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Abstract—Symbiotic chirp-ultra wide bandwidth (UWB) radio
system (SCURS) is a UWB radio system with the symbiosis of
linear frequency modulation (LFM) and orthogonal frequency
division multiplexing (OFDM) signals. It has a high data rate
and can transmit data on two channels simultaneously. Moreover,
multi-component LFM (MCLFM) parameter estimation plays an
important role in the demodulation of SCURS. Furthermore, the
complex electromagnetic environment also brings impulsive noise.
In this paper, a novel parameter estimation method for MCLFM
signals based on the fractional Fourier transform-bald eagle
search algorithm (FRFT-BES) and synchroextracting short-time
fractional Fourier transform-Hough (SSFT-Hough) with alpha-
stable noise is proposed. First, we use a nonlinear transformation
to eliminate the negative effect of alpha-stable noise on parameter
estimation. Second, we combine the improved BES with FRFT
to propose FRFT-BES and use it to estimate the frequency
modulation rate. Finally, we propose a new time-frequency
(TF) transform method with high TF resolution as SSFT, and
we combine it with Hough transform (HT) to propose SSFT-
Hough to estimate the initial frequency. Frequency modulation
rate and initial frequency are widely used in MCLFM signals
separation. Simulation results demonstrate that the proposed
method performs well in low mixed signal-to-noise ratio (MSNR),
and it is superior to existing methods.

Index Terms—Alpha-stable noise, multi-component signals,
parameter estimation, symbiotic communication.

I. INTRODUCTION

L INEAR frequency modulation (LFM) signal is a kind
of large time-bandwidth product signal [1]. It has many

advantages, such as high range resolution, low intercept prob-
ability, excellent radial velocity resolution, and large Doppler
tolerance [2]. Thus, it plays an important role in wireless
applications, and because wireless applications are widely
used [3], such as cognitive radios [4], LFM signals have
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been thoroughly studied in radar, communication, sonar, target
tracking, and other fields [5]. In recent years, due to the
significant increase in the quantity and type of signals in
the electromagnetic environment and the interaction of var-
ious electrical devices, the electromagnetic environment has
become more and more complex [6], [7]. Meanwhile, with the
rapid development of Internet of Things (IoT), radio frequency
(RF) signals are widely studied and used in communications
[8], [9], such as backscatter communications [10]–[14], and
the concept of symbiosis has gradually been applied to various
fields [15]. The symbiotic chirp-ultra wide band (UWB) radio
system (SCURS) is a novel UWB radio system. It combines
the multi-component LFM (MCLFM) with specially designed
orthogonal frequency division multiplexing (OFDM) signals
in RF combiner. SCURS has many advantages, for example,
it can simultaneously transmit two channels of data at high
rate. When demodulation is performed at the receiving end
of SCURS, MCLFM parameter estimation needs to be im-
plemented for demodulation. The most important parameters
for demodulation are frequency modulation rate and initial
frequency. In a complex electromagnetic environment with
impulsive characteristics, due to a variety of natural and human
factors, such as lightnings, tsunamis, and the switching of
switches, there is not only Gaussian noise but also non-
Gaussian noise with spikes [16]. The impulsive noise is usually
described by the alpha stable distribution [17].

There are many methods for MCLFM parameter estimation,
but most of them assume Gaussian noise. In [18], a new
parameter estimation method for MCLFM signals based on
complex Independent Component Analysis (ICA), second-
order time moments, and the Wigner-Hough transform (WHT)
was proposed. In [19], a parameter estimation method using
the fractional Fourier transform (FRFT) was proposed. Ref-
erence [20] proposed a parameter estimation method based
on k-resolution FB (k-FB) series expansion combined with
dechirp technology. In [21], a method based on nonlinear
mode decomposition (NMD) and FRFT was proposed. In
[22], FRFT, short-time Fourier transform (STFT), and Hough
transform (HT) were used to estimate the parameters of
MCLFM signals.

The methods mentioned above cannot accurately estimate
the parameters of MCLFM signals in alpha-stable noise. There
are very few studies on the parameter estimation of MCLFM
signals in alpha-stable noise. In [23], Lv’s distribution (LVD),
Local Polynomial Periodogram (LPP), and HT were used to
estimate parameters, and the influence of alpha-stable noise
was suppressed by a limiter. [23] also proposed a MCLFM
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parameter estimation method based on the fractional lower or-
der scaled ambiguity function transform (FLOSAT), but these
methods are characterized by high complexity. In [24], a LFM
signal parameter estimation method based on fractional low-
order covariance (FLOC) fractional spectrum was proposed.
While this method can be applied in the presence of alpha-
stable noise, it is specifically designed for single-component
LFM signal and is not effective for MCLFM signals.

Motivated by the above discussion, we propose a parameter
estimation method for MCLFM signals based on the fractional
Fourier transform-bald eagle search algorithm (FRFT-BES)
and synchroextracting short-time fractional Fourier transform-
Hough (SSFT-Hough) with alpha-stable noise in this paper.
The main contributions of this paper can be summarized as
follows:

• A nonlinear transformation is proposed to suppress alpha-
stable noise. It only changes the amplitude and does not
affect the phase information of the signal, which has no
impact on the parameter estimation of MCLFM signals;

• We improve the Cubic mapping (CM) and combine it
with BES, so that BES has better initial population
diversity and the performance of its optimal solution is
improved;

• FRFT-BES is proposed to estimate the frequency mod-
ulation rate of MCLFM signals, which achieves high
estimation accuracy;

• We propose a new time-frequency (TF) transfrom method
as SSFT to obtain high TF resolution of MCLFM signals;

• SSFT-Hough is proposed to accurately estimate the initial
frequency of MCLFM signals.

The remainder of this paper is organized as follows. Sec-
tion II gives the SCURS model, signal model, and noise
model. Section III proposes the parameter estimation method
of MCLFM signals. In Section IV, simulation results are
presented. Finally, the conclusion is given in Section V.

II. SYSTEM MODEL

A. SCURS Model

In SCURS, MCLFM and specially designed OFDM signals
are combined at the transmitter and then transmitted through
the channel with alpha-stable noise ech(t). Subsequently, they
are demodulated separately at the receiving end. The system
block diagram of SCURS is shown in Fig. 1 [25], [26].

B. Signal Model

The received signal is represented as

SC(t) = str(t) + ηOtr(t) + ech(t), (1)

where str(t) is MCLFM signals, η denotes the scaling factor,
and Otr(t) stands for the OFDM signal. The expression of
str(t) is given as

str(t) =

m∑
i=1

si(t), 0 ≤ t ≤ T, (2)
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Fig. 1: System block diagram of symbiotic chirp-UWB radio
system.

where si(t) denotes the ith signal of MCLFM signals, m
represents the number of LFM signals in SCURS, and T stands
for the LFM pulse duration. The expression of si(t) is

si(t) = Ai exp
(
jπ

(
2fit+ kit

2
))

, (3)

where Ai, fi, and ki are amplitude, initial frequency, and
frequency modulation rate of si(t), respectively. Then we can
rewrite (2) by putting (3) into (2) as

str(t) =

m∑
i=1

Ai exp
(
jπ

(
2fit+ kit

2
))

, 0 ≤ t ≤ T. (4)

So we can obtain the separated MCLFM signals as

s(t) = str(t) + e(t), (5)

where e(t) denotes alpha-stable noise.

C. Noise Model

The alpha stable distribution is usually described by charac-
teristic function (CF) because it does not have a closed form
expression of the probability density function (P.D.F.). Its CF
is given by [27], [28]

φ(t) = exp{jσt− ρ|t|αe [1 + jβsgn(t)w(t, αe)]}, (6)

where
w(t, αe) =

{
2
π log10 |t| , αe = 1,
tan(αeπ

2 ), αe ̸= 1,
(7)

sgn(t) =

 1, t > 0,
0, t = 0,
−1, t < 0,

(8)
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where σ is the location parameter, ρ stands for the scale
coefficient, indicating the dispersion degree of the sample, αe

represents the characteristic exponent with 0 < αe ≤ 2, which
determines the impulsiveness of the alpha stable distribution.
Moreover, when αe = 2, the alpha stable distribution becomes
the Gaussian distribution; when αe = 1, the alpha stable
distribution becomes the Cauchy distribution. β denotes the
symmetric parameter with −1 ≤ β ≤ 1. When σ = 0,
β = 0, and ρ = 1, the alpha stable distribution is called
the symmetric alpha stable (SαS) distribution. We use the
SαS distribution and assume that 1 ≤ αe ≤ 2 in this paper.
Due to the absence of the second-order statistics or above,
the variance do not exist, and the signal-to-noise ratio (SNR)
becomes meaningless. We use the mixed signal-to-noise ratio
(MSNR) instead, which is given by [29], [30]

MSNR = 10log10(
σ2
s

ρ
), (9)

where σ2
s denotes the variance of the signal.

III. PARAMETER ESTIMATION OF MCLFM SIGNALS
BASED ON FRFT-BES AND SSFT-HOUGH

A. Frequency Modulation Rate Estimation

Alpha-stable noise makes the parameter estimation of sig-
nals challenging and imprecise. Hence, it is necessary to
suppress alpha-stable noise in separated MCLFM signals to
make parameter estimation feasible. We propose a nonlinear
transformation to suppress alpha-stable noise as

z(t) =
0.5loge(|s(t)|)+1

e+ |s(t)|1/e
s(t). (10)

The nonlinear transformation defined above will only affect
the amplitude information, not the phase information of the
signal. It can eliminate the impact of large pulses on parameter
estimation of MCLFM signals.

Property 1. The nonlinear transformation proposed in (10)
only alters the amplitude information and does not affect the
phase information of the separated MCLFM signal.

Proof. See Appendix.

FRFT is a generalized form of the Fourier transform (FT)
and is an effective tool for analyzing the spectrum of LFM
signals. In FRFT, if the FT of the signal represents a coun-
terclockwise rotation of the TF plane of the signal by π/2
around the origin, then the FRFT of the signal is the TF plane
of the signal rotated counterclockwise by an angle α around
the origin, where α stands for the rotation angle. After the
rotation, we can obtain the FRFT domain. The FRFT can be
expressed as

Xp(u) =

∫ +∞

−∞
str(t)Kp(t, u)dt, (11)
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Fig. 2: Geometric relationship between FRFT and TF diagram.

where p represents the order of FRFT with p = 2α/π and
p ∈ [0, 2], Kp(t, u) denotes the transformation kernel given
by

Kp(t, u)

=

 Ap exp (jπ(t
2 cotα+ u2 cotα− 2ut cscα)), α ̸= nπ,

δ(t− u), α = 2nπ,
δ(t+ u), α = (2n± 1)π,

(12)

δ(t) denotes the unit impulse function and Ap =√
1− j cot pπ

2 . When the u axis is rotated to be perpendicular
to the LFM signal, the energy of the LFM signal is optimally
gathered, represented as the peak in the three-dimensional
space of FRFT. From the peak, we can determine the optimal
order and rotation angle through a two-dimensional search
(TDS). In the three-dimensional space of FRFT, the TDS is
expressed as

{pi, ui} = argmax
p,u

|Xp(u)|, (13)

where pi denotes the optimal order of the ith signal and ui is
the value of the u axis corresponding to the ith signal at this
time. Moreover, αi =

piπ
2 is the optimal rotation angle of the

ith signal. In Fig. 2, we can observe the geometric relationship
between FRFT and TF diagram, allowing us to estimate the
frequency modulation rate of the ith signal in MCLFM signals
by pi. However, the pi obtained by TDS is imprecise. To ad-
dress this issue, we propose a new method called FRFT-BES.
Using FRFT-BES, we can accurately estimate the frequency
modulation rate of MCLFM signals.

First, {ui} needs to be obtained for future filtering. The
separated MCLFM signals are processed using (10) to obtain
z(t). Then, we perform FRFT on z(t) to obtain

Xp(u) =

∫ +∞

−∞
z(t)Kp(t, u)dt. (14)
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Next, we use TDS to obtain pi and ui by (13). According to
Fig. 2, we can calculate the normalized frequency modulation
rate of the ith signal as

k′i = tan(αi − π/2) = − cotαi = − cot piπ/2. (15)

Then we determine the frequency modulation rate of the ith
signal ki as

ki =
k′ifs
tw

, (16)

where fs is the sampling frequency and tw represents the
observation time. To obtain the remaining pi and ui, we need
to filter out the current signal. We perform FRFT on z(t) at
order pi to obtain Xpi

(u), then a narrowband band-stop filter
F (ui) is constructed with ui as the center, and we pass Xpi

(u)
through the filter as

Xpi
(u) = Xpi

(u)F (ui). (17)

Perform FRFT on Xpi
(u) at order −pi to recover the signal,

resulting in xr(t). Let z(t) = xr(t) and we can obtain the
remaining pi and ui by repeating the above procedure. The
procedure of the {pi, ui} estimation of MCLFM signals based
on FRFT with alpha-stable noise is summarized in Algorithm
1.

Algorithm 1 The {pi, ui} estimation of MCLFM signals based
on FRFT
Require: s(t) : the separated MCLFM signals; m : the

number of LFM signals in SCURS.
Ensure: {pi} : the optimal order of MCLFM signals; {ui} :

the value of the u axis of MCLFM signals.
1: Take s(t) through the nonlinear transformation by (10)

and let i=0;
2: loop
3: Let i=i+1;
4: if i > m then
5: break;
6: end if
7: Perform FRFT on z(t) by (14), use TDS to find pi and

ui by (13);
8: Perform FRFT on z(t) at order pi by (14) to obtain

Xpi
(u), construct a narrowband band-stop filter F (ui)

with ui as the center, pass Xpi(u) through the filter by
(17);

9: Perform FRFT on Xpi
(u) at order −pi to obtain xr(t),

let z(t) = xr(t);
10: end loop
11: We can obtain {pi} = {p1, p2, ..., pm} and {ui} =

{u1, u2, ..., um}.

Then, we use the BES to obtain the optimal orders of
MCLFM signals, and we improve BES with the improved
Cubic mapping (ICM). BES is divided into three stages, which
are introduced below [31].

Stage 1 is called the select stage. At this stage, the bald
eagle selects a search space and determines an optimal hunting
region based on the prey population. The bald eagle then hunts

within this optimal hunting region. The mathematical model
of this stage is given by

Pi,new = Pbest + αcRr(Pmean − Pi), (18)

where Pi,new denotes the updated position of the ith bald eagle
and Pbest stands for the optimal position for the bald eagle
in the current stage. αc is used to control the position of the
bald eagle with (1.5,2), Rr represents the random number with
(0,1), Pmean is the average position of the bald eagle after its
last search, and Pi denotes the position of the ith bald eagle.

Stage 2 is called the search stage. During this stage, the
bald eagle will search for prey in the optimal hunting region
selected during the selection stage, and its flight trajectory is a
spiral shape. At this time, the bald eagle constantly adjusts its
parameters to move towards the optimal position, and at this
stage, the movement of the bald eagle will be more diversified.
The mathematical models are expressed in polar coordinates
as

θ(i) = aπ ∗ rand, r(i) = θ(i) +R ∗ rand, (19)

xr(i) = r(i) sin(θ(i)), yr(i) = r(i) cos(θ(i)), (20)

x(i) =
xr(i)

max(|xRr|)
, y(i) =

yr(i)

max(|yRr|)
, (21)

Pi,new = Pi + y(i)(Pi − Pi+1) + x(i)(Pi − Pmean), (22)

where x(i) and y(i) denote the position of the bald eagle in
coordinate space, and their values are between with (-1,1).
r(i) and θ(i) represent the polar diameter and polar angle
of the spiral equation, respectively. a and R are the control
parameters for the spiral flight trajectory of the bald eagle
with (5,10) and (0.5,2), respectively. rand stands for a random
number within (0,1).

Stage 3 is called the swooping stage. In this stage, the bald
eagle moves rapidly from the optimal position found in the
search stage to the target prey, while other bald eagles in the
population also move toward the best point. The mathematical
model is in polar coordinates as

θ(i) = aπ ∗ rand, r(i) = θ(i), (23)

xr(i) = r(i) sinh(θ(i)), yr(i) = r(i) cosh(θ(i)), (24)

x1(i) =
xr(i)

max(|xRr|)
, y1(i) =

yr(i)

max(|yRr|)
, (25)

Pi,new = rand ∗ Pbest + x1(i)(Pi − c1Pmean)

+ y1(i)(Pi − c2Pbest),
(26)

where c1 and c2 are both movement intensity coefficients with
(1,2). The fitness value is the maximum absolute value of the
FRFT value at the currently searched order p in BES.

However, if BES falls into a local optimal value after
population initialization, it will adversely affect the subse-
quent global search for the optimal values, leading to poor
performance. So we improve the Cubic mapping to propose
the improved Cubic mapping for population initialization in
BES. At the same time, we improve it to achieve a more
uniform distribution. First, we use a pseudo-random number
to generate the initial value of the ICM sequence by

C1 = rand, (27)
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where C1 denotes the first number of the ICM sequence. Then
use the iterative form of CM to generate the next value as

Cj+1 = γcCj(1− C2
j ), (28)

where γc stands for the control parameter, and Cj represents
the jth number of the ICM sequence. However, in the dis-
tribution of CM, the number distribution close to 0 and 1 is
still relatively large, so we use a formula to evaluate all points
in CM. The closer the points are to 0 and 1, the higher the
probability of being regenerated by rand is. The judgment
formula is expressed as

|Cj+1 − 0.5|+ 0.05 ≥ rand ∗ 0.6. (29)

If (29) is satisfied, then Cj+1 = rand. Furthermore, since
the search range in FRFT is p ∈ [0, 2], it is also necessary
to determine after each point is obtained whether it meets
rand ≥ 0.5. If so, the value of the current point is increased by
1, so that the sequence values of ICM can be evenly distributed
in [0, 2]. By repeating the above steps, we can obtain the
sequence of ICM. The procedure for obtaining the sequence
of ICM is summarized in Algorithm 2.

Algorithm 2 Acquisition of the ICM sequence

Require: γc : the control parameter; Psize : the population of
BES.

Ensure: {Cj} : the sequence of ICM.
1: Let j=1, initialize the ICM sequence with a pseudo-random

number of (0,1) by (27);
2: while j < Psize do
3: Obtain the next value in the ICM sequence by (28);
4: if |Cj+1 − 0.5|+ 0.05 ≥ rand ∗ 0.6 then
5: Cj+1 = rand;
6: end if
7: if rand ≥ 0.5 then
8: Cj+1 = Cj+1 + 1;
9: end if

10: j = j + 1;
11: end while
12: We can obtain {Cj} = {C1, C2, ..., CPsize

}.

The distribution of ICM and CM is shown in Fig. 3. From
Fig. 3, we can see that ICM has a better uniform distribution
than CM. This can lead to a more diverse and uniform
initial population distribution of BES, enhance the ability to
escape local optimal value, and improve the performance of
the algorithm. The procedure of the frequency modulation
rate estimation of MCLFM signals based on FRFT-BES with
alpha-stable noise is summarized in Algorithm 3.

B. Initial Frequency Estimation
FT can extract the frequency spectrum of a signal, but

it does not provide TF analysis of the signal, so we can
not obtain the frequency and time information of the signal
simultaneously. To solve this issue, we can use STFT to
analyze the signal. STFT can perform TF analysis of the
signal, which is given by [32]

STFT (t, f) =

∫ +∞

−∞
[str(t)w(u−t)] exp(−j2πfu)du, (30)
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Fig. 3: Distribution of ICM and CM values.

Algorithm 3 The frequency modulation rate estimation of
MCLFM signals based on FRFT-BES

Require: s(t) : the separated MCLFM signals; m : the
number of LFM signals in SCURS.

Ensure: {ki} : the frequency modulation rate of MCLFM
signals.

1: Use Algorithm 1 to get {pi} and {ui};
2: Take s(t) through the nonlinear transformation by (10)

and let i=1;
3: while i ≤ m do
4: Use BES with ICM to obtain the optimal order of ith

signal p′i, obtain ki by (15) and (16), let D = 2 and
DR = 1;

5: for l = 1 to m do
6: D1 = |p′i − pl|
7: if D1 < D then
8: D = D1, DR = l;
9: end if

10: end for
11: Perform FRFT on z(t) at order p′i by (14) to ob-

tain Xp′
i
(u), construct a narrowband band-stop filter

F (uDR) with uDR as the center, pass Xp′
i
(u) through

the filter by (17);
12: Perform FRFT on Xp′

i
(u) at order −p′i to obtain xr(t),

let z(t) = xr(t);
13: Let i=i+1;
14: end while
15: We can obtain the frequency modulation rate {ki} =

{k1, k2, ..., km} and optimal order {p′i} = {p′1, p′2, ..., p′m}
of MCLFM signals.

where w(t) denotes the window function. We use the Gaussian
window in this paper as

w(t) = exp(−10π2t2

3
). (31)

However, the STFT is unable to provide high-precision TF
analysis, making it difficult to estimate the initial frequency of
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MCLFM signals. The short-time fractional Fourier transform
(STFRFT) is proposed to enhance the TF resolution. It is a
technique that combines STFT and FRFT, which is expressed
as

STFRFT (t, u) =

∫ +∞

−∞
sh(t)w(t− τ)Kp(t, u)dt. (32)

The value on the u axis can be converted to the value on the
frequency axis as [33]

fv =
uv

sin pvπ
2

, (33)

where uv and fv represent the values on the u axis and fre-
quency axis, respectively, pv denotes the order for performing
STFRFT. When we take STFRFT of MCLFM signals at the
optimal order p′i of the ith signal, in the resulting TF diagram,
we can observe that the ith signal and other signals of optimal
order equal to p′i are perpendicular to the frequency axis, while
the other signals whose optimal order is different from p′i
are not perpendicular to the frequency axis. This principle
can be used to estimate the initial frequency of MCLFM
signals. To further improve the TF resolution of STFRFT,
we propose a novel TF transform method called SSFT based
on the concept of synchroextracting transform (SET). SSFT
contains STFRFT and its subsequent processing, and it can
provide high resolution in TF analysis of signals. This allows
for accurate estimation of the initial frequency of MCLFM
signals using SSFT. The expression of STFRFT is

SR(τ, u) =

∫ +∞

−∞
sh(τ)Y (τ − τ ′)Kp(τ, u)dτ, (34)

according to (15) and (16), when α = 2nπ or α = (2n±1)π,
ki = +∞. When α ̸= nπ, we can get

SR(v, u) = Ap

∫ +∞

−∞
sh(v)(Y (v − τ ′)H(v, u))∗dv, (35)

where

H(v, u) = exp (−jπ(v2 cotα+ u2 cotα− 2uv cscα)),
(36)

Ap =
√
1− j cotα, (37)

let g(v) = Y (v − τ ′)H(v, u), we can obtain

SR(v, u) = Ap

∫ +∞

−∞
sh(v)g(v)

∗dv

=
Ap

2π

∫ +∞

−∞
Sh(ξ)g(ξ)

∗dξ,

(38)

where

g(ξ) =

∫ +∞

−∞
g(v) exp (−jξv)dv

=

∫ +∞

−∞
Y (v − τ ′)H(v, u) exp (−jξv)dv.

(39)

Because the order used for SSFT is the optimal order of the ith
signal, the signal is perpendicular to the u axis in the spectrum
diagram. We can obtain − cotα = 0 and f = u cscα by (15),

(16), and the principle of FRFT. Then let v− τ ′ = t′, we can
obtain

g(ξ) =

∫ +∞

−∞
Y (t′)H(t′, u) exp (−jξ(τ ′ + t′))d(τ ′ + t′)

= exp (−j(ξ − ω)τ ′)

∫ +∞

−∞
Y (t′) exp (−j(ξ − ω)t′)dt′

= exp (−j(ξ − ω)τ ′)Yg(ω − ξ),
(40)

where

H(t′, u) = exp(−jπ((τ ′ + t′)2 cotα+ u2 cotα

− 2u(τ ′ + t′) cscα)).
(41)

Putting (40) into (38), we can get

SR(v, ω) =
1

2π

∫ +∞

−∞
Sh(ξ) exp(j(ξ − ω)τ ′)Yg(ω − ξ)dξ.

(42)
We take the signal as the pure harmonic signal, which is
expressed as

sh(v) = As exp(jωov), (43)

where As is the amplitude and ωo denotes the instantaneous
frequency (IF) of the signal, respectively. Then the FT of the
signal is expressed as

Sh(ξ) = 2πAsδ(ξ − ωo). (44)

Using (42), the revised STFRFT can be given by

SRe(v, ω) = SR(v, ω) exp(jωτ ′)

=
1

2π

∫ +∞

−∞
2πAsδ(ξ − ωo)Y (ω − ξ) exp(jξv)dξ

= AsY (ω − ωo) exp(jωov).
(45)

Let v = t and take the partial derivative of SRe(t, ω) with
respect to t, we can obtain

∂SRe(t, ω)

∂t
= jAsY (ω − ωo) exp(jωot)ωo

= jωoSRe(t, ω),
(46)

so

ωo(t, ω) = −j
∂tSRe(t, ω)

SRe(t, ω)
. (47)

From (47), it can be seen that when SRe(t, ω) ̸= 0, the
IF ωo(t, ω) equals to the STFRFT coefficient for any (t, ω).
Furthermore, there is divergent energy in the TF distribution of
the signal, which will result in low TF resolution, so it needs
to be removed. Here, we construct a SSFT operator (SSFTO)
using a delta function of the form δ(ω − ωo(t, ω)). SSFTO
can be used to eliminate the divergent energy of the signal,
allowing for a more concentrated signal energy. By using the
SSFTO, we can express the SSFT as

SSFT (t, ω) = SRe(t, ω)δ(ω − ωo(t, ω)), (48)

where

δ(ω − ωo(t, ω)) =

{
1, ω = ωo(t, ω),
0, ω ̸= ωo(t, ω),

(49)
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function.

and we can obtain

SSFT (t, ω) =

{
SRe(t, ω), ω = ωo(t, ω),

0, ω ̸= ωo(t, ω).
(50)

From (50), we know that SSFT can preserve the TF coefficient
of the signal at ω = ωo and eliminate the others. Therefore,
SSFT can significantly enhance the TF resolution and accuracy
of parameter estimation for the signal. For MC signals, SSFT
is expressed as [34]

SSFT (t, ω) = SRe(t, ω)δ(ω − ζ(t, ω)), (51)

where ζ(t, ω) is the sum of MC signals TF resolution with

ζ(t, ω) =

m∑
i=1

ζi(t, ω) = −j
∂tSRe(t, ω)

SRe(t, ω)
, (52)

where ζi(t, ω) denotes the IF of the ith signal. Meanwhile, the
IF of MC signals need to satisfy

ζi+1(t, ω)− ζi(t, ω) > 2∆, (53)

where ∆ denotes the effective frequency support range of the
window function shown in Fig. 4.

In summary, when we use SSFT to process MCLFM signals,
high resolution MCLFM TF diagram will be obtained. How-
ever, each time we perform SSFT at order p′i, only the signals
with the same order will be perpendicular to the frequency
axis, while the rest will not. Therefore, we can only estimate
the initial frequency of one signal at a time. Then, HT is used
to estimate the initial frequency of MCLFM signals. A straight
line in a rectangular coordinate system can be expressed as

ω = Ct+ Z, (54)

where ω and t represent the vertical axis and horizontal axis of
the TF domain, respectively. C and Z represent the slope and
intercept of the straight line, respectively. By using HT, the line
detection problem can be transformed into a peak detection
problem. The peak detection of the point can then provide the
intercept and slope of the straight line. So, HT can transform a

straight line in the rectangular coordinate system into a point
in the polar coordinate system, and the transformation is given
by

γ = t cos θ + ω sin θ, (55)

where γ is the distance between the central point and the
straight line in the polar coordinate system, and θ denotes
the angle between the normal line and the horizontal axis.
When we perform SSFT on MCLFM signals at order p′i, the
TF distribution of the ith signal will be perpendicular to the ω
axis. We can use HT to detect all TF distributions of MCLFM
signals and identify all peaks. Then, we can locate the θi
closest to −π/2 and determine its corresponding γi, where
θi and γi denote the γ and θ of the ith signal, respectively.
If more than one γi is found, we can choose one arbitrarily.
Next, the intercept of si(t) can be given as

uvi =
fs
2

− fs(|γi|+ lws∆/lTF ), (56)

where lws stands for the compensating number and lTF

denotes the height of the TF diagram. We can obtain the
initial frequency of the ith signal by (33). Similar to the
frequency modulation rate estimation, a two-dimensional filter
is constructed to filter the SSFT spectrum and isolate the TF
distribution of si(t). Subsequently, the inverse SSFT transfor-
mation is performed to restore the signal. Finally, the initial
frequency can be estimated by repeating the above steps. The
procedure of initial frequency estimation of MCLFM signals
based on SSFT-Hough with alpha-stable noise is summarized
in Algorithm 4.

Algorithm 4 The estimation of initial frequency for MCLFM
signals based on SSFT-Hough

Require: s(t) : the separated MCLFM signals; m : the
number of LFM signals in SCURS; {p′i} : the optimal
order of MCLFM signals.

Ensure: {fi} : the initial frequency of MCLFM signals.
1: Take s(t) through the nonlinear transformation by (10)

and let i=1;
2: while i ≤ m do
3: Perform SSFT on x(t) at order p′i;
4: Use HT for MCLFM signals to get all peaks, find θi

closest to −π/2 and get its corresponding γi;
5: Obtain the the intercept of si(t) by (56);
6: Estimate the initial frequency fi of si(t) by (33);
7: Construct a two-dimensional filter, filter the SSFT

spectrum to isolate the TF distribution of si(t). Then
perform the inverse SSFT transformation to restore the
signal xr(t), let z(t) = xr(t);

8: Let i = i+ 1;
9: end while

10: We can obtain {fi} = {f1, f2, ..., fm}.

IV. SIMULATION RESULTS AND ANALYSIS

To verify the proposed parameter estimation method, we
conduct MATLAB simulation. In MCLFM signals, the number
of signals is m = 2, the frequency modulation rates are
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k1 = 100Hz/s and k2 = 50Hz/s, the initial frequencies
are f1 = 200Hz and f2 = 100Hz, the sampling frequency is
fs = 1000Hz, the observation time is tw = 1s, the control
parameter is γc = 2.595, the population size of FRFT-BES is
Psize = 30, and the population size of FRFT-particle swarm
optimization (FRFT-PSO) is the same as that of FRFT-BES,
the maximum number of iterations for FRFT-BES and FRFT-
PSO is 45, and the noise distribution is the SαS distribution.
In parameter estimation, the performance is measured by the
normalized root mean square error (NRMSE), which is given
as follows

NRMSE =

√√√√ N∑
q=1

(
Z − Ẑ(q)

)2

/ (N · Z2), (57)

where N is the number of Monte Carlo simulation experi-
ments, Z is the actual value of the parameter, Ẑ(q) is the qth
estimated value of the parameter. We set N to 300 in this
paper. Moreover, we also carried out the success rate exper-
iment for frequency modulation rate estimation comparison.
The success rate is given by

SRate =
Ns

2N
, (58)

where Ns denotes the number of successful estimation. A
successful estimation is achieved when the modulus of the
difference between the estimated frequency modulation rate
and the true frequency modulation rate is less than or equal
to 0.5.

In Fig. 5, when MSNR = −5dB and αe = 1, we use
different methods for TF analysis of MCLFM signals. From
Fig. 5a and Fig. 5b, it can be observed that, when MSNR
is low, if we use STFT and STFRFT to do TF analysis of
MCLFM signals, the TF characteristics of each signal will
be overwhelmed by alpha-stable noise. This leads to poor TF
resolution, making it difficult to estimate the initial frequency.
From Fig. 5c and Fig. 5d, it is seen that the proposed method
not only effectively suppresses alpha-stable noise but also
preserves the TF characteristics of each signal. Additionally, it
has good TF resolution, laying a solid foundation for the initial
frequency estimation. So the proposed method can effectively
estimate the initial frequency of MCLFM signals with alpha-
stable noise and offers superior TF resolution compared to
STFT and STFRFT.

For performance comparison, we use the FRFT and PSO
based method for parameter estimation of single-component
LFM signal as mentioned in [36]. This is within the framework
of the proposed method without ICM as FRFT-PSO, which is
capable of estimating the parameters of MCLFM signals. In
Fig. 6 and Fig. 7, we compare the performance of the proposed
method with FRFT-PSO and FRFT under the same experi-
mental conditions when αe = 1 in frequency modulation rate
estimation. From Fig. 6, as the MSNR increases, the NRMSE
of the frequency modulation rate estimated by FRFT remains
around 7.4 × 10−3. However, the NRMSE of FRFT-PSO is
higher than that of FRFT only when MSNR = −10dB.
In all other cases, it improves with increasing MSNR and
always outperforms FRFT. In comparison, the NRMSE of the
proposed method is always better than FRFT and FRFT-PSO,
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(a) STFT analysis. (b) STFRFT analysis of the first com-
ponent signal.
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Fig. 5: TF analysis of MCLFM signals with STFT, STFRFT,
and SSFT.
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Fig. 6: Estimation performance comparison of frequency mod-
ulation rate with different methods.

reaching approximately 2.1×10−3 at high MSNR. Moreover,
we compare the success rate of the proposed method with
FRFT and FRFT-PSO in Fig. 7. From Fig. 7, it can be
observed that as the MSNR increases, the success rate of FRFT
stays at 50% all the time, while the success rate of FRFT-
PSO consistently outperforms it and can eventually reach
92%. In addition, the success rate of the proposed method
consistently outperforms the other two methods and reaches
99% at high MSNR. Therefore, the proposed method has
good performance and outperforms FRFT and FRFT-PSO in
frequency modulation rate estimation.

In Fig. 8, we compare the convergence process of FRFT-
BES and FRFT-PSO under the same experimental conditions
when αe = 1 and MSNR = −10dB in frequency modulation
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rate estimation. From Fig. 8, we can find that FRFT-BES
converges more rapidly than FRFT-PSO with the increase of
iterations. Besides, the optimal fitness value of FRFT-BES
in the final search result is greater than that of FRFT-PSO,
confirming that FRFT-BES has better performance than FRFT-
PSO in frequency modulation rate estimation. Therefore, the
proposed method has better search performance than FRFT-
PSO.

In Fig. 9, we compare the initial frequency estimation per-
formance of STFT-Hough, STFRFT-Hough, and the proposed
method under different MSNR in the same experimental con-
dition when αe = 1. From Fig. 9, with the increase of MSNR,
the NRMSE of STFT-Hough eventually decreases to around
9 × 10−2, and the NRMSE of STFRFT-Hough is better than
STFT-Hough only when MSNR ≥ −4dB, which is going to
end up around 5×10−2. Meanwhile, the NRMSE of the initial
frequency estimated by the proposed method is consistently
less than 2.5 × 10−2, which is significantly lower than that
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of STFT-Hough and STFRFT-Hough. The optimal NRMSE
of the proposed method in initial frequency estimation is
approximately 1 × 10−2. In summary, the proposed method
performs well and outperforms STFT-Hough and STFRFT-
Hough.

In Fig. 10, we analyze the estimation performance of the
frequency modulation rate and initial frequency for different
characteristic exponents and different MSNR. From Fig. 10,
when MSNR ≥ −5dB, the estimation performance of
the frequency modulation rate and initial frequency remains
stable under different characteristic exponents. So the pro-
posed method is not affected by the characteristic exponent,
demonstrating its robustness to the characteristic exponent at
low MSNR in the SαS distribution.

In Fig. 11 and Fig. 12, we compare the parameter estimation
performance of different methods under different characteristic
exponents when MSNR = 0dB. From Fig. 11, we can see
that across different characteristic exponents, the frequency
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modulation rate estimation performance of all three methods
remains consistent respectively, demonstrating the stability of
the three methods. Moreover, the NRMSE of the proposed
method remains stable at around 2.5 × 10−3, which is an
improvement over the 7.4×10−3 of FRFT and the 3.3×10−3

of FRFT-PSO. From Fig. 12, we can observe that as the
characteristic exponent increases, the NRMSE of STFT-Hough
also increases. In contrast, the NRMSE of STFRFT-Hough and
the proposed method remains constant, indicating that STFT-
Hough is unstable while the other two methods are stable. In
addition, the NRMSE of the proposed method is stable at ap-
proximately 1.45×10−2, which is better than the 4.35×10−2

of STFRFT-Hough and STFT-Hough with a minimum value
of 1.1 × 10−1. So we know that the proposed method has
better performance, stability, and feasibility compared to the
other two methods in the SαS distribution.

V. CONCLUSION

This paper proposes a new parameter estimation method for
MCLFM signals with alpha-stable noise in SCURS, which can
assist in the demodulation of SCURS. In order to suppress
alpha-stable noise without affecting the parameter estimation,
we develop a nonlinear transformation to reduce the amplitude
of MCLFM signals with alpha-stable noise. Next, we use
FRFT to obtain the parameters required for filtering and
improve CM to obtain ICM. Then, we use ICM to enhance
BES to estimate the frequency modulation rate of MCLFM
signals. In addition, we propose a high resolution TF transform
method called SSFT and combine it with HT to propose SSFT-
Hough to estimate the initial frequency. Moreover, simulation
results demonstrate that the proposed parameter estimation
method is effective and feasible at low MSNR, and it has
good performance. At the same time, the performance of the
proposed method has been significantly improved compared
to existing methods.

APPENDIX
PROOF OF PROPERTY 1

The expression of the nonlinear transformation can be
expressed as

z(t) =
0.5loge(|s(t)|)+1

e+ |s(t)|1/e
s(t)

=

0.5
loge(|

m∑
i=1

si(t)+e(t)|)+1
(

m∑
i=1

si(t) + e(t)

)
e+ |

m∑
i=1

si(t) + e(t)|1/e
.

(59)

In this paper, we study three kinds of nonlinear transforma-
tions, and their discussion is given as follows.

1) When MSNR is large, which is |
m∑
i=1

si(t)| ≫ |e(t)|, then

s(t) ≈
m∑
i=1

si(t) =
m∑
i=1

Ai exp
(
jπ

(
2fit+ kit

2
))

, and we can

get

z(t) =
0.5loge(|s(t)|)+1

e+ |s(t)|1/e
s(t)

≈ 0.5
loge(|

m∑
i=1

si(t)|)+1

e+ |
m∑
i=1

si(t)|1/e
s(t)

=
0.5

loge(|
m∑

i=1
Ai exp(jπ(2fit+kit

2))|)+1

e+ |
m∑
i=1

Ai exp (jπ (2fit+ kit2)) |1/e
s(t)

= J(t)s(t),

(60)

where J(t) denotes a real number and it is defined as

J(t) =
0.5

loge(|
m∑

i=1
Ai exp(jπ(2fit+kit

2))|)+1

e+ |
m∑
i=1

Ai exp (jπ (2fit+ kit2)) |1/e
. (61)
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2) When MSNR is small, which is |
m∑
i=1

si(t)| ≪ |e(t)|, then

s(t) ≈ e(t), and we can obtain

z(t) =
0.5loge(|s(t)|)+1

e+ |s(t)|1/e
s(t)

≈ 0.5loge(|e(t)|)+1

e+ |e(t)|1/e
s(t)

= J1(t)s(t),

(62)

where J1(t) represents a real number and it is expressed as

J1(t) =
0.5loge(|e(t)|)+1

e+ |e(t)|1/e
. (63)

3) When MSNR approaches to zero, which is |
m∑
i=1

si(t)| ≈

|e(t)|, and we can obtain

z(t) =
0.5loge(|s(t)|)+1

e+ |s(t)|1/e
s(t)

=
0.5

loge(|
m∑

i=1
Ai exp(jπ(2fit+kit

2))+e(t)|)+1

e+ |
m∑
i=1

Ai exp (jπ (2fit+ kit2)) + e(t)|1/e
s(t)

= J2(t)s(t),
(64)

where J2(t) stands for a real number and is given by

J2(t) =
0.5

loge(|
m∑

i=1
Ai exp(jπ(2fit+kit

2))+e(t)|)+1

e+ |
m∑
i=1

Ai exp (jπ (2fit+ kit2)) + e(t)|1/e
. (65)

From (60), (62), and (64), we can conclude that the nonlinear
transformation changes the amplitude without changing the
phase information of the separated MCLFM signals.
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