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1. Synthesis of powder samples of FSPA acetone and ethanol solvates 

FSPA acetone and ethanol solvate samples were prepared by liquid-assisted grinding (LAG) of 1:1 
molar quantities of the starting materials, 0.165 g furosemide (FS, 0.5 mmol) and 0.061 g picolinamide 
(PA, 0.5 mmol). For the acetone solvate, FS and PA were ground in 1 ml acetone for 5 mins. A further 
1 ml was added and after 5 mins a further 0.5 ml acetone was added every 10 mins until the total LAG 
time was 30 mins. Powder X-ray diffraction was used to confirm the purity of the products. PXRD 
measurements were carried out at room temperature using a Bruker AXS d8 Advance diffractometer 
utilising CuKα radiation and a Lynx-Eye detector. Patterns were recorded in a range of 10° < 2q < 60° 
with a step size of 0.02° and step time of 0.5 s. All patterns were analysed in TOPAS Academic 
software.1,2 

A deuterated acetone solvate was produced by the same method using acetone-d6. For the ethanol 
solvate, the FS and PA components were dry ground for 5 mins before 10 drops of ethanol were added 
every 5 mins until the total grind time was one hour. A deuterated ethanol solvate was produced by 
the same method using ethanol-1,1-d2; ethanol-1,1-d2 was chosen over ethanol-d5 to focus on the 
overall solvent motion. Both syntheses yielded slightly damp cream powders, which were left to dry 
in air for one hour before packing in 4 mm rotors for subsequent magic-angle spinning (MAS) NMR 
studies. Samples were stored in the rotor to limit desolvation. 13C MAS NMR confirmed that the 
deuterated samples were identical to their non-deuterated analogues. 

2. Crystallography of FSPA solvates 

Single crystals were grown by solution evaporation. Equimolar (0.300 mmol) amounts of FS and PA 
were refluxed in acetone at approximately 80 oC for 15 minutes. Solutions were then left to evaporate 
at room temperature. The same method was repeated with ethanol. In each case, clear, rectangular, 
plate-like crystals appeared after 48 hours. Single crystal X-ray diffraction data on FSPA acetone were 
collected using an Oxford Diffraction Xcalibur Gemini Diffractometer, with Mo radiation, while those 
on FSPA ethanol were collected on beamline I19 at Diamond Light Source, using a Rigaku Saturn 724+ 
diffractometer and wavelength 0.68890 Å. In each case, samples were cooled to 120 K using an Oxford 
Cryosystems Cryostream 600 device. 

Table S1 Key crystallographic information for FSPA solvates structure refinements 

 FSPA acetone FSPA ethanol 

Empirical formulaa C18H17N4O6SCl 
452.9 g mol−1 

120 K 
Triclinic 

P1̄ 

Molar massa 

Temperature 
Crystal system 
Space group 
a / Å 5.0474(17) 5.2086(17) 
b / Å 14.428(2) 14.641(5) 
c / Å 14.778(3) 14.656(5) 
α / ˚ 76.344(14) 76.378(5) 
β / ˚ 83.49(2) 87.592(3) 
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γ / ˚ 86.854(19) 83.243(3) 
Volume / Å3 1038.5(4) 1078.6(6) 
Z 2 2 
Reflections collected 6807 3660 
Observed reflections 2585 3197 
Parameters 268 267 
Goodness of fit 1.03 1.08 

R indices (I/σ = 2) 
R = 0.1298 
Rw = 0.1485 

R = 0.1011 
Rw = 0.1052 

a Solvent molecules not included.  

 

Figure S1 (a) Asymmetric unit of the FSPA solvates, with thermal ellipsoids shown at the 50% probability level. 
Disorder of the sulfonamide group is shown with split-atom sites (only one orientation is shown for clarity), and 
hydrogen bonds are indicated by red dashed lines. (b) Packing diagram viewed along the a axis. The cyan circle 
indicates the centre of the unmodelled electron density corresponding to the solvent. 

As shown in Fig. S1, the shortest hydrogen bonding interaction is between the carboxylic acid of FS 
and the amide of PA (O1H1···O1’), with dO···O = 2.55(1) Å in the acetone solvate and dO···O = 2.592(5) Å 
in the ethanol solvate. Rotation about the FS C1–C2 bond is constrained by the presence of an 
intramolecular hydrogen bond (N2H···O2, dN···O = 2.726(9) Å and dN···O = 2.767(5) Å in the acetone and 
ethanol solvates respectively). 

The system forms ribbons of alternating pairs of FS molecules connected to pairs of PA molecules. 
Neighbouring FS molecules form close contacts between sulfonamide groups (O3···O3, dO···O = 
2.16(2) Å) and neighbouring PA molecules interact in a dimer formation (N2’H···N1’, dN···N = 3.10(1) Å). 
The ribbons are loosely connected through the sulfonamide groups via N1H···O3 (dN···O = 2.68(3) Å) 
hydrogen bonds. The bond distances given here are for the acetone solvate, but the same hydrogen 
bonding is present in the ethanol solvate, with acceptor-donor distances changing by less than 2%. 
The N1H···O3 interaction is the exception with dN···O increasing by 12% in the ethanol solvate, reflecting 
a small elongation in the a axis, seen in Table 1. The sulfonamide group is refined with disorder over 
two positions with (fixed) equal occupancies, similar to the disorder observed in the 
furosemide.isonicotinamide cocrystal3,4 but with a larger angle between the two orientations (110° 
instead of 32°). 

Note that a very similar structure has been reported by Banik et al. for FSPA sesquihydrate20. 

3. 13C NMR of FSPA solvates 

Evidence of cocrystal formation is seen in Fig. S2, since the FSPA acetone and ethanol solvates show 
distinct 13C SSNMR spectra compared to the starting materials and the parent FSPA cocrystal. The 
peaks of pure PA are weak due to its extremely long 1H T1 relaxation (of the order of 100 s). The solvate 
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spectra are broad compared to FSPA and pure FS (linewidths of 150–200 Hz), but no peak splitting is 
observed at the carbonyl region (C1, 172.2 ppm and C1’, 169.9 ppm). This is in keeping with the 
asymmetric unit containing a single FS and a single PA molecule. The coloured arrows indicate 
additional peaks that correspond to the solvent molecules. Assignment details can be found in Ref. 5. 
The acetone carbonyl peak is not observed but should appear at around 200 ppm; previous literature 
of acetone solvates has also shown weak acetone carbonyl signals, ascribed to inefficient cross-
polarisation (CP) due to motional processes interfering with the magnetisation transfer during the 
contact time.6 Little difference is observed in the FS and PA chemical shifts of the two solvates, in 
keeping with the isostructural relationship observed from SCXRD data.   

 

 

Figure S2 13C CP/MAS spectra of (i) PA, (ii) FS, (iii) FSPA acetone solvate and (iv) FSPA ethanol solvate acquired 
at 125.7 MHz and ambient probe temperature. Spectra (i)–(iii) were acquired at 8 kHz MAS and spectrum (iv) at 
5 kHz MAS. The recycle delay was 5 s and contact time 2.5 ms over 100 transients for all except (i) recycle delay 
30 s with contact time 4 ms, (ii) recycle delay 15 s with contact time 4 ms and (iv) 480 transients. The blue arrow 
indicates the acetone CH3 peak and the red arrows indicate the ethanol peaks. 

Quantitative 13C MAS NMR experiments showed that the fraction of solvent voids occupied by solvent 
molecules was about 80% in samples left to dry for a few weeks (measurements of solvent fraction in 
very fresh samples were distorted by adventitious solvent). The solvent fraction slowly decayed over 
a timescale of weeks, implying that the solvates are non-stoichiometric and stable down to relatively 
low occupancies. Over time the solvent peak intensities decreased, with no changes observed to the 
rest of the spectrum, which is consistent with a non-stoichiometric solvate. No degradation was 
observed via 13C SSNMR over a 9-month period, but the solvates are, however, unstable above 80 °C, 
degrading to a mixture of materials, including an unsolvated FSPA co-crystal and pure FS. These NMR 
and thermal studies are described in detail in Ref. 5. 



4 

 

Figure S3 Low temperature (185 K) FSPA-ethanol spectrum fitted to CQ = 158 kHz, η= 0.04. Note that the feature 
in the centre of the spectrum is due to dynamic solvent molecules, as discussed in the main text. The asymmetry 
parameter is negligibly small, and so η = 0 was used in calculations.  

4. Fitting of kinetic parameters from 2H relaxation data 

The well-defined “T1 minimum” of Fig. 4(a) (main text) is consistent with a thermally activated process 
with a single correlation time, τc, whose temperature dependence can be described by an Arrhenius-
like equation, 𝜏c = 𝜏∞ exp(𝐸a/𝑅𝑇). The T1 values were calculated with the standard expression: 

1

𝑇1
= 𝐴[𝐽(𝜈0) + 4𝐽(2𝜈0)] 

where the leading terms in the corresponding equation in the main text, Eq. (4), are combined into 
the scaling / amplitude factor A, and 𝐽(𝜈), the spectral density, is defined (in frequency units) as 

𝐽(ν) =
2τc

1 + (2πντc)2
 

This is equivalent to Eqs. (5)–(7) of the main text for isotropic rotational diffusion, i.e. exponential 
decay of C2(t) to zero (S2 = 0). 

The temperature dependence of the relaxation times is commonly fitted directly to the parameters 
τ∞ (often denoted τ0) and Ea (the activation energy), although the stability of the fitting is improved if 
the fitting parameter is log τ∞. This parameterisation has a few significant drawbacks. Firstly, τ∞ (the 
notional correlation time at infinite temperature) is not a physical significant parameter, and so 
suitable initial values are generally chosen by trial and error. Secondly, it is very strongly correlated 
with the Ea parameter, which compromises the numerical stability of the fitting and further 
complicates the identification of suitable starting values. This correlation also makes it difficult to 
determine uncertainties on values calculated from the fitted parameters, such as correlation times 
and jump rates; classical “error propagation” formulae are only valid for independent, uncorrelated 
variables.  

Hence, we have parameterized the relaxation fittings using a parameter Tmin, the temperature at which 
the correlation time is the reciprocal of the (angular) Larmor frequency, 

𝜏c(𝑇min) =
1

2πν0

 

This will approximately correspond to the temperature at which T1 has its minimum, allowing the 
initial estimate of Tmin to be determined directly from the data. The temperature dependence of τc in 
this formulation is then  

𝜏c = 𝜏c(𝑇min)exp (
𝐸a

𝑅
(

1

𝑇
−

1

𝑇min

)) 
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Since the activation energy is determined by the gradient of the curve and Tmin is determined by the 
location of the minimum in the horizontal axis, the correlation between the parameters is significantly 
reduced.  

Figure S4 shows a Monte Carlo analysis of the fitting of the data in Fig. 4 (a) of the main text. There is 
a major reduction in correlation using the revised fitting parameters; Ea and log10(τ∞) (left) are very 
strongly anti-correlated, while the correlation between Ea and Tmin is minimal. As shown in Table S2, 
the re-parameterisation does not affect the values of the fitted parameters or their uncertainties. 

 

 

 

 

 

 

 

 

 

Table S2 Results from fitting the data of Fig. 4 (a) using the alternative parameterisations. Uncertainties are 
given to one standard error. 

 

Log10(A / Hz2) Ea / kJ mol–1  Correlation coefficient between 
Ea and log10(τ∞) or Tmin 

9.657 ± 0.014 19.0 ± 0.9 log10(τ∞ / s) = ─12.82 ± 0.19 ─0.9947 

9.657 ± 0.014 19.0 ± 0.9 Tmin = 234.0 ± 1.2 K 0.49 

Figure S4 Monte Carlo simulation of the effect of random noise on the fitted parameters using synthetic data 
corresponding to the T1 relaxation data of Fig. 4(a) of the main text. (Left) using the conventional parameters 
Ea and log10(τ∞) (10 000 simulations) and (right) fitting Ea and Tmin (100 000 simulations). The magnitude of 
random noise added was based on the residuals from the fit of the experimental data. The A parameter is not 
strongly correlated with the other parameters and is not considered. The vertical probability density scale is 
arbitrary.   
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Figure S5 Variation of the standard error in the predicted rate of solvent motion, ν = 1/(2πτc), in FSPA ethanol-
d2 with temperature based on the fitting of Fig. 4(a). Uncertainty parameterisation using the Tmin 
parameterisation (green makers) gives results that closely match the Monte Carlo simulations (red markers). 
Naïve uncertainty propagation based on τ∞ (black markers) gives incorrect results. Note that MC analysis gives 
identical results independently of the parameters used (within the convergence limits of MC simulation). 

The “rate” of isotropic motion in terms of the fitted parameters is given by: 

𝜈 =
𝜈0

exp (
𝐸a
𝑅

(
1
𝑇

−
1

𝑇min
))

 

Classic uncertainty propagation, which assumes that Ea and Tmin are uncorrelated gives the uncertainty 
on log10(ν) as:  

𝛿 log10 𝜈 =
1

𝑅𝑇 ln 10
√(δ𝐸a(𝑇 − 𝑇min))

2
+ (

δ𝑇min𝐸a𝑇

𝑇min
)

2

 

Figure S5 compares the predictions of this equation with the results of a straightforward, if much 
slower, Monte Carlo (MC) approach to estimating the uncertainty in log10(ν), on the assumption that 
random errors are dominant. The limited correlation between the parameters means that there is 
good overall agreement, and the uncertainty estimates can be determined without requiring MC 
simulations. Naïve use of error propagation with the normal τ∞ formulation gives very different, and 
erroneous, results. Note how the random noise has least effect on calculated rates around the 
relaxation minimum, but its effect increases monotonically and significantly (noting the logarithmic 
scale) with distance from the minimum.   

5. 2H NMR data and simulations 

Prediction of NMR spectra from MD simulations   

This trajectory-based approach for prediction of the spectral lineshapes employs the Liouville von 
Neumann equation in the semi-classical approximation, often called the Langevin form of the 
Stochastic Liouville Equation:7,8 

𝑑𝝆(𝑡)

𝑑𝑡
= −𝑖𝐿̂̂(𝑡)𝝆(𝑡) (S1) 
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where ρ(t) is a density matrix of the system and the Liouvillian 𝐿̂̂ is a superoperator of the interaction 
Hamiltonian (expressed in units of ℏ).  

2H NMR probes dynamics via the coupling between electric field gradient tensor, V, at the given site 
and the nuclear electric quadrupolar moment. Ignoring the effects of longitudinal relaxation, the only 

non-zero matrix elements of 𝐿̂̂ relevant for the time evolution of the transverse magnetisation involve: 

𝜈±1(𝑡) = ±
1

2
𝜒((3cos2𝛽P→L(𝑡) − 1) − 𝜂sin2𝛽P→L(𝑡) cos 2𝛾P→L(𝑡)) (S2)              

which are the frequencies of the two allowed NMR transitions for I = 1. The Euler angles 
ΩP→L(𝑡) define the passive rotation from the interaction PAS frame to the laboratory-fixed frame for 
each time point on the MD trajectory. 𝜒 and 𝜂 are the conventional parameters defining the 
magnitude of the EFG tensor V: 

𝜒 =
𝑒𝑉𝑍𝑍

P 𝑄

ℎ
        𝜂 =

𝑉𝑋𝑋
P − 𝑉𝑌𝑌

P

𝑉𝑍𝑍
P

(S3) 

where the right-handed axis set, X, Y, Z, aligned with principal components, has been ordered with the 

convention |𝑉𝑍𝑍
P | ≥ |𝑉𝑋𝑋

P | ≥ |𝑉𝑌𝑌
P | (this choice of ordering is not physically significant). 

As shown by Oganesyan7,8, the evolution of the spin density matrix in the fast motional limit can be 
calculated using the expression: 

𝝆(𝑡) = exp (− [𝑖 〈𝐿̂̂〉 + Λ̂̂] 𝑡) 𝝆(0) (S4) 

The first term in the matrix exponential, 〈𝐿̂̂〉 =
1

𝑇̃
∫ 〈𝐿̂̂(𝜏)〉 𝑑𝜏

𝑇̃

0
, is a Liouvillian which is averaged over 

the time of complete relaxation of the correlation function of the molecular motion (𝑇̃ ≈ 10𝜏𝑐)  and 
over the N copies of the molecules in the simulation; this describes the “average” evolution. This first 
term is equivalent to deriving averaged NMR parameters from molecular trajectories, which is 
sufficient if the correlation times are extremely short. In the context of 2H NMR, however, it is 
important to describe the line-broadening effects of the dynamics, which is captured by the 

“decoherence matrix” Λ̂̂ = ∫ 〈∆𝐿̂̂(0)∆𝐿̂̂(𝜏)〉 𝑑𝜏
𝑇̃

0
 of the second term. ∆𝐿̂̂(𝜏) = 𝐿̂̂(𝜏) − 〈𝐿̂̂〉 defines the 

dephasing of the magnetisation caused by the modulation of 𝐿̂̂(𝜏) due to the re-orientational 
dynamics of the molecule.  

The density matrix is propagated according to Eq. (S4) using standard numerical approaches, and 

projected onto the detection operator 𝐼+ , in accordance with 〈𝐼+〉 = 𝑇𝑟(𝑰̂+𝝆) = 𝜌0,+1 + 𝜌0,−1, to 

generate the NMR signal, s(t), prior to Fourier transformation into the frequency domain. In this 

simple case of only non-zero secular terms 𝜈±1(𝑡), however, the 〈𝐿̂̂〉 and Λ̂̂ matrices are diagonal, with 

the 𝑣̅±1 corresponding to the averaged NMR frequencies with associated damping coefficients 𝜆+ =

𝜆− = 𝜆 calculated from:                                

𝜆 = ∫ 〈𝛥𝜈±1(0)𝛥𝜈±1(𝜏)〉 𝑑𝜏
𝑇̃

0

(S5) 

where  Δ𝜈±1(𝑡) = 𝜈±1(𝑡) − 𝑣̅±1 . The resulting expressions for the required density matrix elements 
are as follows:  

𝜌0,±1(𝑡) = exp(−[𝑖𝑣̅±1 + 𝜆]𝑡)𝜌0,±1(0) (S6) 

The following procedure is used to calculate the NMR response for a given MD trajectory. Trajectories 
from all individual molecules are first combined into a single continuous one by performing 
appropriate rotational transformations. Then the quadrupolar coupling tensor is averaged according 
to the following equation9:  
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(𝐕𝐀)
𝑖𝑗

= 𝑉𝑋𝑋
P  〈𝑙𝑥𝑖𝑙𝑥𝑗〉  +  𝑉𝑌𝑌

P  〈𝑙𝑦𝑖𝑙𝑦𝑗〉 +  𝑉𝑍𝑍
𝑃  〈𝑙𝑧𝑖𝑙𝑧𝑗〉 (S7) 

i.e., time averages are performed on the products of the projection cosines,  𝑙𝑖𝑗, of the three PAS axes 

in the lab frame. The averages of the time-dependent frequencies  𝑣̅±1 and the dumping coefficients 

𝜆±  are then calculated using the principal values and their axes of the averaged tensor, 𝐕A. In 

particular, the averages of the time-dependent frequencies of Eq. (S2) can be written: 

𝑣̅±1(ΩA→L) = ±
1

2
〈𝜒〉((3cos2𝛽A→L − 1) − 〈𝜂〉 sin2𝛽A→L cos 2𝛾A→L) (S8) 

where 〈𝜒〉 and 〈𝜂〉 are calculated from the principal values of 𝐕A (cf. Eq. S3), and 𝛽A→L and 𝛾A→L  are 

Euler angles defining the orientation of the laboratory z axis in the frame of the principal axes of 𝐕A; 
this corresponds to the orientation of the crystallite with respect to the lab frame. 

The damping coefficients (non-zero elements of the decoherence matrix) are calculated according to 
Eq. (S5) where now Δ𝜈±1(𝑡) = 𝜈±1(ΩP→A(𝑡); ΩA→L) − 𝑣̅±1(ΩA→L) and the time averaging is 
performed over rotations in the A frame which are defined by  ΩP→A(𝑡). The total rotational 
transformation from the PAS to the lab frame is defined as 𝑅(ΩP→L(𝑡)) = 𝑅(ΩA→L)𝑅(ΩP→A(𝑡)). Note 

that both parameters 𝑣̅±1(ΩA→L) and 𝜆± (ΩA→L) are functions of 𝛽A→L and 𝛾A→L . 

Finally, the response is averaged over 𝛽A→L and 𝛾A→L angles assuming an isotropic distribution of 
crystallites in the sample.  

These 2H NMR simulations are an integrated feature of the MD-EPR simulation software suite 
SpinMolDyn10. 

 

Prediction of T1 relaxation times from MD simulations   

For the prediction of T1 relaxation times from the results of MD simulations, we have adapted the 
Model-free approach developed by Lipari and Szabo for the interpretation of NMR relaxation11. In the 
case of restricted motion of a molecule in a liquid crystalline solution with overall isotropic rotation 
the total correlation function can be presented as: 

𝐶T(𝑡) =
1

5
(𝑆2 + (1 − 𝑆2)𝐶(𝑡))𝑒−𝑡/𝜏G (S9) 

where 𝑆2 is the square of the generalised order parameter of the molecular orientations, 𝜏G is the 

correlation time of the overall isotropic rotation and 𝐶(𝑡) = (𝐶2(𝑡) − 𝐶2(∞))/(𝐶2(0) − 𝐶2(∞)) is 

the normalised re-orientational correlation function of internal motions. Note that for an isotropic 

rigid distribution of crystallites in the sample, as in this work,  𝜏G → ∞ , 𝑒−𝑡/𝜏G → 1 and  𝐶T(𝑡) →
𝐶2(𝑡)/5. 

𝐶2(𝑡) is defined as: 

𝐶2(𝑡) = lim
𝑇→∞

1

𝑇
∫ 〈𝑃2(𝜇(𝜏) ∙ 𝜇(𝑡 + 𝜏))〉𝑑𝜏

𝑇

0

(S10) 

𝑃2(𝑡) is a second-order Legendre polynomial and the average is taken over MD simulation time, using 
a ‘sliding time window’, and the number of molecules in the system.  

Within the framework of Redfield approximation, the relaxation times are calculated using the 
spectral densities of the correlation function which are the one-sided Fourier transforms of 𝐶T(𝑡):  

𝐽(𝜔) = 2 ∫ 𝐶T(𝑡) cos(𝜔𝑡) 𝑑𝑡
∞

0

(S11) 

The spectral density function of the first term in 𝐶T(𝑡) in Eq. (S9) is:  
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2

5
(

𝑆2𝜏G

1 + (𝜔0𝜏G)2) (S12) 

This term tends to zero for sufficiently large 𝜏G and, therefore, can be ignored in the calculation of 𝑇1 
for an isotropic distribution of crystallites in the sample.  Note that this approach is valid for any value 
of 𝜏G as long as the conditions of the Redfield approximation for 𝑇1 are satisfied, namely, the total 
effective correlation time (which is  ≈ 𝜏 , the effective correlation time of the fast internal motional, 
when 𝜏G ≫ 𝜏)  is within the fast motional limit11; 2𝜋|〈Δ𝜈±1(0)〉|𝜏 ≪ 1  and 2𝜋|〈Δ𝜈±1(0)〉| ≪ 𝜔0.   

The longitudinal relaxation times 𝑇1 of 2H due to quadrupolar interactions under the Redfield 
approximation and in the case of restricted local molecular motions are given by the standard 
expression12,13: 

1

𝑇1
=

3𝜋2

20
𝜒2(1 − 𝑆2) (1 +

𝜂2

3
) (𝐽(𝜔0) + 4𝐽(2𝜔0)) (S13) 

where  𝜔0 is the NMR frequency (expressed as an angular frequency) and 𝐽(𝜔) is the spectral density 
function of 𝐶(𝑡). The one-sided Fourier transformation of the correlation function 𝐶(𝑡), which 
combines multiple contributions to the rotational motion of  𝜇(𝑡), is carried out numerically. 

 

Prediction of NMR spectra from simple jump-based Markov models  

Initial analysis used EXPRESS14 software to model the lineshapes in terms of stochastic jumps between 
a limited number of Markov states. As discussed in the main text this approach to calculating the 
lineshape is quite different from the “direct prediction” approach. Similarly, it differs from the 
“Markov State Modelling” analysis using pyEMMA, which derives Markov models from the MD 
trajectory, rather than being postulated. 

The parameters used to simulate the 2H spectra of the acetone solvate by modelling a C2 jump about 
the C=O axis are shown in Table S3. Figure S6 shows the result of adjusting the apparent jump rate of 
this process to match the experimental spectra, illustrating how a model based on intermediate 
timescale dynamics seems to describe motion which, in retrospect, is on a fast (ns) timescale. Note 
that the CQ value in Table S3 was estimated from a DFT calculation (186 kHz) scaled by the methyl C3 
rotation. This is probably an over-estimate compared to the conventional literature value of 160 kHz 
for the CQ of 2H in a methyl group used in the main text, but will have negligible impact on the 
qualitative (and, as argued, erroneous) matching of simulated and experimental spectra.  
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Table S3 Parameters for EXPRESS simulation of a simple two-site jump model of motion in FSPA 
acetone solvate. 

Experiment 2H quadrupole echo 
τ90˚ / μs 3 
Echo delay / μs 60 
Dwell time / μs 2.5 
ν2H / MHz 76.71 
Recycle delay / s 1 
Euler angles/ ° α β γ 

Site 1 0 0 0 
Site 2 0 115 0 

Relative 
weighting 

0.5 

CQ / kHz 62 
η 0 
Power sampling 
scheme 

ZCW 500 

Left shift 24 

  

 

 

Figure S6. (a) Variable temperature static 2H spectra of FSPA acetone-d6 solvate acquired with an echo delay τ = 
60 μs over 72000 transients. (b) EXPRESS-simulated static 2H spectra over a two-site jump motion of 115° using 
the parameters in Table S3. The jump rates given provided good visual matches to the experimental spectra. As 
discussed in the text, however, these rates are not physically meaningful, since effectively the wrong equation 
is being applied to generate the spectra. Figure adapted from Ref. 3. 
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Figure S7 2H spin-lattice relaxation time constants as a function of temperature of (a) FSPA ethanol-d2 at 61.42 

MHz as a function of temperature. The curve shows a fit to Ea of 19.0 ± 0.9 kJ mol–1 and a Tmin = 234.0 ± 1.2 K. 

As noted in the main text, there are increasing contributions from “frozen” solvent molecules in the low 

temperature half of the T1 minimum. Although the Ea value is likely to be reasonably well defined by the high 

temperature half, the Tmin is more suspect, and is in clear disagreement with the MD predictions. (b) Analogous 

data for FSPA acetone-d6 acquired at 76.8 MHz. The straight line is a fit to Ea of 7.9 ± 0.2 kJ mol–1. (c) Sample 

fits for FSPA ethanol-d2 showing biexponential character at low temperature data.  
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Principal values of the rotationally and flip-averaged quadrupolar coupling tensors 

The expressions below give the motionally averaged components of the quadrupolar tensor as a 
function of the Euler angles relating the static and rotating axis systems15. 

Free stochastic rotation about a single axis:  

The principal values of the rotationally averaged tensor along a single axis in which 𝛼 and  𝛽  are the 

Euler angles relating the components of the V tensor in its molecule-fixed / PAS frame, 𝐕P , (axes X, Y 

and Z) and the motionally averaged 𝐕R   tensors (axes x, y and z) respectively15,16. 

𝑉𝑥𝑥
R = 𝑉𝑦𝑦

R =
1

2
(𝑉𝑋𝑋

P (1 − cos2𝛼 sin2𝛽) + 𝑉𝑌𝑌
P (1 − sin2𝛼 sin2𝛽) − 𝑉𝑍𝑍

P sin2𝛽)                (S14) 

𝑉𝑧𝑧
R = 𝑉𝑋𝑋

P cos2𝛼 sin2𝛽 + 𝑉𝑌𝑌
P sin2𝛼 sin2𝛽 + 𝑉𝑍𝑍

P cos2𝛽 

Flips between two equivalent sites:  

The principal values of the flip-averaged tensor, where 𝛼 is the angle between the molecule-fixed / 

PAS frame and the motionally averaged  𝑉𝑍𝑍
P   and 𝑉𝑧𝑧

F   components of the tensors, respectively15,16:    

𝑉𝑥𝑥
F = 𝑉𝑋𝑋

P cos2 (
𝛼

2
) + 𝑉𝑍𝑍

P sin2 (
𝛼

2
)                                                                                            (S15) 

𝑉𝑦𝑦
F = 𝑉𝑌𝑌

P  

𝑉𝑧𝑧
F = 𝑉𝑋𝑋

P sin2 (
𝛼

2
) + 𝑉𝑍𝑍

P cos2 (
𝛼

2
) 

Detailed results from direct simulation methodology 

As expected, the principal values of the motionally averaged tensor, VP, steadily decrease with 
temperature due to increased motional averaging. This is reflected in the steadily narrowing 
lineshapes of Figs. S8 and S9, and more directly in the tabulated values in Table S4. It is not possible, 
however, to rationalise these values in terms of simple motional models, such as free rotational 
diffusion about an axis, or two-fold jumps around molecule-fixed axes, such as the bisector of the H–
C–H plane in ethanol or the C2 symmetry axis of acetone. Calculated averaged principal components 
for such motions, Table S5, show that rotational diffusion gives values that are too small. In the case 
of acetone, two-fold jumps about the symmetry axis gives principal values (3.52, 19.96 and 23.48 kHz) 
that are comparable with values obtained in the 300 K simulation (averages over A and B models are 
5.8, 12.6 and 18.5 kHz). This is consistent with the two-state Markov model simulations for this system 
at 300 K (cf. Fig. S6 above). This is, however, the only point of contact between simple motional models 
and results of MD simulation. 
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Figure S8. 2H quadrupolar NMR spectral lineshapes for FSPA ethanol-d2 predicted for model A (left panel) and 
model B (right panel).  
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Figure S9. 2H quadrupolar NMR spectral lineshapes for FSPA acetone-d6 predicted for model A (left panel) and 
model B (right panel).  

 

Table S4. Magnitudes of principal components of the motionally averaged 𝐕A tensor in kHz (given in increasing 
order). 

 150 K 200 K 250 K 300 K 350 K 

ETH –
Model A 

31.3875   
50.7478   
82.1348 

16.9914   
40.0830   
57.0732 

12.0809   
32.5453   
44.6268 

12.8441   
34.3046   
47.1496 

8.9724   
30.8847   
39.8571 

ETH –
Model B 

32.6909   
52.2771   
84.9673 

11.1365   
44.0987   
55.2350 

6.1270   
37.7126   
43.8398 

7.0061   
29.0169   
36.0240 

8.3058   
26.3166   
34.6228 

ACE –
Model A 

11.4312   
16.4208   
27.8523 

13.5490   
17.6471   
31.1963 

6.8415   
13.9712   
20.8121 

3.8515    
9.8399   
13.6912 

1.9183    
4.8991    
6.8179 

ACE – 
Model B 

15.7757   
18.5553   
34.3312 

14.0986   
17.8170   
31.9148 

11.1724   
16.8667   
28.0394 

 7.7992   
15.4633   
23.2623 

2.8354    
6.9692    
9.8042 
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Figure S10. Example autocorrelation functions of solvent molecule fixed axes x (yellow), y (orange) and z (blue), 
calculated using Eq. (6) of the main text. (Top) FSPA acetone A (left) and B (right). (Bottom) FSPA ethanol A (left) 
and B (right). z is the unit vector along one of either the equivalent C–D or C–CD3 axes in ethanol or acetone 
respectively, and x and y are mutually orthogonal axes in the plane perpendicular to z. Plots shown are for the 
250 K simulations. Data for all temperatures can be found in the data archive. 

Table S5. Magnitudes of principal components of the 2H quadrupolar tensor (in kHz and in increasing order) for 
model motions under fast motional averaging. 

 Two-fold flip Rotational diffusion 

Ethanol solvate 
 

α = 109.5° 
1.62 
56.88 
58.50 

α = 109.5°/2, β = 0 
0.81 
0.81 
1.62 

Acetone solvate α = 116.80° 
3.52 
19.96 
23.48 

α = 116.80°/2, β = 0 
1.76 
1.76 
3.52 

  

Table S6. Effective correlation times and generalised order parameters for the z correlation functions obtained 
from MD simulations. 

T / K Model A 

c,eff / ns 

Model A 
S2 

Model B 

c,eff / ns 

Model B   
S2 

FSPA ethanol 

350 0.031 0.14 0.025 0.078 

300 0.062 0.19 0.052 0.098 

250 0.229 0.19 0.188   0.177 

200 4.112 0.192 7.051 0.175 

150 27.76 0.39 9.78 0.45 
FSPA acetone 

350 2.76 0.002 1.45 0.051 

300 11.57 0.080 10.93 0.27 

250 11.66 0.23 15.42 0.39 

200 13.24 0.548 11.73 0.648 

150 23.18 0.50 6.27 0.748 
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6. Analysis of molecular dynamics simulations 

Table S7. Computed average and RMSD densities (in kg m–3) of the different simulation models 

averaged over 400 ns production trajectories at every 1 ps step. 

T / K   ACE-A ACE-B ETH-A ETH-B 

150 Avg: 
RMSD:   

1488.2 
5.9 

1480.4 
3.8 

1533.9 
1.7 

1531.3 
11.7 

200 Avg: 
RMSD: 

1471.8 
3.1 

1467.7 
5.8 

1522.0 
2.3 

1517.1 
7.7 

250 Avg: 
Std. Dev: 

1451.5 
3.5 

1458.5 
6.0 

1506.9 
2.9 

1501.5 
4.2 

300 Avg: 
Std. Dev: 

1427.4 
4.5 

1439.6 
4.5 

1490.1 
3.8 

1491.7 
6.4 

350 Avg: 
Std. Dev: 

1388.4 
5.3 

1413.5 
5.2 

1473.9 
4.3 

1472.7 
4.9 

  

 

 

Figure S11. Change of density with temperature for FSPA acetone (ACE) and FSPA ethanol (ETH) 

systems, plus extrapolation to the experimental temperature (120 K) using fitting based on 3rd order 

polynomials. Data points are reported in Table S8. 

 

Table S8. Computed (extrapolated) and experimental densities (in kg m–3) at 120 K.  

 MDa  Experimentb Deviation / % 

FSPA acetone 1490 1541.1 –3.3 

FSPA ethanol 1545 1465.3 +5.4 

aAveraged over A and B models; bDetermined from the XRD crystal data as reported in Table S1, but 

including one molecule of solvent per unit cell. Note there is some uncertainty on the fraction of 

crystal sites that are occupied by solvent, whereas the simulations assume 100% occupancy.  
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Analysis of sulfonamide conformation 

Extended 400 ns trajectories were analysed to extract the dihedral angle patterns associated with the 
rotation of the sulfonamide groups on all FS molecules. The chosen dihedral angles along a trajectory 
were computed using the MDAnalysis tools17. Smoothed probability distributions of the dihedrals 
were computed using the Gaussian_KDE method from the Scipy package.  The autocorrelation 
functions for the selected dihedral angles were computed using an approach similar to the one 
implemented in the GROMACS ‘gmx angle’ tool. Here, the dihedral autocorrelation function (dACF) is 
defined as18 

𝐶(𝑡) =  〈cos(𝜃(𝜏) − 𝜃(𝜏 + 𝑡))〉𝜏 

Here the periodicity issue is addressed by using the cosines rather than the dihedral angles 

themselves. In practice, to provide better statistics, the ACFs were calculated over multiple time 

origins while using data points with discrete time intervals Δt, as follows, 

𝐶𝑓(𝑗∆𝑡) =  
1

𝑁−𝑗
 ∑ 𝑓(𝑖∆𝑡)𝑓((𝑖 + 𝑗)∆𝑡)

𝑁−1−𝑗
𝑖=0   

where N is the number of available time frames in the trajectory. One should note that in this 

formulation all ACF points cannot be computed with the same accuracy, since there are N−1 data 

points for 𝐶𝑓(∆𝑡) time point, but only one data point for the 𝐶𝑓((𝑁 − 1)∆𝑡) step. To avert the statistical 

biasing/inaccuracy arising from the latter, we compute only an ACF of length MΔt, where M ≤ N/2, 

which transform the ACF into the form 

𝐶𝑓(𝑗∆𝑡) =  
1

𝑀
 ∑ 𝑓(𝑖∆𝑡)𝑓((𝑖 + 𝑗)∆𝑡)

𝑁−1−𝑀

𝑖=0

 

Here M is the time lag of the correlation function, which we took as M = N/2 for an equal 

representation of each data point in the set. The integral of the correlation function over time gives 

the correlation time τf  

𝜏𝑓 = ∫ 𝐶𝑓(𝑡)d𝑡
∞

0

 

 

Figure S12. Atomic labelling of the sulfonamide group. 
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Figure S13. The autocorrelation function (ACF) of the dihedral angle, φ(O10-S2-C23-C24), describing the rotation 
of the sulfonamide groups with respect to the FS benzoyl, as a function of T. Atom indices are shown in Fig. S12. 

Figure S13 shows the autocorrelation function for the sulfonamide dihedral angle, φ(O10-S2-C23-
C24). The results show that the sulfonamide rotation is thermally activated for the acetone system 
above 300 K, but orientations are mostly frozen below this temperature. Rotational motion of the 
sulfonamide group remains extremely slow for the ethanol system even at 350 K.  The difficulty of 
sampling the sulfonamide disorder motivated our separate simulations of the idealised A and B 
systems. It is clear, however, that the sulfonamide is expected to be dynamic over the timescale of 
the experimental NMR.  
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Figure S14. Probability density function/distribution of the φ(O10-S2-C23-C24) dihedral angle describing the 
orientation of the sulfonamide groups, as a function of T. Atom indices correspond to those in Fig. S12. 

Figure S14 shows the probability distributions for the φ(O10-S2-C23-C24) dihedral angle. At higher 
temperatures (T >= 300 K), the FSPA acetone simulations feature two distinct peaks indicating that the 
two orientations are increasingly equally populated with increasing temperature. In contrast, two 
double peaks (at 0° and 50° as well as at 300° and 350°) or two large unresolved peaks are observed 
below 300 K, depending on the input sulfonamide orientation (A or B). The latter indicates only a small, 
vibration-like movement of the sulfonamide groups rather than a full rotation (as in the high 
temperature cases). As for the effect of the initial sulfonamide orientation, there is a larger change in 
the probability distributions in model B than in model A in going from 150 K to 350 K. This corresponds 
to the larger ACF drop observed at higher temperatures, in Fig S13, particularly for model B. 

For the FSPA ethanol system, on the other hand, we note only minor changes in the probability 
distribution of the dihedral angles compared to the acetone case because of very limited sulfonamide 
rotation (i.e. low amplitude motion rather than complete dihedral flips). Again, this is in line with the 
dihedral ACF trends. 

  

FSPA-ACE Model A FSPA-ACE Model B

FSPA-ETH Model A FSPA-ETH Model B



20 

7. Markov state modelling of MD trajectories 

The Markov State Modelling was carried out using the PyEMMA19 package. The protocol is described 
below, while the figures illustrating the key steps are visually summarised for the FSPA acetone and 
ethanol solvates in Fig. S15 and Fig. S16, respectively.  

MSM analysis steps: 

MD trajectory: changes in atomic positions with time, ‘continuous’ 
dynamics. Obtained from GROMACS simulations. 

Featurisation: To minimise numerical calculation load, instead of 
using all atoms of the trajectory, we describe the system by a set of 
vectors (in spherical coordinates), see Fig S15(a), Fig16(a). 

Dimensionality Reduction: TICA finds linear-combination with 
maximum auto-correlation time constant (i.e. slowest evolving) 
motion at a chosen lag-time. The lag-time estimate is shown as 
implied timescales (ITS) plot, Fig S15(b), S16(b). TICA is suitable for 
MSM, where kinetically slow processes are of interest. The first 4 
TICs for each system are shown on Fig S15(c,d) and S16(c,d), note 
that those TICs represent over 98% of total motion in the system. 

Clustering of TICA eigenspace to create a kinetically-relevant map 
of geometrical states. K-Means is a density-based algorithm. While 
it is possible to use a RegSpace (regular space) algorithm, it may 
lead to poorer sampling. 

Discretisation of ‘continuous’ dynamics to create MSM. First, we 
assess how ITS are affected by the chosen lag time (and clustering). 
See Fig S15(b), Fig 16(b), where lines represent ITS (blue – slowest, 
followed by red and green) and shaded areas are lag-time 
propagation, i.e., motions that fall into this time cannot be resolved 
if a given lag-time is chosen. Second, we build a timescale 
separation plot, Fig S15(e). Since we aim to model transitions 
between macro-states, a clear separation is key (Fig S15(e)). We 
then carry out Chapman-Kolmogorov test to check for Markovian 
behaviour for the chosen number of the meta-states. If we are 
satisfied with the model, and no revisiting of the aforementioned 
steps is needed, we can confidently generate Markov State Model 
for our system. 

Metastable States: Perron Cluster Cluster Analysis allows to define 
meta-states (i.e., long-lived states) based upon the created MSM. 
Unlike MSM, no hard cut-off states are used, so no dependence on 
the cluster-sizes, instead kernel distributions allow to account for 
the overlapping states, creating a Hidden MSM (Fig S15(f), S16(e)). 

Transition Path Theory allows to extract highest flux pathways (Fig 
S15(e)) from the hidden MSM, which can then be used for any 
further analysis desired, such as identifying a pathway (Fig S15(h)) 
or determining temperature-dependant transition times (Tables S9, 
S10). 

  

MD trajectory

Featurisation

Dimensionality Reduction 
(TICA)

Clustering

Discretisation 
+ CK test

Markov State Model

Metastable States (PCCA)

Hidden MSM

Transition Path Theory

Analysis
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Figure S15: Development of MSM for the FSPA acetone system, using data from a 273 K simulation. (a) The 
choice of vectors to describe the acetone molecule. (b) Implied Time Scale (ITS) plot showing the dependence 
of each implied timescale on the MSM lag time (as a multiple of 0.5 fs timesteps). Free energy as a function of 
time-independent component (TICs): (c) TICs 1 vs 2, (d) TICs 3 vs 4. These graphs were produced using 256 
cluster centres (microstates) and a lag time of 10 simulation steps. The fraction of the motion included in each 
TIC is given in the brackets. (e) Timescale separation plot, where each point shows the ratio of timescale n and 
timescale n + 1, i.e. the first point shows the ratio between the first two timescales. (f) The division of the free 
energy diagram projected along TICs 1 and 2 into the four different “macrostates”, denoted 0 to 3. (g) The 
state transition plot between these four macrostates. The size of each node (depicted in orange) is 
proportional to the steady-state probability, and thickness of the arrow is proportional to the transition 
probability (also given in numbers). (h) A pathway of molecular motion of the dominant flip, corresponding to 
the transition between nodes 1 ↔ 2 and 0 ↔ 3 in (g).  
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Figure S16: Development of MSM for FSPA ethanol system, using data from a 273 K simulation. (a) The choice 
of vectors to describe the ethanol molecule. (b) ITS plot. Free energy plots for (c) TICs 1 vs 2, and (d) TICs 3 vs 
4, using 256 cluster centres (microstates) and a lag time of 10 simulation steps. (e) The division of the free 
energy diagram projected along TICs 1 and 2 into the two different metastable states. (f) Renderings of two 
states in a simulation.  

 

Table S9: Average transition times between the two major states identified by MSM analysis for the 
FSPA ethanol system. 

Temperature / K Average transition 
time / ns 

263 0.600 ± 0.007 

273 0.560 ± 0.006 

283 0.470 ± 0.005 

294 0.362 ± 0.003 

303 0.287 ± 0.002 

313 0.219 ± 0.001 

323 0.183 ± 0.001 
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Table S10: Average transition times between the four states identified by MSM analysis for the FSPA 
acetone system. The transitions correspond to the three paths between states seen in Fig. S15 (g).   

Temperature / K Average transition time / ns 
0 ↔ 2 (1 ↔ 3)/ 1↔ 2 (0↔ 3)/ 0 ↔ 1 (2 ↔ 3) 

250 15.47 / 16.04 / 11.34 

263 16.94 / 17.38 / 11.27 

273 4.62 / 4.75 / 3.51 

283 1.9 / 1.99 / 1.53 

294 1.62 / 1.69/ 1.3 

303 1.17 / 1.21 / 0.98 

313 0.99 / 1.03 / 0.85 

323 0.7 / 0.73 / 0.63 

 

MSM analysis also allows transition times to be calculated between the major states identified in Fig. 
5. Tables S9 and S10 summarise the average transition times obtained at each temperature for 
ethanol and acetone respectively. Fitting the temperature dependence to an Arrhenius equation 

yields an activation energy of 14.2 ± 0.4 kJ mol−1 for ethanol and three activation energies, 24.9 ± 0.6, 

24.8 ± 0.6 and 22.6 ± 0.6 kJ mol−1 for acetone corresponding to the three identified pathways in Table 
S10. We note that the transition between the states 1 and 2 and between 0 and 3 states, 
corresponding to a rotation about the CH3-CH3 axis is generally slightly faster. Correlation analysis did 
not identify any significant correlation between the motion of neighbouring solvent molecules for 
either solvent. 
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