
Stochastic Processes and their Applications 176 (2024) 104420

A
0
(

Contents lists available at ScienceDirect

Stochastic Processes and their Applications

journal homepage: www.elsevier.com/locate/spa

Superdiffusive planar random walks with polynomial space–time
drifts
Conrado da Costa a, Mikhail Menshikov a, Vadim Shcherbakov b, Andrew Wade a,∗

a Department of Mathematical Sciences, Durham University, Upper Mountjoy Campus, Stockton Road, Durham, DH1 3LE, United Kingdom
b Department of Mathematics, Royal Holloway, University of London, McCrea Building, Egham, Surrey, TW20 0EX, United Kingdom

A R T I C L E I N F O

MSC:
primary 60J10
60G50
60K50
60F05
secondary 60F15

Keywords:
Random walk
Self-interaction
Excluded volume
Flory exponent
Anomalous diffusion

A B S T R A C T

We quantify superdiffusive transience for a two-dimensional random walk in which the vertical
coordinate is a martingale and the horizontal coordinate has a positive drift that is a polynomial
function of the individual coordinates and of the present time. We describe how the model was
motivated through an heuristic connection to a self-interacting, planar random walk which
interacts with its own centre of mass via an excluded-volume mechanism, and is conjectured
to be superdiffusive with a scale exponent 3∕4. The self-interacting process originated in
discussions with Francis Comets.

1. Introduction

To motivate the model that we formulate and study, we first describe a planar, self-interacting random walk. Our random walk
will be a process 𝑊 = (𝑊𝑛, 𝑛 ∈ Z+) with 𝑊𝑛 ∈ R2, indexed by discrete time 𝑛 ∈ Z+ ∶= {0, 1, 2,…}, started from 𝑊0 = 0, whose
increment law is determined by the current location 𝑊𝑛 of the walk and the current centre of mass of the previous trajectory, 𝐺𝑛 ∈ R2,
defined by 𝐺0 ∶= 0 and

𝐺𝑛 ∶=
1
𝑛

𝑛
∑

𝑘=1
𝑊𝑘, for 𝑛 ∈ N ∶= {1, 2, 3,…}. (1.1)

At time 𝑛, given the locations 𝐺𝑛 and 𝑊𝑛 in R2, we take the new location 𝑊𝑛+1 to be uniformly distributed on the arc of the unit-radius
circle, centred at 𝑊𝑛, excluding the triangle with vertices 0, 𝐺𝑛,𝑊𝑛: see Fig. 1 for a schematic and simulation, and Section 5 below
for a more formal description.

Rigorous analysis of this model remains an open problem, but both simulation evidence (see Fig. 3), and an heuristic argument
(see Fig. 2 and surrounding discussion) that links the model to a special case of Theorem 2.3 below, suggest that, a.s.,

lim
𝑛→∞

log ‖𝑊𝑛‖

log 𝑛
= 3

4
, and lim

𝑛→∞

𝑊𝑛
‖𝑊𝑛‖

= 𝛩, (1.2)
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Fig. 1. Left: The angle at vertex 𝑊𝑛 of the triangle with vertices 0, 𝐺𝑛 ,𝑊𝑛 is denoted by 2𝛽𝑛. Given 𝐺𝑛 ,𝑊𝑛, the distribution of 𝑊𝑛+1 is uniform on the unit disc
centred at 𝑊𝑛 but excluding the arc of angle 2𝛽𝑛 as indicated. Right: A simulated trajectory (not to scale with the unit disk on the left), plus the centre of mass
trajectory (in red) and the excluded triangle for the next step (in blue). (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. Suppose that ‖𝑊𝑛‖ ≈ 𝑛𝜒 for some 𝜒 > 1∕2. We expect that a typical configuration has 0, 𝐺𝑛, and 𝑊𝑛 roughly aligned at scale 𝑛𝜒 (left panel). At this
point, the drift of 𝑊𝑛 is close to zero, and over a time period of about 𝜀𝑛, 𝑊 will move roughly diffusively, while 𝐺𝑛 will move only a little. Hence a typical
picture at time (1 + 𝜀)𝑛 would have 𝛽(1+𝜀)𝑛 ≈ 𝑛(1∕2)−𝜒 (right panel).

Fig. 3. Left: Plot of log ‖𝑊𝑛‖ against log 𝑛 for a single simulated trajectory of the (𝑊𝑛 , 𝐺𝑛) model up to 𝑛 = 105 steps. Indicated is also the least-squares linear
regression line, which has slope ≈ 0.76. Right: Histogram of the linear regression slope generated by 103 samples of trajectories of length 105 steps; sample mean
value ≈ 0.756 is indicated.

where 𝛩 is a uniform random unit vector (a limiting direction for the walk). A scale exponent of 3∕4 > 1∕2 evidences anomalous
diffusion [1,2]. Furthermore, the specific exponent 3∕4 is famous in the connection of planar self-interacting walks as the Flory
exponent. The end-to-end distance of a uniformly-sampled 𝑛-step self-avoiding random walk (SAW) on the planar lattice Z2 is
expected to scale like 𝑛3∕4, a prediction that goes back to Flory’s work in the physical chemistry of polymers in solution [3,4]; see
e.g. [5–9] for further background on the celebrated SAW model. Flory’s prediction has since been reproduced by several separate
arguments (see Chapter 2 of [9], Chapters 7–11 of [10], Chapter 15 of [11], and [12], for example) and is now interpreted in the
context of the famous conjecture that the scaling limit of SAW is Schramm–Loewner evolution with parameter 8∕3 [8].

Unlike the (𝑊𝑛, 𝐺𝑛) process, which is Markov, SAW is not a natural stochastic process, and it seems unlikely that there is a deep
connection underlying the appearance of the 3∕4 exponent in the (conjectural) behaviour of the two models; we do not expect an SLE
limit, for instance, and, indeed, the heuristic in Section 5 below can be pursued to suggest a different scaling limit. Nevertheless, the
(𝑊 ,𝐺 ) process was inspired by discussions with Francis Comets in the context of self-interacting random-walk models of polymer
2
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chains, and so the appearance of the Flory exponent is attractive. The basic idea is that the steps of the walk represent similar
segments (such as monomers) in the molecule. The inspiration for the self-interaction mechanism for the (𝑊𝑛, 𝐺𝑛) process is the
xcluded volume effect [4,5] from polymer physics, which says that no two monomers can occupy the same physical space, but we
mpose this condition in a coarse sense, mediated by the barycentre (centre of mass) of the previous trajectory. One may also view
he (𝑊𝑛, 𝐺𝑛) process in the context of random walks interacting with their past occupation measures, which is a topic of ongoing
nterest; models of a similar flavour, some of which having been studied by Francis Comets, include [13–16].

We sketch an heuristic argument for the scaling in (1.2); we will in Section 5 give a slightly more developed version of the
euristic, which links the (𝑊𝑛, 𝐺𝑛) process to the model that we study in the bulk of this paper (see Example 2.5 below). We expect
hat the typical configuration is for 0, 𝐺𝑛, and 𝑊𝑛 to lie on roughly the same line, in that order (see Fig. 2, left panel). Suppose that
𝑊𝑛‖ ≈ 𝑛𝜒 for some 𝜒 and that 𝐺𝑛 is about half way between 0 and 𝑊𝑛 (under a strong version of (1.2), 𝐺𝑛 would typically lie about
∕7 of the way from 0 to 𝑊𝑛). When 0, 𝐺𝑛, and 𝑊𝑛 are in alignment, the mean drift of 𝑊𝑛 is zero, because the increment is symmetric.
hus on a moderate time-scale, one expects the location of 𝑊𝑛 to have wandered distance of order 𝑛1∕2 in the perpendicular direction,
hile 𝐺𝑛 will have moved much less because of its more stable dynamics. At that point, 𝐺𝑛 and 𝑊𝑛 are still on scale about 𝑛𝜒 , but
ow the angle, 𝛽𝑛, at 𝑊𝑛 in the triangle formed by 0,𝑊𝑛, 𝐺𝑛, will be of size about 𝑛(1∕2)−𝜒 (see Fig. 2, right panel). The size of
he angle 𝛽𝑛 is also the order of the magnitude of the drift of the walk. A consistency argument demands that ∑𝑛

𝑚=1 𝑚
(1∕2)−𝜒 ≈ 𝑛𝜒 ,

.e., (3∕2) − 𝜒 = 𝜒 , which gives 𝜒 = 3∕4.
In the next section we describe the model that will be the main focus of the paper, taking inspiration from the above discussion,

nd present our main results. In Section 5 we will return briefly to the self-interacting random walk described above, and explain
n more detail the connection to the model developed in the bulk of the paper.

. Model and main results

Let (𝛺, ,P) be a probability space supporting a discrete-time stochastic process 𝑍 ∶= (𝑍𝑛, 𝑛 ∈ Z+) taking values in R+ × R and
dapted to a filtration (𝑛, 𝑛 ∈ Z+); here and throughout the paper, we denote Z+ ∶= {0, 1, 2,…} = {0} ∪ N. Represent 𝑍𝑛, 𝑛 ∈ Z+,
n Cartesian coordinates by 𝑍𝑛 = (𝑋𝑛, 𝑌𝑛), so that 𝑋𝑛 ∈ R+ and 𝑌𝑛 ∈ R.

For parameters 𝛼 ∈ (−1,∞), 𝛽, 𝛾 ∈ R+ and 𝜌 ∈ (0,∞), for every 𝑛 ∈ Z+ define 𝜅𝑛 ∶ R+ × R → R+ by

𝜅𝑛(𝑧) ∶= 𝜅𝑛(𝑥, 𝑦) ∶=
𝜌|𝑦|𝛾

(1 + 𝑥)𝛼(1 + 𝑛)𝛽
, for all 𝑧 ∶= (𝑥, 𝑦) ∈ R+ × R. (2.1)

We will suppose the process 𝑍 is such that, given 𝑛, the increment 𝑍𝑛+1 − 𝑍𝑛 is a stochastic perturbation of 𝜅𝑛(𝑍𝑛). More
precisely, define the stochastic innovations 𝜉 = (𝜉𝑛, 𝑛 ∈ N), with coordinates 𝜉𝑛 = (𝜉(1)𝑛 , 𝜉(2)𝑛 ) ∈ R2, through the equalities,

𝑋𝑛+1 −𝑋𝑛 = 𝜅𝑛(𝑍𝑛) + 𝜉(1)𝑛+1, (2.2)

𝑌𝑛+1 − 𝑌𝑛 = 𝜉(2)𝑛+1, for all 𝑛 ∈ Z+, (2.3)

so that 𝜉𝑛 is 𝑛-measurable. Then we will characterize the dynamics of 𝑍 through (2.2)–(2.3) and declaring that 𝜉 satisfies, for
constants 𝐵 ∈ R+ and 𝛿 ∈ (0, 1), the following assumptions.

(B) Bounded innovations. For all 𝑛 ∈ Z+,

P(‖𝜉𝑛+1‖ ≤ 𝐵) = 1. (2.4)

(M) (Sub)martingale innovations. For all 𝑛 ∈ Z+,

0 ≤ E(𝜉(1)𝑛+1 ∣ 𝑛) ≤ 𝐵1{𝑋𝑛 ≤ 𝐵}, and E(𝜉(2)𝑛+1 ∣ 𝑛) = 0. (2.5)

(E) Uniform ellipticity of vertical innovations. For all 𝑛 ∈ Z+,

P(|𝜉(2)𝑛+1| ≥ 𝛿 ∣ 𝑛) ≥ 𝛿. (2.6)

We suppose that the initial state 𝑍0 = (𝑋0, 𝑌0) ∈ R+ × R is arbitrary (but fixed). A consequence of (2.2)–(2.4) is

P(|𝑋𝑛+1 −𝑋𝑛 − 𝜅𝑛(𝑍𝑛)| ≤ 𝐵) = P(|𝑌𝑛+1 − 𝑌𝑛| ≤ 𝐵) = 1. (2.7)

From (2.2), (2.3), and (2.5) it follows that

0 ≤ 𝜅𝑛(𝑍𝑛) ≤ E(𝑋𝑛+1 −𝑋𝑛 ∣ 𝑛) ≤ 𝜅𝑛(𝑍𝑛) + 𝐵1{𝑋𝑛 ≤ 𝐵}; (2.8)

E(𝑌𝑛+1 − 𝑌𝑛 ∣ 𝑛) = 0; (2.9)

in particular, 𝑌 = (𝑌𝑛, 𝑛 ∈ Z+) is a martingale and 𝑋 = (𝑋𝑛, 𝑛 ∈ Z+) is a submartingale. Moreover, from (2.3) and (2.6) we have

P(|𝑌𝑛+1 − 𝑌𝑛| ≥ 𝛿 ∣ 𝑛) ≥ 𝛿. (2.10)

Note that we do not necessarily suppose that 𝑍 is a Markov process, although in many natural examples that will be the case
(and, for 𝛽 ≠ 0, the Markov process will be inhomogeneous in time). Note also that we make no independence assumption on the
components of 𝜉. We give some examples; the first, Example 2.1, gives a process that lives on Z+ × Z; our assumptions (B), (M),
3

nd (E) are broad enough that a whole host of similar examples, on Z+ × Z or on R+ × R, can be constructed.
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Example 2.1. Take 𝑍0 ∈ Z+×Z. For 𝑥 ∈ R, recall that ⌈𝑥⌉ is the unique integer for which ⌈𝑥⌉−1 < 𝑥 ≤ ⌈𝑥⌉. Define the 𝑛-measurable
random variable 𝜑𝑛 ∶= ⌈𝜅𝑛(𝑍𝑛)⌉ − 𝜅𝑛(𝑍𝑛) ∈ [0, 1). Suppose that

P(𝜉(1)𝑛+1 = 𝜑𝑛, 𝜉
(2)
𝑛+1 = 0 ∣ 𝑛) =

1 − 𝜑𝑛
2

+
𝜑𝑛
2
1{𝑋𝑛 = 0},

P(𝜉(1)𝑛+1 = 𝜑𝑛 − 1, 𝜉(2)𝑛+1 = 0 ∣ 𝑛) =
𝜑𝑛
2
1{𝑋𝑛 ≥ 1},

P(𝜉(1)𝑛+1 = 0, 𝜉(2)𝑛+1 = +1 ∣ 𝑛) = P(𝜉(1)𝑛+1 = 0, 𝜉(2)𝑛+1 = −1 ∣ 𝑛) =
1
4
,

or all 𝑛 ∈ Z+, these being the only possible transitions. Then (2.2) shows that 𝑍𝑛 ∈ Z+ ×Z for all 𝑛 ∈ Z+, and the assumptions (B),
(M), and (E) are satisfied, with constants 𝐵 = 1 and 𝛿 = 1∕2.▵

Example 2.2. For 𝛾 = 0, our model is similar to that studied by Menshikov & Volkov [17]. Menshikov & Volkov considered
time-inhomogeneous Markov chains on R+, satisfying certain regularity conditions, including bounded increments, for which

E(𝑋𝑛+1 −𝑋𝑛 ∣ 𝑛) ≥
𝜌

(1 +𝑋𝑛)𝛼(1 + 𝑛)𝛽
, (2.11)

where 𝜌 > 0, 𝛽 ≥ 0, and 𝛼+𝛽 > 0 (we have reparametrized the formulation from that of [17] for compatibility with ours). Theorem 1
of [17] established transience, i.e., 𝑋𝑛 → ∞, a.s., under the conditions

0 ≤ 𝛽 < 1, and − 𝛽 < 𝛼 < 1 − 2𝛽. (2.12)

ubsequently, Gradinaru & Offret [18] made a thorough investigation of a time-inhomogeneous diffusion on R+ analogous to the
Markov chain of [17], proving sharp results on asymptotic behaviour, using methods specific to the continuum setting. A simple
consequence of our main theorem below is a strengthening of Theorem 1 of [17], quantifying the superdiffusive transience of 𝑋𝑛:
see Example 2.6 below.▵

Define the characteristic exponent

𝜒 ∶= 𝜒(𝛼, 𝛽, 𝛾) ∶=
2 + 𝛾 − 2𝛽
2 + 2𝛼

. (2.13)

Write 𝛼+ ∶= max(0, 𝛼). The following is our main result.

heorem 2.3. Suppose that (B), (M), and (E) hold. Suppose that 𝛼 ∈ (−1,∞) and 𝛾, 𝛽 ∈ R+ are such that

1 + 𝛾 > 𝛼+ + 2𝛽. (2.14)

Then, for 𝜒 = 𝜒(𝛼, 𝛽, 𝛾) defined at (2.13),

lim
𝑛→∞

log𝑋𝑛
log 𝑛

= 𝜒, a.s. (2.15)

emarks 2.4. (i) Note that (2.14) implies that 2 + 𝛾 − 2𝛽 > 1 + 𝛼+ ≥ 1 + 𝛼, so that 𝜒 given by (2.13) satisfies 𝜒 > 1∕2. Hence
heorem 2.3 shows that 𝑋 exhibits super-diffusive transience. It is possible that 𝜒 > 1, in which case the transience is even super-
allistic, since the dynamics (2.2) can permit increments of arbitrary size for the process. (ii) Our main interest in the present paper
s identifying the scaling exponent 𝜒 . It is natural also to investigate conditions under which there holds weak convergence of 𝑛−𝜒𝑋𝑛.
uch convergence would seem to require, at least, weak convergence of the martingale path-sums studied in Appendix, which will
eed further hypotheses on second-moments of the increments of 𝑌 . For example, a natural additional hypothesis is

lim
𝑛→∞

E((𝑌𝑛+1 − 𝑌𝑛)2 ∣ 𝑛) = 𝜎2, in probability, (2.16)

hich enables one to apply the martingale invariance principle [19] to show convergence of 𝑛−1∕2𝑌
⌊𝑛𝑡⌋ to Brownian motion, and in

his case the candidate limit for 𝑛−𝜒𝑋𝑛 would involve an integral functional of Brownian motion. Since Example 2.1, and many other
atural examples, satisfy (2.16), we would expect 𝑛−𝜒𝑋𝑛 to possess a distributional limit in many cases. Precise conditions under
hich an analogous convergence result is established for a diffusion version of the model, going beyond the setting of martingale 𝑌 ,
re described in [20].

xample 2.5. The self-interacting random walk model that inspired this work (see Section 1 for a description and Section 5 for
ore mathematical details) motivates the parameter choice 𝛼 = 𝛾 = 1, 𝛽 = 0, so that (2.8) gives

E(𝑋𝑛+1 −𝑋𝑛 ∣ 𝑛) =
𝜌|𝑌𝑛|
1 +𝑋𝑛

, on {𝑋𝑛 > 𝐵}.

In this case, Theorem 2.3 shows that log𝑋𝑛∕ log 𝑛 → 3∕4, a.s. The appearance of the famous Flory exponent 3∕4 [3,4] was one of
4

the features of this model that captured our attention.▵
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Example 2.6. For 𝛾 = 0, the conclusion of Theorem 2.3 is that, a.s.,

lim
𝑛→∞

log𝑋𝑛
log 𝑛

=
1 − 𝛽
1 + 𝛼

> 1
2
,

which establishes a superdiffusive rate of escape for the class of processes studied in [17] and described in Example 2.2 above. Note
that the condition (2.12) from [17] translates to 1

2 < 1−𝛽
1+𝛼 < 1; unlike our model, the process in [17] is always sub-ballistic, since it

as bounded increments.
Gradinaru & Offret [18] studied the time-inhomogeneous diffusion

d𝑋𝑡 = 𝜌𝑡−𝛽𝑋−𝛼
𝑡 d𝑡 + d𝑊𝑡, (2.17)

here 𝑊 is Brownian motion and, again, we have reparametrized to match our formulation. Theorem 4.10(i) of [18, p. 200] says
hat, if 𝜌 > 0, and 2𝛽 < 1 − 𝛼 < 2, then

lim
𝑡→∞

𝑡−
1−𝛽
1+𝛼 𝑋𝑡 = 𝑐𝛼,𝛽 , a.s.,

or an explicit 𝑐𝛼,𝛽 ∈ (0,∞).▵

The focus of this paper is the case where 𝜒 > 1∕2. For 𝜒 ≤ 1∕2, one no longer expects superdiffusivity, and it becomes an
nteresting question to investigate whether 𝑋, or indeed 𝑍, is recurrent or not, i.e., is it true that lim inf𝑛→∞ 𝑋𝑛 < ∞ a.s., or
lim inf𝑛→∞ ‖𝑍𝑛‖ < ∞, a.s. We pose the following.

pen problem. Suppose that 𝛼 ∈ (−1,∞), 𝛾, 𝛽 ∈ R+, but 1+𝛾 ≤ 𝛼+2𝛽. Classify when 𝑋 and 𝑍 are recurrent or diffusively transient.

emark 2.7. In the case 𝛾 = 0, it was shown in Theorem 2 of [17] that a closely related model is recurrent when 𝛽 ≥ 0 and
> max(−𝛽, 1 − 2𝛽); cf. Example 2.2. In the boundary cases where (i) 𝛼 = 1 and 𝛽 = 0 [21], or (ii) 𝛽 = 1 = −𝛼 [17], the

ecurrence/transience classification depends on 𝜌, showing that, in general, the critical-parameter case is delicate.

The paper is organized as follows. In Section 3 we establish a.s. asymptotics for the vertical process 𝑌 and associated additive
unctionals, and moments bounds; these quantify the fact that 𝑌 is diffusive. The a.s. asymptotics in Section 3 are deduced from
symptotics for additive functionals of one-dimensional martingales that we defer to Appendix. In Section 4 we study the (more
ifficult) behaviour of the process 𝑋, and prove Theorem 2.3. Then in Section 5 we return to the self-interacting random walk model
escribed in Section 1 to explain, heuristically, the relationship between that model and the phenomena exhibited in Theorem 2.3,
nd to formulate a conjecture about its behaviour.

In what follows, we will denote by 𝐶 various positive constants which may differ on each appearance, and whose exact values
re immaterial for the proofs.

. Asymptotics for the vertical process

The following proposition gives the long-term behaviour of the component 𝑌 of the process 𝑍 = (𝑋, 𝑌 ). The proof relies on
heorem A.1 in Appendix, which gives a slightly more general result for processes on R+.

roposition 3.1. Suppose that the process 𝑌 satisfies (2.7), (2.9), and (2.10). Then

lim
𝑛→∞

logmax0≤𝑚≤𝑛 |𝑌𝑚|
log 𝑛

= 1
2
, a.s. (3.1)

oreover, for any 𝛽 ∈ R and 𝛾 ∈ R+ with 2𝛽 ≤ 2 + 𝛾,

lim
𝑛→∞

log
∑𝑛

𝑚=1 𝑚
−𝛽
|𝑌𝑚|

𝛾

log 𝑛
= 1 +

𝛾
2
− 𝛽, a.s. (3.2)

Before giving the proof of Proposition 3.1, we need one elementary technical result related to the ellipticity hypothesis (2.10).
or 𝑥 ∈ R, write 𝑥+ = 𝑥1{𝑥 > 0} and 𝑥− = −𝑥1{𝑥 < 0}, so that 𝑥 = 𝑥+ − 𝑥− and |𝑥| = 𝑥+ + 𝑥−.

Lemma 3.2. Let 𝜁 be a random variable on a probability space (𝛺, ,P) and let  be a sub-𝜎-algebra of  . Suppose that there exist
∈ R+ and 𝛿 > 0 such that P(|𝜁 | ≤ 𝐵) = 1, E(𝜁 ∣ ) = 0, a.s., and P(|𝜁 | ≥ 𝛿 ∣ ) ≥ 𝛿, a.s. Then, a.s.,

P
(

𝜁 ≥ 𝛿2

4
|

|

|


)

≥ 𝛿2

4𝐵
, and P

(

𝜁 ≤ − 𝛿2

4
|

|

|


)

≥ 𝛿2

4𝐵
.

roof. Since E(𝜁 ∣ ) = 0, we have E(𝜁+ ∣ ) = E(𝜁− ∣ ), and hence

2E(𝜁+ ∣ ) = E(|𝜁 | ∣ ) ≥ E(|𝜁 |1{|𝜁 | ≥ 𝛿} ∣ ) ≥ 𝛿2, a.s.,

by the fact that P(|𝜁 | ≥ 𝛿 ∣ ) ≥ 𝛿. Then, since 𝜁+ ≤ |𝜁 | ≤ 𝐵, a.s.,

𝛿2

2
≤ E(𝜁+ ∣ ) ≤ 𝛿2

4
+ 𝐵P

(

𝜁+ ≥ 𝛿2

4
|

|

|


)

.

−

5

his gives the first statement in the lemma, and the same argument applies to 𝜁 . □
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For 𝑥 = (𝑥0, 𝑥1,…) ∈ RZ+ a real-valued sequence, we denote the 𝑛th difference by 𝛥𝑥𝑛 ∶= 𝑥𝑛+1 − 𝑥𝑛.

Proof of Proposition 3.1. For 𝑛 ∈ Z+, set 𝑆𝑛 = |𝑌𝑛| ∈ R+. We verify that 𝑆 = (𝑆𝑛, 𝑛 ∈ Z+) satisfies the hypotheses of Theorem A.1.
irst, the uniform bound on increments (A.2) follows from the bound |𝑌𝑛+1| − |𝑌𝑛| ≤ |𝛥𝑌𝑛| (triangle inequality) together with the
ound on |𝛥𝑌𝑛| from (2.7). The martingale property (2.9) implies that 𝑆 is a submartingale; i.e., E(𝛥𝑆𝑛 ∣ 𝑛) ≥ 0. Moreover, it also
ollows from (2.7) that if |𝑌𝑛| ≥ 𝐵 then 𝛥|𝑌𝑛| = sgn(𝑌𝑛) ⋅ 𝛥𝑌𝑛, where sgn(𝑥) ∶= 1{𝑥 > 0} − 1{𝑥 < 0} is the sign of 𝑥 ∈ R. Hence,

E(𝛥𝑆𝑛 ∣ 𝑛) = sgn(𝑌𝑛)E(𝛥𝑌𝑛 ∣ 𝑛) = 0, on {𝑆𝑛 ≥ 𝐵},

y (2.9); thus (A.4) holds (with 𝑥0 = 𝐵). Finally, it follows from Lemma 3.2 with (2.7), (2.9), and (2.10) that there exists 𝛿′ > 0
depending on 𝐵 and 𝛿) such that

P(𝛥𝑌𝑛 ≥ 𝛿′ ∣ 𝑛) ≥ 𝛿′, a.s., and P(𝛥𝑌𝑛 ≤ −𝛿′ ∣ 𝑛) ≥ 𝛿′, a.s.

ence,

P(𝛥𝑆𝑛 ≥ 𝛿′ ∣ 𝑛) ≥ P(𝛥𝑌𝑛 ≥ 𝛿′ ∣ 𝑛)1{𝑌𝑛 ≥ 0} + P(𝛥𝑌𝑛 ≤ −𝛿′ ∣ 𝑛)1{𝑌𝑛 < 0},

hich, a.s., is at least 𝛿′. Thus (A.3) also holds (with 𝛿 = 𝛿′). Hence we may apply Theorem A.1 to get the result. □

The next result gives moments bounds that quantify the fact that 𝑌 is diffusive.

emma 3.3. Suppose that the process 𝑌 satisfies (2.7), (2.9), and (2.10). For every 𝛾 ∈ R+ there exist constants 𝑎𝛾 (depending on 𝛾, 𝛿,
nd 𝐵) and 𝐴𝛾 (depending on 𝛾, 𝐵, and E(|𝑌0|𝛾 )), such that 0 < 𝑎𝛾 ≤ 𝐴𝛾 < ∞ and

𝑎𝛾𝑛
𝛾∕2 ≤ E(|𝑌𝑛|𝛾 ) ≤ 𝐴𝛾𝑛

𝛾∕2, for all 𝑛 ∈ N. (3.3)

roof. First, we prove by induction on 𝑘 ∈ N that there exist constants 𝑎𝑘 > 0 (depending on 𝐵, 𝑘, and 𝛿) and 𝐴𝑘 < ∞ (depending
n 𝐵, 𝑘, and E(𝑌 2𝑘−2

0 )), such that, for all 𝑘 ∈ N,

𝑎𝑘𝑛
𝑘 ≤ E(𝑌 2𝑘

𝑛 ) − E(𝑌 2𝑘
0 ) ≤ 𝐴𝑘𝑛

𝑘, for all 𝑛 ∈ N. (3.4)

or 𝑘 ∈ N, Taylor’s theorem with Lagrange remainder says that,

(𝑥 + 𝑢)2𝑘 − 𝑥2𝑘 = 2𝑘𝑥2𝑘−1𝑢 + (2𝑘 − 1)𝑘𝑢2(𝑥 + 𝜃𝑢)2𝑘−2, for all 𝑥 ∈ R, 𝑢 ∈ R, (3.5)

here 𝜃 ∶= 𝜃(𝑥, 𝑢) ∈ (0, 1). The right-most term in (3.5) is always non-negative, so

(𝑥 + 𝑢)2𝑘 − 𝑥2𝑘 ≥ 2𝑘𝑥2𝑘−1𝑢 + (2𝑘 − 1)𝑘𝑢2𝑥2𝑘−21{𝑢𝑥 > 0}, for 𝑥, 𝑢 ∈ R. (3.6)

n particular, since E(𝛥𝑌𝑛 ∣ 𝑛) = 0, it follows from taking (conditional) expectations in (3.6) applied with 𝑥 = 𝑌𝑛 and 𝑢 = 𝛥𝑌𝑛 that

E(𝑌 2𝑘
𝑛+1 − 𝑌 2𝑘

𝑛 ∣ 𝑛) ≥ 𝑌 2𝑘−2
𝑛 E

[

(𝛥𝑌𝑛)21{𝛥𝑌𝑛 > 0} |

|

|

𝑛
]

1{𝑌𝑛 ≥ 0}

+ 𝑌 2𝑘−2
𝑛 E

[

(𝛥𝑌𝑛)21{𝛥𝑌𝑛 < 0} |

|

|

𝑛
]

1{𝑌𝑛 ≤ 0}, for all 𝑘 ∈ N.

By Lemma 3.2 with (2.7), (2.9), and (2.10),

E
[

(𝛥𝑌𝑛)21{𝛥𝑌𝑛 > 0} |

|

|

𝑛
]

≥ (𝛿2∕4)2P(𝛥𝑌𝑛 ≥ 𝛿2∕4 ∣ 𝑛) ≥
𝛿6

64𝐵
, a.s.,

and the same bound holds with {𝛥𝑌𝑛 < 0} instead in the indicator. Thus there exists 𝑎 > 0 (depending on 𝛿 and 𝐵) such that, for all
𝑘 ∈ N,

E(𝑌 2𝑘
𝑛+1 − 𝑌 2𝑘

𝑛 ) ≥ 𝑎E(𝑌 2𝑘−2
𝑛 ), for all 𝑛 ∈ Z+.

Hence

E(𝑌 2𝑘
𝑛 ) ≥ E(𝑌 2𝑘

𝑛 ) − E(𝑌 2𝑘
0 ) =

𝑛−1
∑

𝑚=0
E(𝑌 2𝑘

𝑚+1 − 𝑌 2𝑘
𝑚 ) ≥ 𝑎

𝑛−1
∑

𝑚=0
E(𝑌 2𝑘−2

𝑚 ). (3.7)

Induction on 𝑘 ∈ N using (3.7) establishes the lower bound in (3.4).
For the upper bound, it follows from (3.5) that, for all |𝑥| ≥ 𝐵 and all |𝑢| ≤ 𝐵,

(𝑥 + 𝑢)2𝑘 − 𝑥2𝑘 ≤ 2𝑘𝑥2𝑘−1𝑢 + (2𝑘 − 1)𝑘𝑢2(|𝑥| + 𝐵)2𝑘−2

≤ 2𝑘𝑥2𝑘−1𝑢 + 22𝑘−2𝐵2(2𝑘 − 1)𝑘𝑥2𝑘−2.

On the other hand, for |𝑥| ≤ 𝐵 and |𝑢| ≤ 𝐵, we have simply that (𝑥 + 𝑢)2𝑘 ≤ (2𝐵)2𝑘. Thus there is a constant 𝐴′
𝑘 < ∞ (depending

only on 𝑘 and 𝐵) such that
2𝑘 2𝑘 2𝑘−1 ′ 2𝑘−2
6

(𝑥 + 𝑢) − 𝑥 ≤ 2𝑘𝑥 𝑢 + 𝐴𝑘(1 + 𝑥 ), for all 𝑥 ∈ R, |𝑢| ≤ 𝐵.
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In particular, since E(𝛥𝑌𝑛 ∣ 𝑛) = 0, taking 𝑥 = 𝑌𝑛 and 𝑢 = 𝛥𝑌𝑛, we obtain

E(𝑌 2𝑘
𝑛+1 − 𝑌 2𝑘

𝑛 ∣ 𝑛) ≤ 𝐴′
𝑘(1 + 𝑌 2𝑘−2

𝑛 ), a.s.,

and hence

E(𝑌 2𝑘
𝑛 ) − E(𝑌 2𝑘

0 ) =
𝑛−1
∑

𝑚=0
E(𝑌 2𝑘

𝑚+1 − 𝑌 2𝑘
𝑚 ) ≤ 𝐴′

𝑘𝑛 + 𝐴′
𝑘

𝑛−1
∑

𝑚=0
E(𝑌 2𝑘−2

𝑚 ). (3.8)

Induction on 𝑘 ∈ N using (3.8) establishes the upper bound in (3.4).
Given (3.4), suppose that 2𝑘 − 2 < 𝛾 ≤ 2𝑘, 𝑘 ∈ N. Then Lyapunov’s inequality, E(|𝑌𝑛|𝛾 ) ≤ (E[|𝑌𝑛|2𝑘])𝛾∕(2𝑘), gives the upper bound

in (3.3), since E(|𝑌0|2𝑘−2) (on which the constants depend) can be bounded in terms of E(|𝑌0|𝛾 ), as claimed. In the other direction,
first note that the upper bound in (3.4) shows that, for every 𝑘 ∈ N, sup𝑛∈N E[(𝑌𝑛∕

√

𝑛)2𝑘] < ∞, which implies that, for every 𝑘 ∈ N,
the collection (𝑌𝑛∕

√

𝑛)2𝑘, 𝑛 ∈ N, is uniformly integrable. Hence there exists 𝑏𝑘 ∈ N such that

sup
𝑛∈N

E[(𝑌𝑛∕
√

𝑛)2𝑘1{𝑌𝑛 > 𝑏𝑘
√

𝑛}] ≤ 𝑎𝑘∕2.

Hence, by the lower bound in (3.4),

E[(𝑌𝑛∕
√

𝑛)2𝑘1{𝑌𝑛 ≤ 𝑏𝑘
√

𝑛}] ≥ 𝑎𝑘 − E[(𝑌𝑛∕
√

𝑛)2𝑘1{𝑌𝑛 > 𝑏𝑘
√

𝑛}] ≥ 𝑎𝑘∕2,

for all 𝑛 ∈ N. Now, since 𝛾 ≤ 2𝑘,

E[|𝑌𝑛|𝛾 ] ≥ E[|𝑌𝑛|2𝑘 ⋅ |𝑌𝑛|𝛾−2𝑘1{𝑌𝑛 ≤ 𝑏𝑘
√

𝑛}] ≥ 𝑏𝛾−2𝑘𝑘 𝑛(𝛾∕2)−𝑘E[|𝑌𝑛|2𝑘],

which, together with the fact that 𝑏𝛾−2𝑘𝑘 ≥ 𝑏−2𝑘 , gives the lower bound in (3.3). □

4. Asymptotics for the horizontal process

4.1. Confinement

The following ‘confinement’ result is a crucial ingredient in our analysis; roughly speaking, it gives a (deterministic) upper bound
on the relative sizes of 𝑌𝑛 and 𝑋𝑛, and will thus permit us to use a Taylor expansion to study 𝑓 (𝑋𝑛+1)−𝑓 (𝑋𝑛) using (2.2). The reason
or confinement is a sort of negative feedback in the dynamics: if 𝑌𝑛 is very large compared to 𝑋𝑛, then the drift in 𝑋𝑛 through (2.2)
s large, which will mean 𝑋𝑛 tends to increase much faster than 𝑌𝑛.

roposition 4.1. Let 𝛼 ∈ (−1,∞) and 𝛽, 𝛾 ∈ R+. Suppose that (B) holds. Then there exists a constant 𝐶0 ∶= 𝐶0(𝐵, 𝜌, 𝛼, 𝛾) < ∞ such that

sup
𝑛∈Z+

𝜅𝑛(𝑍𝑛)
(1 +𝑋𝑛)

≤ 𝜌max(|𝑌0|
𝛾 , 𝐶0), a.s. (4.1)

Before giving the proof of the last result, we state one important consequence.

orollary 4.2. Suppose that (B) holds. Then there is a constant 𝐶 < ∞ (depending on 𝐵, 𝜌, 𝛼, 𝛾 as well as |𝑌0|) such that, for all 𝑛 ∈ Z+,

𝛥𝑋𝑛 ≤ 𝐶 max(1, 𝑋𝑛), and 𝑋𝑛+1 ≤ 𝐶 max(1, 𝑋𝑛).

Proof. From (2.7), we have 𝛥𝑋𝑛 ≤ 𝐵 + 𝜅𝑛(𝑍𝑛), which together with (4.1) yields 𝛥𝑋𝑛 ≤ 𝐵 + 𝜌max(|𝑌0|
𝛾 , 𝐶0)(1 + 𝑋𝑛). The claimed

esult follows. □

roof of Proposition 4.1. Let 𝛼 ∈ (−1,∞) and 𝛽, 𝛾 ∈ R+. Define, for 𝑛 ∈ Z+,

𝜁𝑛 ∶=
max(𝐵, |𝑌𝑛|)𝛾

(1 + 𝑛)𝛽 (1 +𝑋𝑛)1+𝛼
≥ 𝜌−1

𝜅𝑛(𝑍𝑛)
1 +𝑋𝑛

, (4.2)

by (2.1). To verify (4.1), it suffices to prove that sup𝑛∈Z+
𝜁𝑛 ≤ max(|𝑌0|

𝛾 , 𝐶0), a.s. By the bound on |𝛥𝑌𝑛| from (2.7), if |𝑌𝑛| ≥ 𝐵, then
ax(𝐵, |𝑌𝑛+1|) ≤ |𝑌𝑛| + 𝐵 ≤ 2|𝑌𝑛| = 2max(𝐵, |𝑌𝑛|), while if |𝑌𝑛| ≤ 𝐵, then max(𝐵, |𝑌𝑛+1|) ≤ 2𝐵 = 2max(𝐵, |𝑌𝑛|). Hence

max(𝐵, |𝑌𝑛+1|) ≤ 2max(𝐵, |𝑌𝑛|), a.s. (4.3)

o proceed we consider two cases. We first consider the case
𝜌|𝑌𝑛|

𝛾

(1 + 𝑛)𝛽 (1 +𝑋𝑛)1+𝛼
≥ 2𝛾∕(1+𝛼) + 𝐵, (4.4)

and then we consider
𝜌|𝑌𝑛|

𝛾
< 2𝛾∕(1+𝛼) + 𝐵. (4.5)
7

(1 + 𝑛)𝛽 (1 +𝑋𝑛)1+𝛼
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First, if (4.4) holds then, by (2.2),

1 +𝑋𝑛+1 ≥ 𝑋𝑛 +
𝜌|𝑌𝑛|

𝛾

(1 + 𝑛)𝛽 (1 +𝑋𝑛)𝛼
+ 𝜉(1)𝑛+1

≥ (2𝛾∕(1+𝛼) + 𝐵)(1 +𝑋𝑛) − 𝐵 ≥ 2𝛾∕(1+𝛼)(1 +𝑋𝑛),

using (2.4) and the fact that 𝑋𝑛 ≥ 0. Hence, using the definition (4.2) for 𝜁𝑛+1 and (4.3),

𝜁𝑛+1 =
max(𝐵, |𝑌𝑛+1|)𝛾

(2 + 𝑛)𝛽 (1 +𝑋𝑛+1)1+𝛼
≤

2𝛾 max(𝐵, |𝑌𝑛|)𝛾

(1 + 𝑛)𝛽 (2𝛾∕(1+𝛼)(1 +𝑋𝑛))1+𝛼

=
max(𝐵, |𝑌𝑛|)𝛾

(1 + 𝑛)𝛽 (1 +𝑋𝑛)1+𝛼
= 𝜁𝑛. (4.6)

For the second case, i.e. when (4.5) holds, note first that 𝑋𝑛+1 ≥ max(0, 𝑋𝑛 − 𝐵), so that

1 + 𝐵 +𝑋𝑛+1 ≥ max(1 + 𝐵,𝑋𝑛) ≥ (1 +𝑋𝑛)∕2. (4.7)

oreover, using (4.3) and the fact that (1 + 𝐵)(1 +𝑋𝑛+1) ≥ 1 + 𝐵 +𝑋𝑛+1, we obtain

𝜁𝑛+1 =
max(𝐵, |𝑌𝑛+1|)𝛾

(2 + 𝑛)𝛽 (1 +𝑋𝑛+1)1+𝛼
≤

2𝛾 (1 + 𝐵)1+𝛼 max(𝐵, |𝑌𝑛|)𝛾

(1 + 𝑛)𝛽 (1 + 𝐵 +𝑋𝑛+1)1+𝛼

≤
2𝛾+1+𝛼(1 + 𝐵)1+𝛼 max(𝐵, |𝑌𝑛|)𝛾

(𝑛 + 1)𝛽 (1 +𝑋𝑛)1+𝛼
, (4.8)

y (4.7). If (4.5) holds, then, since 𝛼 > −1 and 𝛽 ≥ 0, from (4.8) we conclude that

𝜁𝑛+1 ≤ 2𝛾+1+𝛼(1 + 𝐵)1+𝛼𝜌−1 max(2𝛾∕(1+𝛼) + 𝐵, 𝜌𝐵𝛾 ) =∶ 𝐶 ′
0. (4.9)

The combination of (4.6) and (4.9) implies that for each 𝑛 it is the case that at least one of the statements (i) 𝜁𝑛+1 ≤ 𝜁𝑛, a.s., and
(ii) 𝜁𝑛+1 ≤ 𝐶 ′

0, a.s., must hold. It follows that, a.s., 𝜁𝑛 ≤ max(𝜁0, 𝐶 ′
0) for all 𝑛 ∈ Z+. Since 𝜁0 ≤ max(𝐵, |𝑌0|)𝛾 we deduce (4.1). □

4.2. Bounds on increments and moments

To study the process 𝑋 we will study the transformed process 𝑋𝜈 for some 𝜈 ≥ 1. First we need upper and lower bounds on the
increments 𝑋𝜈

𝑛+1 −𝑋𝜈
𝑛 , or the (conditional) expectations thereof. This is the purpose of the next result.

Lemma 4.3. It holds that, for every 𝜈 ≥ 1 and all 𝑛 ∈ Z+,

𝑋𝜈
𝑛+1 −𝑋𝜈

𝑛 ≥ 𝜈𝑋𝜈−1
𝑛

(

𝜅𝑛(𝑍𝑛) + 𝜉(1)𝑛+1

)

, a.s., (4.10)

Furthermore, suppose that (B) holds, and that 𝛼 ∈ (−1,∞), and 𝛽, 𝛾 ∈ R+. Then, for every 𝜈 ≥ 1, there is a constant 𝐶 ∈ R+ such that, for
all 𝑛 ∈ Z+,

E(𝑋𝜈
𝑛+1 −𝑋𝜈

𝑛 ∣ 𝑛) ≤ 𝐶𝑋𝜈−1
𝑛 𝜅𝑛(𝑍𝑛) + 𝐶𝑋𝜈−2

𝑛 , on {𝑋𝑛 ≥ 1 + 2𝐵}, (4.11)

and

E(𝑋𝜈
𝑛+1 −𝑋𝜈

𝑛 ∣ 𝑛) ≤ 𝐶, on {𝑋𝑛 ≤ 1 + 2𝐵}. (4.12)

Proof. Let 𝜈 ≥ 1. Taylor’s theorem with Lagrange remainder says that, for all 𝑥 ∈ R+ and all 𝑢 ∈ R with 𝑥 + 𝑢 > 0,

𝐷𝜈 (𝑥, 𝑢) ∶= (𝑥 + 𝑢)𝜈 − 𝑥𝜈 − 𝜈𝑥𝜈−1𝑢 =
𝜈(𝜈 − 1)

2
𝑢2(𝑥 + 𝜃𝑢)𝜈−2, (4.13)

where 𝜃 ∶= 𝜃(𝑥, 𝑢) ∈ (0, 1). Here 𝑥 + 𝜃𝑢 ≥ min(𝑥, 𝑥 + 𝑢) > 0, and so in (4.13) it holds that 𝑢2(𝑥 + 𝜃𝑢)𝜈−2 ≥ 0. On the other hand, if
= −𝑥, then 𝐷𝜈 (𝑥,−𝑥) = 𝑥𝜈(𝜈 − 1). Hence, for all 𝑥 ∈ R+ and all 𝑢 ∈ R with 𝑥 + 𝑢 ≥ 0, it holds that

𝐷𝜈 (𝑥, 𝑢) ≥ 0 if 𝜈 ≥ 1. (4.14)

pplying (4.14) with 𝑥 = 𝑋𝑛 and 𝑢 = 𝛥𝑋𝑛, and using the fact that 𝑋𝑛 + 𝛥𝑋𝑛 = 𝑋𝑛+1 ≥ 0, together with (2.2), we verify (4.10).
Now suppose also that (B) holds, 𝛼 ∈ (−1,∞), and 𝛽, 𝛾 ∈ R+, so that the hypotheses of Corollary 4.2 are satisfied. By Corollary 4.2,

here is a constant 𝐶 < ∞ such that 𝑋𝑛+1 = 𝑋𝑛+𝛥𝑋𝑛 ≤ 𝐶(1+𝑋𝑛), and hence, on {𝑋𝑛 ≤ 1+2𝐵}, 𝑋𝜈
𝑛+1 ≤ 𝐶𝜈 (2+2𝐵)𝜈 , which yields (4.12).

orollary 4.2 also implies that there is a constant 𝐶 < ∞ such that 𝛥𝑋𝑛 ≤ 𝐶𝑋𝑛 on {𝑋𝑛 ≥ 1+2𝐵}; also, by (2.2) and (2.7), 𝛥𝑋𝑛 ≥ −𝐵,
nd hence

−
𝑋𝑛
2

≤ 𝛥𝑋𝑛 ≤ 𝐶𝑋𝑛, on {𝑋𝑛 ≥ 1 + 2𝐵}. (4.15)

hen from (4.13) applied with 𝑥 = 𝑋𝑛, 𝑢 = 𝛥𝑋𝑛, and using the upper bound in (4.15) (when 𝜈 ≥ 2) or the lower bound in (4.15)
when 1 ≤ 𝜈 ≤ 2) it follows that

𝜈 𝜈 𝜈−1 2 𝜈−2
8

𝑋𝑛+1 −𝑋𝑛 ≤ 𝜈𝑋𝑛 𝛥𝑋𝑛 + 𝐶(𝛥𝑋𝑛) 𝑋𝑛 , on {𝑋𝑛 ≥ 1 + 2𝐵}. (4.16)
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From (2.2) and the inequality (𝑎 + 𝑏)2 ≤ 2(𝑎2 + 𝑏2) we have

(𝛥𝑋𝑛)2 ≤ 2(𝜅𝑛(𝑍𝑛))2 + 2𝐵2 ≤ 2(1 +𝑋𝑛)𝜅𝑛(𝑍𝑛) ⋅
𝜅𝑛(𝑍𝑛)
1 +𝑋𝑛

+ 2𝐵2, a.s.

ence Proposition 4.1 implies that there is a constant 𝐶 < ∞ for which

(𝛥𝑋𝑛)2 ≤ 𝐶(1 +𝑋𝑛)𝜅𝑛(𝑍𝑛) + 𝐶. (4.17)

hen from (4.16) with the bound (4.17), using that 1 +𝑋𝑛 ≤ 2𝑋𝑛 on {𝑋𝑛 ≥ 1}, and (2.2),

𝑋𝜈
𝑛+1 −𝑋𝜈

𝑛 ≤ 𝐶𝑋𝜈−1
𝑛 𝜅𝑛(𝑍𝑛) + 𝜈𝑋𝜈−1

𝑛 𝜉(1)𝑛+1 + 𝐶𝑋𝜈−2
𝑛 , on {𝑋𝑛 ≥ 1 + 2𝐵},

rom which, on taking (conditional) expectations and using (2.5), yields (4.11). □

The next result gives upper bounds on the growth rates of the moments of 𝑋𝑛.

roposition 4.4. Suppose that 𝛼 ∈ (−1,∞), 𝛽, 𝛾 ∈ R+, and that (B) and (M) hold. Suppose that 1 + 𝛾 > 𝛼 + 2𝛽. Then for every 𝜈 ∈ R+
nd all 𝜀 > 0,

E(𝑋𝜈
𝑛 ) − E(𝑋𝜈

0 ) = 𝑂(𝑛𝜈𝜒+𝜀), as 𝑛 → ∞. (4.18)

Proposition 4.4, which we prove later in this section, already allows us to deduce an asymptotic upper bound for 𝑋𝑛. Recall the
efinition of 𝜒 from (2.13).

orollary 4.5. Suppose that 𝛼 ∈ (−1,∞), 𝛽, 𝛾 ∈ R+, and that (B) and (M) hold. Suppose that 1 + 𝛾 > 𝛼 + 2𝛽. Then

lim sup
𝑛→∞

log𝑋𝑛
log 𝑛

≤ 𝜒, a.s. (4.19)

roof. Let 𝜀 > 0, and define 𝑡𝑘 ∶= 𝑘1∕𝜀 for 𝑘 ∈ N. Observe that

P
(

sup
0≤𝑚≤𝑡𝑘

𝑋𝑚 > 𝑡𝜒+2𝜀𝑘

)

= P
(

sup
0≤𝑚≤𝑡𝑘

𝑋2
𝑚 > 𝑡2(𝜒+2𝜀)𝑘

)

.

y hypothesis (M), the process 𝑋 is a non-negative submartingale. Then, by Doob’s submartingale inequality and the 𝜈 = 2 case
f (4.18) it follows that

P
(

sup
0≤𝑚≤𝑡𝑘

𝑋2
𝑚 > 𝑡2(𝜒+2𝜀)𝑘

)

≤
E(𝑋2

𝑡𝑘
)

𝑡2(𝜒+2𝜀)𝑘

≤ 𝐶𝑡−2𝜀𝑘 = 𝐶𝑘−2, for all 𝑘 ∈ N.

ence we obtain
∑

𝑘∈N
P
(

sup
0≤𝑚≤𝑡𝑘

𝑋𝑚 > 𝑡𝜒+2𝜀𝑘

)

≤ 𝐶
∑

𝑘∈N
𝑘−2 < ∞.

t follows from the Borel–Cantelli lemma that there is a (random) 𝐾 ∈ N with P(𝐾 < ∞) = 1 such that sup0≤𝑚≤𝑡𝑘 𝑋𝑚 ≤ 𝑡𝜒+2𝜀𝑘 for all
≥ 𝐾. For every 𝑛 ∈ N, there exists 𝑘 = 𝑘(𝑛) ∈ N such that 𝑡𝑘 ≤ 𝑛 < 𝑡𝑘+1, and lim𝑛→∞ 𝑘(𝑛) = ∞; therefore, for all 𝑛 large enough such

hat 𝑘 ≥ 𝐾, it holds that

𝑋𝑛 ≤ sup
0≤𝑚≤𝑡𝑘+1

𝑋𝑚 ≤ 𝑡𝜒+2𝜀𝑘+1 ≤
(

𝑡𝑘+1∕𝑡𝑘
)𝜒+2𝜀𝑛𝜒+2𝜀 ≤ 𝐶𝑛𝜒+2𝜀,

here 𝐶 ∶= sup𝑘∈N(𝑡𝑘+1∕𝑡𝑘)𝜒+2𝜀 < ∞. Thus lim sup𝑛→∞
log𝑋𝑛
log 𝑛 ≤ 𝜒 + 2𝜀, a.s., and since 𝜀 > 0 was arbitrary, we obtain (4.19). □

We work towards the proof of Proposition 4.4. The idea is to iterate a contraction argument that gives bounds of the form
(𝑋𝜈

𝑛 ) = 𝑂(𝑛𝜃𝑘 ) for a sequence 𝜃𝑘 → 𝛼𝜒 . The following is the basis of the iteration scheme.

emma 4.6. Suppose that 𝛼 ∈ (−1,∞), 𝛽, 𝛾 ∈ R+, and that (B) and (M) hold. Then There exists a constant 𝛬0 < ∞ such that, a.s.,

𝑋𝑛 ≤ 𝛬𝑛
0 max(1, 𝑋0), for all 𝑛 ∈ Z+. (4.20)

uppose that 1 + 𝛾 > 𝛼 + 2𝛽 and 𝜈 > max(𝛼 + 1, 2). Then E(𝑋𝜈
𝑛 ) < ∞ for all 𝑛 ∈ Z+, and there exists 𝐶 ∈ R+ such that, for all 𝑛 ∈ Z+,

E
[

𝑋𝜈
𝑛+1 −𝑋𝜈

𝑛
]

≤ 𝐶(1 + 𝑛)
𝛾
2−𝛽

(

E[𝑋𝜈
𝑛 ]
)
𝜈−𝛼−1

𝜈 + 𝐶
(

E[𝑋𝜈
𝑛 ]
)
𝜈−2
𝜈 + 𝐶. (4.21)

Proof. Corollary 4.2 shows that 𝑋𝑛+1 ≤ 𝐶 max(1, 𝑋𝑛), for all 𝑛 ∈ Z+, and we may suppose that 𝐶 > 1. Then (4.20) follows by an
nduction, since if 𝑋𝑛 ≤ 𝐶𝑛 max(1, 𝑋0), then 𝑋𝑛+1 ≤ 𝐶 max(1, 𝐶𝑛, 𝐶𝑛𝑋0) ≤ 𝐶𝑛+1 max(1, 𝑋0). This verifies (4.20), and, moreover, shows

that E(𝑋𝜈
𝑛 ) < ∞ for every 𝜈 ∈ R+ and every 𝑛 ∈ Z+ (recall that 𝑋0 is fixed).

Let 𝜈 > max(𝛼 + 1, 2). Combining (4.11) and (4.12) shows that, for some 𝐶 < ∞,
𝜈 𝜈 𝜈−1 𝜈−2
9

E(𝑋𝑛+1 −𝑋𝑛 ∣ 𝑛) ≤ 𝐶𝑋𝑛 𝜅𝑛(𝑍𝑛) + 𝐶𝑋𝑛 + 𝐶, for all 𝑛 ∈ Z+. (4.22)



Stochastic Processes and their Applications 176 (2024) 104420C. da Costa et al.

S

U

𝑓

w

T
a

T

T
m

From (2.1) and Hölder’s inequality, we obtain that for any 𝑝, 𝑞 > 1 such that 𝑝−1 + 𝑞−1 = 1,

E
(

𝑋𝜈−1
𝑛 𝜅𝑛(𝑍𝑛)

)

≤ 𝜌(1 + 𝑛)−𝛽E
(

𝑋𝜈−𝛼−1
𝑛 |𝑌𝑛|

𝛾)

≤ 𝜌(1 + 𝑛)−𝛽
(

E[𝑋(𝜈−𝛼−1)𝑝
𝑛 ]

)1∕𝑝(E[|𝑌𝑛|𝛾𝑞]
)1∕𝑞 .

Now by Lemma 3.3 for every 𝑞 > 0 we have that E[|𝑌𝑛|𝛾𝑞]1∕𝑞 ≤ 𝐴1∕𝑞
𝛾𝑞 𝑛𝛾∕2 and therefore, for every 𝑝 > 1 there is 𝐶 > 0 for which we

have

E
(

𝑋𝜈−1
𝑛 𝜅𝑛(𝑍𝑛)

)

≤ 𝐶(1 + 𝑛)
𝛾
2−𝛽

(

E[𝑋(𝜈−𝛼−1)𝑝
𝑛 ]

)1∕𝑝, for all 𝑛 ∈ Z+.

ince 𝜈 > 1 + 𝛼 > 0, we may (and do) take 𝑝 = 𝜈∕(𝜈 − 𝛼 − 1) > 1, so that

E
(

𝑋𝜈−1
𝑛 𝜅𝑛(𝑍𝑛)

)

≤ 𝐶(1 + 𝑛)
𝛾
2−𝛽

(

E[𝑋𝜈
𝑛 ]
)
𝜈−𝛼−1

𝜈 , for all 𝑛 ∈ Z+. (4.23)

sing the bound (4.23) in (4.22), and taking expectations, we obtain, for some 𝐶 < ∞,

E
[

𝑋𝜈
𝑛+1 −𝑋𝜈

𝑛
]

≤ 𝐶(1 + 𝑛)
𝛾
2−𝛽

(

E[𝑋𝜈
𝑛 ]
)
𝜈−𝛼−1

𝜈 + 𝐶E(𝑋𝜈−2
𝑛 ) + 𝐶,

and then using the bound
(

E(𝑋𝜈−2
𝑛 )

)𝜈 ≤
(

E(𝑋𝜈
𝑛 )
)𝜈−2 for 𝜈 ≥ 2, which follows from Jensen’s inequality, we obtain (4.21). □

The next step is to find a starting value 𝜃0 for the iteration scheme.

Lemma 4.7. Suppose that 𝛼 ∈ (−1,∞), 𝛽, 𝛾 ∈ R+, and that (B) and (M) hold. Suppose that 1 + 𝛾 > 𝛼 + 2𝛽. For every 𝜈 > max(1 + 𝛼, 2),
there exists 𝜃0 ∈ R+ for which E(𝑋𝜈

𝑛 ) − E(𝑋𝜈
0 ) ≤ 𝐶𝑛𝜃0 for all 𝑛 ∈ Z+.

Proof. Fix 𝜈 > max(1+𝛼, 2). We improve the exponential bound in (4.20) to obtain a polynomial bound. For ease of notation, write
𝑛 ∶= E(𝑋𝜈

𝑛 ), which is finite by Lemma 4.6. Set 𝜆 ∶= max{(𝜈 − 𝛼 − 1)∕𝜈, (𝜈 − 2)∕𝜈}, which satisfies 𝜆 ∈ (0, 1) since 𝜈 > max(1 + 𝛼, 2)
and 𝛼 > −1. Then from (4.21), it follows that, for some 𝐶 < ∞,

𝑓𝑛+1 − 𝑓𝑛 ≤ 𝐶
(

1 + 𝑛𝑎𝑓𝜆
𝑛
)

, for all 𝑛 ∈ Z+, (4.24)

here 𝑎 ∶= max( 𝛾2 − 𝛽, 0). It follows from (4.24) that

𝑓𝑛 − 𝑓0 ≤
𝑛−1
∑

𝑘=0

(

𝑓𝑘+1 − 𝑓𝑘
)

≤
𝑛−1
∑

𝑘=0
𝐶
(

1 + 𝑘𝑎𝑓𝜆
𝑘
)

≤ 𝐶𝑛 + 𝐶𝑛𝑎+1 max
0≤𝑘≤𝑛−1

𝑓𝜆
𝑘 . (4.25)

From (4.20) we have that there is 𝛬0 > 1 (depending on 𝑋0) such that for all 𝑛 ∈ Z+, 𝑓𝑛 ≤ 𝛬𝑛
0. With this, we come back to (4.25)

and obtain that, for 𝐷 ≥ 𝑓0 + 2𝐶 ∈ R+,

𝑓𝑛 ≤ 𝑓0 + 𝐶𝑛 + 𝐶𝑛𝑎+1𝛬𝑛𝜆
0

≤ 𝐷𝑛𝑎+1𝛬𝑛𝜆
0 , for all 𝑛 ∈ N. (4.26)

Since 𝜆 < 1, we may choose 𝐷 ≥ max(1, 𝑓0 + 2𝐶) large enough so that (𝑓0 + 2𝐶)𝐷𝜆 ≤ 𝐷; we may then assume that 𝐷 in (4.26) has
this property. We claim that for any 𝑗, 𝑛 ∈ N,

𝑓𝑛 ≤ 𝐷𝑛(𝑎+1)
∑𝑗−1

𝑖=0 𝜆𝑖𝛬𝑛𝜆𝑗
0 . (4.27)

he bound obtained in (4.26) verifies the case 𝑗 = 1 of (4.27). For an induction, assume that (4.27) holds for a given 𝑗 ∈ N. Then
pplying that bound in (4.24), we obtain

𝑓𝑛 ≤ 𝑓0 + 𝐶𝑛 + 𝐶𝑛𝑎+1𝐷𝜆𝑛𝜆(𝑎+1)
∑𝑗−1

𝑖=0 𝜆𝑖𝛬𝑛𝜆𝑗+1
0

≤
(

𝑓0 + 2𝐶
)

𝐷𝜆𝑛(𝑎+1)
∑𝑗

𝑖=0 𝜆
𝑖
𝛬𝑛𝜆𝑗+1
0 ,

using the fact that 𝐷𝜆𝑛(𝑎+1)
∑𝑗

𝑖=0 𝜆
𝑖
≥ 𝑛 ≥ 1. Since (𝑓0 +2𝐶)𝐷𝜆 ≤ 𝐷, we obtain the 𝑗 +1 case of (4.27), completing the induction. Since

𝜆 < 1, we have ∑𝑗−1
𝑖=0 𝜆

𝑖 ≤ (1 − 𝜆)−1 < ∞ for all 𝑗, we conclude from (4.27) that, if we set 𝜃0 ∶= (𝑎 + 1)(1 − 𝜆)−1,

sup
𝑛∈N

[

1
𝑛
log

(

𝑓𝑛
𝐷𝑛𝜃0

)]

≤ 𝜆𝑗 log𝛬0.

his holds for all 𝑗 ∈ N, and, since 𝜆 < 1, we can take 𝑗 → ∞ to obtain 𝑓𝑛 ≤ 𝐷𝑛𝜃0 for all 𝑛 ∈ N, as required. □

The iterative scheme for improving the exponent 𝜃0 through a sequence of exponents 𝜃𝑘 is defined via two functions 𝐹 ,𝐺 ∶ R+ →
R given by

𝐹 (𝜃) ∶=
𝛾
2
− 𝛽 +

( 𝜈 − 1 − 𝛼
𝜈

)

𝜃, and 𝐺(𝜃) ∶=
( 𝜈 − 2

𝜈

)

𝜃. (4.28)

he following result is the basis for the success of the iteration scheme; its proof comes at the end of this section. Write 𝑎 ∨ 𝑏 ∶=
ax(𝑎, 𝑏) for 𝑎, 𝑏 ∈ R.
10
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Lemma 4.8. Suppose that 𝛼 > −1, 𝛾 ∈ R+ and 𝛽 ∈ R are such that 1 + 𝛾 > 𝛼 + 2𝛽 and that 𝜈 > max(2, 1 + 𝛼). Let 𝜃0 > 𝜈𝜒 , and define
𝑘, 𝑘 ∈ N, by the recursion

𝜃𝑘+1 ∶= 1 +
(

𝐹 (𝜃𝑘) ∨ 𝐺(𝜃𝑘)
)

, for 𝑘 ∈ Z+, (4.29)

here 𝐹 ,𝐺 ∶ R+ → R are defined by (4.28). Then, lim𝑘→∞ 𝜃𝑘 = 𝜈𝜒 .

roof of Proposition 4.4. An appeal to Jensen’s inequality shows that to prove (4.18) it suffices to suppose that 𝜈 > max(2, 1 + 𝛼).
e will define a non-increasing sequence of positive exponents 𝜃0, 𝜃1,…. Suppose we know that E(𝑋𝜈

𝑛 ) − E(𝑋𝜈
0 ) ≤ 𝐶𝑘𝑛𝜃𝑘 for some

𝑘 < ∞ and all 𝑛 ∈ N; this holds with 𝑘 = 0 and some 𝜃0 > 𝜒𝜈, by Lemma 4.7. Then, from (4.21) and the hypothesis on E(𝑋𝜈
𝑛 ), we

btain

E
(

𝑋𝜈
𝑛+1 −𝑋𝜈

𝑛
)

≤ 𝐶𝑛
𝛾
2−𝛽+(

𝜈−1−𝛼
𝜈 )𝜃𝑘 + 𝐶𝑛(

𝜈−2
𝜈 )𝜃𝑘 + 𝐶. (4.30)

t follows from (4.30) that E(𝑋𝜈
𝑛 ) − E(𝑋𝜈

0 ) ≤ 𝐶𝑘+1𝑛𝜃𝑘+1 , where 𝐶𝑘+1 < ∞ and 𝜃𝑘+1 is given by (4.29). Lemma 4.8 shows that
im𝑘→∞ 𝜃𝑘 = 𝜈𝜒 and thus completes the proof. □

roof of Lemma 4.8. Note that, by (2.13), it holds that

𝐹 (𝜈𝜒) =
𝛾
2
− 𝛽 + 𝜈𝜒 − (1 + 𝛼)𝜒 = 𝜈𝜒 − 1. (4.31)

e claim that

1 +
(

𝐹 (𝜃) ∨ 𝐺(𝜃)
)

≥ 𝜈𝜒, whenever 𝜃 ≥ 𝜈𝜒. (4.32)

ndeed, since 𝜈 ≥ 1 + 𝛼 we have, whenever 𝜃 ≥ 𝜈𝜒 , 1 + 𝐹 (𝜃) ≥ 1 + 𝐹 (𝜈𝜒) = 𝜈𝜒 , by (4.31). This verifies (4.32). Consequently, started
rom 𝜃0 > 𝜈𝜒 ,

𝜃𝑘 ≥ 𝜈𝜒, for all 𝑘 ∈ Z+. (4.33)

ext we claim that there is a constant 𝑐𝛼 > 0 such that, for every 𝜀 ≥ 0,

1 +
(

𝐹 (𝜃) ∨ 𝐺(𝜃)
)

≤ 𝜃 − 𝑐𝛼𝜀, whenever 𝜃 ≥ 𝜈𝜒 + 𝜀. (4.34)

ssume (4.34) for now; combined with (4.33), it follows from (4.34) that

𝜃𝑘+1 ≤ 𝜃𝑘, for every 𝑘 ∈ Z+. (4.35)

ecall that the hypothesis 𝛾 + 1 > 𝛼 + 2𝛽 means that 𝜒 > 1∕2. If 𝜃 ≥ 𝜈𝜒 + 𝜀, then

𝜈
(

1 + 𝐹 (𝜃) − 𝜃
)

= 𝜈
(

1 +
𝛾
2
− 𝛽

)

− (1 + 𝛼)𝜃 = (1 + 𝛼)
(

𝜈𝜒 − 𝜃
)

≤ −𝜀(1 + 𝛼).

Similarly, for 𝜃 ≥ 𝜈𝜒 + 𝜀,

𝜈
(

1 + 𝐺(𝜃) − 𝜃
)

= 𝜈 − 2𝜃 = (1 − 2𝜒)𝜈 + 2(𝜒𝜈 − 𝜃) ≤ −2𝜀,

since 𝜒 > 1∕2. This verifies (4.34) with 𝑐𝛼 ∶= min(2∕𝜈, (1 + 𝛼)∕𝜈) ∈ (0, 1). Fix 𝜀 > 0 and define 𝑘𝜀 ∶= inf{𝑘 ∈ Z+ ∶ 𝜃 ≤ 𝜈𝜒 + 𝜀}. It
follows from (4.34) that 𝜃𝑘+1 ≤ 𝜃𝑘 − 𝑐𝛼𝜀 whenever 𝑘 ≤ 𝑘𝜀, and hence 𝑘𝜀 ∈ Z+ is finite. Together with (4.35), we have thus shown
that lim sup𝑘→∞ 𝜃𝑘 ≤ 𝜈𝜒+𝜀. Since 𝜀 > 0 was arbitrary, this means that lim sup𝑘→∞ 𝜃𝑘 ≤ 𝜈𝜒 . Combined with (4.33), we get the claimed
result. □

4.3. The lower bound

Corollary 4.5 gives the ‘lim sup’ half of Theorem 2.3; it remains to verify the ‘lim inf ’ half. This is the purpose of this section.
ecall that 𝛼+ = max(0, 𝛼).

roposition 4.9. Suppose that (B), (M), and (E) hold. Suppose that 𝛼 ∈ (−1,∞), and 𝛽, 𝛾 ∈ R+ are such that 1 + 𝛾 > 𝛼+ + 2𝛽. Then

lim inf
𝑛→∞

log𝑋𝑛
log 𝑛

≥ 𝜒, a.s. (4.36)

Define processes 𝐴 ∶= (𝐴𝑛, 𝑛 ∈ Z+) and 𝛯 ∶= (𝛯𝑛, 𝑛 ∈ Z+) on R by 𝐴0 = 𝛯0 = 0, and

𝐴𝑛 ∶=
𝑛−1
∑

𝑚=0
𝜅𝑚(𝑍𝑚), and 𝛯𝑛 ∶=

𝑛−1
∑

𝑚=0
𝜉(1)𝑚+1, for 𝑛 ∈ N. (4.37)

rom (2.2) and the fact that 𝐴𝑛 ≥ 0, we then observe that

𝑋𝑛 −𝑋0 = 𝐴𝑛 + 𝛯𝑛 ≥ 𝛯𝑛, for all 𝑛 ∈ Z+; (4.38)

hile (4.38) is reminiscent of the Doob decomposition for the submartingale 𝑋, and the previsible process 𝐴 is non-decreasing, the
11

rocess 𝛯 is itself a submartingale, by condition (2.5). The next result controls the size of 𝛯𝑛 as defined at (4.37).
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Proposition 4.10. Suppose that (B) and (M) hold. Then

lim sup
𝑛→∞

logmax0≤𝑚≤𝑛 |𝛯𝑚|

log 𝑛
≤ 1

2
, a.s.

Proof. From the definition of 𝛯𝑛 at (4.37) and (2.4) and (2.5), we have

E
[

𝛯2
𝑛+1 − 𝛯2

𝑛
|

|

|

𝑛
]

= E
[

(𝛯𝑛+1 − 𝛯𝑛)2
|

|

|

𝑛
]

+ 2𝛯𝑛E
[

𝛯𝑛+1 − 𝛯𝑛
|

|

|

𝑛
]

≤ 𝐵2 + 2𝐵𝛯𝑛1{𝑋𝑛 ≤ 𝐵} ≤ 3𝐵2, a.s., (4.39)

ince 𝛯𝑛 ≤ 𝑋𝑛. Taking expectations in (4.39) and using the fact that 𝛯0 = 0, we obtain

E(𝛯2
𝑛 ) =

𝑛−1
∑

𝑚=0
E(𝛯2

𝑚+1 − 𝛯2
𝑚) ≤ 3𝐵2𝑛, for all 𝑛 ∈ Z+. (4.40)

ince 𝛯2
𝑛 is a non-negative submartingale, Doob’s maximal inequality together with (4.40) implies that, for every 𝜀 > 0 and every

∈ Z+,

P
(

max
0≤𝑚≤𝑛

|𝛯𝑚| ≥ 𝑛(1∕2)+𝜀
)

≤ 𝑛−1−2𝜀E(𝛯2
𝑛 ) = 𝑂(𝑛−2𝜀).

In particular, the Borel–Cantelli lemma shows that there are only finitely many 𝑘 ∈ Z+ such that max0≤𝑚≤2𝑘 |𝛯𝑚| ≥ (2𝑘)(1∕2)+𝜀. Any
𝑛 ∈ N has 2𝑘𝑛 ≤ 𝑛 < 2𝑘𝑛+1 with 𝑘𝑛 → ∞ as 𝑛 → ∞, so, for all but finitely many 𝑛 ∈ Z+,

max
0≤𝑚≤𝑛

|𝛯𝑚| ≤ max
0≤𝑚≤2𝑘𝑛+1

|𝛯𝑚| ≤ (2 ⋅ 2𝑘𝑛 )(1∕2)+𝜀 ≤ (2 ⋅ 𝑛)(1∕2)+𝜀.

Since 𝜀 > 0 was arbitrary, this completes the proof. □

Proof of Proposition 4.9. Let 𝛽, 𝛾 ∈ R+. First suppose that 𝛼 ≥ 0. Let 𝜀 > 0. Then the upper bound 𝑋𝑛 ≤ 𝑛𝜒+𝜀, for all but finitely
many 𝑛 ∈ N, a.s., established in Corollary 4.5, together with (2.1), shows that

𝜅𝑛(𝑍𝑛) =
𝜌|𝑌𝑛|

𝛾

(1 + 𝑛)𝛽 (1 +𝑋𝑛)𝛼
≥

𝜌|𝑌𝑛|
𝛾

(1 + 𝑛)𝛽+𝛼𝜒+𝛼𝜀
,

for all but finitely many 𝑛. It follows that, for some 𝑐 > 0 and all 𝑛 ∈ N large enough,

𝐴𝑛 =
𝑛−1
∑

𝑚=0
𝜅(𝑍𝑚) ≥ 𝜌(1 + 𝑛)−𝛼(𝜒+𝜀)

𝑛−1
∑

𝑚=0
(1 + 𝑚)−𝛽 |𝑌𝑚|

𝛾 ≥ 𝑐𝑛𝜒−𝛼𝜀−𝜀, (4.41)

by (2.13) and (3.2). By hypothesis, (1 + 𝛼)𝜒 = 1 + 𝛾
2 − 𝛽 > 1+𝛼

2 , so that 𝜒 > 1∕2; since 𝜀 > 0 was arbitrary, we can combine (4.38)
and (4.41) with the bound on 𝛯𝑛 from Proposition 4.10 to deduce (4.36).

Next suppose that 𝛼 ∈ (−1, 0) and 1 + 𝛾 > 2𝛽. We will prove, by an induction on 𝑘 ∈ N, that

lim inf
𝑛→∞

log𝑋𝑛
log 𝑛

≥ 𝜒𝑘, a.s., (4.42)

here, using (2.13), we write

𝜒𝑘 ∶=
(

1 +
𝛾
2
− 𝛽

)

𝑘−1
∑

𝓁=0
(−𝛼)𝓁 = 𝜒

(

1 − (−𝛼)𝑘
)

, for 𝑘 ∈ N. (4.43)

y (4.43) and the fact that 𝛼 ∈ (−1, 0), for all 𝑘 ∈ N it holds that 𝜒𝑘+1 > 𝜒𝑘, while, by (2.13), 𝜒1 = (1 + 𝛼)𝜒 = 1+ 𝛾
2 − 𝛽 > 1∕2, by the

hypothesis 1 + 𝛾 > 2𝛽. Hence 𝜒𝑘 > 1∕2 for all 𝑘 ∈ N.
To start the induction, note that, since 𝛼 < 0, 𝜅𝑛(𝑥, 𝑦) ≥ 𝜌(1 + 𝑛)−𝛽𝑦𝛾 , and so

𝐴𝑛 ≥ 𝜌
𝑛−1
∑

𝑚=0
(1 + 𝑚)−𝛽 |𝑌𝑚|

𝛾 .

By Proposition 3.1, this shows that, for every 𝜀 > 0, a.s., 𝐴𝑛 ≥ 𝑛𝜒1−𝜀 for all but finitely many 𝑛 ∈ N, where 𝜒1 = 1+ 𝛾
2 − 𝛽 as given by

he 𝑘 = 1 case of (4.43). Since 𝜒1 > 1∕2, and 𝜀 > 0 was arbitrary, we can combine this with the bound on 𝛯𝑛 from Proposition 4.10
o see that, for every 𝜀 > 0, a.s., 𝑋𝑛 ≥ 𝑛𝜒1−𝜀 for all but finitely many 𝑛 ∈ N. This verifies (4.42) for 𝑘 = 1.

For the inductive step, suppose that (4.42) holds for a given 𝑘 ∈ N. Then, for every 𝜀 ∈ (0, 𝜒𝑘), 𝑋𝑛 ≥ 𝑛𝜒𝑘−𝜀 for all but finitely
any 𝑛 ∈ N. Hence

𝜅𝑛(𝑍𝑛) =
𝜌|𝑌𝑛|

𝛾

(1 + 𝑛)𝛽
(1 +𝑋𝑛)|𝛼| ≥

𝜌|𝑌𝑛|
𝛾

(1 + 𝑛)𝛽
𝑛|𝛼|(𝜒𝑘−𝜀).

By Proposition 3.1, applied with 𝛽 + 𝛼(𝜒𝑘 − 𝜀) in place of 𝛽, we obtain

𝐴𝑛 =
𝑛−1
∑

𝜅(𝑍𝑚) ≥ 𝜌
𝑛−1
∑

(1 + 𝑚)|𝛼|(𝜒𝑘−𝜀)−𝛽 |𝑌𝑚|
𝛾 ≥ 𝑛1+

𝛾
2−𝛽−𝛼𝜒𝑘+𝛼𝜀−𝜀,
12

𝑚=0 𝑚=0
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for all but finitely many 𝑛 ∈ N, a.s. That is,

lim inf
𝑛→∞

log𝐴𝑛
log 𝑛

≥ 1 +
𝛾
2
− 𝛽 − 𝛼𝜒𝑘 + 𝛼𝜀 − 𝜀

= (1 + 𝛼)𝜒 − 𝛼
(

1 − (−𝛼)𝑘
)

𝜒 + 𝛼𝜀 − 𝜀 = 𝜒𝑘+1 + 𝛼𝜀 − 𝜀,

y (4.43) and (2.13). Since 𝜒𝑘+1 > 1∕2, and 𝜀 > 0 was arbitrary, we can combine this with the bound on 𝛯𝑛 from Proposition 4.10
o verify the 𝑘 + 1 case of (4.42).

We have established that (4.42) holds for arbitrary 𝑘 ∈ N. Moreover, by taking 𝑘 → ∞ in (4.43) and using the fact that |𝛼| < 1
nd (2.13), we obtain lim𝑘→∞ 𝜒𝑘 = 𝜒 , and hence deduce (4.36) from (4.42). □

roof of Theorem 2.3. The theorem combines the ‘lim sup’ result from Corollary 4.5 with the ‘lim inf ’ result from Proposition 4.9. □

5. A barycentric excluded-volume random walk

5.1. A brief history

The model (𝑊𝑛, 𝐺𝑛) described informally in Section 1 dates back to 2008, when some of the present authors discussed a number
of self-interacting walk models with Francis Comets. The common feature of these models is they are random walk models with
self-interaction mediated by some global geometric functionals of the past trajectory, or, equivalently, its occupation times. The
three models we discussed with Francis are as follows.

• The paper [16] studied a random walk that is either attracted to or repelled by the centre of mass of its previous trajectory,
with an interaction strength that decays with distance.

• The random walk that avoids its convex hull had been introduced by Angel, Benjamini, and Virág, and studied in [13,22].
The original model is conjectured to be ballistic (and this conjecture is not yet fully settled), but [15] introduced a version of
the model which avoids not the full convex hull, but the convex hull of the starting point and the most recent 𝑘 locations, and
established that the finite-𝑘 model is ballistic.

• The barycentric excluded-volume model (𝑊𝑛, 𝐺𝑛) that we discuss here, and for which the behaviour remains entirely open. The
heuristic identification of the 3∕4 exponent presented in Section 1 was sketched out in 2008–9 with Francis and Iain MacPhee.

5.2. An heuristic link between the two models

For 𝑛 ∈ Z+, let 𝑛 be the 𝜎-algebra 𝜎(𝑊0,… ,𝑊𝑛), so that both 𝑊𝑛 and 𝐺𝑛 are 𝑛-measurable, as is 𝑇𝑛 ∶= 𝑊𝑛 − 𝐺𝑛.
If ‖𝑊𝑛‖‖𝑇𝑛‖ > 0, define

𝑣𝑛 ∶=
𝑊𝑛 + 𝑇𝑛

‖

‖

‖

𝑊𝑛 + 𝑇𝑛
‖

‖

‖

,

here 𝑢̂ ∶= 𝑢∕‖𝑢‖, and set 𝑣𝑛 ∶= 0 otherwise. Let 𝑣⟂𝑛 be any unit vector with 𝑣𝑛 ⋅ 𝑣⟂𝑛 = 0. If ‖𝑊𝑛‖‖𝑇𝑛‖ > 0, define

𝛽𝑛 ∶=
1
2
arccos

(

𝑊𝑛 ⋅ 𝑇𝑛
‖𝑊𝑛‖‖𝑇𝑛‖

)

,

nd set 𝛽𝑛 ∶= 0 otherwise. Here, the (principal branch of the) arc-cosine function arccos ∶ [−1, 1] → [0, 𝜋] is given by

arccos 𝜆 ∶= ∫

1

𝜆

d𝑡
√

1 − 𝑡2
, for − 1 ≤ 𝜆 ≤ 1. (5.1)

efine 𝑛 ⊂ R2 as

𝑛 ∶=
{

𝑧 ∈ R2 ∶ (𝑧 −𝑊𝑛) ⋅ 𝑣𝑛 < −𝛽𝑛‖𝑧 −𝑊𝑛‖
}

.

f ‖𝑊𝑛‖‖𝑇𝑛‖ > 0, then 𝑛 is a (non-degenerate, open) cone with apex 𝑊𝑛, boundary given by semi-infinite rays from 𝑊𝑛 in directions
𝑊𝑛 and −𝑇𝑛, and angular span 2𝛽𝑛; if ‖𝑊𝑛‖‖𝑇𝑛‖ = 0, then 𝑛 = ∅. See Fig. 4 for a picture.

We take the distribution of 𝑊𝑛+1 given 𝑛 to be uniform on the unit-radius circle centred at 𝑊𝑛 excluding the arc intersecting 𝑛.
ore formally, we can generate the process via a sequence 𝑈1, 𝑈2,… of independent 𝑈 [−1, 1] variables as follows. Given 𝑊𝑛 and
𝑛, set

𝑊𝑛+1 −𝑊𝑛 = 𝑣𝑛 cos
(

(𝜋 − 𝛽𝑛)𝑈𝑛+1
)

+ 𝑣⟂𝑛 sin
(

(𝜋 − 𝛽𝑛)𝑈𝑛+1
)

, for all 𝑛 ∈ Z+.

So far analysis of this model has eluded us. As described in Section 1, we have heuristic and numerical evidence in support of
he following.
13

onjecture 5.1. For the (𝑊𝑛, 𝐺𝑛) model, the asymptotics at (1.2) hold.
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Fig. 4. Associating processes 𝑋, 𝑌 to the processes 𝑊 ,𝐺. Depicted here is the symmetrized version of the model, where excluded is not only the triangle with
angle 2𝛽𝑛, but also its reflection in the line through 0 and 𝑊𝑛.

A calculation shows that

E(𝑊𝑛+1 −𝑊𝑛 ∣ 𝑛) =
2 sin 𝛽𝑛
𝜋 − 𝛽𝑛

𝑣𝑛.

Now, it is slightly more convenient for comparison with the model in Section 2 to ‘‘symmetrize’’ the process 𝑊 so that the support
f the increment excludes not only the cone 𝑛, but also its reflection through the line from 0 to 𝑊𝑛. The upshot of this is to double
hat excluded angle, and to ensure that the mean drift is in the 𝑊𝑛 direction:

E(𝑊𝑛+1 −𝑊𝑛 ∣ 𝑛) =
2 sin(2𝛽𝑛)
𝜋 − 2𝛽𝑛

𝑊𝑛.

ow define

𝑋𝑛 = ‖𝑊𝑛‖, and |𝑌𝑛| = ‖𝑊𝑛‖ tan(2𝛽𝑛);

ee Fig. 4. Most of the time, we expect 𝛽𝑛 to be very small (we believe that lim𝑛→∞ 𝛽𝑛 = 0, a.s.) and so sin(2𝛽𝑛) ≈ 2𝛽𝑛 ≈ tan(2𝛽𝑛).
ence we claim that, roughly speaking,

E(𝑊𝑛+1 −𝑊𝑛 ∣ 𝑛) ≈
2
𝜋

|𝑌𝑛|
1 +𝑋𝑛

𝑊𝑛. (5.2)

he analogy between (5.2) and the 𝛽 = 0, 𝛼 = 𝛾 = 1 model of Example 2.5 is now clear enough, but far from exact.
evertheless, we believe that (5.2) is strongly suggestive that the conclusion of Example 2.5 would also hold in the present setting,

.e., log ‖𝑊𝑛‖∕ log 𝑛 → 3∕4. On the basis that the fluctuations of |𝑌𝑛| are diffusive, it is then natural to conjecture the limiting
irection, 𝑊𝑛 → 𝛩, as in (1.2): cf. [23, §4.4.3].
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ppendix. Path-sums of one-dimensional martingales

On a probability space (𝛺, ,P), let 𝑆 ∶= (𝑆𝑛, 𝑛 ∈ Z+) be an R+-valued process adapted to a filtration (𝑛, 𝑛 ∈ Z+). For 𝛾 ∈ R+,
𝛽 ∈ R, and 𝑛 ∈ N, define the path sum

𝛤𝑛(𝛽, 𝛾) ∶=
𝑛
∑

𝑚=1
𝑚−𝛽𝑆𝛾

𝑚. (A.1)
14

Here is the main result of this section.
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Theorem A.1. Let 𝑆 ∶= (𝑆𝑛, 𝑛 ∈ Z+) be an R+-valued process adapted to a filtration (𝑛, 𝑛 ∈ Z+). Suppose that there exist 𝐵, 𝑥0 ∈ R+
nd 𝛿 > 0 such that, for all 𝑛 ∈ Z+,

P(|𝑆𝑛+1 − 𝑆𝑛| ≤ 𝐵) = 1; (A.2)

P(𝑆𝑛+1 − 𝑆𝑛 ≥ 𝛿 ∣ 𝑛) ≥ 𝛿; and (A.3)

0 ≤ E(𝑆𝑛+1 − 𝑆𝑛 ∣ 𝑛) ≤ 𝐵1{𝑆𝑛 < 𝑥0}. (A.4)

hen,

lim
𝑛→∞

logmax1≤𝑚≤𝑛 𝑆𝑚

log 𝑛
= 1

2
, a.s. (A.5)

Moreover, suppose that 𝛾 ∈ R+ and 𝛽 ∈ R. Then, if 2𝛽 ≤ 2 + 𝛾,

lim
𝑛→∞

log𝛤𝑛(𝛽, 𝛾)
log 𝑛

= 1 +
𝛾
2
− 𝛽, a.s. (A.6)

On the other hand, if 2𝛽 > 2 + 𝛾, then sup𝑛∈N 𝛤𝑛(𝛽, 𝛾) < ∞, a.s.

We prove Theorem A.1 in the rest of this section. First, the upper bounds are straightforward consequences of a maximal
inequality; the statement is the next result.

Lemma A.2. Let 𝑆 ∶= (𝑆𝑛, 𝑛 ∈ Z+) be an R+-valued process adapted to a filtration (𝑛, 𝑛 ∈ Z+). Suppose that there exist 𝐵, 𝑥0 ∈ R+
uch that (A.2) and (A.4) hold. Then,

lim sup
𝑛→∞

logmax1≤𝑚≤𝑛 𝑆𝑚

log 𝑛
≤ 1

2
, a.s. (A.7)

Before giving the proof of Lemma A.2, we make some preliminary calculations. Write 𝐷𝑛 ∶= 𝑆𝑛+1 −𝑆𝑛. Note that (A.2) says that
𝐷𝑛| ≤ 𝐵, a.s., while (A.4) implies that 0 ≤ E(𝐷𝑛 ∣ 𝑛) ≤ 𝐵1{𝑆𝑛 < 𝑥0}, a.s. Hence, for every 𝑛 ∈ Z+, a.s.,

E(𝑆2
𝑛+1 − 𝑆2

𝑛 ∣ 𝑛) = 2𝑆𝑛E(𝐷𝑛 ∣ 𝑛) + E(𝐷2
𝑛 ∣ 𝑛) ≤ 2𝐵𝑥0 + 𝐵2. (A.8)

On the other hand, by (A.3),

E(𝐷2
𝑛 ∣ 𝑛) ≥ 𝛿2P(𝐷𝑛 ≥ 𝛿 ∣ 𝑛) ≥ 𝛿3, a.s. (A.9)

Therefore, using the lower bound in (A.4) and (A.9), we obtain

E(𝑆2
𝑛+1 − 𝑆2

𝑛 ∣ 𝑛) = 2𝑆𝑛E(𝐷𝑛 ∣ 𝑛) + E(𝐷2
𝑛 ∣ 𝑛) ≥ 𝛿3, a.s., (A.10)

a fact that we will use in the proof of Lemma A.4 below.

Proof of Lemma A.2. The result follows from the bound (A.8) on the increments of 𝑆2
𝑛 together with Doob’s inequality and a

standard subsequence argument: concretely, one may apply Theorem 2.8.1 of [23, p. 78] to obtain that for any 𝜀 > 0, a.s., for all
but finitely many 𝑛 ∈ N, max0≤𝑚≤𝑛 𝑆𝑚 ≤ 𝑛(1∕2)+𝜀. Since 𝜀 > 0 was arbitrary, we get (A.7). □

Lower bounds are more difficult to obtain, and most of the work for Theorem A.1 is needed for the ‘lim inf ’ part. Here one can
construct a proof along the lines of the excursion approach from [24] (see also [23, §§3.7–3.9]), but in the present context a related,
but more direct approach is available. The following lemma is the main ingredient.

Lemma A.3. Let 𝑆 ∶= (𝑆𝑛, 𝑛 ∈ Z+) be an R+-valued process adapted to a filtration (𝑛, 𝑛 ∈ Z+). Suppose that there exist 𝐵, 𝑥0 ∈ R+
and 𝛿 > 0 such that (A.2)–(A.4) hold. Then, for every 𝜀 > 0, for all 𝑛 ∈ N sufficiently large,

P
⎡

⎢

⎢

⎣

𝑛
∑

𝑚=⌊𝑛1−𝜀⌋

1{𝑆𝑚 ≥ 𝑛(1∕2)−𝜀} ≥ 𝑛1−𝜀
⎤

⎥

⎥

⎦

≥ 1 − 𝑛−𝜀.

To prove this, we need the following relative of Kolmogorov’s ‘other’ inequality.

emma A.4. Let 𝑆 ∶= (𝑆𝑛, 𝑛 ∈ Z+) be an R+-valued process adapted to a filtration (𝑛, 𝑛 ∈ Z+). Suppose that there exist 𝐵, 𝑥0 ∈ R+
nd 𝛿 > 0 such that (A.2)–(A.4) hold. Then, for all 𝑥 ∈ R+ and all 𝑛 ∈ Z+,

P
(

max
𝑛≤𝑚≤2𝑛

𝑆𝑚 ≥ 𝑥
)

≥ 1 −
(𝑥 + 𝐵)2

𝛿3𝑛
. (A.11)

Proof. We use a variation on an argument that yields the (sub)martingale version of Kolmogorov’s ‘other’ inequality (see Theorem
2.4.12 of [23, p. 45]). Fix 𝑛 ∈ Z+, 𝑥 ∈ R+, and let 𝜎𝑛,𝑥 ∶= inf{𝑚 ∈ Z+ ∶ 𝑆𝑛+𝑚 ≥ 𝑥}. Then from (A.10) we have that

E[𝑆2 − 𝑆2 ∣  ] ≥ 𝛿31{𝜎 > 𝑚}.
15

𝑛+(𝑚+1)∧𝜎𝑛,𝑥 𝑛+𝑚∧𝜎𝑛,𝑥 𝑛+𝑚∧𝜎𝑛,𝑥 𝑛,𝑥
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Taking expectations and then summing from 𝑚 = 0 to 𝑚 = 𝑘 − 1 we obtain

𝛿3
𝑘−1
∑

𝑚=0
P(𝜎𝑛,𝑥 > 𝑚) ≤ E

[

𝑆2
𝑛+𝑘∧𝜎𝑛,𝑥

− 𝑆2
𝑛
]

≤ (𝑥 + 𝐵)2,

using the fact that 0 ≤ 𝑆𝑛+𝑘∧𝜎𝑛,𝑥 ≤ max(𝑆𝑛, 𝑥 + 𝐵), a.s., by (A.2). It follows that

E(𝜎𝑛,𝑥) = lim
𝑘→∞

𝑘−1
∑

𝑚=0
P(𝜎𝑛,𝑥 > 𝑚) ≤ 𝛿−3(𝑥 + 𝐵)2, for all 𝑛 ∈ Z+.

For every 𝑛 ∈ Z+ and 𝑥 ∈ R+, the event 𝜎𝑛,𝑥 ≤ 𝑛 implies that max𝑛≤𝑚≤2𝑛 𝑆𝑚 ≥ 𝑥. Then, by Markov’s inequality, we obtain, for all
𝑥 ∈ R+ and all 𝑛 ∈ Z+,

P
(

max
𝑛≤𝑚≤2𝑛

𝑆𝑚 ≥ 𝑥
)

≥ 1 − P(𝜎𝑛,𝑥 ≥ 𝑛) ≥ 1 −
(𝑥 + 𝐵)2

𝛿3𝑛
,

s claimed at (A.11). □

roof of Lemma A.3. Fix 𝜀 ∈ (0, 15 ) and define, for 𝑛 ∈ N, 𝑁𝜀(𝑛) ∶= ⌊𝑛1−𝜀⌋, and

𝑇𝑛 ∶= 𝑁𝜀(𝑛) + inf{𝑚 ∈ {0, 1,… , 𝑁𝜀(𝑛)} ∶ 𝑆𝑁𝜀(𝑛)+𝑚 ≥ 2(𝑁𝜀(𝑛))(1∕2)−𝜀},

ith the usual convention that inf ∅ ∶= ∞. Then, by (A.11),

P(𝑇𝑛 < ∞) = P
(

max
𝑁𝜀(𝑛)≤𝑚≤2𝑁𝜀(𝑛)

𝑆𝑚 ≥ 2(𝑁𝜀(𝑛))(1∕2)−𝜀
)

≥ 1 −
(2(𝑁𝜀(𝑛))(1∕2)−𝜀 + 𝐵)2

𝛿3𝑁𝜀(𝑛)

≥ 1 − 𝑛−𝜀, (A.12)

for all 𝑛 sufficiently large. For 𝑛 ∈ N large enough so that (𝑁𝜀(𝑛))(1∕2)−𝜀 > 𝑥0, we have 𝑆𝑇𝑛 > 𝑥0 on the event 𝑇𝑛 < ∞. Define
𝑛 ∶= inf{𝑚 ∈ Z+ ∶ 𝑆𝑇𝑛+𝑚 ≤ 𝑥0}, and consider

𝑀𝑛,𝑚 ∶= (𝑆𝑇𝑛+𝑚∧𝜏𝑛 − 𝑆𝑇𝑛 )1{𝑇𝑛 < ∞}, for 𝑚 ∈ Z+.

Note that, by (A.2), we have |𝑀𝑛,𝑚| ≤ 𝐵𝑚, a.s., for all 𝑚 ∈ Z+. Moreover,

E(𝑀𝑛,𝑚+1 −𝑀𝑛,𝑚 ∣ 𝑇𝑛+𝑚) = E(𝑀𝑛,𝑚+1 −𝑀𝑛,𝑚 ∣ 𝑇𝑛+𝑚)1{𝑇𝑛 < ∞, 𝑚 < 𝜏𝑛}

= E(𝑆𝑇𝑛+𝑚+1 − 𝑆𝑇𝑛+𝑚 ∣ 𝑇𝑛+𝑚)1{𝑇𝑛 < ∞, 𝑚 < 𝜏𝑛} = 0,

by (A.4) and the fact that 𝑚 < 𝜏𝑛. Hence 𝑀𝑛,𝑚, 𝑚 ∈ Z+, is a martingale adapted to 𝑇𝑛+𝑚. Then, by the martingale property and (A.2),

E(𝑀2
𝑛,𝑚+1 −𝑀2

𝑛,𝑚 ∣ 𝑇𝑛+𝑚) = E((𝑀𝑛,𝑚+1 −𝑀𝑛,𝑚)2 ∣ 𝑇𝑛+𝑚) ≤ 𝐵2, a.s.,

which, with the fact that 𝑀𝑛,0 = 0, implies that E(𝑀2
𝑛,𝑚 ∣ 𝑇𝑛 ) ≤ 𝐵2𝑚. Hence, by Doob’s inequality (e.g. [23, p. 35]) applied to the

non-negative submartingale 𝑀2
𝑛,𝑚,

P
(

max
0≤𝑚≤𝑛1−5𝜀

𝑀2
𝑛,𝑚 ≥ 𝑛1−4𝜀 ||

|

𝑇𝑛

)

≤
E(𝑀2

𝑛,⌊𝑛1−5𝜀⌋
∣ 𝑇𝑛 )

𝑛1−4𝜀
≤ 𝑛−𝜀, a.s., (A.13)

for all 𝑛 ≥ 𝑛0 for some sufficiently large (deterministic) 𝑛0 ∈ N. It follows that

P
[

{𝑇𝑛 < ∞} ∩
{

max
0≤𝑚≤𝑛1−5𝜀

|𝑀𝑛,𝑚| ≤ (𝑁𝜀(𝑛))(1∕2)−𝜀
}]

≥ E
[

1{𝑇𝑛 < ∞}P
(

max
0≤𝑚≤𝑛1−5𝜀

𝑀2
𝑛,𝑚 ≤ 𝑛1−4𝜀 ||

|

𝑇𝑛

)

]

≥ (1 − 𝑛−𝜀)P(𝑇𝑛 < ∞) ≥ 1 − 2𝑛−𝜀,

or all 𝑛 sufficiently large, by (A.12), (A.13), and the fact that (𝑁𝜀(𝑛))1−2𝜀 > 𝑛1−4𝜀 for all large enough 𝑛. If 𝑇𝑛 < ∞ and
ax0≤𝑚≤𝑛1−5𝜀 |𝑀𝑛,𝑚| ≤ (𝑁𝜀(𝑛))(1∕2)−𝜀 both occur, then

𝑆𝑇𝑛+𝑚 ≥ 𝑆𝑇𝑛 − max
0≤𝑘≤𝑛1−5𝜀

|𝑀𝑛,𝑘| ≥ (𝑁𝜀(𝑛))(1∕2)−𝜀, for all 𝑚 ∈ {0, 1,… , ⌊𝑛1−5𝜀⌋}.

n particular, it follows that, for all 𝑛 large enough

P

[ 𝑛
∑

𝑚=𝑁𝜀(𝑛)
1{𝑆𝑚 ≥ (𝑁𝜀(𝑛))(1∕2)−𝜀} ≥ 𝑛1−6𝜀

]

≥ 1 − 2𝑛−𝜀.

1−2𝜀
16

ince 𝑁𝜀(𝑛) ≥ 𝑛 , for large 𝑛, and 𝜀 > 0 was arbitrary, this concludes the proof. □
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Proof of Theorem A.1. The ‘lim sup’ half of (A.5) is given by (A.7). Moreover, from (A.7) we have that, for any 𝜀 > 0, max0≤𝓁≤𝑛 𝑆𝓁 ≤
𝑛(1∕2)+𝜀 for all but finitely many 𝑛 ∈ N, a.s. In other words, there is a (random) 𝐶𝜀 < ∞ such that max0≤𝓁≤𝑛 𝑆𝓁 ≤ 𝐶𝜀𝑛(1∕2)+𝜀 for all
𝑛 ∈ N. Hence, since 𝛾 ∈ R+,

𝛤𝑛(𝛽, 𝛾) ≤
𝑛
∑

𝑚=1
𝑚−𝛽

(

max
0≤𝓁≤𝑚

𝑆𝓁

)𝛾
≤ 𝐶𝜀

𝑛
∑

𝑚=1
𝑚−𝛽𝑚(𝛾∕2)+𝛾𝜀.

uppose 2 + 𝛾 ≥ 2𝛽; then for any 𝜀 > 0 it holds that (𝛾∕2) + 𝛾𝜀 − 𝛽 > −1, so that 𝛤𝑛(𝛽, 𝛾) ≤ 𝐶𝑛1+(𝛾∕2)+𝛾𝜀−𝛽 , where (random) 𝐶 < ∞,
.s. Since 𝜀 > 0 can be chosen to be arbitrarily small, we obtain the ‘lim sup’ half of (A.6). On the other hand, if 2 + 𝛾 < 2𝛽, then we
an choose 𝜀 > 0 small enough so that (𝛾∕2) + 𝛾𝜀− 𝛽 < −1− 𝜀, and we conclude that 𝛤𝑛(𝛽, 𝛾) ≤ 𝐶𝜀

∑𝑛
𝑚=1 𝑚

−1−𝜀, from which it follows
hat sup𝑛∈N 𝛤𝑛(𝛽, 𝛾) < ∞, a.s.

It remains to verify the ‘lim inf ’ parts of (A.5) and (A.6). To this end, consider event

𝐸𝜀(𝑛) ∶=
𝑛
∑

𝑚=⌊𝑛1−𝜀⌋

1{𝑆𝑚 ≥ 𝑛(1∕2)−𝜀} ≥ 𝑛1−𝜀.

hen, if 𝐸𝜀(𝑛) occurs, we have, since 𝑆𝑚 ≥ 0 for all 𝑚 ∈ Z+, and 𝛾 ∈ R+,

𝛤𝑛(𝛽, 𝛾) ≥
𝑛
∑

𝑚=⌊𝑛1−𝜀⌋

𝑚−𝛽𝑆𝛾
𝑚1{𝑆𝑚 ≥ 𝑛(1∕2)−𝜀}

≥ 𝑛(𝛾∕2)−𝛾𝜀
(

min
⌊𝑛1−𝜀⌋≤𝑚≤𝑛

𝑚−𝛽
)

𝑛
∑

𝑚=⌊𝑛1−𝜀⌋

1{𝑆𝑚 ≥ 𝑛(1∕2)−𝜀}

≥ 𝑛𝜗−𝛾𝜀−𝜀|𝛽|−𝜀, where 𝜗 ∶= 1 +
𝛾
2
− 𝛽.

Since 𝜀 > 0 was arbitrary, we conclude from Lemma A.3 that, for every 𝜀 > 0,

P(𝛤𝑛(𝛽, 𝛾) ≥ 𝑛𝜗−𝜀) ≥ 1 − 𝑛−𝜀. (A.14)

rom (A.14) with 𝑛 = 2𝑘 and an application of the Borel–Cantelli lemma we obtain that, a.s., for all but finitely many 𝑘 ∈ Z+,
2𝑘 (𝛽, 𝛾) ≥ (2𝑘)𝜗−𝜀 occurs. Every 𝑛 ∈ N has 2𝑘𝑛 ≤ 𝑛 < 2𝑘𝑛+1 for some 𝑘𝑛 ∈ Z+ with lim𝑛→∞ 𝑘𝑛 = ∞. Hence, since 𝛤𝑚(𝛽, 𝛾) is
on-decreasing in 𝑚, for all but finitely many 𝑛 ∈ N,

𝛤𝑛(𝛽, 𝛾) ≥ 𝛤2𝑘𝑛 (𝛽, 𝛾) ≥ (2𝑘𝑛 )𝜗−𝜀 ≥ 2−𝜗 ⋅ (2𝑘𝑛+1)𝜗−𝜀 ≥ 2−𝜗𝑛𝜗−𝜀.

ince 𝜀 > 0 was arbitrary, we obtain the ‘lim inf ’ part of (A.6). Finally, from the 𝛽 = 0, 𝛾 = 1 case of (A.6) and the fact that we have
𝑛
𝑚=1 𝑆𝑚 ≤ 𝑛 ⋅max1≤𝑚≤𝑛 𝑆𝑚, we have

3
2
= lim inf

𝑛→∞

log
∑𝑛

𝑚=1 𝑆𝑚

log 𝑛
≤ 1 + lim inf

𝑛→∞

max1≤𝑚≤𝑛 𝑆𝑚

log 𝑛
,

rom which the ‘lim inf ’ part of (A.5) follows. □

eferences

[1] R. Metzler, J.-H. Jeon, A.G. Cherstvya, E. Barkaid, Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the
centenary of single particle tracking, Phys. Chem. Chem. Phys. 16 (2014) 24128.

[2] F.A. Oliveira, R.M.S. Ferreira, L.C. Lapas, M.H. Vainstein, Anomalous diffusion: a basic mechanism for the evolution of inhomogeneous systems, Frontiers
Phys. 7 (2019) 18.

[3] P.J. Flory, The configuration of a real polymer chain, J. Chem. Phys. 17 (1949) 303–310.
[4] P.J. Flory, Spatial configuration of macromolecular chains, Science 188 (1975) 1268–1276.
[5] M.N. Barber, B.W. Ninham, Random and Restricted Walks, Gordon and Breach, New York, 1970.
[6] B.D. Hughes, Random Walks and Random Environments Vol 1: Random Walks, Oxford University Press, New York, 1995.
[7] R. van der Hofstad, W. König, A survey of one-dimensional random polymers, J. Stat. Phys. 103 (2001) 915–944.
[8] G.F. Lawler, O. Schramm, W. Werner, On the scaling limit of planar self-avoiding walk, in: Fractal Geometry and Applications: A Jubilee of BenoÎt

Mandelbrot, Part 2, Amer. Math. Soc., Providence, RI, 2004, pp. 339–364.
[9] N. Madras, G. Slade, The Self-Avoiding Walk, Birkhäuser, 1993.

[10] J. Rudnick, G. Gaspari, Elements of the random walk, Cambridge University Press, Cambridge, 2004.
[11] H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, fourth ed., World Scientific Publishing, 2006.
[12] V.I. Alkhimov, Excluded volume effect in statistics of self-avoiding walks, Physics – Uspekhi 37 (1994) 527–563.
[13] O. Angel, I. Benjamini, B. Virág, Random walks that avoid their past convex hull, Electron. Commun. Probab. 8 (2003) 6–16.
[14] V. Beffara, S. Friedli, Y. Velenik, Scaling limit of the prudent walk, Electron. Commun. Probab. 15 (2010) 44–58.
[15] F. Comets, M.V. Menshikov, A.R. Wade, Random walks avoiding their convex hull with a finite memory, Indag. Math. (N.S.) 31 (2020) 117–146.
[16] F. Comets, M.V. Menshikov, S. Volkov, A.R. Wade, Random walk with barycentric self-interaction, J. Stat. Phys. 143 (2011) 855–888.
[17] M. Menshikov, S. Volkov, Urn-related random walk with drift 𝜌𝑥𝛼∕𝑡𝛽 , Electron. J. Probab. 13 (2008) 944–960.
[18] M. Gradinaru, Y. Offret, Existence and asymptotic behaviour of some time-inhomogeneous diffusions, Ann. Inst. Henri Poincaré Probab. Statist. 49 (2013)

182–207.
[19] D.L. McLeish, Dependent central limit theorems and invariance principles, Ann. Probab. 2 (1974) 620–628.
[20] M. Brešar, C. da Costa, A. Mijatović, A. Wade, Superdiffusive limits for bessel-driven stochastic kinetics, 2024, Available from: ArXiv:2401.11863.
[21] J. Lamperti, Criteria for the recurrence and transience of stochastic processes I, J. Math. Anal. Appl. 1 (1960) 314–330.
[22] M.P.W. Zerner, On the speed of a planar random walk avoiding its past convex hull, Ann. Inst. Henri Poincaré Probab. Statist. 41 (2005) 887–900.
[23] M. Menshikov, S. Popov, A. Wade, Non-homogeneous random walks, Cambridge University Press, Cambridge, 2017.
[24] O. Hryniv, M.V. Menshikov, A.R. Wade, Excursions and path functionals for stochastic processes with asymptotically zero drifts, Stochastic Process. Appl.

123 (2013) 1891–1921.
17

http://refhub.elsevier.com/S0304-4149(24)00126-1/sb1
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb1
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb1
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb2
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb2
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb2
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb3
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb4
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb5
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb6
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb7
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb8
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb8
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb8
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb9
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb10
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb11
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb12
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb13
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb14
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb15
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb16
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb17
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb18
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb18
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb18
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb19
https://arxiv.org/abs/2401.11863
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb21
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb22
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb23
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb24
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb24
http://refhub.elsevier.com/S0304-4149(24)00126-1/sb24

	Superdiffusive planar random walks with polynomial space–time drifts
	Introduction
	Model and main results
	Asymptotics for the vertical process
	Asymptotics for the horizontal process
	Confinement
	Bounds on increments and moments
	The lower bound

	A barycentric excluded-volume random walk
	A brief history
	An heuristic link between the two models

	Declaration of competing interest
	Acknowledgements
	Appendix. Path-sums of one-dimensional martingales
	References


