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Abstract—Space-time/frequency block coding (STBCs/SFBCs)
scheme is a crucial technique for enhancing the effective-
ness and reliability of multiple-input multiple-output orthog-
onal frequency-division multiplexing (MIMO-OFDM) systems
with cognitive radio (CR) capability. Automatic recognition of
STBCs/SFBCs is a prerequisite for achieving dynamic spectrum
sharing in cognitive MIMO-OFDM systems. In contrast to
existing works, this paper proposes a weighted cross-correlation
function-based algorithm to recognize SFBCs for cognitive
MIMO-OFDM systems with Gaussian noise and non-Gaussian
impulsive interference. The proposed algorithm extracts the
space-frequency redundancy information of different OFDM
subcarriers on different receiver antenna pairs by using weighted
cross-correlation functions. Then, the weighted cross-correlation
feature vectors are constructed by exploiting the multi-antenna
system so as to design the detection statistics and thresholds based
on the central limit theorem. Finally, a decision tree method is
adopted to discriminate between several SFBCs. The proposed
algorithm does not require prior information such as channel
coefficients, modulation schemes, noise power, or interference
power. Simulation results show that the proposed algorithm is
robust against non-Gaussian impulsive interference and achieves
high recognition performance in the case of a small number of
samples and a low signal-to-noise ratio.

Index Terms—Cognitive radio, multiple-input multiple-output,
non-Gaussian impulsive interference, orthogonal frequency divi-
sion multiplexing, parameter recognition, space-frequency block
coding.
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RAPID advancements in emerging technologies and ser-
vices (e.g., mobile internet, Internet of things, big data,

and robotics) have led to the proliferation of various devices
and systems [1]. Hence, the problems of low spectrum efficien-
cy, strong frequency-selective fading, and low transmission
rates are becoming increasingly severe in wireless commu-
nication [2], [3]. In order to solve the spectrum insufficiency
problem, cognitive radio (CR) is envisioned as a promising
paradigm that provides a novel dynamic spectrum sharing
strategy [4], [5]. This strategy facilitates the learning and per-
ception of the radio environment (i.e., spectrum sensing, chan-
nel estimation, and communication parameter identification)
and allows for the dynamic sharing of the licensed spectrum
through the adjustment of the communication parameters [6]–
[8]. It allows secondary users (SUs) to opportunistically utilize
the licensed spectrum without affecting the Primary Users
(PUs), thereby significantly improving the spectrum utilization
efficiency. Recently, CR in conjunction with multiple-input
multiple-output (MIMO) orthogonal frequency-division mul-
tiple (OFDM) access has received considerable attention as
a candidate technology for future cognitive radio networks.
The cognitive MIMO-OFDM system effectively fuses the
advantages of MIMO and OFDM systems: MIMO technol-
ogy makes full use of the space multiplexing gain, while
OFDM technology can resist frequency-selective fading and
suppress inter-symbol interference [9]–[12]. Accordingly, it
allows for high-dimensional reuse of the licensed spectrum in
the space, time, and frequency domains, thereby alleviating
the challenge of scarce spectrum resources. It also fully
exploits the advantages of the MIMO-OFDM antenna array
to enhance the resistance to frequency-selective fading and
inter-symbol interference. As an intelligent radio paradigm,
cognitive MIMO-OFDM systems are also capable of learning
from the radio environment(i.e., spectrum sensing, channel
estimation, and communication parameter recognition) and
adaptively modifying their transmission parameters in accor-
dance with the learning results during their transmissions
[13]. For MIMO-OFDM systems, the pace-time/frequency
block coding is a critical communication parameter, which
can effectively enhance the validity and reliability of data
transmission. Hence, the recognition of space-time/frequency
block coding (STBCs/SFBCs) is a key technology component
in cognitive MIMO-OFDM systems. To further extend the
application of cognitive radio in the context of non-cooperative
communication, it is significant for secondary users to be capa-
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TABLE I
THE MAIN SYMBOLS IN THIS PAPER

Symbols Explanation

Mt Transmit antennas

Mr Receive antennas

Nz The number of OFDM subcarriers

ν The length of cyclic prefix

xb The data block

C (xb) The encoding matrix

Hk The channel matrix

yk (n) The received signal vector on the kth subcarrier

sk (n) The transmitted signal vector

wk (n) The frequency-domain Gaussian white noise

Ik (n) The frequency-domain alpha-stable interference

J(i1,i2) (k1, k2) The weighted cross-correlation

ω
ij
kl

(n) The adaptive weighting coefficient

Υ The set of receive antenna pairs

JC (k1, k2) The absolute value feature vectors

ZC (k1, k2) The exponential feature vectors

TF The detection statistic

ΨC1
F The detection threshold

C The SFBCs scheme candidate pooling

µT
F
|H0

The mean of TF under the H0 hypothesis

σ2
T
F
|H0

The variance of TF under the H0 hypothesis

ble of STBCs/SFBCs recognition. Specifically, the cognitive
user is equipped with STBCs/SFBCs recognition feature to
precisely regulate the transmission parameters to match the
duration of the spectrum hole so as to avoid interference to
the primary user. Consequently, we are motivated to investigate
the issue of STBCs/SFBCs recognition for cognitive MIMO-
OFDM systems.

A. Related Work

The problem of STBCs/SFBCs recognition refers to the
process of identifying space multiplexing, space-time group-
ing coding, or space-frequency grouping coding under un-
known or partially known parameters. For spatial encod-
ing recognition algorithms in single-carrier MIMO system-
s, the maximum-likelihood-based (LFB) algorithm [14], the
statistics correlation-based (SCB) algorithm [15]–[20], the
cyclostationary-based (CCB) algorithm [21]–[23] and the
Kolmogorov-Smirnov tests-based (KSB) algorithm [24], [25]
were proposed. The LFB algorithm transforms the STBC
recognition problem into a multi-hypothesis testing problem.
It constructs a cost function using the likelihood function of
the received signal and solves for the recognition of spatial
encoding types through optimization. This method achieves

TABLE II
THE MAIN NOTATIONS IN THIS PAPER

Notations Descriptions

[·]T Transposition

|·| Absolute value

(·)∗ Complex conjugate

E {·} Mathematical expectation

lg Base-10 logarithm

◦ the Hadamard product

exp (·) Exponential function

∥·∥F Frobenius norm

δ Kronecker delta

Γ (·) Gamma Function

∥·∥l1 l1 norm

Pr (C) Probability of the event C

≈ Approximately equal sign

good recognition performance when there is sufficient prior
information but has high computational complexity. The SCB
algorithm utilizes statistical quantities of the received signal
(such as correlation functions, temporal correlation, higher-
order statistics, etc.) to construct recognition feature sequences
and design a classifier to perform recognition. This method
exhibits good recognition performance at medium to high
signal-to-noise ratios and has low computational complexi-
ty. The CCB algorithm analyzes cyclostationary statistics of
the received signal, including second-order cyclostationary
statistics and fourth-order cyclostationary statistics, to con-
struct discriminating features. Then, the feature classifier is
designed to enhance the recognition performance at the cost
of computational complexity, particularly in low signal-to-
noise conditions. The KSB algorithm formulates the STBCs
recognition problem as a goodness-of-fit test. It uses the
maximum distance between the empirical cumulative distri-
bution functions (CDFs) of two statistical quantities in the
received signal as a discriminating feature and employs the
K-S test for decision-making. This method can also achieve
good recognition performance at low signal-to-noise ratios but
recognizes fewer types.

For mulit-carrier systems or MIMO-OFDM systems, several
researches have been conducted. In [26], Eldemerdash et al.
exploited the statistical properties by designing a new cross-
correlation function of the MIMO-OFDM signal to identify
spatial multiplexing (SM) and Alamouti (AL) codes. The algo-
rithm does not require a priori information such as modulation
format, noise power, or timing error. In [27], Karami et al.
proposed a new identification algorithm based on second-order
cyclostationary characteristics to distinguish AL-OFDM and
SM-OFDM. The algorithm is robust to phase noise and timing
offset. In [28], the cross-correlation of the received signals
was extracted from different receiving antennas as identifica-
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tion features and binary hypothesis testing was performed to
identify three different space-time encoding types. Marey et al.
proposed an identification method based on hypothesis testing
to distinguish AL signals and SM signals by analyzing the
cross-correlation functions between different received antenna
signals in [29]. In [30], discriminant feature vectors were
constructed by using the signal subspace and noise subspace
of adjacent subcarriers in OFDM. As a result, the decision
tree based on a special distance criterion was employed to
identify the space-frequency block coding. Gao et al. utilized
the two-dimensional space-frequency redundancy of SFBC-
OFDM and proposed two identification methods, namely
the hypothesis testing-based method and the support-vector-
machine-based method [31]. Both methods achieve good iden-
tification performance under a low signal-to-noise ratio. All the
aforementioned methods assume that the environmental noise
is Gaussian.

B. Contributions

With the ever-increasing occurrence of man-made electro-
magnetic interference and multiuser interference in wireless
communication, the non-Gaussian nature of noise/interference
is prevalent [32], [33]. These include power line system-
s, aviation communication, high-speed rail communication,
and underwater communication [34], [35]. As the energy
of impulsive interference is much greater than that of the
background noise, this may affect users in cognitive MIMO-
OFDM systems. Therefore, this study investigates the SFBCs
recognition for cognitive MIMO-OFDM systems under non-
Gaussian impulsive interference.

We propose a novel recognition method based on weighted
cross-correlation functions. Based on the analysis of weighted
cross-correlation functions for space-frequency encoding, the
detection statistic and detection threshold are constructed
using the weighted cross-correlation feature matrix. Further, a
decision tree method is adopted to identify SFBCs. The main
contributions of this paper are as follows.

• Different from existing works, we develop an effec-
tive algorithm for discriminating between several SFBCs
schemes with Gaussian noise and SαS interference for
the first time. Specifically, a weighted cross-correlation
function is designed to recognize the SFBCs scheme
candidate pooling (SM, AL, SF3, SF4) in cognitive
MIMO-OFDM systems.

• We analyze the weighted cross-correlation function of d-
ifferent SFBCs schemes in MIMO-OFDM systems. Then,
the multi-antenna receivers’ characteristics are utilized
to construct the absolute value feature vectors and the
exponential feature vectors based on the weighted cross-
correlation function. Using two types of feature matrices
to construct a detection statistic transforms the problem of
SFBCs recognition into a serial binary hypothesis testing
problem.

• The proposed method does not require prior information
such as the baseband modulation scheme, channel coeffi-
cients, noise power, and interference power. This method
can effectively identify the SFBCs under non-Gaussian

noise interference and frequency-selective fading, and it
achieves good recognition performance in the case of a
small number of samples and a low signal-to-noise ratio.

The organization of this paper is as follows. Section II in-
troduces the system model. Section III describes the weighted
cross-correlation function of SFBC-OFDM signals. Section IV
discusses the proposed recognition scheme. Section V presents
the simulation result. Finally, the paper is concluded in Section
VI. Table I and Table II list the main symbols and notations
in this paper, respectively.

II. SYSTEM MODEL

Without loss of generality, consider a cognitive MIMO-
OFDM system, which consists of a primary user (PU), a
primary user base station, a cognitive radio base station, and a
secondary user (SU). A typical scenario is illustrated in Fig. 1.
Once the PU begins to communicate, the surrounding SU can
learn and perceive the radio environment, including spectrum
sensing, channel estimation, and communication parameter
recognition. We assume PU is equipped with Mt transmit
antennas, and SU has Mr receive antennas, Nz subcarriers
and ν cyclic prefix samples for OFDM. At the transmitter, the
transmitted symbols are first mapped using either M-ary phase
shift keying (M-PSK) or M-ary quadrature amplitude modula-
tion (M-QAM). Then, the modulated symbols are divided into
blocks xb of length Ns, with xb = [xb,0, xb,1, · · · , xb,Ns−1].
The SFBC encoder maps the rows of the encoding matrix
C (xb) into L consecutive OFDM subcarriers. Commonly used
SFBCs schemes include SM, AL, SF3, and SF4 [31]; their
code matrices are given by

CSM (xb) = [xb,0, · · · , xb,Mt−1]
T
, (1)

CAL (xb) =

[
xb,0 xb,1

−x∗
b,1 x∗

b,0

]T
, (2)

CSF3(xb)=


xb,0 xb,1

xb,2√
2

−x∗
b,1 x∗

b,0
xb,2√

2
x∗
b,2√
2

x∗
b,2√
2

−xb,0−x∗
b,0+xb,1−x∗

b,1

2
x∗
b,2√
2

−x∗
b,2√
2

xb,1+x∗
b,1+xb,0−x∗

b,0

2


T

(3)

CSF4 (xb) =



xb,0 xb,1 xb,2

−xb,1 xb,0 −xb,3

−xb,2 xb,3 xb,0

−xb,3 −xb,2 xb,1

x∗
b,0 x∗

b,1 x∗
b,2

−x∗
b,1 x∗

b,0 −x∗
b,3

−x∗
b,2 x∗

b,3 x∗
b,0

−x∗
b,3 −x∗

b,2 x∗
b,1



T

. (4)

Based on the principle of OFDM, the OFDM block un-
dergoes an Nz-point inverse fast Fourier transform (IFFT)
while simultaneously adding a cyclic prefix of length ν. At
the receiver, assuming that the received signal has achieved
time-frequency synchronization, the cyclic prefix is removed,
and the OFDM symbols are demodulated by performing an
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Fig. 1. Block diagram of the SFBCs recognition for cognitive MIMO-OFDM systems.

Nz-point FFT. The transmission channel is regarded as a
frequency-selective fading channel, and the channel matrix can
be defined as

Hk =

 H(1,1) · · · H(Mt,1)

...
. . .

...
H(1,Mr) · · · H(Mt,Mr)

 , (5)

where H(fi,fj) represents the kth subchannel coefficient be-
tween the fith transmit antenna and the fj th receive antenna.
The nth received signal of the kth OFDM subcarrier can be
denoted as

yk (n) = s̃k (n) + Ik (n) +wk (n)

= Hksk (n) + Ik (n) +wk (n) ,
(6)

where yk (n) represents the received signal vector on the
kth subcarrier, sk (n) represents the transmitted signal vector,
wk (n) denotes the Gaussian white noise on the kth subcarrier,
and Ik (n) represents the n-th non-Gaussian impulsive interfer-
ence on the kth subcarrier. The impulsive interference follows
a symmetric alpha stable (SαS) distribution. Specifically, the
SαS distribution is described by its characteristic function as

φ (I) = e(jeαI−γα|I|α), (7)

where eα is the location parameter, γα denotes the scale pa-
rameter, and α ∈ [1, 2) represents the characteristic exponent,
which controls the heaviness of the tails of the impulsive
interference. The smaller the value of α is, the heavier the
impulsive are [35].

III. WEIGHTED CROSS-CORRELATION FUNCTION OF
SFBC-OFDM SIGNALS

To address the recognition problem of the SFBCs scheme
in complex noisy environments, we propose a recognition
algorithm based on the weighted cross-correlation function
(WCCF). First, according to [31], [36], the weighted cross-
correlation function J (i1,i2) (k1, k2) can be defined as

J (i1,i2) (k1, k2) = E

{
yi1k1

(n)

ωi1
k1

(n)

yi2k2
(n)

ωi2
k2

(n)

}
, (8)

where y
ij
kl
(n) represents the klth OFDM subcarrier signal at

the ij th receiving antenna, and ω
ij
kl
(n) denotes the adaptive

weighting coefficient. J (i1,i2) (k1, k2) is considered to be ex-
tended from cross-correlation function by introducing ω

ij
kl
(n).

The adaptive weighting coefficient ωij
kl
(n) is constructed con-

structed from the envelope of received signal y
ij
kl

and the

second quartile of
∣∣∣yijkl

(n)
∣∣∣, which can be expressed as

ω
ij
kl
(n) =

 1
∣∣∣yijkl

(n)
∣∣∣ ≤ q

ij
kl[

c
ij
kl
(n)
]2 ∣∣∣yijkl

(n)
∣∣∣ > q

ij
kl

, (9)

where c
ij
kl
(n)=

∣∣∣yijkl
(n)
∣∣∣/qijkl

, qijkl
=(1 + 2b0) d

ij
kl

, b0 represents

a constant value (b0 > 0), and d
ij
kl

denotes the second quartile

of
∣∣∣yijkl

(n)
∣∣∣.

Assuming that the transmitted signals are independent
and identically distributed, E

{
xb,mx∗

b′,m′

}
=

σ2
sδ (b− b′) δ (m−m′), the Gaussian white

noise w
ij
kl
(n) satisfies E

{
wi1

k1
(n)wi2

k2
(n′)

}
=

J (i1,i2) (k1, k2) = E

{
yi1k1

(n)

ωi1
k1

(n)

yi2k2
(n)

ωi2
k2

(n)

}

≈ E

{
s̃i1k1

(n) s̃i2k2
(n)

ωi1
k1

(n)ωi2
k2

(n)

}
+ E

{
Ii1k1

(n) Ii2k2
(n)

ωi1
k1

(n)ωi2
k2

(n)

}
+ E

{
wi1

k1
(n)wi2

k2
(n)

ωi1
k1

(n)ωi2
k2

(n)

}
.

(10)
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σ2
wδ (i1 − i2) δ (k1 − k2) δ (n− n′). In addition, the signals

s
ij
kl
(n), the Gaussian noise w

ij
kl
(n), and non-Gaussian

interference I
ij
kl
(n) are mutually uncorrelated. Based on

these assumptions, we analyze WCCF between the k1th
OFDM subcarriers at the i1 receive antenna and and k2th
OFDM subcarriers at the i2th receive antenna. Using (6)
and (8), J (i1,i2) (k1, k2) can be expressed as in (10) at the
bottom of this page. Based on (9), when

∣∣yi1k1
(n)
∣∣ ≤ qi1k1

or
∣∣yi2k2

(n)
∣∣ ≤ qi2k2

, it follows that ω
ij
kl
(n) = 1. This

implies that the amplitude of received signal y
ij
kl
(n) is

less than a multiple of the second quartile of
∣∣∣yijkl

(n)
∣∣∣.

In other words, the impulsive component of y
ij
kl
(n) is

weak, i.e., signal s̃i1k1
(n) or s̃i2k2

(n) is affected only
by small-amplitude interference represented by I

ij
kl
(n);

hence, E
{
Ii1k1

(n) Ii2k2
(n)
}

< ∞, 1 ≤ α < 2. Therefore,
J (i1,i2) (k1, k2) can be rewritten as

J (i1,i2) (k1, k2) ≈ A1E
{
s̃i1k1

(n) s̃i2k2
(n)
}

+A1E
{
Ii1k1

(n) Ii2k2
(n)
}
+A1E

{
wi1

k1
(n)wi2

k2
(n)
}
,

(11)

where A1 represents a value that is dependent on ω
ij
kl
(n).

When the signal-to-noise ratio and signal-to-interference ratio
are sufficiently high, (11) can be further approximated as

J (i1,i2) (k1, k2) ≈ A1E
{
s̃i1k1

(n) s̃i2k2
(n)
}
. (12)

If
∣∣∣yijkl

(n)
∣∣∣ > q

ij
kl

, considering the influence of impulsive

interference from I
ij
kl
(n) on signal s

ij
kl
(n), it follows that

ω
ij
kl
(n) =

[
c
ij
kl
(n)
]2

. In this case, J (i1,i2) (k1, k2) can be

approximated as

J (i1,i2) (k1, k2) ≈ E

{
s̃i1k1

(n) s̃i2k2
(n)

ωi1
k1
ωi2
k2

}

+ E

{
Ii1k1

(n) Ii2k2
(n)

ωi1
k1
ωi2
k2

}
+ E

{
wi1

k1
(n)wi2

k2
(n)

ωi1
k1
ωi2
k2

}

≈ E

{
s̃i1k1

(n) s̃i2k2
(n)(∣∣yi1k1

(n)
∣∣/qi1k1

)2(∣∣yi2k2
(n)
∣∣/qi2k2

)2
}

+ E

{
Ii1k1

(n) Ii2k2
(n)(∣∣yi1k1

(n)
∣∣/qi1k1

)2(∣∣yi2k2
(n)
∣∣/qi2k2

)2
}

+ E

{
wi1

k1
(n)wi2

k2
(n)(∣∣yi1k1

(n)
∣∣/qi1k1

)2(∣∣yi2k2
(n)
∣∣/qi2k2

)2
}
.

(13)

For high signal-to-noise ratio, J (i1,i2) (k1, k2) can be ap-
proximated for independent and identically distributed strong
impulsive interference as in (14) at the bottom of the page.

Setting A2 = E

{
1(∣∣∣yi1

k1
(n)

∣∣∣/q
i1
k1

)2(∣∣∣yi2
k2

(n)
∣∣∣/q

i2
k2

)2

}
, the ex-

pression of J (i1,i2) (k1, k2) can be rewritten as

J (i1,i2) (k1, k2)

≈ A2E
{
s̃i1k1

(n) s̃i2k2
(n)
}
+A2E

{
wi1

k1
(n)wi2

k2
(n)
}

+ E

{
Ii1k1

(n) Ii2k2
(n)(∣∣yi1k1

(n)
∣∣/qi1k1

)2(∣∣yi2k2
(n)
∣∣/qi2k2

)2
}

≈ A2E
{
s̃i1k1

(n) s̃i2k2
(n)
}
.

(15)

According to (12) and (15), J (i1,i2) (k1, k2) can be approx-
imated as

J (i1,i2) (k1, k2) ≈ AIE
{
s̃i1k1

(n) s̃i2k2
(n)
}
, (16)

where AI represents a value that is dependent on ω
ij
kl
(n).

Based on the aforementioned discussions and the analysis
presented in [31], the following conclusions can be drawn
regarding various SFBC-OFDM signals.

J (i1,i2) (k1, k2) ≈ E

{
1(∣∣yi1k1

(n)
∣∣/qi1k1

)2(∣∣yi2k2
(n)
∣∣/qi2k2

)2
}
E
{
s̃i1k1

(n) s̃i2k2
(n)
}

+ E

{
1(∣∣yi1k1

(n)
∣∣/qi1k1

)2(∣∣yi2k2
(n)
∣∣/qi2k2

)2
}
E
{
wi1

k1
(n)wi2

k2
(n)
}
+ E

{
Ii1k1

(n) Ii2k2
(n)(∣∣yi1k1

(n)
∣∣/qi1k1

)2(∣∣yi2k2
(n)
∣∣/qi2k2

)2
}
.

(14)

E
{
s̃i1k1

(n) s̃i2k2
(n)
}
= E

{
H

(1,i1)
k1

H
(1,i2)
k2

xb1,0xb2,0

}
+ E

{
H

(1,i1)
k1

H
(2,i2)
k2

xb1,0xb2,1

}
+ E

{
H

(2,i1)
k1

H
(1,i2)
k2

xb1,1xb2,0

}
+ E

{
H

(2,i1)
k1

H
(2,i2)
k2

xb1,1xb2,1

}
= 0.

(17)
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A. WCCF of SM-OFDM Signal
Assuming that at a given moment, the received symbols on

different subcarriers k1 and k2 at different receiving antennas
i1 and i2 are represented by xb1,0

, xb1,1
and xb2,0

, xb2,1
,

respectively, from the code matrix of SM in (1), can be derived
(17) at the bottom of the page.

By substituting (17) into (16), we get

J
(i1,i2)
SM (k1, k2) ≈ 0. (18)

From (18), multiple consecutive OFDM sub-carriers in SM-
OFDM signal are uncorrelated, so that

∣∣∣J (i1,i2)
SM (k1, k2)

∣∣∣ does
not exhibit peaks.

B. WCCF of AM-OFDM Signal
Using (2), assuming that at a given moment, the received

symbols on different subcarriers k1 and k2 of different re-
ceiving antennas i1 and i2 are represented by xb,0, −x∗

b,1 and
xb,1, x∗

b,0, respectively, based on the encoding matrix, it can
be inferred that

E
{̃
si1k (n)s̃i2k+1(n)

}
=
(
H

(1,i1)
k H

(2,i2)
k+1 −H(2,i1)

k H
(1,i2)
k+1

)
σ2
s . (19)

From (16) and (19), we get

J
(i1,i2)
AL (k, k + 1) ≈ AIR2σ

2
s , (20)

where R2 = H
(1,i1)
k H

(2,i2)
k+1 − H

(2,i1)
k H

(1,i2)
k+1 . In (20),

the WCCF between OFDM subcarriers is not zero, so∣∣∣J (i1,i2)
AL (k, k + 1)

∣∣∣ exhibits discriminating peaks.

C. WCCF of SF3-OFDM Signal
Using the code matrix of SF3 in (3), it can be derived that

E
{̃
si1k (n)s̃

i2
k+2(n)

}
=
σ2
s

2

(
H

(3,i1)
k H

(1,i2)
k+2 +H

(3,i1)
k H

(2,i2)
k+2

)
−σ2

s

2

(
H

(1,i1)
k H

(3,i2)
k+2 +H

(2,i1)
k H

(3,i2)
k+2

) (21)

Using (16) and (21), we can find that

J
(i1,i2)
SF3 (k, k + 2) ≈ AIR3

σ2
s

2
, (22)

where R3 = H
(3,i1)
k H

(1,i2)
k+2 +H

(3,i1)
k H

(2,i2)
k+2 −H

(1,i1)
k H

(3,i2)
k+2 −

H
(2,i1)
k H

(3,i2)
k+2 . According to (22),

∣∣∣J (i1,i2)
SF3 (k, k + 2)

∣∣∣ pro-
vides a peak feature to discriminate the SF3.

D. WCCF of SF4-OFDM Signal
According to the code matrix of SF4 in (4), it can be shown

that
E
{
s̃i1k (n) s̃i2k+4 (n)

}
=
(
H

(1,i1)
k H

(2,i2)
k+4 +H

(2,i1)
k H

(1,i2)
k+4 +H

(3,i1)
k H

(3,i2)
k+4

)
σ2
s ,

(23)

Relying on (16) and (23), one obtains

J
(i1,i2)
SF4 (k, k + 4) ≈ AIR4σ

2
s , (24)

where R4 = H
(1,i1)
k H

(2,i2)
k+4 +H

(2,i1)
k H

(1,i2)
k+4 +H

(3,i1)
k H

(3,i2)
k+4 .

As shown in (24),
∣∣∣J (i1,i2)

SF4 (k, k + 4)
∣∣∣ exhibits the statistically

significant peaks, which are exploited as a discriminating
feature to identify SF4.

IV. PROPOSED SFBC-OFDM CLASSIFICATION SCHEME

In practice, the WCCF is estimated as

Ĵ (i1,i2) (k1, k2) =
1

Nb

Nb∑
n=1

yi1k1
(n)

ωi1
k1

(n)

yi2k2
(n)

ωi2
k2

(n)

= J̃
(i1,i2)
C (k1, k2) + εJ (k1, k2) ,

(25)

where Nb represents the number of received OFDM symbols,
J̃
(i1,i2)
C (k1, k2) is the weighted cross-correlation function of

s̃i2k2
(n), εJ (k1, k2) denotes the estimation error, which in-

cludes the contribution of Gaussian noise and Non-Gaussian
Interference, as well as the contribution of the estimation error
that results due to using a finite length observation. When
Nb → ∞, εJ (k1, k2) takes on a very small value.

For a cognitive MIMO-OFDM system equipped with Mr

antennas, the set of receive antenna pairs Υ can be defined as

Υ = {(i1, i2) : i1 ̸= i2, 1 ≤ i1 ≤ Mr, 1 ≤ i2 ≤ Mr} . (26)

Using the set of receive antenna pairs Υ, the absolute value
feature vectors JC (k1, k2) and the exponential feature vectors
ZC (k1, k2) are constructed as in (27) and (28) at the bottom
of the page. In (28), z0 denotes a constant value (z0 > 0).

First, the recognition algorithms for SM-OFDM and AL-
OFDM are designed. Then, the recognition for other SFBC-
OFDM schemes is analyzed. For both SM and AL, using (18),
(20), and (25), we get

Ĵ
(i1,i2)
SM (k, k + 1) = J̃

(i1,i2)
SM (k1, k2) + εJ (k, k + 1)

≈ εJ (k, k + 1) ,
(29)

Ĵ
(i1,i2)
AL (k, k + 1) = J̃

(i1,i2)
AL (k1, k2) + εJ (k, k + 1)

≈ AIR2σ
2
s + εJ (k, k + 1) .

(30)

From (29) and (30), it is evident that when Nb → ∞,∣∣∣Ĵ (i1,i2)
SM (k, k + 1)

∣∣∣ tends to an extremely small value while∣∣∣Ĵ (i,j)
AL (k, k + 1)

∣∣∣ exhibits significant non-zero peaks. There-
fore, the recognition problem of SM-OFDM and AL-OFDM
can be transformed into a binary hypothesis testing problem
as{

H0 : Ĵ (i1,i2)(k, k + 1) ≈ εJ (k, k + 1)

H1 : Ĵ (i1,i2)(k, k + 1) ≈ AIR2σ
2
s + εJ (k, k + 1)

, (31)

where H0 represents the hypothesis for SM and H1 represents
the hypothesis for AL. For the aforementioned hypothesis test-
ing problem, it is necessary to not only construct a detection
statistic but also design detection thresholds.

Based on (27) and (28), the feature matrix Fk+1
C can be

defined as

Fk+1
C = JC (2j − 1, 2j) ◦ ZC (2j − 1, 2j) , (32)

where “◦” represents the Hadamard product, j = 1, · · · , Lj
max

(Lj
max denotes the maximum value of j, j ∈ Φ =

{1, · · · k, · · · , Nz}). From (32), Fk+1
C is composed of the

product of elements of JC (k, k + 1) and ZC (k, k + 1).
The detection statistic TF can be constructed using the

feature matrix Fk+1
C as

TF =
1

Lk+1
F

∥∥Fk+1
C

∥∥
l1
, (33)
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where Lk+1
F represents the number of elements in matrix Fk+1

C

and ∥·∥l1 denotes the sum of the vector elements. The index
k+1 indicates that the detection statistics is constructed from
J (i1,i2) (k, k + 1) between the k-th OFDM sub-carrier and
(k + 1)-th OFDM sub-carrier.

For the hypothesis testing in (31), the following decision
rule is set based on the detection statistic as{

H0 : TF ≤ ΨF

H1 : TF > ΨF
, (34)

where ΨF represents the detection threshold. When the detec-
tion statistic TF is less than the detection threshold ΨF, the
hypothesis H0 is accepted, indicating the result as SM-OFDM.
Otherwise, the hypothesis H1 holds, indicating the result as
AL-OFDM.

For SM-OFDM, when Nb is sufficiently large, it is assumed
that |εJ (k, k + 1)| approximately follows an Gaussian distri-
bution. Therefore, TF is also approximately Gaussian. The
detection threshold ΨF can be set as

ΨF = QFσTF|H0
+ µTF|H0

, (35)

where µTF|H0
represents the mean of TF under the H0

hypothesis, σ2
TF|H0

represents the variance of TF under the
H0 hypothesis, and QF is the detection factor. However, at
the receiver, it is not possible to know the mean and variance
of |εJ (k, k + 1)| in advance, which makes it impossible to di-
rectly calculate µTF|H0

and σ2
TF|H0

. Therefore, it is necessary
to estimate µTF|H0

and σ2
TF|H0

.
For SM-OFDM and AL-OFDM, based on the encoding

matrices, it can be determined as

Ĵ
(i1,i2)
SM (k, k + 2) ≈ εJ (k, k + 2) , (36)

Ĵ
(i1,i2)
AL (k, k + 2) ≈ εJ (k, k + 2) , (37)

where εJ (k, k + 2) represents the error introduced by non-
Gaussian noise interference and Gaussian noise, and it
follows the same distribution as εJ (k, k + 1). Therefore,
Ĵ (i1,i2) (k, k + 2) can be used to estimate µTF|H0

and σ2
TF|H0

.

The error matrix F̃k+2
C is constructed using Ĵ (i1,i2) (k, k + 2)

as
F̃k+2

C = JC (k, k + 2) ◦ ZC (k, k + 2) , (38)

where k = 1, · · · , Lk
max(Lk

max represents the maximum value
of k). Based on the error matrix F̃k+2

C , the estimated value
µ̂TF|H0

of µTF|H0
can be calculated as

µ̂TF|H0
=

1

Ik+2
F

∥∥∥F̃k+2
C

∥∥∥
l1
, (39)

SF4

SF3

AL SM

NO

YES

YES

NO

NOYES

Fig. 2. Decision tree based on the WCCF for the recognition of SFBCs.

where Ik+2
F represents the number of elements in vector F̃k+2

C .
In addition, the values σ̂2

TF|H0
of σ2

TF|H0
can be estimated as

σ̂2
TF|H0

=
1

Ik+2
F

(
1

Ik+2
F

∥∥∥F̃k+2
C

∥∥∥2
l1
− µ̂2

TF|H0

)
. (40)

Therefore, the detection threshold ΨF can be further ex-
pressed as

ΨF = QFσ̂TF|H0
+ µ̂TF|H0

. (41)

According to the decision criterion in (34), when TF > ΨF,
the received signal is classified as AL-OFDM. Otherwise, it
is classified as SM-OFDM.

Based on the aforementioned recognition algorithm, a tree
classification decision approach is designed for the target set
Θ = {SM,AL,SF3,SF4}, as shown in Fig.2.

In the first layer of the classification tree, we differentiate
between SF4 and {SM,AL,SF3}. Based on the analysis in
Section III, we observe that SF4 has a significant peak in
Ĵ
(i1,i2)
C (k, k + 4) compared to {SM,AL,SF3}. Therefore, we

can use Jk+4
C (k, k + 4) to construct a statistical measure TC1

F

for classification. The detection statistic TC1

F can be expressed
as

TC1

F =
1

Lk+4
F

∥∥Fk+4
C

∥∥
l1
, (42)

where Lk+4
F represents the number of elements in matrix

Fk+4
C , which can be expressed as in (43) at the bottom of

JC(k1, k2) =
[∣∣∣Ĵ (1,2)

(k1, k2)
∣∣∣ , ∣∣∣Ĵ (1,3)

(k1, k2)
∣∣∣ , · · ·, ∣∣∣Ĵ (Mr−1,Mr)

(k1, k2)
∣∣∣]T , (27)

ZC (k1, k2) =

exp

∣∣∣Ĵ (1,2)

(k1, k2)
∣∣∣

z0

 , · · · , exp


∣∣∣Ĵ (Mr−1,Mr)

(k1, k2)
∣∣∣

z0

T

. (28)
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the page, where BC (k1, k2) can be given by

BC (k1, k2) = JC (k1, k2) ◦ ZC (k1, k2) . (44)

The detection threshold ΨC1

F can be set as

ΨC1

F = QFσ̂T
C1
F |H0

+ µ̂
T

C1
F |H0

. (45)

The estimation of µ̂
T

C1
F |H0

is given by the following
expression as

µ̂
T

C1
F |H0

=
1

Ik+9
F

∥∥∥F̃k+9
C

∥∥∥
l1
, (46)

where Ik+9
F represents the number of elements in matrix F̃k+9

C .
The estimated value σ̂2

T
C1
F |H0

of σ2

T
C1
F |H0

can be obtained as

σ̂2

T
C1
F |H0

=
1

Ik+9
F

(
1

Ik+9
F

∥∥∥F̃k+9
C

∥∥∥2
l1
− µ̂2

T
C1
F |H0

)
, (47)

where the matrix F̃k+9
C can be expressed as

F̃k+9
C = JC (k, k + 9) ◦ ZC (k, k + 9) . (48)

In the second layer of the decision tree, to differentiate be-
tween SF3 and {SM,AL}, we construct the detection statistic
as

TC2

F =
1

Lk+2
F

∥∥Fk+2
C

∥∥
l1
, (49)

where Lk+2
F represents the number of elements in matrix

Fk+2
C , and matrix Fk+2

C can be expressed as

Fk+2
C = [BC (4j − 3, 4j − 1) ,BC (4j − 2, 4j)]

T
. (50)

The detection threshold ΨC2

F for the second layer of the
decision tree can be constructed as

ΨC2

F = QJ σ̂T
C2
F |H0

+ µ̂
T

C2
F |H0

, (51)

where µ̂
T

C2
F |H0

can be represented as

µ̂
T

C2
F |H0

=
1

Ik+5
F

∥∥∥F̃k+5
C

∥∥∥
l1
, (52)

in which Ik+5
F represents the number of elements in matrix

F̃k+5
C . Further, σ̂2

T
C2
F |H0

can be given as

σ̂2

T
C2
F |H0

=
1

Ik+5
F

(
1

Ik+5
F

∥∥∥F̃k+5
C

∥∥∥2
F
− µ̂2

T
C2
F |H0

)
, (53)

where the expression for F̃k+5
C is as

F̃k+5
C = JC (k, k + 5) ◦ ZC (k, k + 5) . (54)

In the final layer of the classification tree, AL and SM can
be identified using the detection statistic TF and the detection
threshold ΨF. Algorithm 1 gives the whole process of the
proposed algorithm.

Algorithm 1 SFBCs recognition algorithm based on weighted
cross correlation function.

1: Initialize the parameters b0 and z0;
2: Compute the weighted cross-correlation matrices

JC (k1, k2) and ZC (k1, k2) of the received signals using
(27) and (28);

3: Calculate the detection statistic TC1

F and the detection
threshold ΨC1

F using (42) and (45);
4: If TC1

F > ΨC1

F , then classify the SFBC as SF4. Otherwise,
proceed to step 5.

5: Calculate the detection statistic TC2

F and the detection
threshold ΨC2

F using (49) and (51);
6: If TC2

F > ΨC2

F , then classify the spatial frequency encod-
ing as SF3. Otherwise, proceed to step 7.

7: Calculate the detection statistic TF and the detection
threshold ΨF using (33) and (41);

8: If TF > ΨF, then classify the spatial frequency encoding
as AL. Otherwise, classify the spatial frequency mode as
SM.

V. SIMULATION RESULTS AND ANALYSIS

This section uses simulation to validate the performance of
the proposed algorithm. In the examples, we consider a cogni-
tive MIMO-OFDM system employing space-frequency block
codes. The SFBCs scheme candidate pooling to be identified
is Θ = {SM,AL,SF3,SF4}. The simulation parameters are set
as follows: the modulation scheme is QPSK, the number of
subcarriers is Nz = 64, the cyclic prefix length is ν = Nz/4,
the number of OFDM blocks is Nb = 100, and the channel
is set to a frequency-selective fading channel with Lh = 4.
The parameter factors b0 and z0 are initialized to 1.5 and 2.
The detection factor QF is obtained using Monte Carlo. The
characteristic exponent of the alpha-stable noise interference
is α = 1.5. The signal-to-interference ratio in the simulation
is defined as SIR = 10 lg (Ps/γα), where Ps represents the
total transmitted power and γα is the dispersion coefficient of
the alpha-stable noise interference. The average recognition
probability Pc is used to evaluate the performance of the
recognition scheme, which is given by

Pc =
1

LΘ

∑
Pr

(
ĈF |CF

)
(55)

where CF ∈ Θ and LΘ represents the number of elements in
set Θ.

Fig. 3 shows the average recognition rate of the proposed
method for different numbers of OFDM subcarriers Nz . In
the simulation, the subcarrier numbers are set as Nz = 32,
Nz = 64, and Nz = 128, with SIR = 10dB. From Fig.
3, it can be observed that the recognition performance of
the proposed algorithm improves as the number of OFDM
subcarriers increases. When Nz = 32 and SNR = - 7dB, the
average recognition probability of the proposed algorithm is
around 60%. However, when the number of OFDM subcarriers

Fk+4
C = [BC(8j − 7, 8j − 3),BC(8j − 6, 8j − 2), BC(8j − 5, 8j − 1),BC(8j − 4, 8j)]

T (43)
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Fig. 3. Average probability of correct recognition versus SNR for different
numbers of OFDM subcarriers.
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Fig. 4. Average probability of correct recognition versus SNR for different
numbers of receive antennas.

increases to Nz = 128, the average recognition probability
exceeds 90%. This improvement is attributed to the increase
in OFDM subcarriers, which causes the correlation between
adjacent subcarriers to approach the theoretical value, thereby
enhancing the distinguishability of different SFBC-OFDM
schemes.

Fig. 4 shows the impact of the number of receiving antennas
Mr on the average recognition probability. We consider the
cases of Mr = 4, Mr = 5, Mr = 6, and Mr = 7, with
SIR = 10dB. As shown in Fig. 4, the recognition performance
of the proposed algorithm improves with an increase in the
number of receiving antennas Mr. As Mr increases, the ele-
ments of the weighted cross-correlation feature matrix of the
received signal also increase, causing the statistical measure
to closer to the theoretical distribution and thereby enhancing
the recognition performance.

Fig. 5 analyzes the influence of the OFDM cyclic prefix
length ν on the recognition performance of the proposed al-
gorithm. The cyclic prefix length of OFDM is set to ν = Nz/4,
ν = Nz/8, ν = Nz/16 and ν = Nz/32, with SIR = 10dB.
From Fig. 5, it can be observed that the average recognition
probability of the proposed algorithm is not affected by the
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Fig. 5. Average probability of correct recognition versus SNR for different
cyclic prefix length.
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Fig. 6. The effect of the modulation type on the average probability of
correct recognition versus SNR.

length of the OFDM cyclic prefix. This is because the proposed
algorithm uses the demodulated OFDM signal to construct
the recognition features, thereby eliminating the impact of the
cyclic prefix.

Fig. 6 shows the average recognition probabilities under
different modulation schemes. From Fig. 6, it can be observed
that changing the modulation scheme does not affect the
average recognition probability of the proposed algorithm. The
proposed algorithm utilizes weighted cross-correlation features
to construct the detection statistic and threshold. The mod-
ulation scheme does not contribute to the detection statistic
and threshold. Therefore, it does not affect the recognition
performance of the proposed method.

Fig. 7 illustrates the average recognition probabilities for
different numbers of OFDM symbols. As illustrated in Fig.
7, the recognition accuracy of the proposed algorithm can be
greatly improved with the increase in the number of OFDM
symbols. This can be explained by the fact that the more
significant features of the SFBC signal was exploited when
the number of OFDM symbols were larger.

Fig. 8 shows the average recognition probabilities of the
proposed algorithm under different SIRs. In the simulation
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Fig. 7. Average probability of correct recognition versus SNR for different
number of OFDM blocks.
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Fig. 8. The effect of the signal-to-interference ratio on the average probability
of correct recognition versus SNR.

experiments, we set α = 1.5 and consider SIR = 8dB,
SIR = 6dB, SIR = 5dB and SIR = 4dB. As shown in Fig. 8,
the average recognition probability of the proposed algorithm
increases with the SNR. When SIR = 4dB and SNR = - 4dB,
the average recognition probability of the proposed algorith-
m reaches around 70%. If the SIR is further increased to
SIR = 8dB, the average recognition probability approaches
99%. This is because as the SNR increases, the influence
of non-Gaussian noise interference on the received signal
decreases, resulting in greater correlation among adjacent
subcarriers and improved recognition performance.

Fig. 9 examines the effect of the frequency offset ∆f on
the average recognition probability of the proposed algorithm.
This example considers the normalized carrier frequency offset
with respect to the sub-carrier spacing. As illustrated in Fig.
9, the performances improve considerably when the value of
∆f decreases under the same conditions. When ∆f > 10−5,
the performance degrades significantly. It concludes that the
weighted cross-correlation function is not robust to the fre-
quency offset.

Fig. 10 examines the effect of the the sample timing offset
δ∆ on the average recognition probabilities of the proposed

-9 -6 -3 0 2
SNR(dB)

20

30

40

50

60

70

80

90

100

P
c (

%
)

  f =0.1 10-3

  f =1.0 10-3

  f =1.3 10-3

  f =1.7 10-3

  f =2.0 10-3

 N
z
=64

 M
r
=4

Fig. 9. The effect of the frequency offset on the average probability of
correct recognition versus SNR.
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Fig. 10. The influence of the sample timing offset on the average probability
of correct recognition.

algorithm. As shown in Fig. 10, it can be seen that the rate of
correct recognition increases of the proposed algorithm with
a decrease in the sample timing offset δ∆. The simulation
result indicates that the weighted cross-correlation function
is sensitive to the sample timing offset δ∆. Especially, when
δ∆ < −2, the correlation properties of the weighted inter-
correlation function are corrupted by δ∆, which leads to
the degradation of the diversity of the recognition feature
vectors, thus reducing the recognition performance of the
SBCs scheme.

Fig. 11 shows the average recognition probability curves
for different characteristic exponent α. A comparison with
the algorithm based on the cross-correlation function (CCF)
in [31] is also included. It can be observed from Fig. 11
that the recognition performance of the proposed algorithm
decreases with α. When α = 1.4 and SNR = - 5dB, the
average recognition probability of the proposed algorithm
is over 95%. However, when the characteristic exponent of
alpha-stable interference is α = 1.1, the average recognition
probability drops to 50%. This is because a smaller charac-
teristic exponent α corresponds to heavier tails of the non-
Gaussian interference, indicating an increase in the number of
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Fig. 11. The average probability of correct recognition of the SFBC-OFDM
signals versus SNR, with different α values.

impulsive interferences in the received signal. These impul-
sive interferences disrupt the WCCF of the received signal,
thereby affecting the recognition performance. In addition,
the comparison of the recognition probability between the
proposed WCCF algorithm and CCF algorithm is given for the
same simulation conditions, which is shown in Fig. 11. The
simulation results clearly indicate that the proposed WCCF
algorithm outperforms the traditional CCF algorithm in terms
of the recognition performance. Meanwhile, the computational
complexities of WCCF algorithm and existing algorithms are
evaluated. When the number of observed blocks and receive
antennas are Nb and Mr, the calculation complexity for WCCF
estimator is O (3MrNb) and the CCF estimator also has order
O (MrNb).

VI. CONCLUSION

This paper has presented a recognition algorithm for SF-
BCs scheme in cognitive MIMO-OFDM systems, based on
the weighted cross-correlation function. First, we analyzed
the weighted cross-correlation function of the SFBC-OFDM
signals. Then, we proposed a tree classification algorithm
based on feature vectors to identify between several SFBCs
under non-Gaussian impulsive interference. The proposed al-
gorithm eliminated the need for preprocessing steps such as
channel coefficient estimation, signal-to-noise ratio/signal-to-
interference-plus-noise ratio estimation, and baseband modu-
lation type recognition. The simulation results showed that
the proposed algorithm effectively identifies SFBCs under
non-Gaussian interference and frequency-selective fading. Fur-
thermore, the algorithm exhibits favorable recognition per-
formance in strong pulse interference environments and is
unaffected by the baseband modulation type and the OFDM
cyclic prefix length.
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