eyes, with promising results achieved 
using a combination of CAE and MLP. Future multi-center studies involving more heterogenous data are 
necessary to assess the feasibility of integrating IR-SLO images into routine clinical practice.   

1. Introduction 

Multiple Sclerosis (MS) is the most common disorder of the central 
nervous system (CNS) affecting young adults, characterized by demye-
lination, gliosis, and axonal atrophy. Diagnosis of MS is not straight-
forward, relying on magnetic resonance imaging (MRI) and lumbar 
puncture (Thompson et al., 2018). This necessitates searching for 
cost-effective and less invasive biomarkers to facilitate early disease 

detection and prediction of the severity progression. As the retina has 
been known as an extension of the CNS, studying this tissue may provide 
a valuable window to investigate the pathological changes affecting MS 
patients’ brain (Mehmood et al., 2021). Indeed, optical coherence to-
mography (OCT) investigations suggest that the inner retinal layers, 
including the retinal nerve fiber layer (RNFL) and the ganglion cell-inner 
plexiform layer (GCIPL), become thinner in MS (Petzold et al., 2017); 
this has been mainly attributed to a retrograde axonal degeneration 
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following the inflammatory processes, regardless of whether 
clinically-discernable episodes of optic neuritis (ON) are present (Meh-
mood et al., 2021). 

Machine learning (ML) is a subfield of artificial intelligence that is 
defined as the ability of a computer-based system to perform human 
tasks without explicitly being programmed. There exist a variety of ML 
algorithms that can be utilized for both classification and regression 
tasks, like support vector machines (SVMs), k-nearest neighborhood (K- 
NN), and neural networks (NNs) (Sarker, 2021). Inspired by the struc-
ture and function of the biological NNs within the human brain, NNs 
consist of several inter-connected nodes that process the input data 
through one or more hidden layers to generate an output. A neural 
network with multiple hidden layers is considered a “deep” network, 
fabricating the term deep learning (DL) extensively utilized nowadays 
owing to its astonishing superiority over traditional ML approaches, esp. 
with abundant input data (Mehlig). Of note, ML, including its sub-set DL, 
has gained much attention during recent years and has become applied 
to a various range of medical fields, including disease classification, 
prognosis prediction, and drug discovery, to name a few (Sidey-Gibbons 
and Sidey-Gibbons, 2019). In line with these advancements, numerous 
studies have shown that MS can be automatically detected using thick-
ness measurements of retinal layers provided by OCT (Montolío et al., 
2022; Hernandez et al., 2023; Garcia-Martin et al., 2013; Zhang et al., 
2020; Montolío et al., 2021; Ortiz et al., 2023; Garcia-Martin et al., 
2015; Kenney et al., 2022; Khodabandeh et al., 2024; Khodabandeh 
et al., 2023; Ciftci Kavaklioglu et al., 2022; Pérez del Palomar et al., 
2019; López-Dorado et al., 2021; Cavaliere et al., 2019; Garcia-Martin 
et al., 2021). A systematic review and meta-analysis published in late 
2022 reported that ML models applied to OCT thickness data can 
discriminate between MS and healthy control (HC) individuals with 
high levels of accuracy (ACC) (pooled ACC = 93 % [95 % CI: 88 %, 
97%], pooled sensitivity [SEN] = 95 % CI: 88 %, 96 %, pooled specificity 
[SPE] = 95 % CI: 89 %, 98 %) (Nabizadeh et al., 2022). Such remarkable 
results have been made using spectral-domain (SD) (Montolío et al., 
2022; Hernandez et al., 2023; Garcia-Martin et al., 2013; Zhang et al., 
2020; Montolío et al., 2021; Ortiz et al., 2023; Garcia-Martin et al., 
2015; Kenney et al., 2022; Khodabandeh et al., 2024; Khodabandeh 
et al., 2023; Ciftci Kavaklioglu et al., 2022) and swept-source (SS) (Pérez 
del Palomar et al., 2019; López-Dorado et al., 2021; Cavaliere et al., 
2019; Garcia-Martin et al., 2021) OCT devices that employed peri-
papillary (Montolío et al., 2022; Garcia-Martin et al., 2013; Montolío 
et al., 2021; Garcia-Martin et al., 2015; Kenney et al., 2022; Ciftci 
Kavaklioglu et al., 2022; Pérez del Palomar et al., 2019), macular 
(Montolío et al., 2022; Zhang et al., 2020; Montolío et al., 2021; Kenney 
et al., 2022; Khodabandeh et al., 2024; Khodabandeh et al., 2023; Ciftci 
Kavaklioglu et al., 2022; Pérez del Palomar et al., 2019), wide (Pérez del 
Palomar et al., 2019; López-Dorado et al., 2021; Cavaliere et al., 2019; 
Garcia-Martin et al., 2021), and posterior pole (Hernandez et al., 2023; 
Ortiz et al., 2023) scanning protocols. However, other imaging modal-
ities like OCT angiography (OCT-A) or fundus camera photography, 
have not been utilized for automated diagnosis of MS. 

Infrared scanning laser ophthalmoscopy (IR-SLO) is a retinal imaging 
technology often performed along with OCT to lock B-scans at a fixed 
position. This ensures that the effect of eye motion on image quality is 
minimized and also allows for a more accurate assessment of disease 
progression during follow-up visits since the same B scan is consistently 
referenced (Aumann et al., 2019). IR-SLO works by illuminating the 
retinal tissue with laser light in a raster pattern, with the backscattered 
light being passed through a confocal aperture so that the unwanted 
signals are eliminated, creating high-resolution two-dimensional images 
of the retina (Fischer et al., 2019). A recent study by Wisely et al. (Wisely 
et al., 2022) employed multiple imaging modalities, namely OCT, 
OCT-A, and ultra-widefield color SLO (not IR-SLO) and fundus auto-
fluorescence, for classifying Alzheimer’s disease using DL, leading to a 
best area under the receiver operating characteristics (AUROC) of 0.841 
(95 % CI: 0.739, 0.943); the model performance considerably dropped 

when color SLO images were used as the sole input data (0.450, [95 % 
CI: 0.282, 0.592]) (Wisely et al., 2022). 

We aimed to apply various ML and DL approaches to these images for 
discriminating between MS and HC states, with the hope of discovering 
novel retinal biomarkers that might offer diagnostic value in routine 
clinical practice. 

2. Materials and methods 

2.1. Datasets 

In this study, we utilized IR-SLO images from two distinct datasets 
including the Isfahan and Johns Hopkins datasets, consisting of MS and 
HC individuals. In both datasets, OCT scans and IR-SLO images were 
captured using a SPECTRALIS® SD-OCT device developed by Heidel-
berg Engineering in Heidelberg, Germany. The Isfahan dataset was 
compiled during a study conducted between April 2017 and March 2019 
at the Kashani Comprehensive MS Center in Isfahan, Iran, which acts as 
a primary referral center for MS in the region (Ashtari et al., 2021). It 
consists of 282 IR-SLO images sourced from 35 MS patients (146 images) 
and 71 HC individuals (136 images). The Johns Hopkins dataset was 
publicly available and comprised IR-SLO and OCT images of the right 
eyes from 32 individuals, including 14 HCs and 18 patients diagnosed 
with MS (He et al., 2019). Overall, 314 IR-SLO images from a combi-
nation of both datasets, consisting of 150 HC and 164 MS images, 
respectively, were utilized to train convolutional neural networks 
(CNNs) (Section 3.1.) and convolutional autoencoder (CAE) plus ML 
classifiers (Section 3.2.). 

2.2. Data preprocessing 

Initially, all images were adjusted to a size of 128 × 128 × 1 pixels, 
and their pixel intensities were normalized by dividing them by 255, 
resulting in values ranging from 0 to 1. Additionally, images associated 
with the left eyes were flipped horizontally to match the orientation of 
the right-eye images. 

2.2.1. Train and test splitting 
Subsequently, we implemented random splitting to divide the data 

into training and test sets using k-fold cross-validation (CV), with k set to 
5. K-fold CV is favored over random splitting because of its thorough and 
adaptable nature. With this method, the model is trained on the com-
plete dataset, ensuring each data point is included an equal number of 
times in both training (k-1 times) and validation (1 time) sets. In 
contrast, random splitting might lead to repeated selections in the test 
set due to re-sampling in each iteration. Consequently, k-fold CV is 
preferred for its ability to maximize dataset utilization and reduce 
biased selection during testing. It is noteworthy that we employed a 
stratified K-fold sampling technique to ensure an equal distribution of 
classes in each fold. Additionally, to prevent any data leakage between 
the training and test sets, we adopted a "subject-wise" approach. This 
method involves grouping all images from the same participant, 
regardless of their left/right orientation, and assigning them exclusively 
to either the training or test sets. This ensures no overlap between the 
two sets and reduces the likelihood of overestimating model perfor-
mance (Saeb et al., 2017). 

2.2.2. Data augmentation 
In this study, due to the limited size of the training sets in each fold, 

we applied numerous geometric and color space transformations to 
augment the IR-SLO images. Data augmentation, a widely used pre-
processing technique in machine learning, aims to address overfitting by 
introducing slight modifications to the original input images, generating 
new yet similar examples. This process artificially enhances the diversity 
and quantity of training samples. 

Our augmentation techniques in this research include vertical 
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flipping, adjusting height within a range of ±5 pixels, shifting width 
within a range of ±30 pixels, rotating within a range of ±5◦, zooming 
within a range of ±0.2, and adjusting brightness within a range of 
0.2–1.5. 

2.3. Classification 

Of note, CNNs work by integrating the dimensionality reduction and 
classification processes in an end-to-end manner. Using a CNN, features 
are extracted from input images through the convolutional layers, with 
no external feature extraction method needed to be applied; the 
resulting features are then utilized for final classification made by the 
fully connected (FC) layers (Mehlig, 2021). To test whether even higher 
classification accuracies can be achieved, an independent feature 
extraction method that is suitable for image data (CAE) was applied to 
the dataset and the obtained features were classified with various ML 
algorithms. 

2.3.1. Deep learning (CNNs) 
To classify IR-SLO images using CNNs, two distinct approaches were 

pursued. First, we developed a custom CNN model tailored for full 
training on our dataset from scratch. Secondly, we employed several 
state-of-the-art CNN architectures, such as VGG-16 (Simonyan and Zis-
serman, 2015), VGG-19 (Simonyan and Zisserman, 2015), ResNet-50 
(He et al., 2015), and InceptionV3 (Szegedy et al., 2015), utilizing 
both transfer learning and fine-tuning strategies. Transfer learning in-
volves transferring knowledge from pre-trained models to a new dataset, 
thus avoiding the need to start learning from scratch, which can be 
prone to overfitting, especially with smaller datasets. These utilized 
state-of-the-art models have exhibited impressive classification accu-
racies on large-scale image datasets like ImageNet (Deng et al., 2009). 
Hence, by keeping their weights unaltered, these models can function as 
fixed feature extractors, followed by adjustments to the FC component to 
align with our binary classification objective. 

On the other hand, fine-tuning is an alternative strategy where the 
initial convolutional layers, responsible for extracting coarse features, 
remain frozen, while the uppermost convolutional layers, tasked with 

capturing domain-specific and fine features, are unfrozen, enabling their 
weights to be modified during training phase. Therefore, we additionally 
applied a fine-tuning approach to the CNN model that exhibited the best 
performance. 

In both DL approaches discussed above, the Optuna hyperparameter 
optimization framework was employed to identify the optimal CNN 
hyperparameters, including learning rate, batch size, dropout proba-
bility, the number of hidden layers in the FC part, and the number of 
neurons in each hidden layer (Akiba et al., 2019). 

A brief introduction of CNNs is provided in the Supplementary Ma-
terial on pages 2 and 3. Moreover, Fig. 1 illustrates an overview of our 
deep learning methods with optimal architectures. 

As shown in Fig. 1, the proposed CNN compromised five blocks, each 
containing 2D convolutional layer (with a kernel size of 3 × 3), ReLU 
activation function, batch normalization, and max pooling layers 
stacked together; the number of channels (feature maps) in each con-
volutional layer progressed from 32, 64, 128, 256, and finally 512 
through the network. Finally, an FC part consisting of three hidden 
layers with 54, 194, and 1287 neurons was added to the end of the CNN, 
with ReLU and sigmoid as the activation functions for the first three 
layers and the output layer, respectively. To reduce the risk of over-
fitting, dropout regularization with a probability of 0.3 was applied just 
after flattening layer were given to the FC part and to the first two FC 
layers as well. A dropout rate of 0.1 was also added at the end, just 
before the output layer (Fig. 1). Adam and binary cross entropy loss were 
used as the optimizer and loss function, respectively. 

2.3.2. Feature extraction and machine learning classifiers 
Dimensionality reduction is a necessary preprocessing step when 

dealing with high-dimensional data like images in order to overcome the 
so-called “curse of dimensionality”, a problem leading to high compu-
tational costs and poor performance of ML models. To address this, a 
number of methods have been developed that project data points to a 
lower dimensional space which still retains the most important infor-
mation of the original data, e.g., principal component analysis (PCA) 
(Abdi and Williams, 2010) and autoencoder neural networks (AEs) 
(Arian et al., 2023; Bank et al., 2021); the resulting features can then be 

Fig. 1. Overview of MS classification based on infrared scanning laser ophthalmoscopy (IR-SLO) images using convolutional neural networks (CNNs). The gray 
blocks represent untrainable layers with frozen weights and the colored blocks show trainable layers. 
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given to ML algorithms for final classification. Indeed, when working 
with limited data, utilizing a combination of feature extraction and 
conventional machine learning algorithms is expected to outperform 
deep neural networks. 

AEs aim to generate a compressed and meaningful representation of 
input data by learning to reconstruct it in an unsupervised manner. AEs 
consist of an encoder and a decoder, which are NNs in most scenarios, 
and a bottleneck layer between the two. The encoder network tries to 
map input data to a latent feature space with a lower dimensionality 
(bottleneck layer) and the decoder will then utilize the resulting features 
to create output data as much similar to the original data. During 
training, AEs minimize the difference between the original and recon-
structed data, often using mean square error as the loss function for such 
a regression problem. Some of the various applications of AEs include 
image denoising, image generation, anomaly detection, and feature 
extraction; the latter can be seen as a non-linear extension of PCA. 
Indeed, in cases where no non-linear activation functions are used in 
AEs, the latent feature space created by the encoder is the same as the 
PCA output (Bank et al., 2021). 

Interestingly, combining AEs with CNNs seems to yield more infor-
mative representations for image data by preserving the two- 
dimensional features of images, e.g., edges and corners. In the current 
study, the resulting features from such CAE were then given to a SVM 
classifier. Subsequently, CAE hyperparameters like the number of con-
volutional and pooling layers, number of filters, kernel size, learning 
rate, batch size, and dropout probability were optimized empirically to 
get the highest possible classification accuracies (without considering 
the reconstruction error). Furthermore, the features obtained from the 
CAE were also used to train a number of other ML classifiers, namely, K- 
NN, MLP, and random forest (RF) to achieve the highest possible level of 
accuracy. Each of these three classifiers is briefly introduced in the 
Supplementary Material on page 1. In this study, the grid search algo-
rithm (Liashchynskyi and Liashchynskyi, 2019) and the Optuna library 
(Akiba et al., 2019) were utilized to find the optimal hyperparameters 

for each classifier. Grid search algorithm involves calculating the ACC of 
each combination of all specified hyperparameters and then selecting 
the best value for them (Liashchynskyi and Liashchynskyi, 2019) while 
Optuna uses Bayesian optimization to find the optimal set of hyper-
parameters. Fig. 2 provides an overview of this section (feature extrac-
tion plus final classification), including the architecture of the designed 
CAE. All Conv2D layers in the CAE employed the ReLU activation 
function, except for the final layer where a sigmoid function was 
applied. Additionally, the optimization process was carried out using the 
Adam optimizer, and the loss was computed using the Huber loss 
function. The mean squared error (MSE) is a great loss function for 
learning outliers while the mean absolute error (MAE) ignores them. 
However, the Huber loss function demonstrates lower sensitivity to the 
outliers compared to the MSE by balancing the MSE and the MAE 
together. It behaves quadratically (like MSE) for small values of the 
difference between the predicted value y and the actual value f(x), and 
linearly (like MAE) for large values (Huber, 1964). The mathematical 
formula for Huber loss function is as follows: 

Lδ(y, f(x)) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2
(y − f(x))2

, for |y − f(x)| ≤ δ

δ.
(

|y − f(x)| −
1
2

δ, otherwise
(1)  

Where the hyperparameter δ introduces a threshold which was set to 1 in 
this study.2.4. Experimentation environment and evaluation metrics 

All the experiments in this study were implemented using Python 
programming language, in the Keras platform backend in Python 3.7 
software environment. 

In this study, evaluation metrics such as ACC, SE, SP, precision (PR), 
and F1-score (F1) were utilized to assess the performance of the 
implemented models, as formulated below. Moreover, the receiver 
operating characteristics (ROC) and precision-recall curves were plotted 
and the areas under these curves, referred to as AUROC and area under 
the precision-recall curve (AUPRC), were also computed as two other 

Fig. 2. Overview of MS classification based on IR-SLO images using a CAE as the feature extractor followed by conventional machine learning classifiers; MLP, multi- 
layer perceptron; SVM, support vector machine; K-NN, k-nearest neighbor; RF, random forest. 
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distinct metrics. 

ACC =
TP + TN

TP + TN + FP + FN
(2)  

SE =
TP

TP + FN
(3)  

SP =
TN

TN + FP
(4)  

PR =
TP

TP + FP
(5)  

F1 =
2 × TP

2 × TP + FP + FN
(6)  

where, TP, FN, TN, and FP represent true positives, false negatives, true 
negatives, and false positives, respectively. 

For interpreting the predictions generated by CNN and CAE models, 
two types of saliency heat maps, namely the gradient-based class acti-
vation map (Grad-CAM) (Selvaraju et al., 2020) and the 
gradient-weighted latent activation mapping (Grad-LAM) (Bartler et al., 
2021), an extension of Grad-CAM designed for unsupervised represen-
tation learning, were employed. 

3. Results 

The outcomes derived from CNNs, ML classifiers added to the CAE, 
and the ablation study are depicted in Sections 3.1, 3.2, and 3.3, 
respectively. 

3.1. Deep learning (CNNs) 

As mentioned in Section 2.3.1, state-of-the-art CNN models were first 
used as feature extractors with the weights of all layers kept frozen, 
followed by FC layers with a custom number of hidden layers containing 
varied number of neurons (Fig. 1). VGG-19 (with 14,714,688 untrain-
able parameters) showed the best performance, with a mean ACC of 84 
% (SE = 83 %, SP = 87 %, PR = 87 %, F1-score = 84 %, AUROC = 92 %) 
over five consecutive executions (Table 1). Moreover, the custom CNN 
model that was trained from scratch showed more desirable results (ACC 
= 85 %, SE = 85 %, SP = 87 %) (Table 1). 

In an effort to enhance the outcomes, we proceeded to unfreeze 
specific convolutional layers of VGG19, the selected transfer learning 
model. Specifically, the first, second, and fourth topmost convolutional 
layers were unfrozen, resulting in 2359,808, 4719,616, and 7079,424 
parameters available for retraining with the IR-SLO image dataset, 
respectively. Despite this fine-tuning approach, it did not yield improved 
performance. For instance, when the first topmost layer was unfrozen, 
the obtained results were as follows: ACC = 84 %, SE = 83 %, SP = 85 %, 
PR = 85 %, AUROC = 92 %, F1-score = 83 % (as shown in Fig. A in the 
Supplementary Material). 

Box plots for the state-of-the-art and the custom CNN models are 

drawn in Fig. 3. 

3.2. Feature extraction and machine leaning classifiers 

The proposed architecture for the CAE is illustrated in Fig. 2, with a 
brief explanation available in the Supplementary Material on page 3. 
The flattened representation of the bottleneck output, suggestive of the 
most important features of IR-SLO images, was then utilized for classi-
fying MS and HC using SVM, MLP, RF, and K-NN algorithms. The SVM 
classifier achieved an ACC of 86 % (SE = 82 %, SP = 90 %) using a radial 
basis function (RBF) kernel as the winning kernel (Table A in the Sup-
plementary Material); the optimal values for CAE hyperparameters, 
including batch size (= 16), learning rate (= 1e-5), and dropout prob-
ability (= 0.2), were then kept unchanged when other classifiers were 
utilized. Furthermore, to visualize which regions have the most contri-
bution to the CAE reconstruction score, the saliency maps of several MS 
and HC images from the test dataset were created using Grad-LAM, 
illustrated in Fig. 4. Comparison of These heat maps and the heat 
maps obtained by the custom CNN (using the Grad-CAM algorithm) for 
the same MS and HC images can provide some perspective of the regions 
of the images with most impact for each model (Fig. 4). 

Subsequently, other conventional ML algorithms, namely, K-NN, 
MLP, and RF, were applied to the CAE-extracted features, with MLP 
achieving the best results (ACC= 88 %, SE= 86 %, SP= 91 %; PR= 90 %, 
F1-score= 88 %; AUROC = 94 %; AUPRC = 95 %) (Table 2). Fig. 5 shows 
the ROC/precision-recall curves and the confusion matrices for all the 
four classifiers. The best hyperparameters of K-NN, MLP, and RF are 
depicted in the Supplementary Material Table B. The high discriminant 
capacity of the features extracted by the CAE is visualized in Fig. 6 using 
Uniform Manifold Approximation and Projection (UMAP) for dimen-
sionality reduction technique (McInnes et al., 2018) In the same figure, 
the discriminant capacity of the CAE is also compared with that of PCA 
as a simple feature extraction technique where the number of compo-
nents was set to 300. 

3.3. Ablation study 

An ablation study, investigating the effect of feature extraction prior 
to the classification, was also undertaken when SVM with an RBF kernel 
and MLP were utilized. The SVM classifier (with RBF kernel) separates 
data points by projecting them to an infinite dimensional kernel space 
(Cervantes et al., 2020); thus, it may not hypothetically seem reasonable 
to reduce the dimensionality of our dataset before applying this algo-
rithm. Also, NNs generally exhibit superior performance when dealing 
with higher dimensional data, not passed through feature extrac-
tion/selection algorithms (LeCun et al., 2015). Therefore, classification 
performance of SVM (with RBF kernel) and MLP was evaluated with and 
without applying the dimensionality reduction method, with the cor-
responding results summarized in Table 3. 

Table 1 
Performance metrics of the state-of-the-art and the proposed convolutional neural networks (CNNs) for classification of MS using IR-SLO images. Best results are 
bolded, revealing that the custom CNN is the winning classifier.  

Model ACC SP SE PR F1 AUROC AUPRC Optimal hyper parameters 

Batch size Learning rate 

InceptionV3 0.81 0.83 0.80 0.83 0.81 0.90 0.92 16 6e-4 
ResNet-50 0.71 0.84 0.71 0.83 0.70 0.79 0.85 64 1.4e-4 
VGG16 0.83 0.86 0.81 0.85 0.83 0.92 0.93 8 1.7e-4 
VGG19 0.84 0.87 0.83 0.87 0.84 0.92 0.94 8 1.2e-4 
Proposed CNN 0.85 0.87 0.85 0.87 0.85 0.93 0.94 16 2.5e-4 

Abbreviations: ACC, accuracy; SP, specificity; SE, sensitivity; PR, precision; F1, F1-socre; AUROC, area under the receiver operating characteristics curve; AUPRC, area 
under the precision-recall curve; MS, multiple sclerosis; HC, healthy control. 
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Fig. 3. Box plots for state-of-the-art convolutional neural networks (CNNs) and the proposed model, drawn following five repeated executions.  

Fig. 4. Saliency maps generated for four IR-SLO images of MS and HC subjects from the test dataset when the proposed CAE (a and c) and CNN (b and d) 
were utilized. 
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4. Discussion 

In the current study, we showed that training ML classifiers with IR- 
SLO images yields encouraging results in classifying MS (ACC = 88 %, 
SE = 0.86, SP = 0.91); the proposed model was indeed a combination of 
CAE for feature extraction and a MLP for final classification. 

All published studies in this field have focused solely on OCT data, i. 
e., thickness measurements of different retinal layers, mainly RNFL and 
GCIP. Although three works have been able to reach accuracies more 
than 90 % (Montolío et al., 2022; Hernandez et al., 2023; Khodabandeh 
et al., 2024), our model led to results comparable to the majority of 
previous studies utilizing SD-OCT devices (Garcia-Martin et al., 2013; 
Zhang et al., 2020; Montolío et al., 2021; Ortiz et al., 2023; Garcia--
Martin et al., 2015; Kenney et al., 2022; Khodabandeh et al., 2023; Ciftci 
Kavaklioglu et al., 2022), with accuracies ranging from 80 % (Ciftci 
Kavaklioglu et al., 2022) to 88 % (Montolío et al., 2021; Khodabandeh 
et al., 2023). However, classifying MS based on SS-OCT data results in 
superior performance (Pérez del Palomar et al., 2019; López-Dorado 
et al., 2021; Cavaliere et al., 2019; Garcia-Martin et al., 2021), even 
reaching 100 % (López-Dorado et al., 2021). This could be attributed, at 
least partially, to the greater precision of information offered by SS-OCT 
devices. Inherent differences between datasets concerning demographic 
characteristics such as age, gender, and ethnicity of participants may 
have also contributed to the discrepancy in performance between the 
model proposed in this study and SS-OCT-based models. It is worth 
noting that three of the four studies that employed SS-OCT used a same 
dataset with a small size (López-Dorado et al., 2021; Cavaliere et al., 
2019; Garcia-Martin et al., 2021), and therefore, it is crucial not to 
overemphasize the positive outcomes of these studies. Furthermore, 
given the limited availability of SS-OCT devices in many clinical set-
tings, esp. in less developed regions, it is of relevance to prioritize studies 
utilizing the less costly SD-OCT and compare the performance of 
IR-SLO-based models with them. 

According to the Table 1, the custom CNN model that was trained 
from scratch showed more desirable results (ACC = 85 %, SE = 85 %, SP 
= 87 %). This could partly be attributed to the fact that the architecture 
of our proposed CNN was not as complex compared to that of the state- 
of-the-art models, which is probably more suitable for the IR-SLO images 
containing relatively simple patterns to be recognized. For the same 
reasons, the fine-tunning approach did not lead to a superior perfor-
mance compared to the transfer learning given an extreme increase in 
the number of trainable parameters. 

Applying a CAE for feature extraction led to higher results compared 
to CNNs; therefore, we speculate that to reconstruct the input image 
effectively, the CAE should learn more semantically meaningful repre-
sentations. The idea behind this hypothesis is similar to the paper pub-
lished by Pathak et al. (2016), introducing the “context encoders” as a 
solution for semantic inpainting. Context encoders are indeed a type of 
CAEs that are aimed to generate missing parts of an image with respect 
to the contextual information from the surrounding regions. The latent 

layer of a context encoder was shown to provide valuable features that 
serve as reliable indicators of the input images, resulting in appealing 
results across different tasks, including object detection, semantic seg-
mentation, and classification (Pathak et al., 2016). Furthermore, the 
capability of the proposed CAE in detecting more informative repre-
sentations could partly be attributed to the connections between two of 
the encoder and decoder blocks. This will propagate the information 
between encoder and decoder parts and prevent the precise information 
to be lost during the up-sampling process, since a feature map with 
higher resolution is constructed and then processed by the decoder 
convolutional layers. In addition, as illustrated in Fig. 4, MS causes 
pathological changes in the optic nerve head (ONH) and the area sur-
rounding which can be detected through the proposed CAE but remain 
unnoticed by human physicians. In comparison, the custom CNN trained 
from scratch identified other regions than those within the optic disc 
area. 

Utilizing OCT thickness data in previous ML studies is reasonable 
given that statistical investigations have highlighted a significant 
reduction in RNFL and GCIPL thickness (Petzold et al., 2017); however, 
there is far less evidence to support the notion that MS-related patho-
logical changes can also be identified within en-face images like fundus 
camera photographs and IR-SLO images. RNFL damage can be recog-
nized when a physician undertakes ophthalmoscopic examination, but 
the changes are not visible to human eye until at least half the RNFL 
thickness has been attenuated (Quigley et al., 1960). The prominence of 
the optic disc area depicted in Fig. 4 is in line with previous structural 
OCT studies demonstrating a substantial reduction in peripapillary 
RNFL thickness (Petzold et al., 2017). Furthermore, the vascular 
changes around the ONH may have also played a role in the model de-
cision to give greater attention to the peripapillary regions. In this re-
gard, OCT-A studies on MS patients have recently revealed that capillary 
vessel densities become decreased in peripapillary and macular regions, 
especially in individuals who have a prior history of ON (Feucht et al., 
2019; Murphy et al., 2020; Ulusoy et al., 2020). Interestingly, Spain 
et al. (2018) highlighted that not only minor but also major vessels in the 
optic disc area could be affected. Their findings demonstrated substan-
tial reductions in the ONH flow index, defined as the averaged OCT-A 
flow signal over the optic disc, among MS patients, regardless of their 
ON status, compared to HCs (Spain et al., 2018). The vascular damage in 
MS can be linked to ganglion cell atrophy leading to decreased meta-
bolic demand and subsequent vessel attenuation via autoregulatory 
mechanisms (Murphy et al., 2020); conversely, impaired retinal blood 
perfusion resulting in a hypoxic condition may serve as the primary 
event, activating inflammatory mechanisms that cause demyelination 
and neurodegeneration (Halder and Milner, 2021). Overall, we showed 
that despite the absence of readily observable clinical alterations in 
en-face retinal images, such as IR-SLO images utilized here, employing 
ML approaches might offer insights into this conundrum and enable 
automated MS detection. 

Additionally, we showed that the feature extraction step seems to be 
an essential preprocessing step for the data utilized in this study. As 
shown in Table 3, results of the ablation study revealed that by removing 
the feature extraction step, the classification ACC dropped from 86 % to 
81 % and 88 % to 79 % for SVM and MLP classifiers, respectively. 

Recently, Khodabandeh et al. (2024) (not peer-reviewed yet) utilized 
a dataset identical to one used in this work, consisting of the Isfahan and 
Johns Hopkins datasets; however, instead of IR-SLO images, OCT 
thickness maps were employed. Similar to the current study, the authors 
examined the efficacy of three strategies for classifying MS, including AE 
for feature extraction coupled with MLP for classification, a customized 
CNN with its weights trained from scratch, and fine-tuning of a 
state-of-the-art CNN (ResNet152V2 (He et al., 2015)). For the input 
data, thickness/boundary maps of RNFL, GCIPL, and INL were incor-
porated in a channel-wise manner, creating three-channel images with 
different sizes, 60 * 256 * 3 and 224 * 224 * 3; also, the maps were 
concatenated horizontally to form a mosaic image with dimensions of 

Table 2 
Performance metrics of the four machine learning models for classifying MS 
using infrared scanning laser ophthalmoscopy (IR-SLO) images. The classifiers 
were applied on the features extracted using the proposed convolutional 
autoencoder, with MLP being the winning model.  

Model ACC SE SP PR F1 AUROC AUPRC 

RF 0.83 0.76 0.89 0.92 0.82 0.9 0.92 
K-NN 0.8 081 0.79 0.8 0.8 0.88 0.91 
RBF-SVM 0.86 0.82 0.9 0.89 0.86 0.92 0.94 
MLP 0.88 0.86 0.91 0.9 0.88 0.94 0.95 

Abbreviations: ACC, accuracy; SP, specificity; SE, sensitivity; PR, precision; F1, 
F1-socre; AUROC, area under the receiver operating characteristics curve; 
AUPRC, area under the precision-recall curve; RF, random forest; K-NN, k- 
nearest neighbor; RBF-SVM, support vector machine with radial basis function 
kernel; NN, neural network. 
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672 * 224 * 1. They finally showed that a balanced ACC of 97.3 % can be 
achieved when thickness maps of the size 60 * 256 * 3 are integrated 
through the channel-wise approach using the custom CNN. Interest-
ingly, to check for generalization ability of their models, the authors also 
utilized each of the two datasets exclusively for training or testing 
phases; for instance, a balanced ACC of 80.5 % and 84.5 % were ach-
ieved when the Isfahan dataset served as the training and test dataset, 
respectively. Unlike Khodabandeh et al. that employed simple AE, we 
took advantage of a CAE that may hypothetically have a superior per-
formance on image data containing two-dimensional features like edges 
and corners. Also, we assessed the performance of different traditional 

ML models, not solely the MLP, applied to the CAE-extracted features. It 
is worth noting that most previous studies that utilized OCT thickness 
measurements for classifying MS (Montolío et al., 2022; Garcia-Martin 
et al., 2013; Zhang et al., 2020; Montolío et al., 2021; Garcia-Martin 
et al., 2015; Khodabandeh et al., 2024; Ciftci Kavaklioglu et al., 2022; 
Pérez del Palomar et al., 2019; López-Dorado et al., 2021; Cavaliere 
et al., 2019; Garcia-Martin et al., 2021), like Khodabandeh et al’ s 
(Khodabandeh et al., 2024), employed a record-wise data splitting 
approach that may have led to a data leakage between train and test 
datasets, causing overestimation of the model performance (Saeb et al., 
2017); nonetheless, we followed a less biased method in which data 

Fig. 5. Receiver operating characteristics (ROC) curve (top left), precision-recall curve (top right), and the confusion matrices (bottom) for the four machine learning 
classifiers. MLP, multi-layer perceptron; SVM, support vector machine; K-NN, k-nearest neighbor; RF, random forest. 
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concerning each subject appear exclusively in either training or test 
datasets. Additionally, Khodabandeh et al. (2024) did not report ACC 
results but concentrated on the balanced ACC, which is calculated as the 
arithmetic mean of SE and SP. To ensure a more accurate comparison 
between the model proposed in this study and the Khodabandeh et al. 
(2024), we also employed a record-wise data splitting approach (not 
included in the Results section); the CAE concatenated with SVM clas-
sifier achieved a SE of 97 % and a SP of 83 %. The superior outcome 
observed in Khodabandeh et al. (2024) study may be attributed partly to 
the CNN architecture they designed, although it is important not to 
ignore the fact that OCT thickness data may harbor more discriminating 
features compared to IR-SLO images. 

This study has several limitations needed to be addressed. First, 
although we incorporated two independent datasets of IR-SLO images (n 
= 314), the sample size is still limited, necessitating future studies to 
include datasets from multiple centers with diverse demographic and 
clinical characteristics. We tried to minimize the risk of model over-
fitting by artificially increasing the number of images using various data 
augmentation techniques. A second limitation of this study is the lack of 
differentiation between images with and without a history of ON. 
Ganglion cell atrophy and RNFL damage are more pronounced in eyes 
with prior episodes of ON (Petzold et al., 2017); therefore, conducting 
additional experiments to train ML models exclusively with images of 
either ON-positive or ON-negative eyes could lead to more reliable and 
robust outcomes. Third, we solely utilized input data from a single im-
aging modality. Indeed, providing the models with more heterogenous 
input data can potentially improve performance and reduce the risk of 
overfitting to the training data. Therefore, we suggest that future studies 

combine IR-SLO images with other retinal imaging modalities, like OCT 
and OCT-A, and even go further, integrating retinal imaging data with 
MRI and serum/CSF biomarkers. 

5. Conclusion 

Overall, we applied various ML and DL-based models to IR-SLO 
images, and suggested that these two-dimensional en-face retinal im-
ages may provide useful information for discriminating between MS and 
HC individuals. Of note, the results obtained in this study are compa-
rable to those from many previous ML works that utilized OCT thickness 
measurements for classifying MS. IR-SLO and other retinal imaging 
modalities that are less commonly utilized compared to OCT hold the 
potential to be included into routine clinical practice, enabling timely 
diagnosis of the disease and effective therapeutic interventions. How-
ever, studies including more diverse datasets from various independent 
centers are needed to further evaluate the validity of this assumption. 

Data and code availability 

The Johns Hopkins dataset is available at: http://iacl.jhu.edu/ 
Resources 

Code and models are available at: https://doi.org/10.5281/zenodo. 
8217281. 

The Optuna code to find optimal hyperparameters is available at: 
https://doi.org/10.5281/zenodo.8218403. 

Fig. 6. Visualization of the features obtained from the convolutional autoencoder neural network using Uniform Manifold Approximation and Projection (UMAP) for 
dimensionality reduction technique (McInnes et al., 2018). 

Table 3 
Results of the ablation study undertaken multi-payer perceptron (MLP) and the support vector machine (SVM) with radial basis function kernel (RBF-SVM) with and 
without feature extraction prior to classification. Best results for each classifier are bolded. Using convolutional autoencoder (CAE) in both methods yields higher 
results.  

Model CAE ACC SE SP PR F1 AUROC AUPRC 

MLP Used 0.88 0.86 0.91 0.9 0.88 0.94 0.95 
Removed 0.79 0.78 0.82 0.82 0.79 0.88 0.9 

RBF-SVM Used 0.86 0.82 0.9 0.89 0.86 0.92 0.94 
Removed 0.81 0.82 0.81 0.81 0.81 0.88 0.9 

Abbreviations: ACC, accuracy; SP, specificity; SE, sensitivity; PR, precision; F1, F1-socre; AUROC, area under the receiver operating characteristics curve; AUPRC, area 
under the precision-recall curve. 
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