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Abstract: The paper deals with frame steel structures required to ensure sufficient resistance, ap-

propriate ductility and safety against brittle failure. This special aim cannot be reached by utilizing 

standard procedures and standard beam elements. Therefore, the present study proposes an inno-

vative design strategy devoted to plane steel frames constituted by I-shaped cross-section beam el-

ements and subjected to simultaneous combinations of serviceability limit state conditions and ul-

timate limit state conditions. Special factory-made I-shaped uniform piecewise steel profiles are uti-

lised to provide the optimal behaviour of the frame. The proposed design strategy consists of two 

subsequent steps: at first a classical sizing of the frame is performed by utilising standard steel pro-

files, then a specific optimal design problem is performed to define the optimal geometry of the I-

shaped steel profiles that fulfils all the constraints related to the required resistance and the limited 

deformability as well as special introduced constraints related to the protection against the brittle 

failure. The reliability of the procedure and the expected optimal behaviour of the frame are checked 

by performing nonlinear static analyses employing a recently proposed Fibre Smart Displacement-

Based (FSDB) beam element model. The proposed beam element is defined by adopting displace-

ment shape functions capable of embedding the cross-section discontinuities by means of the use of 

generalised functions. Furthermore, the proposed shape functions are addressed to as “smart” since 

capable of update in accordance with the development of plastic deformations detected by means 

of fibre discretisation of the cross-section. The results related to a simple steel portal confirmed the 

expected optimal behaviour of the structure. 

Keywords: steel structures; optimal design; multi-stepped beam element; ductility;  

welded connection protection 

 

1. Introduction 

Structural mechanics is characterized by two different main issues: the verification 

problem and the optimal design problem. The first one consists of a first phase (analysis) 

in which the response of the known structure subjected to given loads is determined, and 

of a second essential phase in which fulfilment of the basic hypotheses to perform the 

analysis (related to the material and/or structure strength limit and to appropriate kine-

matical constraints) is verified. The second problem consists in the search for the optimal 

value of predefined relevant design quantities (design variables) so that appropriate kin-

ematical constraints and assigned material and/or structure strength limits are fulfilled. 

In practical engineering, the verification problem is very common, and it faces mainly 

existing structures (buildings, bridges, etc.). Clearly, the need to recover or make compli-

ant to national and international standards, or simply the maintenance of the huge 
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existing building heritage strongly requires the adoption of more and more accurate tech-

niques of structural verification and analysis. The design problem, on the other hand, is 

formally defined for new structures, even though it also constitutes an essential part of 

the interventions related to structural adaption or improvement on existing structures. 

The two problems adopt mainly the same instruments: suitable geometrical and mechan-

ical models to describe the structural elements, selected constitutive models able to de-

scribe the mechanical behaviour of the materials and appropriate models to describe the 

loadings. The definition of these models is related both to the special structure to be in-

vestigated and/or designed and to the imposed behavioural features. In the literature, 

many formulations can be found for solving both the verification problem for steel struc-

tures subjected to static [1,2], dynamic [3] and stochastic actions [4,5] and the optimal de-

sign one [6], adopting constraints on different limit load conditions [7,8], taking into ac-

count the prevention of buckling phenomena [9–11], evaluating the influence of the resid-

ual deformations [12,13], adopting appropriate protection systems in seismic conditions 

[14,15] and considering the presence of base isolation systems [16]. It is important to em-

phasize that the design problem requires in general formulations more complex than the 

verification problem and the related mathematical problem is usually strongly nonlinear. 

For this reason, in practical applications, the design problem is often solved by utilising 

simplified approaches able to give iteratively at least a sub-optimal solution. 

The present paper is devoted to the design problem and reference will be made to 

steel structures, given the great growth they have had in recent centuries. 

Actually, since the industrial revolution age, due to the relevant fundamental tech-

nological innovations, there has been a great increase in the production of metallic mate-

rials (mainly cast iron and steel) with a corresponding decrease in the production costs. 

This favourable background allowed an increasingly widespread adoption of these mate-

rials also in the construction industry whereas until that period they were adopted only 

for accessory elements such as anchoring and tie-rods. The first examples of the adoption 

of metallic materials in the construction industry were bridges, industrial warehouses, 

railway stations and structural elements of buildings. The adoption of metallic materials 

was also promoted by the development of the structural mechanics which provided the 

theoretical basis as well as the technical instruments to design metallic structures. Between 

the end of the 19th century and the beginning of the 20th century, the use of metallic ma-

terials spread both across Europe, with particular reference to England and France, and 

in the USA, where the first skyscrapers were built. Among the structural typologies avail-

able to the designers, frames represent the more widely adopted both in civil and indus-

trial constructions. Due to the peculiar characteristics of metallic materials, steel structures 

are certainly the more endorsed ones in terms of strength, weight, durability, construction 

speediness, space usability, material quality and behaviour flexibility. Besides the already 

mentioned mechanical properties, their ductility makes steel framed structures very com-

petitive especially in seismic design. The designer can take advantage of the high energy 

dissipation characterizing steel frames as well as of their high strength, allowing the de-

sign of more and more performant structures. 

On this basis, researchers devoted some attention to study the case of steel framed 

structures in view of the recognised good features of this structural typology. The latter is 

extremely versatile and adequate to provide optimal response to the different load com-

binations to be withstood during structure lifetime. 

Moreover, recognising that a critical topic of the frame structure is related to the af-

fordability of the connections [17–19], in order to enhance the special features of this struc-

tural typology and with the aim of improving the steel frame behaviour, in previously 

published papers the authors proposed the formulation of special devices realising new 

connections between beams and columns [20–28]. In particular, the starting idea has been 

described in [20,21] where a rigid perfectly plastic hinge has been defined, characterized 

by suitably chosen stiffness and resistance to be inserted in a steel frame; subsequently, 

the optimal dimensions of the device have been investigated by suitable Finite Element 
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Method analyses in [22,23] obtaining a recommendation about the minimum length of the 

inner part; in [24] the optimal design of the device has been improved taking into account 

the simultaneous presence of axial force and bending moment; in [25] the presence of the 

device in a structural element has been modelled by a smart beam element approach while 

in [26] the proposed device has been adopted to design a steel frame able to replace a 

portion of a masonry panel without modifications of the overall mechanical behaviour; in 

[27] the role of buckling in the optimal design of the device has been considered while in 

[28] the proposed device has been adopted to design a steel frame avoiding brittle rupture 

in the welded connections. The innovative device proposed in the referenced papers, re-

ferred to as Limited Resistance Plastic Device (LRPD), is devoted to fulfilling the following 

main requisites: 

(i) create a preset zone of the beam element in which plastic deformations develop, 

leaving the remaining part of the beam element in the elastic range; 

(ii) design the device such that its flexural stiffness and resistance can be suitably as-

signed while remaining independent of each other, so avoiding any stiffness variation in 

the involved beam element. 

The proposed device, from a general point of view, can be considered as belonging 

to the broader class of so-called Reduced Beam Section (RBS) connections, but it possesses 

some further special features that make the device more widely usable [26,28]. 

In order to obtain an extension of the previous studies, the main aim of the present 

paper is to propose a specific iterative strategy to obtain the optimal design of steel framed 

structures constituted by multi-stepped I-shaped beam elements. A structural member 

with multi-stepped geometric characteristics should comprise some weak zones with suit-

able dimensions where plastic strain can develop, while the remaining zones should be 

designed in such a way that a target overall stiffness of the element as well as ductile 

behaviour are ensured. 

The main novelty of the present study consists in the proposal of an innovative iter-

ative design procedure specifically aimed at obtaining a steel framed structure able to 

show a comprehensive optimal behaviour in terms of strength, usability and ductility de-

pending on the different loading conditions, while also ensuring appropriate safety con-

ditions against brittle failure. Specifically, two different loading conditions are considered: 

in the first one (the serviceability condition), the structure will respect suitable strength 

requirements and deformability constraints; in the second one (the ultimate limit load 

condition), beyond the given strength requirements, the structure will have to show a high 

ductility behaviour. In both cases, ad hoc strength constraints able to avoid any risk of 

brittle failure of the welded connections are imposed. The considered load conditions will 

be referred to as dead loads and cyclic loads; appropriate load combinations will be intro-

duced utilising load amplifiers as provided by the current international standards [29–31]. 

The need for optimal structures possessing the described features can be satisfied by 

designing non-standard beam elements; consequently, in the relevant search problem ap-

propriate multi-stepped beam elements will be adopted for both beams and columns. The 

adoption of this special beam element typology will ensure the desired pronounced duc-

tile behaviour of the structure. The adoption of multi-stepped beam elements as objects of 

the above design problem and the proposed iterative design strategy represent the main 

novelties of the paper. Furthermore, aiming at a full nonlinear analysis of the designed 

steel frame, a nonlinear finite element embedding cross-section discontinuities is also for-

mulated. The proposed finite element is an extension of the Fibre Smart Displacement-

Based (FSDB) beam element model presented in [32,33]. The FSDB element is endowed 

with displacement shape functions denoted as “smart” in view of their ability to evolve 

in accordance with the plastic deformation development. The proposed element is en-

riched with abrupt variations of the cross-sections, as obtained by the iterative design pro-

cedure, to avoid any subdivision of the frame elements into sub-elements. 

In the paper, first, the optimal design procedure is formulated, then, the extension of 

Fibre Smart Displacement-Based (FSDB) beam element model to embed the designed 
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discontinuities is presented. Finally, an application related to the design of a simple plane 

steel frame is given showing the great advantages and affordability of the proposed ap-

proach. 

2. Optimal Design Strategy 

The optimal design strategy here presented is formulated, for the sake of simplicity 

and clarity, with reference to a simple steel portal. It is worth noting that the extension of 

the formulation to multi-span and multi-floor frames is trivial. 

Therefore, the optimal design of a plane steel portal subjected to dead loads and cy-

clic (quasi-static) loads is searched. Two different load combinations are considered [31]: 

the so-called characteristic combination (serviceability limit state conditions) and the so-

called fundamental combination (ultimate limit state conditions), both defined as linear 

combination of the acting loads by suitable coefficients indicated in the following. 

An elastic perfectly plastic behaviour of the material is considered, and it is imposed 

that the structure fulfils appropriate constraints on displacements in serviceability condi-

tions and that it possesses pronounced ductility in ultimate limit load conditions, always 

ensuring a safe behaviour against local and/or global collapse phenomena. Further, it is 

also required that the base sections of the columns and the end sections of the beam, which 

typically consist in a welded connection, be preserved from brittle failure phenomena. 

All the frame elements (beam and columns) are constituted by factory-made I-shaped 

multi-stepped steel profiles; in particular, the columns are constituted by three subsequent 

portions and the beam by five subsequent portions. The geometry of the beam elements 

is better described in Figure 1. 

 
(a) 

 (b)  (c) 

Figure 1. Steel frame (green: plate; red: bolts; blue: reduced section portion): (a) overall view; (b) 

detail 1, sketch of the beam-column connection; (c) detail 2, sketch of the column base. 

The searched optimal design is the minimum volume one (minimum cost). 
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The relevant problem is formulated in two subsequent steps. First, the minimum vol-

ume design of the portal with assigned geometry (given span and height measured along 

the element axes) and subjected to the given load combinations is determined (Figure 2). 

 

Figure 2. Sketch of the steel frame: geometry and load conditions. 

In this step, each beam element has a constant I-shaped cross-section (to be deter-

mined as solution to the search problem) with an assigned width and depth. The latter are 

determined by a preliminary sizing of the frame performed utilizing standard I-shaped 

steel profiles available on the market (which play the role of reference standard cross-

sections) exactly according with the rules indicated by the classic international standards. 

In particular, with the aim of optimising the structural volume as much as possible, the 

standard cross-sections are designed as the ones for which the frame violates the standard 

rules as little as possible. Therefore, having determined the width and depth of the first 

step design and assigned the common web thickness to ensure sufficient shear resistance 

and that the cross-sections belong to Class 1 [31], the optimal thickness of the cross-section 

flanges is determined for the portal which fulfils both an appropriate constraint on the 

horizontal drift in serviceability limit state (SLS) conditions (𝑝𝑧 , ±𝑐𝐶𝑭) and appropriate 

constraints on the yield strength in ultimate limit state (ULS) conditions (𝑐𝐹𝑝𝑧 , ±𝑐𝐹𝑐𝐶𝑭), 

with 𝑐𝐶  and 𝑐𝐹 given load coefficients. As prescribed by the standards, the analysis of 

the structure is performed by solving a linear elastic problem and the related response is 

determined. 

In the second step, the minimum volume problem of the frame constituted by I-

shaped multi-stepped beam elements is performed. The optimal thicknesses of the flanges 

and the optimal geometry of each cross-section of the beam elements are determined. 

Again, it is required that in SLS conditions the portal fulfils the previously described con-

straint on the horizontal drift, its response being perfectly elastic, and, moreover, that in 

ULS conditions it shows the onset of plastic deformations in predetermined portions of 

the constituting elements (so as to take advantage of the material’s proper ductility), but 

always ensuring the protection of the welded connections against brittle failure. The con-

straints on the cross-section resistance are imposed by referring to the stress field obtained 

as response to the first step; in particular, in correspondence to the “weak cross-sections”, 

where the onset of plastic deformations is required, the yield condition is imposed just for 

the stresses obtained as response to the first step. Such a procedure provides a sufficiently 

reliable sub-optimal design since the constraints on the horizontal drift are the same in 
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both the two subsequent steps and this occurrence ensures that the frame possesses anal-

ogous stiffness features. It is worth noting that the second step phase can be iteratively 

performed to obtain more and more stringent designs. 

The proposed design strategy introduces significant novelties with respect to the ex-

isting design procedures known in the scientific literature and/or prescribed by the inter-

national standards. It is based on the requirement of realizing a structure possessing 

strength and stiffness independent of each other, and the choice of I-shaped multi-stepped 

beam elements meets this requirement. In fact, the weak portions allow both volume re-

duction and the utilization of the structure’s ductility features, while the strong portions 

ensure the required stiffness and protection against brittle failure. 

The I-shaped multi-stepped beam element design represents a generalization to a 

wider scale of the use of the known Limited Resistance Plastic Devices (LRPDs) [20–28]. 

Furthermore, the described new design procedure also allows the control of the behaviour 

of the welded connections. Finally, the proposed strategy and the idea of realizing the 

whole optimal structural beam element with stepped cross-sections represents an addi-

tional novelty and allows an easy technological realization. 

2.1. Optimal Design Problem Formulation: First Step 

As previously stated, the first step consists in the search for the minimum volume 

design of the portal with the assigned geometry (given span and height measured along 

the beam element axes) and subjected to the given combinations of dead and cyclic loads. 

A constant I-shaped cross-section is assigned to each beam element; width and depth of 

the beam element cross-sections are determined by a preliminary sizing of the frame per-

formed utilizing standard steel profiles available on the market. Once the web thicknesses 

have been assigned in advance to the relevant cross-sections, the optimal thickness of the 

cross-section flanges is determined for the portal which fulfils an appropriate constraint 

on the horizontal drift in SLS conditions and fulfils constraints on the yield strength in 

ULS conditions. 

The following quantities are given: 

• ℓ𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) length of the columns (left, right) and of the beam; 

• 𝑏𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) cross-section width of the columns (left, right) and of the beam; 

• ℎ𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) cross-section depth of the columns (left, right) and of the beam; 

• 𝑡𝑤𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) web thickness of the columns (left, right) and of the beam; 

• 𝑓𝑦 material yield stress; 

• 𝜉ℓ𝑖𝑚 maximum admissible horizontal drift; 

• 𝑝𝑧 uniformly distributed dead load; 

• 𝑭𝑇 = |𝐹𝐴 𝐹𝐵| cyclic load vector; 

• 𝑐𝑐 cyclic load multiplier for serviceability limit state conditions; 

• 𝑐𝐹 load multiplier for ultimate limit state conditions. 

The design variable vector is: 

𝒅𝑇 = |𝑡𝑓𝑖 𝝃𝑐
𝑘𝑇

| (1) 

In Equation (1), 𝑡𝑓𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) are the flange thicknesses of the columns (left, right) 

and of the beam, and 𝝃𝑐
𝑘 (𝑘 = +,−) are the vectors of nodal displacements, each of six 

components, response to the load combinations (𝑝𝑧 , ±𝑐𝐶𝑭), respectively. 

The objective function to be minimized (structural volume) is: 

𝑉 = ∑ℓ𝑖𝐴𝑖

𝑖

 (2) 

where 𝐴𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) is the cross-section area of the columns (left, right) and of the beam. 

The minimum volume design problem can be written in the following form: 
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min
(𝑡𝑓𝑖,𝝃𝑐

𝑘)
𝑉 (3) 

subjected to: 

𝑏𝑖−3𝑡𝑤𝑖

18
√

𝑓𝑦

235
≤ 𝑡𝑓𝑖 ≤

ℎ𝑖

2
  (𝑖 = 𝑙, 𝑟, 𝑏) (4) 

𝜉𝑐
+(1) ≤ 𝜉ℓ𝑖𝑚 

𝜉𝑐
−(4) ≥ −𝜉ℓ𝑖𝑚 

(5) 

𝑪𝑇𝑫𝑪𝝃𝑐
𝑘 = 𝑭𝑐

∗𝑘  (𝑘 = +,−) (6) 

𝑐𝐹 [
|𝑄𝑐

𝑘(1)|

𝐴𝑙
+ (1 − 0.5𝑎𝑙)

|𝑄𝑐
𝑘(3)|

𝑊𝑙
𝑝 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−)  

𝑐𝐹 [
|𝑄𝑐

𝑘(4)|

𝐴𝑙
+ (1 − 0.5𝑎𝑙)

|𝑄𝑐
𝑘(6)|

𝑊𝑙
𝑝 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−) 

𝑐𝐹 [
|𝑄𝑐

𝑘(7)|

𝐴𝑏
+ (1 − 0.5𝑎𝑏)

|𝑄𝑐
𝑘(9)|

𝑊𝑏
𝑝 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−) 

(7) 
𝑐𝐹 [

|𝑄𝑐
𝑘(10)|

𝐴𝑏
+ (1 − 0.5𝑎𝑏)

|𝑄𝑐
𝑘(12)|

𝑊𝑏
𝑝 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−) 

𝑐𝐹 [
|𝑄𝑐

𝑘(13)|

𝐴𝑟
+ (1 − 0.5𝑎𝑟)

|𝑄𝑐
𝑘(15)|

𝑊𝑟
𝑝 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−) 

𝑐𝐹 [
|𝑄𝑐

𝑘(16)|

𝐴𝑟
+ (1 − 0.5𝑎𝑟)

|𝑄𝑐
𝑘(18)|

𝑊𝑟
𝑝 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−) 

𝑐𝐹
|𝑄𝑐

𝑘(3)|

𝑊𝑙
𝑝 − 𝑓𝑦 ≤ 0  (𝑘 = +,−) 

𝑐𝐹
|𝑄𝑐

𝑘(6)|

𝑊𝑙
𝑝 − 𝑓𝑦 ≤ 0  (𝑘 = +,−) 

𝑐𝐹
|𝑄𝑐

𝑘(9)|

𝑊𝑏
𝑝 − 𝑓𝑦 ≤ 0  (𝑘 = +,−) 

(8) 
𝑐𝐹

|𝑄𝑐
𝑘(12)|

𝑊𝑏
𝑝 − 𝑓𝑦 ≤ 0  (𝑘 = +,−) 

𝑐𝐹
|𝑄𝑐

𝑘(15)|

𝑊𝑟
𝑝 − 𝑓𝑦 ≤ 0  (𝑘 = +,−) 

𝑐𝐹
|𝑄𝑐

𝑘(18)|

𝑊𝑟
𝑝 − 𝑓𝑦 ≤ 0  (𝑘 = +,−) 

0 ≤ 𝑎𝑖 ≤ 0.5  (𝑖 = 𝑙, 𝑟, 𝑏) (9) 

Equation (4) represents the constraints ensuring that the sections belong to Class 1, 

together with the trivial geometric upper bound; Equation (5) represents the constraints 

on the displacements in SLS conditions; Equation (6) represents the elastic response to 

serviceability limit state conditions, with 𝑪 being the compatibility matrix, 𝑫 the inter-

nal stiffness matrix and 𝑭𝑐
∗𝑘 = 𝑘𝑐𝐶𝑭 − 𝑪𝑇𝑸∗ (𝑘 = +,−), where 𝑸∗ is a perfectly clamped 

generalised elastic stress response vector; Equations (7) and (8) represent the constraints 

on the yield strength in ultimate limit state conditions, with 𝑊𝑖
𝑝 (𝑖 = 𝑙, 𝑟, 𝑏) cross-section 

plastic modulus of columns and beam, where 𝑎𝑖 =
𝐴𝑖−2𝑏𝑖𝑡𝑓𝑖

𝐴𝑖
 (𝑖 = 𝑙, 𝑏, 𝑟) are suitable coef-

ficients depending on the shape of the yield boundary domain of the cross-sections of 
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columns and beam fulfilling the constraints in Equation (9). Furthermore, in Equations (7) 

and (8): 𝑄𝑐
𝑘(𝑗) = [𝐷𝐶𝜉𝑐

𝑘](𝑗) + 𝑄∗(𝑗)  (𝑘 = +,−)  is the 𝑗𝑡ℎ  component of the generalised 

elastic stress response vector to the load combinations (𝑝𝑧 , ±𝑐𝐶𝑭). It is worth noting that, 

due to the symmetry of the relevant cross-section yield domain, in Equations (7) and (8) 

the absolute values of the components of the generalised elastic stress response vector 

have been considered. 

2.2. Optimal Design Problem Formulation: Second Step 

The second step of the design strategy is devoted to the search for the minimum vol-

ume of the frame constituted by I-shaped multi-stepped beam elements. In addition to the 

previously described kinematical constraints, in SLS conditions it is required that the 

structural response be perfectly elastic (in order to ensure the efficacy of the kinematical 

constraints), while in ULS conditions it is required that the structure shows the onset of 

plastic deformations in predetermined portions of the beam elements, ensuring in addi-

tion the protection of the welded connections against the brittle failure. As previously 

stated in this step reference is made to the stress response obtained at first step. 

Referring to Figure 3, the following quantities are given: 

• ℓ𝑙1, ℓ𝑙2, ℓ𝑙3, ℓ𝑟1, ℓ𝑟2, ℓ𝑟3, ℓ𝑏1 = ℓ𝑏5, ℓ𝑏2 = ℓ𝑏4, ℓ𝑏3; 

• 𝑏𝑙1 = 𝑏𝑙3 = 𝑏𝑙𝑜, 𝑏𝑟1 = 𝑏𝑟3 = 𝑏𝑟𝑜, 𝑏𝑏1 = 𝑏𝑏3 = 𝑏𝑏5 = 𝑏𝑏𝑜; 

• ℎ𝑙1 = ℎ𝑙3 = ℎ𝑙𝑜, ℎ𝑟1 = ℎ𝑟3 = ℎ𝑟𝑜, ℎ𝑏1 = ℎ𝑏3 = ℎ𝑏5 = ℎ𝑏𝑜; 

• 𝑡𝑤𝑙1 = 𝑡𝑤𝑙2 = 𝑡𝑤𝑙3 = 𝑡𝑤𝑙 , 𝑡𝑤𝑟1 = 𝑡𝑤𝑟2 = 𝑡𝑤𝑟3 = 𝑡𝑤𝑟 ; 

• 𝑡𝑤𝑏1 = 𝑡𝑤𝑏2 = 𝑡𝑤𝑏3 = 𝑡𝑤𝑏4 = 𝑡𝑤𝑏5 = 𝑡𝑤𝑏 . 

In the above, in addition to the symbols already introduced, 𝑏𝑙𝑜  and 𝑏𝑟𝑜  are the 

widths of the original left and right column cross-sections, respectively, and 𝑏𝑏𝑜 is the 

width of the original beam cross-section. Analogously, ℎ𝑙𝑜 and ℎ𝑟𝑜 are the depths of the 

original left and right column cross-sections, respectively, and ℎ𝑏𝑜  is the depth of the 

original beam cross-section. 

The design variables are the following: 

• 𝑏𝑙2, 𝑏𝑟2, 𝑏𝑏2, 𝑏𝑏4, 𝑡𝑓𝑙1 = 𝑡𝑓𝑙3 = 𝑡𝑓𝑙𝑠, 𝑡𝑓𝑙2, 𝑡𝑓𝑟1 = 𝑡𝑓𝑟3 = 𝑡𝑓𝑟𝑠, 𝑡𝑓𝑟2, 

𝑡𝑓𝑏1 = 𝑡𝑓𝑏3 = 𝑡𝑓𝑏5 = 𝑡𝑓𝑏𝑠, 𝑡𝑓𝑏2, 𝑡𝑓𝑏4, 𝝃𝑐
𝑘, 

where 𝑡𝑓𝑙𝑠 is the common thickness of the strong portions of the left column, 𝑡𝑓𝑟𝑠 is the 

common thickness of the strong portions of the right column and 𝑡𝑓𝑏𝑠  is the common 

thickness of the strong portions of the beam. 



Buildings 2024, 14, 2155 9 of 25 
 

 
(a) 

 (b)  (c) 

Figure 3. Geometric characteristic of the multi-stepped beam element frame: (a) lengths of the dif-

ferent portions of the beam elements; (b) specific dimensions of the portions at the left column base; 

(c) specific dimensions of the portions at the left beam end. 

The objective function to be minimized (structural volume) is: 

𝑉 = ∑ ℓ𝑙𝑗𝐴𝑙𝑗

3

𝑗=1

+ ∑ℓ𝑟𝑗𝐴𝑟𝑗

3

𝑗=1

+ ∑ℓ𝑏𝑗𝐴𝑏𝑗

5

𝑗=1

 (10) 

By trivial geometry, stipulating that the cross-section flanges of subsequent beam el-

ement portions have the same medium plane, the result must be: 

ℎ𝑙2 = ℎ𝑙𝑜 − 𝑡𝑓𝑙𝑠 + 𝑡𝑓𝑙2 

(11) 

ℎ𝑟2 = ℎ𝑟𝑜 − 𝑡𝑓𝑟𝑠 + 𝑡𝑓𝑟2 

ℎ𝑏2 = ℎ𝑏𝑜 − 𝑡𝑓𝑏𝑠 + 𝑡𝑓𝑏2 

ℎ𝑏4 = ℎ𝑏𝑜 − 𝑡𝑓𝑏𝑠 + 𝑡𝑓𝑏4 
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The minimum volume design problem can be written in the following form: 

min
(𝑏𝑙2,𝑏𝑟2,𝑏𝑏2,𝑏𝑏4,𝑡𝑓𝑙𝑠,𝑡𝑓𝑙2,𝑡𝑓𝑟𝑠,𝑡𝑓𝑟2,𝑡𝑓𝑏𝑠,𝑡𝑓𝑏2,𝑡𝑓𝑏4,𝝃𝑐

𝑘)
𝑉 (12) 

subjected to: 

𝑏𝑙𝑜 − 3𝑡𝑤𝑙

18
√

𝑓𝑦

235
≤ 𝑡𝑓𝑙𝑠 ≤

ℎ𝑙𝑜

2
 

(13) 

𝑏𝑙2 − 3𝑡𝑤𝑙

18
√

𝑓𝑦

235
≤ 𝑡𝑓𝑙2 ≤

ℎ𝑙2

2
 

𝑏𝑟𝑜 − 3𝑡𝑤𝑟

18
√

𝑓𝑦

235
≤ 𝑡𝑓𝑟𝑠 ≤

ℎ𝑟𝑜

2
 

𝑏𝑟2 − 3𝑡𝑤𝑟

18
√

𝑓𝑦

235
≤ 𝑡𝑓𝑟2 ≤

ℎ𝑟2

2
 

𝑏𝑏𝑜 − 3𝑡𝑤𝑏

18
√

𝑓𝑦

235
≤ 𝑡𝑓𝑏𝑠 ≤

ℎ𝑏𝑜

2
 

𝑏𝑏2 − 3𝑡𝑤𝑏

18
√

𝑓𝑦

235
≤ 𝑡𝑓𝑏2 ≤

ℎ𝑏2

2
 

𝑏𝑏4 − 3𝑡𝑤𝑏

18
√

𝑓𝑦

235
≤ 𝑡𝑓𝑏4 ≤

ℎ𝑏4

2
 

𝜉𝑐
+(1) ≤ 𝜉ℓ𝑖𝑚 

𝜉𝑐
−(4) ≥ −𝜉ℓ𝑖𝑚 

(14) 

𝑪𝑇𝑫𝑚𝑪𝝃𝑐
𝑘 = 𝑭𝑐

∗𝑘  (𝑘 = +,−) (15) 

𝑐𝐹 [
|𝑄𝑐

𝑘(1)|

𝐴𝑙2
+

|𝑄𝑐
𝑘(3)−𝑄𝑐

𝑘(2)(ℓ𝑙1+ℓ𝑙2 2⁄ )|

𝛾𝑒/𝑝 𝑊𝑙2
𝑒 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−) 

(16) 

𝑐𝐹 [
|𝑄𝑐

𝑘(7)|

𝐴𝑏2
+

|𝑄𝑐
𝑘(9)−𝑄𝑐

𝑘(8)(ℓ𝑏1+ℓ𝑏2 2⁄ )+𝑞(ℓ𝑏1+ℓ𝑏2 2⁄ )2 2⁄ |

𝛾𝑒/𝑝 𝑊𝑏2
𝑒 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−) 

𝑐𝐹 [
|𝑄𝑐

𝑘(10)|

𝐴𝑏4
+

|𝑄𝑐
𝑘(12)−𝑄𝑐

𝑘(11)(ℓ𝑏5+ℓ𝑏4 2⁄ )+𝑞(ℓ𝑏5+ℓ𝑏4 2⁄ )2 2⁄ |

𝛾𝑒/𝑝 𝑊𝑏4
𝑒 ] − 𝑓𝑦 ≤ 0 (𝑘 = +,−) 

𝑐𝐹 [
|𝑄𝑐

𝑘(13)|

𝐴𝑟2
+

|𝑄𝑐
𝑘(15)−𝑄𝑐

𝑘(14)(ℓ𝑟1+ℓ𝑟2 2⁄ )|

𝛾𝑒/𝑝 𝑊𝑟2
𝑒 ] − 𝑓𝑦 ≤ 0  (𝑘 = +,−) 

𝑐𝐹 [
|𝑄𝑐

𝑘(1)|

𝐴𝑙𝑠
+

|𝑄𝑐
𝑘(3)|

𝑊𝑙𝑠
𝑒 ] −

𝑓𝑦

𝛾𝑏𝑟
≤ 0  (𝑘 = +,−) 

(17) 𝑐𝐹 [
|𝑄𝑐

𝑘(7)|

𝐴𝑏𝑠
+

|𝑄𝑐
𝑘(9)|

𝑊𝑏𝑠
𝑒 ] −

𝑓𝑦

𝛾𝑏𝑟
≤ 0  (𝑘 = +,−) 

𝑐𝐹 [
|𝑄𝑐

𝑘(10)|

𝐴𝑏𝑠
+

|𝑄𝑐
𝑘(12)|

𝑊𝑏𝑠
𝑒 ] −

𝑓𝑦

𝛾𝑏𝑟
≤ 0  (𝑘 = +,−) 
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𝑐𝐹 [
|𝑄𝑐

𝑘(13)|

𝐴𝑟𝑠
+

|𝑄𝑐
𝑘(15)|

𝑊𝑟𝑠
𝑒 ] −

𝑓𝑦

𝛾𝑏𝑟
≤ 0  (𝑘 = +,−) 

Equation (13) represents the constraints ensuring that the sections belong to Class 1 

together with the trivial geometric upper bound; Equation (14) represents the constraints 

on the displacements in SLS conditions; Equation (15) represents the elastic response to 

serviceability limit state conditions, with 𝑫𝑚  internal stiffness matrix of the I-shaped 

multi-stepped beam elements, the elements of which will be defined in the following sec-

tion; Equation (16) represents the constraints on the limit elastic resistance of the weak 

portions in ULS conditions, where 𝑊𝑖𝑗
𝑒 is the relevant cross-section elastic modulus and 

𝛾𝑦/𝑒 a suitable coefficient representing the ratio between yield limit bending moment and 

elastic limit bending moment (typically the range 1.10÷1.15 can be adopted for 𝛾𝑦/𝑒 re-

lated to I-shaped cross-sections); Equation (17) represents the constraints on the limit brit-

tle resistance of the welded connections in ULS conditions with 𝛾𝑏𝑟 being a suitably cho-

sen safety coefficient (𝛾𝑏𝑟 = 1.25 can be adopted. See Table 4.2.XIV [31]). 

3. Multi-step Beam Element Model Formulation 

The optimisation procedure presented in the previous sections leads to the identifi-

cation of a steel frame composed of multi-stepped elements with an I-shaped cross-sec-

tion. The optimised frame has been suitably designed to respect the chosen constraints 

and is prone to development of plastic deformations along pre-established portions of the 

elements. Since the optimisation procedure does not account for a proper nonlinear anal-

ysis, in order to verify the actual performance of the frame a full nonlinear incremental 

analysis is mandatory. The relevant strategy presented in this section is a customised ver-

sion of the Fibre Smart Displacement-Based (FSDB) procedure presented by some of the 

authors in [32,33]. In particular, a novel beam element was formulated by means of the 

introduction of suitable shape functions of the transversal displacements which are able 

to update during the nonlinear analysis. The ability of the proposed adaptive displace-

ment shape functions consists in taking into account the real distribution of the stiffness 

along the span depending on the development of plastic deformations. The FSDB ap-

proach has been applied successfully to model moment-resisting connections denoted as 

LRPD devices in [26] and it is here customised to model beam elements characterised by 

multi-step variations according to the scheme adopted in Figure 3. 

Precisely, each beam/column element of the frame in Figure 3 is modelled as a dis-

continuous beam characterised by piecewise constant cross-sections where abrupt varia-

tions of the cross-section occur at 𝑥𝑖,𝑗 , 𝑖 = 𝑙, 𝑏, 𝑟; 𝑗 = 1,… , 𝑛𝑖. According to the optimum de-

sign problem formulated in the previous section giving rise to the presence of weak por-

tions in the left and right columns as well as in the beam, the cross-section discontinuities 

occur at abscissae 𝑥𝑙1 = ℓ𝑙1,  𝑥𝑙2 = ℓ𝑙1 + ℓ𝑙2 , ( 𝑛𝑙 = 2 ), 𝑥𝑏1 = ℓ𝑏1, 𝑥𝑏2 = ℓ𝑏1 + ℓ𝑏2,  𝑥𝑏3 =

ℓ𝑏1 + ℓ𝑏2 + ℓ𝑏3,  𝑥𝑏4 = ℓ𝑏1 + ℓ𝑏2 + ℓ𝑏3 + ℓ𝑏4 , (𝑛𝑏 = 4 ), 𝑥𝑟1 = ℓ𝑙1, 𝑥𝑟2 = ℓ𝑙1 + ℓ𝑙2 , (𝑛𝑟 = 2 ), 

in the left column, the beam and the right column, respectively. 

Within the context of a distributed plasticity approach [32,33], during the nonlinear 

analysis, the onset of plastic deformations is allowed at pre-established Gauss cross-sec-

tions at abscissae 𝑥𝑖𝐺,𝑘 , 𝑖 = 𝑙, 𝑏, 𝑟; 𝑘 = 1,… , 𝑛𝑖𝐺  determined in accordance with the chosen 

integration scheme. The occurrence of plastic deformations at Gauss cross-sections gives 

rise to further discontinuities affecting both the axial and the flexural stiffness of the frame 

elements. The proposed FSDB approach, here adopted, ascribes the discontinuities to the 

axial and flexural stiffness distribution of the beam by making use of generalised functions 

and, specifically, the Heaviside (unit step) generalised function 𝑈(𝑥 − 𝑥𝑗) , (defined as 

𝑈(𝑥 − 𝑥𝑗) = 0 for 𝑥 < 𝑥𝑗; 𝑈(𝑥 − 𝑥𝑗) = 1 for 𝑥 > 𝑥𝑗). The governing equations of an Eu-

ler–Bernoulli beam characterised by cross-section discontinuities, due to the presence of 

weak portions, and additional discontinuities of the axial and flexural stiffness at the 

Gauss cross-sections, due to the onset of plastic deformations, subjected to axial 𝑝𝑥(𝑥) 

and transversal 𝑝𝑧(𝑥) load distributions can be written as follows: 
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𝐸𝐴𝑖 {[1 − ∑ (𝛼𝑖𝑥,𝑗 − 𝛼𝑖𝑥,𝑗−1)𝑈(𝑥 − 𝑥𝑖,𝑗) − ∑ (𝛽𝑖𝑥,𝑘 − 𝛽𝑖𝑥,𝑘−1)𝑈(𝑥 − 𝑥𝑖𝐺,𝑘)
𝑛𝑖𝐺
𝑘=1

𝑛𝑖
𝑗=1 ]𝑢𝑥

𝐼 (𝑥)}
𝐼

= −𝑝𝑥(𝑥)   (18) 

𝐸𝐼𝑖 {[1 − ∑ (𝛼𝑖𝑧,𝑗 − 𝛼𝑖𝑧,𝑗−1)𝑈(𝑥 − 𝑥𝑖,𝑗) − ∑ (𝛽𝑖𝑧,𝑘 − 𝛽𝑖𝑧,𝑘−1)𝑈(𝑥 − 𝑥𝑖𝐺,𝑘)
𝑛𝑖𝐺
𝑘=1

𝑛𝑖
𝑗=1 ]𝑢𝑧

𝐼𝐼(𝑥)}
𝐼𝐼

 = 𝑝𝑧(𝑥) with 𝑖 = 𝑙, 𝑏, 𝑟  (19) 

where the apex indicates the differentiation with respect to 𝑥,  spanning from 0 to the 

length 𝐿 of the beam, and 𝑢𝑥(𝑥), 𝑢𝑧(𝑥) are the axial displacement and the transversal 

deflection functions; furthermore, 𝐸 represents the Young modulus and 𝐴𝑖 , 𝐼𝑖  (𝑖 = 𝑙, 𝑏, 𝑟) 

are the cross-section area and moment of inertia, respectively, of the columns (left, right) 

and the beam as determined in the first step of the design procedure. 

In Equations (18) and (19), 𝛼𝑖𝑥,𝑗 = (𝐸𝐴𝑖 − 𝐸𝐴𝑖,𝑗)/𝐸𝐴𝑖 , 𝛼𝑖𝑧,𝑗 = (𝐸𝐼𝑖 − 𝐸𝐼𝑖,𝑗)/𝐸𝐼𝑖  , 𝑗 =

1, … , 𝑛𝑖 with 0 ≤ 𝛼𝑖𝑥,𝑗𝛼𝑖𝑧,𝑗 ≤ 1, represent the normalized variation of the current axial and 

flexural stiffness of the columns and beam segments as determined in the second step of 

the design procedure with respect to the values 𝐸𝐴𝑖 and 𝐸𝐼𝑖 obtained in the first step. 

Furthermore, in order to account for the axial and flexural stiffness degradation due 

to the occurrence of plastic deformations during the nonlinear analysis, the stepped beam 

model with the cross-section discontinuities formulated in Equations (18) and (19) has 

been further enriched by means of the introduction of additional parameters 

𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘, 𝑘 = 1,… , 𝑛𝑖𝐺  which are updated during the inelastic analysis to take into ac-

count the axial and flexural stiffness degradation. Precisely, the 𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘 parameters in-

troduced in Equations (18) and (19) take the initial values 𝛽𝑖𝑥,𝑘 = 0, 𝛽𝑖𝑧,𝑘 = 0, correspond-

ing to a fully elastic state, and are subjected to a step-by-step updating within the range 

0 ≤ 𝛽𝑖𝑥,𝑘 ≤ 1, 0 ≤ 𝛽𝑖𝑧,𝑘 ≤ 1, being 𝛽𝑖𝑥,𝑘 = 1, 𝛽𝑖𝑧,𝑘 = 1 corresponding to a fully plastic state 

of the relevant Gauss cross-section. 

In order to perform the nonlinear elastic plastic analysis of the designed multi-step 

frame, in what follows the closed form solution of the governing Equations (18) and (19) 

are exploited. 

Integration of Equations (18) and (19), by making use of the Schwartz theory of dis-

tributions, leads to the following explicit expressions for the axial displacement and the 

transversal deflection functions 𝑢𝑥(𝑥), 𝑢𝑧(𝑥), respectively: 

𝑢𝑥(𝑥) = 𝑎1 + 𝑎2𝑔2(𝑥; 𝛽𝑖𝑥,𝑘) + 𝑔3(𝑥; 𝛽𝑖𝑥,𝑘) (20) 

𝑢𝑧(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑓3(𝑥; 𝛽𝑖𝑧,𝑘) + 𝑐4𝑓4(𝑥; 𝛽𝑖𝑧,𝑘) + 𝑓5(𝑥; 𝛽𝑖𝑧,𝑘) (21) 

where 𝑎1, 𝑎2,𝑐1, 𝑐2, 𝑐3, 𝑐4  are integration constants and the functions 

𝑔2(𝑥; 𝛽𝑖𝑥,𝑘), 𝑔3(𝑥; 𝛽𝑖𝑥,𝑘), 𝑓3(𝑥; 𝛽𝑖𝑧,𝑘), 𝑓4(𝑥; 𝛽𝑖𝑧,𝑘), 𝑓5(𝑥, 𝛽𝑖𝑧,𝑘),  dependent on the parameters 

𝛽𝑖𝑥,𝑘 and 𝛽𝑖𝑧,𝑘, are defined as follows: 

𝑔2(𝑥; 𝛽𝑖𝑥,𝑘) = −𝑥 − ∑ (
𝛼𝑖𝑥,𝑗

1−𝛼𝑖𝑥,𝑗
−

𝛼𝑖𝑥,𝑗−1

1−𝛼𝑖𝑥,𝑗−1
) (𝑥 − 𝑥𝑗)𝑈(𝑥 − 𝑥𝑗) +

𝑛𝑖
𝑗=1   

+∑ (
𝛽𝑖𝑥,𝑘

1−𝛽𝑖𝑥,𝑘
−

𝛽𝑖𝑥,𝑘−1

1−𝛽𝑖𝑥,𝑘−1
) (𝑥 − 𝑥𝑑,𝑖)𝑈(𝑥 − 𝑥𝑖𝐺,𝑘)

𝑛𝐺
𝑘=1   

(22) 

𝑔3(𝑥; 𝛽𝑖𝑥,𝑘) = −
𝑝𝑥

[2]
(𝑥)

𝐸𝑜𝐴𝑜
− ∑

1

𝐸𝑜𝐴𝑜
(

𝛼𝑖𝑥,𝑗

1−𝛼𝑖𝑥,𝑗
−

𝛼𝑖𝑥,𝑗−1

1−𝛼𝑖𝑥,𝑗−1
) (𝑝𝑥

[2](𝑥) − 𝑝𝑥
[2]

(𝑥𝑗))𝑈(𝑥 − 𝑥𝑗) −
𝑛𝑖
𝑗=1  

−∑
1

𝐸𝑜𝐴𝑜
(

𝛽𝑖𝑧,𝑘

1−𝛽𝑖𝑧,𝑘
−

𝛽𝑖𝑧,𝑘−1

1−𝛽𝑖𝑧,𝑘−1
) (𝑝𝑥

[2](𝑥) − 𝑝𝑥
[2]

(𝑥𝑑,𝑖))𝑈(𝑥 − 𝑥𝑖𝐺,𝑘)
𝑛𝐺
𝑘=1  

(23) 

𝑓3(𝑥; 𝛽𝑖𝑧,𝑘) = 𝑥2 + ∑ (
𝛼𝑖𝑧,𝑗

1−𝛼𝑖𝑧,𝑗
−

𝛼𝑖𝑧,𝑗−1

1−𝛼𝑖𝑧,𝑗−1
) (𝑥 − 𝑥𝑗)

2
𝑈(𝑥 − 𝑥𝑗) +

𝑛𝑖
𝑗=1   

+∑ (
𝛽𝑖𝑧,𝑘

1−𝛽𝑖𝑧,𝑘
−

𝛽𝑖𝑧,𝑘−1

1−𝛽𝑖𝑧,𝑘−1
) (𝑥 − 𝑥𝑑,𝑖)

2
𝑈(𝑥 − 𝑥𝑖𝐺,𝑘)

𝑛𝐺
𝑘=1   

(24) 

𝑓4(𝑥; 𝛽𝑖𝑧,𝑘) = 𝑥3 + ∑ (
𝛼𝑖𝑧,𝑗

1−𝛼𝑖𝑧,𝑗
−

𝛼𝑖𝑧,𝑗−1

1−𝛼𝑖𝑧,𝑗−1
) (𝑥3 − 3𝑥𝑗

2𝑥 + 2𝑥𝑗
3)𝑈(𝑥 − 𝑥𝑗) +

𝑛𝑖
𝑗=1   

+ ∑ (
𝛽𝑖𝑧,𝑘

1−𝛽𝑖𝑧,𝑘
−

𝛽𝑖𝑧,𝑘−1

1−𝛽𝑖𝑧,𝑘−1
) (𝑥3 − 3𝑥𝑑,𝑖

2 𝑥 + 2𝑥𝑑,𝑖
3 )𝑈(𝑥 − 𝑥𝑖𝐺,𝑘)

𝑛𝐺
𝑘=1   

(25) 
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𝑓5(𝑥; 𝛽𝑖𝑧,𝑘) =
𝑝𝑧

[4]
(𝑥)

𝐸𝑜𝐼𝑜
+ ∑

1

𝐸𝑜𝐼𝑜
(

𝛼𝑖𝑧,𝑗

1−𝛼𝑖𝑧,𝑗
−

𝛼𝑖𝑧,𝑗−1

1−𝛼𝑖𝑧,𝑗−1
) [𝑝𝑧

[4](𝑥) − 𝑝𝑧
[4]

(𝑥𝑗)]𝑈(𝑥 − 𝑥𝑗) +
𝑛𝑖
𝑗=1   

 +∑
1

𝐸𝑜𝐼𝑜
(

𝛽𝑖𝑧,𝑘

1−𝛽𝑖𝑧,𝑘
−

𝛽𝑖𝑧,𝑘−1

1−𝛽𝑖𝑧,𝑘−1
) [𝑝𝑧

[4](𝑥) − 𝑝𝑧
[4]

(𝑥𝑑,𝑖)]𝑈(𝑥 − 𝑥𝑖𝐺,𝑘) −
𝑛𝐺
𝑘=1  

−∑
1

𝐸𝑜𝐼𝑜
(

𝛼𝑖𝑧,𝑗

1−𝛼𝑖𝑧,𝑗
−

𝛼𝑖𝑧,𝑗−1

1−𝛼𝑖𝑧,𝑗−1
) 𝑝𝑧

[3](𝑥)(𝑥 − 𝑥𝑗)𝑈(𝑥 − 𝑥𝑗) −
𝑛𝑖
𝑖=1   

−∑ (
𝛽𝑖𝑧,𝑘

1−𝛽𝑖𝑧,𝑘
−

𝛽𝑖𝑧,𝑘−1

1−𝛽𝑖𝑧,𝑘−1
) 𝑝𝑧

[3](𝑥)(𝑥 − 𝑥𝑑,𝑖)𝑈(𝑥 − 𝑥𝑖𝐺,𝑘)
𝑛𝐺
𝑘=1   

(26) 

The explicit solution reported in Equations (20) and (21) can be exploited to conduct 

a nonlinear analysis by updating the values of the parameters 𝛽𝑖𝑥,𝑘 and 𝛽𝑖𝑧,𝑘 obtained by 

suitable integration of the constitutive laws at each Gauss cross-section. For this purpose, 

the solution of the stepped beam model in Equations (20) and (21) is adopted to introduce 

a beam/column element, connecting joints 𝑟 and 𝑠, in the 𝑥, 𝑧 plane as shown in Figure 

4. The vectors 𝐪𝑒 , 𝐐𝑒 , collecting the nodal displacements 𝑞𝑘 , 𝑘 = 1,… ,6  and the nodal 

forces 𝑄𝑘, 𝑘 = 1,… ,6, respectively, reported in Figure 4, are introduced. 

 
 

(a) (b) 

Figure 4. Nodal degrees of freedom (a) and forces (b) of the element. 

Based on Equations (20) and (21), the axial/transversal displacement shape functions 

𝑁𝑖,1(𝑥), … , 𝑁𝑖,6(𝑥), obtained by imposing unit nodal displacements and evaluating the in-

tegration constants, can be formulated as follows: 

𝑁𝑖,1(𝑥; 𝛽𝑖𝑧,𝑘) = 1 −
𝑓4

′(𝐿; 𝛽𝑖𝑧,𝑘)

𝜅
𝑓3(𝑥; 𝛽𝑖𝑧,𝑘) +

𝑓3
′(𝐿; 𝛽𝑖𝑧,𝑘)

𝜅
𝑓4(𝑥; 𝛽𝑖𝑧,𝑘) (27) 

𝑁𝑖,2(𝑥; 𝛽𝑖𝑧,𝑘) = 𝑥 +
−𝐿𝑓4

′(𝐿;𝛽𝑖𝑧,𝑘)+𝑓4
⬚(𝐿;𝛽𝑖𝑧,𝑘)

𝜅
𝑓3(𝑥; 𝛽𝑖𝑧,𝑘) +

−𝑓3
⬚(𝐿;𝛽𝑖𝑧,𝑘)+𝐿𝑓3

′(𝐿;𝛽𝑖𝑧,𝑘)

𝜅
𝑓4(𝑥; 𝛽𝑖𝑧,𝑘)  (28) 

𝑁𝑖,3(𝑥; 𝛽𝑖𝑧,𝑘) =
𝑓4

′(𝐿; 𝛽𝑖𝑧,𝑘)

𝜅
𝑓3(𝑥; 𝛽𝑖𝑧,𝑘) −

𝑓3
′(𝐿; 𝛽𝑖𝑧,𝑘)

𝜅
𝑓4(𝑥; 𝛽𝑖𝑧,𝑘) (29) 

𝑁𝑖,4(𝑥; 𝛽𝑖𝑧,𝑘) = −
𝑓4

⬚(𝐿; 𝛽𝑖𝑧,𝑘)

𝜅
𝑓3(𝑥; 𝛽𝑖𝑧,𝑘) +

𝑓3
⬚(𝐿; 𝛽𝑖𝑧,𝑘)

𝜅
𝑓4(𝑥; 𝛽𝑖𝑧,𝑘) (10) 

𝑁𝑖,5(𝑥; 𝛽𝑖𝑥,𝑘) = 1 −
1

𝑔2(𝐿; 𝛽𝑖𝑥,𝑘)
𝑔2(𝑥; 𝛽𝑖𝑥,𝑘) (11) 

𝑁𝑖,6(𝑥; 𝛽𝑖𝑥,𝑘) =
1

𝑔2(𝐿; 𝛽𝑖𝑥,𝑘)
𝑔2(𝑥; 𝛽𝑖𝑥,𝑘) (12) 

where: 

𝜅 = 𝑓3
⬚(𝐿; 𝛽𝑖𝑧,𝑘)𝑓4

′(𝐿; 𝛽𝑖𝑧,𝑘) − 𝑓4
⬚(𝐿; 𝛽𝑖𝑧,𝑘)𝑓3

′(𝐿; 𝛽𝑖𝑧,𝑘) (13) 

The displacement shape functions proposed in Equations (27)–(33) account for the 

discontinuities introduced in the second step of the optimal design problem by means of 

the parameters 𝛼𝑖𝑥,𝑗 , 𝛼𝑖𝑧,𝑗, 𝑗 = 1,… , 𝑛𝑖. Furthermore, in contrast with the classic displace-

ment shape functions, they are subjected to evolution being able to adapt to the inelastic 

state of the element through the parameters 𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘 , 𝑘 = 1,… , 𝑛𝑖𝐺  dependent on the 

evolution of the plastic deformations. For the latter reason, the presented shape functions 

can be addressed to as Smart Displacement Shape Functions (SDSFs). 
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The stiffness matrix of the beam element defined in Figure 4, representative of the 

beam/columns of the discontinuous frame designed by means of the optimisation proce-

dure described in the previous sections, can now be built. Precisely, according to a fibre 

approach, each Gauss cross-section at 𝑥𝑖𝐺,𝑘, 𝑘 = 1,… , 𝑛𝑖𝐺 , is discretised into 𝑛𝑓 strips (de-

noted as fibres), as in Figure 5, with an area 𝐴𝑓, 𝑓 = 1,… , 𝑛𝑓. Each fibre undergoes a non-

linear uniaxial stress–strain relationship modelling constitutive behaviour characterised 

by the tangent modulus 𝐸𝑇,𝑓. 

By assuming the principle of planar section conservation, the axial strain 𝜀𝑥(𝑥) of 

each fibre is written in terms of nodal displacements 𝐪𝐞 as: 

𝜀𝑥(𝑥; 𝑧𝑓) = 𝛂(𝑧𝑓) 𝐁(𝑥; 𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘) 𝐪𝑒  (14) 

where the row vector 𝛂(𝑧𝑓) = [1 𝑧𝑓] , dependent on the distance 𝑧𝑓 of the f-th fibre from 

the beam axis, has been introduced, and the matrix 𝐁(𝑥; 𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘), dependent on the stiff-

ness decay parameters 𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘 , is defined in terms of derivatives of the displacement 

shape functions as follows: 

𝐁(𝑥; 𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘)

=  [
0 0 0 0 𝑁5

′(𝑥; 𝛽𝑖𝑥,𝑘)𝑁6
′(𝑥; 𝛽𝑖𝑥,𝑘)

−𝑁1
′′(𝑥; 𝛽𝑖𝑧,𝑘)−𝑁2

′′(𝑥; 𝛽𝑖𝑧,𝑘)−𝑁3
′′(𝑥; 𝛽𝑖𝑧,𝑘)−𝑁4

′′(𝑥; 𝛽𝑖𝑧,𝑘) 0 0
] 

(15) 

  

Figure 5. Fibre discretization of a I-shaped Gauss cross-section. 

Furthermore, the stiffness matrix of the generic Gauss cross-section, in view of the 

fibre discretisation as shown in Figure 5, can be given as follows: 

𝐤(𝑥𝑖𝐺,𝑘) = ∑ 𝛂𝑻(𝑧𝑓)𝐸𝑇,𝑓(𝑥𝑖𝐺,𝑘 , 𝑧𝑓)𝐴𝑓𝛂(𝑧𝑓)

𝑛𝑓

𝑓=1

=

[
 
 
 
 
 
 

∑ 𝐸𝑇,𝑓(𝑥𝑖𝐺,𝑘, 𝑧𝑓)𝐴𝑓

𝑛𝑓

𝑓=1

∑ 𝐸𝑇,𝑓(𝑥𝑖𝐺,𝑘, 𝑧𝑓)𝐴𝑓𝑧𝑓

𝑛𝑓

𝑓=1

∑ 𝐸𝑇,𝑓(𝑥𝑖𝐺,𝑘 , 𝑧𝑓)𝐴𝑓𝑧𝑓

𝑛𝑓

𝑓=1

∑ 𝐸𝑇,𝑓(𝑥𝑖𝐺,𝑘, 𝑧𝑓)𝐴𝑓𝑧𝑓
2

𝑛𝑓

𝑓=1 ]
 
 
 
 
 
 
 (16) 

By standard application of the principle of virtual displacements, and the subsequent 

application of the Gauss integration scheme, the stiffness matrix 𝐊𝑖 of the beam/columns 

elements of the designed frame is obtained as follows: 

𝐊𝑖(𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘) = 𝐿 ∑ 𝐁𝑻(𝑥𝑖𝐺,𝑘; 𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘)𝐤(𝑥𝑖𝐺,𝑘)𝐁(𝑥𝑖𝐺,𝑘; 𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘)𝑤𝑘
𝑛𝐺
𝑘=1   (17) 

where 𝑤𝑘  denotes the weight of each Gauss point. The stiffness matrices 

𝐊𝑖(𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘), 𝑖 = 𝑙. 𝑏, 𝑟, reported in Equation (37), depend on the discontinuity parame-

ters 𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘 being updated during the inelastic analysis. It has to be remarked that by 

block diagonal assemblage of the stiffness matrices 𝐊𝑖(𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘), 𝑖 = 𝑙. 𝑏, 𝑟, the 𝑫𝑚 ma-

trix appearing in Equation (15) is recovered. 
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The cross-section stiffness matrix 𝐤(𝑥𝑖𝐺,𝑘) at each Gauss cross-section is evaluated 

by performing a parallel integration of the uniaxial nonlinear constitutive laws at each 

fibre in the step-by-step analysis that delivers the current tangent stiffness modulus 

𝐸𝑇(𝑥; 𝑧𝑓) appearing in Equation (36). 

Finally, once integration of the nonlinear constitutive laws has been performed at 

fibre level, the updating of the stiffness parameters, 𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘, is obtained straightfor-

wardly, by accounting for the coupling between the axial and flexural behaviour, as fol-

lows: 

𝛽𝑖𝑥,𝑘 = 1 −
1

𝐸0𝐴0
[∑ 𝐸𝑇(𝑥𝑖𝐺,𝑘; 𝑧𝑓)𝐴𝑓

𝑛𝑓

𝑓=1
+ ∑ 𝐸𝑇(𝑥𝑖𝐺,𝑘; 𝑧𝑓)𝐴𝑓 𝑧𝑓

d𝜒𝑦

d𝜀0

𝑛𝑓

𝑓=1
]  (18) 

𝛽𝑖𝑧,𝑘 = 1 −
1

𝐸0𝐼0
[∑ 𝐸𝑇(𝑥𝑖𝐺,𝑘; 𝑧𝑓)𝐴𝑓 𝑧𝑓

d𝜀0

d𝜒𝑦

𝑛𝑓

𝑓=1
+ ∑ 𝐸𝑇(𝑥𝑖𝐺,𝑘; 𝑧𝑓)𝐴𝑓 𝑧𝑓

2𝑛𝑓

𝑓=1
]  (19) 

dependent on the increments of axial deformation 𝜀0(𝑥) of the geometrical axis and cur-

vature 𝜒𝑦(𝑥)  of the cross-section defined in terms of nodal displacements as follows: 

[𝜀0(𝑥) 𝜒𝑦(𝑥)]𝑇 = 𝐁(𝑥; 𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘) 𝐪e. 

The step-by-step evaluation of the stiffness parameters 𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘, in accordance to 

Equations (38) and (39), allows the updating of the SDSFs in Equations (27)–(33), of the 

deformation matrix 𝐁(𝑥; 𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘) in Equation (35) and of the element stiffness matrix 

𝐊𝑒(𝛽𝑖𝑥,𝑘, 𝛽𝑖𝑧,𝑘) in Equation (37). The smart character of these matrices allows the adoption 

of a single SDB element for each beam/column preventing any sub-discretisation. 

4. Application 

To validate the efficacy and the affordability of the proposed design strategy, refer-

ence has been made to a simple steel portal. In Figure 6, the schematic drawing of the 

structure is shown referring to the beam element axes together with the considered acting 

basic loads (dead load 𝑝𝑧 = 30 kN m⁄  and perfect cyclic load 𝐹𝐴 = 𝐹𝐵 = 45 kN). Further-

more, an elastic perfectly plastic behaviour (E = 210 GPa, 𝑓𝑦 = 235 MPa) is assumed for 

the constituting material. 

 

Figure 6. Frame to be designed. 

With the aim of defining the reference data (width and depth of the cross-section of 

each beam element) to perform the proposed iterative procedure, it is necessary to 
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preliminarily execute a first sizing of the structure elements and to define a first attempt 

cross-section design. Therefore, following the requirements of the referenced structural 

standard [31], the beam elements are designed for the frame to be subjected to two differ-

ent load combinations: the serviceability limit state condition (𝑝𝑧, ±𝑐𝐶𝑭)  and the limit 

state condition (𝑐𝐹𝑝𝑧 , ±𝑐𝐹𝑐𝐶𝑭), namely 𝑐𝐶 = 0.7 and 𝑐𝐹 = 1.5. 

For this first design, I-shaped steel profiles (HEB) are chosen, and it is assumed that 

all the elements are constituted by the same profile. As required by the standard, the de-

sign is searched by performing a linear elastic analysis imposing constraints on displace-

ments for serviceability conditions and constraints on the yield behaviour for limit load 

conditions. In particular, the maximum horizontal drift in serviceability limit state condi-

tions does not exceed 15 mm (equal to ¾ of the 5‰ of the frame height) and the stress 

field in ultimate limit state conditions must be inside the relevant yield domain boundary. 

The executed numerical computations show that, utilizing an HEB220 steel profile 

for all the beam elements, the constraints on the yield behaviour for ultimate limit state 

conditions are fulfilled, as evidenced in Figure 7a where the yield domain of the cross-

section is reported together with the acting stress related to the more stressed sections, but 

the horizontal drift in serviceability limit state conditions (𝜉𝑚𝑎𝑥 = 15.49 mm) exceeds the 

admissible limit value (𝜉ℓ𝑖𝑚 = 15 mm). Consequently, the immediately larger I-shaped 

steel profile is chosen (HEB240), and it obviously largely fulfils all the desired requisites; 

the horizontal drift in serviceability limit state conditions (𝜉𝑚𝑎𝑥 = 11.15 mm) does not 

exceed the admissible limit value (𝜉ℓ𝑖𝑚 = 15 mm) and the yield domain boundary of the 

cross-section is never overpassed (Figure 7b). For future evaluation, it is worth noting that 

the volume of the HEB220 structure is 𝑉𝐻𝐸𝐵220 = 0.1184 m3  and the volume of the 

HEB240 structure is 𝑉𝐻𝐸𝐵240 = 0.1378 m3. 

 
(a) 
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(b) 

Figure 7. Yield domains (black point element AC, red point element AB, blue point element BD): (a) 

frame made of HEB 220 profiles; (b) frame made of HEB 240 profiles. 

As described in Section 2, to perform the first step of the proposed design strategy it 

is necessary to preliminarily assign width and depth of the cross-section beam elements. 

With the aim of determining the minimum volume structure, the width and depth of the 

HEB220 are assigned and, with the previously introduced symbols, the results are: 𝑏𝑖 =

220 mm and ℎ𝑖 = 220 mm (𝑖 = 𝑙, 𝑟, 𝑏). Furthermore, the web thickness of all the beam el-

ements is assigned as the one of the HEB220 [𝑡𝑤𝑖 = 9.5 mm (𝑖 = 𝑙, 𝑟, 𝑏)] to ensure suffi-

cient shear resistance and that the cross-sections belong to Class 1. 

Once all the input data are assigned, problems (3)–(9) were solved by utilizing the 

FindMinimum command in Mathematica® 14.0 environment, obtaining the optimal thick-

nesses reported in Table 1 and the related (minimum) volume 𝑉𝑜𝑝𝑡 = 0.1171 m3, which 

determines a volume percentage reduction (𝑉𝐻𝐸𝐵240 − 𝑉𝑜𝑝𝑡) 𝑉𝐻𝐸𝐵240⁄ = 15%. The time for 

conducting the proposed optimization procedures with a HP Intel Core i7-10700 CPU 

@2.90GHz equipped with 16 GB RAM is less than 2 s. It is easy to observe that even the 

volume of the structure realised with HEB220 turns out to be greater than the obtained 

optimal one (𝑉𝐻𝐸𝐵220 = 0.1184 m3). 

Table 1. Results of the optimal design in the first step (dimensions in mm). 

𝒕𝒇𝒍 𝒕𝒇𝒓 𝒕𝒇𝒃 

18.361 18.361 13.320 

To validate the soundness of the first step optimal structure, an elastic plastic analysis 

has been carried out for the load combinations previously defined (SLS and ULS) by 

means of nonlinear static analyses by using the by using a research purpose non commer-

cial version of the software HISTRA. According to the load combinations, the frame is 

subjected firstly to the vertical load distribution, (𝑐𝐹𝑝𝑧), and then the horizontal nodal 

forces are applied cyclically ( 𝜆 𝑐𝐹𝑐𝐶𝑭) where 𝜆 is the load multiplier varying according 

to the cyclic sequence shown in Figure 8. The incremental analysis has been conducted by 

dividing each multiplier load segment into 10 steps. The modelling strategy of the frame 

is based on the FSDB beam element (see Section 3) that allows the simulation of the ine-

lastic behaviour of the columns and beam elements introducing discontinuities corre-

sponding to the abscissae as determined by the proposed design procedure. 
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Figure 8. Load multiplier history adopted in the cyclic analyses. 

The results confirm that all the imposed constraints are fulfilled, namely the maxi-

mum horizontal drift in SLS conditions being 𝜉𝑚𝑎𝑥 = 𝜉ℓ𝑖𝑚 = 15 mm and the stress field 

on all the beam elements always being within the relevant cross-section yield domain in 

ULS conditions. The latter statement has been strictly verified for the most stressed cross-

sections of the columns and of the beam, and in Figure 9 the yield domains of the cited 

cross-sections are reported together with the points indicating the acting stress field in 

ULS conditions. 

 
(a) 
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(b) 

Figure 9. Yield domains of columns and beam for the frame designed in the first step: (a) common 

yield domain of the columns, where the black point indicates the more stressed cross-section of the 

left column, the blue point indicates the more stressed cross-section of the right column; (b) yield 

domain of the beam, where the red point indicates the more stressed cross-section of the beam. 

Once the first step optimal design has been obtained, the second step is performed 

by solving problems (12)–(17). The geometrical input data are the following: 

• ℓ𝑙1 = ℓ𝑙2 = ℓ𝑟1 = ℓ𝑟2 = 220 mm; 

• ℓ𝑙3 = ℓ𝑟3 = 3560 mm; 

• ℓ𝑏1 = ℓ𝑏5 = ℓ𝑏2 = ℓ𝑏4 = 220 mm; 

• ℓ𝑏3 = 4120 mm; 

• 𝑏𝑙𝑜 = 𝑏𝑟𝑜 = 𝑏𝑏𝑜 = 220 mm; 

• ℎ𝑙𝑜 = ℎ𝑟𝑜 = ℎ𝑏𝑜 = 220 mm; 

• 𝑡𝑤𝑙 = 𝑡𝑤𝑟 = 𝑡𝑤𝑏 = 9.5 mm. 

The solution to problems (12)–(17) provides the optimal thicknesses of all the beam 

element portions and the optimal width of each weak portion, as reported in Table 2. Fur-

thermore, the resulting frame volume is 𝑉𝑜𝑝𝑡 = 0.1314 m3. It is worth noting that the op-

timal structure is anyway characterised by an overall volume smaller than the initial one 

𝑉𝐻𝐸𝐵240 = 0.1378 m3, but possesses the desired kinematical and mechanical features. 

Table 2. Results of the second step optimal design (dimensions in mm). 

Left Column 

𝑏𝑙𝑜 ℎ𝑙𝑜 𝑡𝑤𝑙 𝑡𝑓𝑙𝑠 𝑏𝑙2 ℎ𝑙2 𝑡𝑓𝑙2 

220 220 9.50 21.791 139.819 216.570 18.361 

Right column 

𝑏𝑟𝑜 ℎ𝑟𝑜 𝑡𝑤𝑟  𝑡𝑓𝑟𝑠 𝑏𝑟2 ℎ𝑟2 𝑡𝑓𝑟2 

220 220 9.50 21.791 139.819 216.570 18.361 

Beam 

𝑏𝑏𝑜 ℎ𝑏𝑜 𝑡𝑤𝑏 𝑡𝑓𝑏𝑠 𝑏𝑏2 ℎ𝑏2 𝑡𝑓𝑏2 

220 220 9.50 16.339 162.188 214.159 10.499 

    𝑏𝑏4 ℎ𝑏4 𝑡𝑓𝑏4 

    162.188 214.159 10.499 
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To evidence the soundness of the final optimal design and to verify the fulfilment of 

all the imposed constraints, again an elastic plastic analysis has been carried out for the 

load combinations previously defined (SLS and ULS) utilising the same approach as pre-

viously described. 

At first, in SLS conditions, it has been verified that the required maximum horizontal 

drift 𝜉𝑚𝑎𝑥 = 14.98 mm < 𝜉ℓ𝑖𝑚 results and that the overall behaviour of the structure re-

mains within the elastic domain, as it can easily be deduced by observing Figure 10 where 

the 𝜆, 𝜉  diagram is reported, with 𝜆  being the quasi-static cyclic load multiplier 
(𝑝𝑧 , +𝜆𝑐𝐶𝑭). 

 

Figure 10. Load-displacement diagram in SLS conditions of the proposed frame. 

Furthermore, in ULS conditions it has been verified that the constraints on the unde-

sired brittle failure are respected, as well as the virtuous trend of the structure to exhibit 

ductility behaviour. Therefore, in Figure 11, the elastic domains of the cross-sections in 

corresponding to the welded connections are reported together with the points indicating 

the acting stress field in ULS conditions. The examination of the results in this figure 

clearly confirms that the optimal structure safely behaves also against brittle failure since 

the points lie within the elastic domain. In Figure 12, the 𝜆, 𝜉 diagram is reported for the 

load combination (𝑐𝐹𝑝𝑧 + 𝜆𝑐𝐹𝑐𝐶𝑭) pointing out the elastic plastic behaviour of the opti-

mal structure. It is worth noting that both the frames constituted by HEB220 or HEB240 

cross-sections always behave elastically, i.e., they take no advantage of the ductility prop-

erties of the material, as evidenced in Figure 13. 
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(a) 

 
(b) 

Figure 11. Dimensionless results for the frame designed in the second step in ULS conditions (black 

line, yield domain; red line, elastic domain of the end sections): (a) black point, element AC; blue 

point, element BD; (b) red point, element AB. 
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Figure 12. Load-displacement diagram in ULS conditions of the proposed frame. 

 

Figure 13. Response to cyclic loads of frame equipped with a standard profile available on the 

market. 
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5. Conclusions 

The paper has been devoted to the proposition of a new special iterative approach to 

design steel frames constituted by I-shaped multi-stepped profiles. It has been proved that 

the utilisation of these special beam elements allows the designing of frames able to meet 

all the standard requirements together with further constraints: protection against unde-

sired brittle failure is ensured, and, contextually, the virtuous ductility feature of the ma-

terial is appropriately used. 

In order to perform the numerical application, due to the particular geometry of the 

beam elements proposed, an extension of the Fibre Smart Displacement-Based (FSDB) 

beam element model has been proposed. Appropriate elastic plastic analyses have been 

carried out confirming the effectiveness and the affordability of the presented approach. 

On the basis of the obtained results, it can be stated that a considerable cost saving is 

achieved, equal to 15% with respect to the standard design, and that a sufficient amount 

of plastic dissipation is involved, equal to 30.4 kN mm, this result certainly being relevant 

if compared to the purely elastic behaviour exhibited by the standard design. 

Further applications are expected to evaluate the volume saving and the dissipation 

capacity for more complex structures subjected to seismic load conditions, always ensur-

ing the special imposed requirements, even taking into account the analysis of the con-

nections among the beam elements. 

Other further studies will be devoted to analysing the technological problem related 

to the production of the proposed multi-stepped beam elements, performing appropriate 

cost benefit analysis, placing trust in the continuous technological growth for the effective 

application of the method. 

Abbreviations 

𝑎𝑖  (𝑖 = 𝑙, 𝑏, 𝑟) coefficients depending on the shape of the yield boundary domain 

𝑏𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) cross-section width of the columns (left, right) and of the beam 

𝑐𝑐  cyclic load multiplier for serviceability limit state conditions 

𝑐𝐹  load multiplier for ultimate limit state conditions 
𝑓𝑦 material yield stress 

ℎ𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) cross-section depth of the columns (left, right) and of the beam 

𝐤(𝑥𝑖𝐺,𝑘) stiffness matrix of the generic Gauss cross-section 

ℓ𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) length of the columns (left, right) and of the beam 
𝑛𝑓  number of strips 

𝑛𝑖𝐺  number of Gauss i-th cross-sections 

𝑝𝑧 uniformly distributed dead load 

𝐪𝑒  vector of nodal displacements 
𝑡𝑓𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) flange thicknesses of the columns (left, right) and of the beam 

𝑡𝑤𝑖 (𝑖 = 𝑙, 𝑟, 𝑏) web thickness of the columns (left, right) and of the beam 

𝑢𝑥(𝑥) axial displacement function 

𝑢𝑧(𝑥) transversal deflection function 

𝑤𝑘  weight of each Gauss point 

𝑥𝑖𝐺,𝑘 abscissa of Gauss k-th cross-section 

𝐴𝑖 (𝑖 = 𝑙, 𝑟, 𝑏)  cross-section area of the columns (left, right) and of the beam 
𝐴𝑓  area of strip 

𝐁(𝑥; 𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘) matrix dependent on the stiffness decay parameters 

𝑪 compatibility matrix 

𝑫 internal stiffness matrix of beam element 

𝑫𝑚 internal stiffness matrix of the multi-step beam element 

𝐸 Young’s modulus of the material 

𝑭𝑇 = |𝐹𝐴 𝐹𝐵|  cyclic load vector 

𝐹𝐴, 𝐹𝐵 perfect cyclic loads 

𝐼𝑖  (𝑖 = 𝑙, 𝑏, 𝑟)  moment of inertia of the columns (left, right) and the beam 

𝐊𝑒(𝛽𝑖𝑥,𝑘 , 𝛽𝑖𝑧,𝑘) multi-step element stiffness matrix 



Buildings 2024, 14, 2155 24 of 25 
 

𝑁𝑖,1(𝑥),… , 𝑁𝑖,6(𝑥) axial/transversal displacement shape functions 

𝑸∗ perfectly clamped generalised elastic stress response vector 

𝐐𝑒 vector of nodal forces 

𝑈(𝑥 − 𝑥𝑗) Heaviside (unit step) generalised function 

𝑉 volume of the structure 

𝑊𝑖
𝑝 (𝑖 = 𝑙, 𝑟, 𝑏)  cross-section plastic modulus of columns and beam 

𝛼𝑖𝑥,𝑗 
normalized variation of the current axial stiffness of the columns 

and beam segments 

𝛼𝑖𝑧,𝑗 
normalized variation of the current flexural stiffness of the col-

umns and beam segments 

𝛽𝑖𝑥,𝑘 
parameters representing the axial plastic state of the k-th Gauss 

cross-section 

𝛽𝑖𝑧,𝑘 
parameters representing the flexural plastic state of the k-th Gauss 

cross-section 

𝛂(𝑧𝑓) vector, dependent on the distance 𝑧𝑓 

𝛾𝑏𝑟  safety coefficient 

𝛾𝑦/𝑒 
coefficient representing the ratio between yield limit bending mo-

ment and elastic limit bending moment 

𝜀𝑥(𝑥) axial strain 

𝜅 function for axial/transversal displacement shape functions 

𝜉ℓ𝑖𝑚 maximum admissible horizontal drift 

𝜉𝑚𝑎𝑥 horizontal drift in serviceability limit state conditions 

𝝃𝑐
𝑘 (𝑘 = +,−) the vectors of nodal displacements 

𝑎1, 𝑎2,𝑐1, 𝑐2, 𝑐3, 𝑐4 integration constants 

𝑔2(𝑥; 𝛽𝑖𝑥,𝑘), 𝑔3(𝑥; 𝛽𝑖𝑥,𝑘), 

𝑓3(𝑥; 𝛽𝑖𝑧,𝑘), 𝑓4(𝑥; 𝛽𝑖𝑧,𝑘), 𝑓5(𝑥, 𝛽𝑖𝑧,𝑘) 
functions for the multi-step beam model formulation 
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