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Charting the free energy landscape of metastable topological magnetic objects
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Chiral magnets with Dzyaloshinskii-Moriya interactions feature a rich phase diagram with a variety of
thermodynamical phases. These include helical and conical spin arrangements and topologically charged objects
such as (anti)Skyrmions. Crucially, due to hysteresis effects, the thermodynamical phases can coexist at any given
temperature and external magnetic field, typically leading to metastability of, e.g., the material’s topological
phase. In this paper, we use Monte Carlo simulations to study these effects. We compute the relative free energies
of coexisting states, enabling us to determine the ground state at all values of the external parameters. We also
introduce a method to estimate the activation energy, i.e., the height of the energy barrier that separates the
topological phase from the ground state. This is one of the key ingredients for the determination of the Skyrmion
lifetime, which is relevant for technological applications. Finally, we prescribe predicting the system’s evolution
through any path in the space of external parameters. This can serve as a guideline to prepare the magnetic
material in any desired phase or even trigger a phase transition in an experimental setup.
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I. INTRODUCTION

Chiral magnets are magnetic materials typically dominated
by ferromagnetic exchange and Dzyaloshinskii-Moriya (DM)
[1,2] interactions. They exhibit a topological phase, in which
a triangular lattice of partially topologically protected struc-
tures, known as Skyrmions, is stabilized [3–5]. This phase has
been observed experimentally in MnSi [6] for the first time,
and in several other compounds since then [7–12]. Apart from
the general interest in exploring the fundamental properties
of Skyrmions, they are studied for their potential technolog-
ical applications in magnetic data storage technology [13],
racetrack memory [14], artificial synapses for neuromorphic
computing [15], reservoir computing [16], and reshuffling
for signal decorrelation in probabilistic computing [17]. The
counterparts of Skyrmions with opposite topological charge,
known as anti-Skyrmions, have also been studied experi-
mentally [18–24] and have their own set of applications in
spintronics [20].

In practice, the stabilization of Skyrmions strongly depends
on the system’s external parameters, such as temperature or
applied magnetic field (see, e.g., Refs. [25–27]). As a func-
tion of these parameters, chiral magnets feature a rich phase
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diagram with various thermodynamical phases, including he-
lical and conical spin arrangements as well as the topological
phase. Typically, the transition between these phases is subject
to hysteresis effects, which can lead to the coexistence of
different phases at the same temperature and external mag-
netic field, depending on the previous evolution of the system.
Crucially, as one would expect the system to feature a unique
ground state, this implies that, for instance, the topological
phase can be metastable. In this case, the Skyrmions would
have a finite lifetime. It is challenging to determine the true
ground state of the system by distinguishing it from the co-
existing phase, in particular in scenarios close to a phase
transition (see, e.g., Refs. [28–30]). We address this problem
in this paper.

Monte Carlo algorithms provide a powerful tool in the
theoretical study of thermodynamic phases of magnetic ma-
terials [8,31–34]. In particular, it has been shown that these
techniques can reproduce a thermodynamical phase diagram
as measured in experiments [32].

As we will point out in this paper, this even includes the
hysteresis effects mentioned before. In this paper, we inves-
tigate the structure of the phase diagram for chiral magnets
that support either Bloch Skyrmions1 or anti-Skyrmions. In
particular, we focus on points where several thermodynamical

1A Bloch Skyrmion is a vortex in which the projection of the
spins into the plane perpendicular to the external magnetic field is
orthogonal to the radial direction.
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FIG. 1. Schematic illustration of the Gibbs free energy G as the
system is forced to transition from a metastable state to the ground
state. The necessary activation energy Ga corresponds to the height of
the barrier separating both. The difference in free energies between
both vacua is denoted by �G.

phases coexist and study their properties. These properties in-
clude the spectrum of Helmholtz free energies, F , associated
with each phase. By means of free energy, we can determine
the system’s true ground state at each point in the phase
diagram. We also compute the Gibbs free energy G as a
function of the magnetization. In particular, we obtain the
difference �G between the topological phase and the xy-
translation invariant phase and the activation energy Ga,
corresponding to the height of the Gibbs free energy barrier
between them. For every point in the system’s parameter
space, the ground state is one of these two phases. A schematic
illustration of the profile of G and the two quantities Ga and
�G is shown in Fig. 1. Both are crucial for understanding the
metastability of the topological Skyrmion phase, which has
been investigated in, e.g., Refs. [7,35–48]. In particular, Ga

represents the minimal energy that must be provided to the
system to transition from the topological phase to the ground
state if the topological phase is metastable. By the Eyring
equation, it is intimately related to the Skyrmion lifetime
[49–53]:

τ ∝ 1

β
eβGa . (1)

Here, β = (kBT )−1 denotes the inverse temperature. That is,
at fixed temperature, the lifetime grows exponentially with the
activation energy. Most of the studies in this context have been
done for thin two-dimensional (2D) slices. In this paper, we
consider a three-dimensional (3D) bulk material.

To explore the spectrum of free energies associated with
the thermodynamical phases, we introduce a method that
allows tracking and comparing the free energy values as the
magnetic field is varied in Monte Carlo simulations. Our
method is based on numerical thermodynamic integration to
obtain the free energy profile for a given phase and use the
detailed balance equation to assemble free energy profiles

from different phases. We also address how to predict the
system’s state after it is prepared in a given initial state and the
temperature and magnetic field are changed quasistatically
following any specific path. We study this question by
observing the phase transitions along several paths and
obtaining a general rule for their prediction.

The rest of this paper is organized as follows. In Sec. II,
we briefly describe the interactions of chiral magnets and
their Monte Carlo treatment as a discrete spin-lattice system.
We then determine the thermodynamical phase diagram in
Sec. III. In particular, we obtain the spectrum of free energies
associated with the different phases for DM interactions that
stabilize Bloch Skyrmions and anti-Skyrmions. In Sec. IV,
we demonstrate how the activation energy can be obtained
to study the topological phase’s metastability. Furthermore,
Sec. V presents a general prescription for predicting the sys-
tem’s evolution as the temperature and magnetic field are
changed. Finally, we briefly summarize our results and con-
clude in Sec. VI.

II. MONTE CARLO SIMULATIONS OF CHIRAL MAGNETS

In characterizing bulk chiral magnets, we employ a coarse-
grained description in which a continuous vector field M
describes the material’s magnetization. Below the Curie tem-
perature, the norm of this vector is fixed and equal to
the saturation magnetization, |M| = Ms. In this framework,
the associated Hamiltonian of the chiral magnet is then
given by

H =
∫

d3r

[
J

2
(∇M)2 + K DM(M) − B · M

]
, (2)

where J and K are free parameters, and DM(M) denotes
the DM interaction. The latter is generally odd under space
inversions and linear in both M and ∂iM. However, their
specific form varies across different materials. In this paper,
we consider DM interactions that arise in materials with T , O,
and D2d crystal structure, shown in Table I.

For a Monte Carlo treatment of this system, we discretize
space in a cubic lattice of size 30 × 30 × 30 with neighboring
points separated by a distance a.2 We further impose peri-
odic boundary conditions. In terms of the unit vector field
S = M/Ms, the lattice Hamiltonian reads

Hd = −
∑

r

[J̃ Sr · (Sr+x̂ + Sr+ŷ + Sr+ẑ)

+ K̃ DMd (S)r + B̃(Sr )z]. (3)

Here, we assume the external magnetic field is parallel to the
positive z direction, B = Bzẑ. Furthermore, we have defined
the couplings J̃ = JM2

s a, K̃ = KM2
s a2, and B̃ = BzMsa3, all

having dimensions of energy. The discretized DM interactions
DMd (S)r are shown in Table I.

2The simulation of this 3D system is necessary to recover some of
the observed features of chiral magnets [32], but it incurs a significant
computational cost in comparison with the more typical simulations
of 2D lattices. We address this by parallelizing our simulations in
a GPU device, achieving a factor ≈104 speed up, as described in
Ref. [33].
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TABLE I. Possible DM interactions allowed by the crystal structure (i.e., point group) of the material. Here, DM(M) illustrates the
interaction in terms of the continuous magnetization field, while DMd (S)r denotes its discretized counterpart in a spin-lattice system.

Point group DM(M) DMd (S)r Topological structure

T or O M · (∇ × M) Sr · (Sr+x̂ × x̂ + Sr+ŷ × ŷ + Sr+ẑ × ẑ) Bloch Skyrmion
D2d M · (∂xM × x̂ − ∂yM × ŷ) Sr · (Sr+ŷ × x̂ − Sr+x̂ × ŷ) Anti-Skyrmion

At finite temperature T , the probability distribution of the
system’s microstates is characterized by the Boltzmann dis-
tribution. The thermal expectation value of any operator O,
in the presence of a source J, is then given by a Boltzmann-
weighted integral over all states:

〈O〉J = 1

Z

∫
DS Oe−(Hd +J·S)/T̃ , (4)

where we have defined T̃ = kBT . By construction, the source
is a vector field, and J · S = ∑

r Jr · Sr. Similarly, the gener-
ating functional Z , and also the Helmholtz free energy F of
the system, are defined by

Z[J] = e−F [J]/T̃ =
∫

DS e−(Hd +J·S)/T̃ . (5)

Before we continue, we remark that all quantities, 〈O〉, Z , and
F , are invariant under a rescaling of the parameters of the form

J̃ → λJ̃, K̃ → λK̃, B̃ → λB̃, T̃ → λT̃ , (6)

for some arbitrary constant λ, and under a simultaneous
rescaling of the (arbitrary) source. Without loss of generality,
one can hence fix the value of J̃ to unity, J̃ = 1. For the rest of
this paper, we provide all values of the parameters K̃ , B̃, and
T̃ in these units.3

In the following, to obtain the thermodynamical phase
diagram of the chiral magnet, we are interested in the ther-
mal expectation values of the normalized magnetization field
at vanishing source, 〈S〉 ≡ 〈S〉J=0. We obtain these through
Monte Carlo sampling, as outlined below.

A. Obtaining thermal expectation values

To determine the thermal expectation value of the normal-
ized magnetization field, 〈S〉, we implement a Metropolis-
Hastings algorithm [54,55]. In each step of the algorithm, a
random node of the spin lattice is selected, and a new spin
is proposed with a uniform probability distribution over the
set of unit vectors. The selected spin is then updated with
probability

p(�Hd ) = min{1, e−�Hd /T̃ }, (7)

where �Hd is the change in energy induced by the spin
update.

A lattice sweep is defined by performing as many single-
spin updates as the number of lattice nodes. In our case,
one sweep amounts to 27 000 spin updates. To simulate an
adiabatic process in which the temperature and magnetic field
are changed slowly, we update them in small increments,

3Alternatively, one may view this choice as replacing these param-
eters by their dimensionless versions, K̃/J̃ , B̃/J̃ , and T̃ /J̃ .

performing 104 thermalization sweeps at each value. Then,
after a suitable thermalization, we obtain the expectation value
of an observable by computing its average over 2000 con-
figurations. The latter is obtained by performing 50 sweeps
between one configuration and the next.

When moving through the configuration space of temper-
ature and magnetic field, we refer to the path followed by
T̃ and B̃ during a simulation as a schedule. We consider the
following basic schedules designed to match the experimental
procedures.

(1) Zero-field cooling (ZFC). Starting at B̃ = 0 and T̃ = 2,
decrease T̃ to its target value in 20 steps, following a geo-
metric progression. Then, increase B̃ to its target value in 20
equally spaced steps.

(2) High-field cooling (HFC). Starting at B̃ = 0.6 and
T̃ = 2, decrease T̃ to its target value in 20 steps, following
a geometric progression. Then, decrease B̃ to its target value
in 20 equally spaced steps.

(3) Field cooling (FC). Starting at B̃ fixed at its target value
and T̃ = 2, decrease T̃ to its target value in 20 steps, following
a geometric progression.

The finite size of the lattice induces anisotropy effects
that can be partially corrected by introducing next-to-nearest
neighbor interactions, as described in the Appendix and in
Refs. [56,57]. We implement these corrections in all our sim-
ulations. To speed them up, we divide the lattice into three
sublattices forming a three-dimensional checkerboardlike pat-
tern, with the property that the spins in a given sublattice
do not interact. The calculation can then be accelerated by
simultaneously updating all the spins in a sublattice (see, e.g.,
Ref. [58]). This reduces the simulation time by a factor of
about O(104), compared to a serial implementation of the
Metropolis-Hastings algorithm.

In all our simulations, we fix K̃ = tan(2π/10). It can be
shown that this leads to helical configurations with a period
of ten lattice sites [31]. This period is directly related to the
Skyrmion radius [33], and in this case it allows for the lattice
we use to contain up to nine Skyrmions, when they are densely
packed.

It has been shown that the results obtained with this pro-
cedure closely mimic the experimental scenario, including
metastable states and hysteresis [33]. The latter effectively
amounts to a dependence of the thermal expectation value on
the schedule, i.e., the path that the Markov chain Monte Carlo
samples in configuration space. Let us briefly elaborate on this
subtlety.

B. Path dependence of thermal expectation values

In an ideal scenario, the thermal expectation values of
operators, as well as the free energy and partition function of
the system, are entirely determined by the external parameters
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J̃ , K̃ , B̃, and T̃ . However, they also depend on how the system
is prepared in practice. The reason is that the Hamiltonian
Hd is generally a nonconvex function of S. Depending on
the path followed by the system in the external-parameter
space, it might become trapped in the proximity of a lo-
cal minimum of Hd , with a temperature T̃ lower than the
energy barrier that separates the local minimum from the
global one.

This path dependence leads to hysteresis effects, in
which the system can stay in a metastable state (close
to a local minimum) for long periods. This has been
confirmed experimentally (see, e.g., Ref. [7]). When this
happens, the integration space in Eqs. (4) and (5) reduces
from the space of all states to only those close to the
selected local minimum. Therefore, to capture this phe-
nomenon, the path integration should be done over the
spin configurations that belong to the same macrostate A.
Equivalently, one can keep the entire integration space and
change the integration measure instead, i.e., schematically one
can write

DS → DS 1A(S), (8)

where 1A is the indicator function with support in A:

1A(S) =
{

1 if S ∈ A
0 otherwise

. (9)

The quantities 〈O〉, Z , and F then become multivalued
functions of the external parameters, with each branch com-
puted by integration with the measure in Eq. (8). These are
then labeled by the macrostate A, denoted as 〈O〉(A), Z (A),
and F (A). In adiabatic processes, a particular branch of these
functions is selected by continuity over the path followed by
the system in the external-parameter space. This will become
important in our following analysis of the phase diagram of a
chiral magnet.

III. SPECTRUM OF METASTABLE STATES

To study the phase diagram for the two types of DM
interactions displayed in Table I, we simulate the system’s
evolution through each of the schedules defined in Sec. II A,
with the target temperature and magnetic field given by the
desired values of the temperature and magnetic field. We then
compute the expectation value 〈Sr〉 of the spin configura-
tion by averaging over 2000 configurations separated by 50
sweeps. We find several distinct phases of the system across
these simulations. They can be identified through the structure
presented by 〈Sr〉 as follows.

(1) The topological phase, characterized by the presence
of tubelike structures, invariant under translations along the z
axis, and having topological charge |Q| � 1, with

Q = 1

4π

∑
r

〈Sr〉 · (〈Sr+x̂〉 × 〈Sr+ŷ〉), (10)

where the sum is over all lattice nodes in the xy plane, for
any fixed value of z. Structures with Q � −1 are known as
Skyrmions, whereas those with Q � 1 are anti-Skyrmions.
They are supported by materials both with T or O point group
and D2d point group, respectively. We find that, apart from

the phase boundaries, the (anti)Skyrmions are densely packed,
forming a hexagonal structure. The lattice size and value of K̃
we have selected allow for a hexagonal arrangement of nine
Skyrmion tubes in this phase.

(2) The helical phase, with an easy axis in the 〈111〉 direc-
tions for the T or O materials, and in any direction in the xy
plane for the D2d materials. The spins are orthogonal to the
easy axis and rotate uniformly as one moves along it. There is
translational symmetry along any direction perpendicular to
the easy axis.

(3) The conical phase, which only appears in T or O
materials. There is symmetry under translations along the xy
plane. There is a constant z component for all spins. The spins
rotate uniformly around the z axis as one moves along it.

(4) The ferromagnetic phase, where all spins are aligned
with the magnetic field.

(5) The paramagnetic phase, in which there is no particular
order in the spins.

We can identify the different phases by the methods out-
lined in Ref. [32]. Similar methods have been used to compute
�Fab in 2D materials in Ref. [59]. First, we classify the con-
figuration as being in the topological phase if (and only if)
|Q| � 1. If |Q| < 1, we compute the Fourier transform of the
spin expectation value:

〈Sk〉 = 1

N

∑
r

eik·r〈Sr〉, (11)

with N being the number of lattice sites. The phase can then
be determined through the number and position of separate
peaks in the intensity spectrum, |〈Sk〉|2. In the helical phase,
two Bragg peaks corresponding to the wave-vector direction
are diagonally present in all Fourier planes (but only the kxy in
the D2d models due to the lack of z axis DMI modulation for
this symmetry). In the conical phase, the peaks are vertically
placed in the kxz and kyz planes, with no contribution in kxy.
Ferromagnetic configurations only produce one peak at the
center.

In practice, we encounter classification difficulties near the
conical-helical boundary in ZFC and HFC phase diagrams,
where one phase continuously distorts into the other along
the temperature axis. For instance, in a given T, O symmetry
configuration in this regime, we observe Bragg peaks in the
kyz plane only (implying a conical configuration), yet with
a horizontal alignment (suggesting helical). In this case, we
manually inspect the phase, marking such points of ambiguity
on the phase diagram in magenta.

We show each phase diagram for the ZFC, HFC, and FC
schedules in Fig. 2.4 We find a topological phase pocket for
the three schedules and both types of DM interactions. Thus,
the topological phase is the only available thermal state in the
region where the pockets for the three schedules intersect. At
temperatures below the ones in the intersection region, differ-
ent phases are generated by different schedules for the same
final temperature and magnetic field, T̃ and B̃, respectively.
These are, therefore, the metastable states described in Sec. II.
At the boundaries between phases, we observe mixed states of
two or more of these.

4The D2d scenario has already been presented in Ref. [33].
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FIG. 2. Thermodynamical phase diagrams for materials with T or O (top), featuring Bloch Skyrmions, and D2d (bottom) crystal symmetry,
featuring anti-Skyrmions, as a function of temperature T̃ and magnetic field B̃. The first three panels illustrate the ZFC, HFC, and FC schedules
(from left to right) described in the main text. The rightmost panels show the corresponding ground state of the system. In all panels the
topological (anti)Skyrmion phase is shown in yellow-red, where the colorbar illustrates the total topological charge Q, from low (yellow) to
large charge (red). Furthermore, the helical phase is shown in blue, the conical phase is shown in purple, and the ferromagnetic (paramagnetic)
phase is shown in light (dark) gray. In the first three columns, points where multiple phases coexist are shown in magenta. For a description of
these, see the main text. In the rightmost panels, the magenta color coding denotes states of nontrivial structures featuring a topological charge,
which, however, are distinct from ordered Skyrmion tubes, lacking a z-translation invariance.

To identify the true ground state of the system, we need
to determine the free energy difference between coexisting
phases. That is, we obtain

�Fab = F (b)|J=0 − F (a)|J=0, (12)

between the zero-source free energies of two (meta)stable
states a and b that arise at any temperature and magnetic
field by following the method outlined in Ref. [32]. One can
perform simulations of the system in both states to compute
the average transition probabilities between p(a → b) and
p(b → a). These determine

e−�Fab/T̃ = p(b → a)

p(a → b)
. (13)

In practice, we find that T̃ is much smaller than the energy
difference of both states, 〈H〉(b)

J=0 − 〈H〉(a)
J=0. This leads to the

approximate relation

�Fab � 〈H〉(b)
J=0 − 〈H〉(a)

J=0, (14)

Across all the phase diagrams for the D2d crystal structure, the
different phases at a given point are ordered with the following
hierarchy:

Fhelical < Ftopological < FFM for B̃ � 0.1, (15)

Ftopological < Fhelical < FFM for 0.1 � B̃ � 0.3, (16)

FFM < Ftopological for 0.3 � B̃, (17)

in the region where these phases coexist, and where Fp de-
notes the free energy for the phase p (and FM denotes the
ferromagnetic phase).

On the other hand, for the T or O crystals supporting Bloch
Skyrmions, we find

Fconical < Fhelical < Ftopological, (18)

in the 0.14 � B̃ � 0.20 range at low temperatures, the only
region where all three phases coexist. Otherwise, the ordering
changes throughout the parameter space, and is easily deduced
from the ground state diagram in Fig. 2. Unlike the D2d case,
neither conical or topological phases persist at higher fields
above the upper boundary, with the ferromagnetic phase being
the only stable option.

These relations allow us to determine the state with mini-
mal free energy for each temperature and magnetic field.5 We
refer to this state as the ground state. In Fig. 2, we include a
diagram showing the ground state at every point. We remark
that for DM interactions of type T or O, this diagram closely
resembles the one obtained in Ref. [32], especially pertaining
to the small temperature range spanned by the topological
phase pocket.

5While dedicated methods to find the ground state efficiently, such
as parallel-tempering Monte Carlo [23], already exist, we have de-
signed our method so that we can also keep the metastable states, in
which we are interested, and compute their relative free energies and
study the transitions between them.

195114-5



JUAN CARLOS CRIADO et al. PHYSICAL REVIEW B 109, 195114 (2024)

IV. GIBBS FREE ENERGY PROFILE

The presence of metastable states is a consequence of
the nonconvex nature of the Hamiltonian, which has sev-
eral local minima separated by barriers that prevent the
system from transitioning from one minimum to another at
zero temperature. The height of these barriers, therefore, de-
termines the metastability (and hence the lifetime) of the
different states in the low-temperature regime. The same sit-
uation arises at higher temperatures, with the role of the
energy being played by the Gibbs free energy, which is
defined as the Legendre transform of the Helmholtz free
energy:6

G[Sbkg] = F [J(Sbkg)] + Sbkg · J(Sbkg). (19)

Here, J(Sbkg) is the solution to the equation

〈S〉J(Sbkg ) = Sbkg, (20)

and the argument Sbkg behaves as a background field,
with thermal effects causing the spins to fluctuate around
it. Clearly, for a vanishing source, J = 0, the Helmholtz
and Gibbs free energies are equal. Indeed, the Gibbs free
energy has the following properties that make it effec-
tively a version of the Hamiltonian Hd including thermal
corrections.

(1) As T → 0, the path integrals reduce to their saddle-
point approximation, and therefore G[Sbkg] → H[Sbkg].

(2) G has local minima at configurations of Sbkg cor-
responding to the different (meta)stable macrostates with
vanishing source, since dG/dSbkg = 0 implies J = 0.

(3) The Eyring equation (1) describes the relation be-
tween the lifetime of metastable states and Gibbs free energy
barriers.

In this section, we aim to compute the profile of G along
a path in the background field space of Sbkg connecting the
topological phase and the xy-translation invariant phase, i.e.,
the conical state for T/O or the ferromagnetic one for D2d .
This will allow us to estimate the height of the energy barrier,
Ga, between the two and, therefore, in turn, to determine the
lifetime of the topological phase.

To construct the desired path in the integration, we turn on
a constant source term:

J = −J0ẑ. (21)

Using this and starting at the topological phase, a slow in-
crease of the source from J0 = 0 to a high value (J0 � 0.7, for
example), followed by a decrease back to J0 = 0, induces a
phase transition into the conical phase for T/O crystals and
into the ferromagnetic phase for D2d , respectively. Thus, in
both cases, one can obtain a path connecting the topological
phase and the xy-translation invariant phase with the same
procedure.

We remark that, in this setting, the thermal averages of
operators and the Helmholtz free energy can be viewed as

6In a quantum field theory scenario, one can think of the Helmholtz
free energy as the generating functional for connected Green’s
functions while the Gibbs free energy corresponds to the quantum-
effective action.

functions of temperature, magnetic field, and source, denoted
by 〈O〉T̃ ,B̃,J0

and F (T̃ , B̃, J0), respectively. A convenient prop-
erty of Eq. (21) is that the source it defines can be absorbed in
the magnetic field, i.e.,

〈O〉T̃ ,B̃,J0
= 〈O〉T̃ ,B̃+J0,0, (22)

F (T̃ , B̃)[J0] = F (T̃ , B̃ + J0)[0]. (23)

These relations allow us to simulate both objects using the
algorithm described in Sec. II. In view of them, the source
J0 can be regarded as an additional magnetic field B. How-
ever, we keep them separated in order perform the Legendre
transform over J0 for the calculation of G at any given
value of B.

The Gibbs free energy depends on the background field
only through the average local magnetization:

M(T̃ , B̃) = 〈(Sr )z〉T̃ ,B̃,J0
. (24)

Therefore, it can be viewed as a function of these three param-
eters too, G(T̃ , B̃)[M]. Note that the source is also a function
of temperature and magnetic field, which will become clear
momentarily. The Gibbs free energy has the property that
∂G/∂M = J0, which can be integrated to generate the profile
of G as a function of M at constant temperature and magnetic
field, T̃ and B̃:

G(T̃ , B̃)[M] = G0 +
∫ M

M0

J0 dM. (25)

This means that G can be reconstructed, up to a constant shift,
from the source J0. To determine the latter in practice, one
can slowly vary J0, and compute the magnetization M for
each source value. That is, repeating this for every desired
value of T̃ and B̃, a magnetization function M(T̃ , B̃)[J0] is
obtained. The resulting relation between J0 and M can then
be inverted. Indeed, by means of Eq. (22), one only needs to
compute M(T̃ , B̃ + J0)[0] to obtain M(T̃ , B̃)[J0].

To compute the magnetization for the relevant range of
parameter values, we perform the following simulations,
recording M along the way.

(1) Initialize the system on the topological phase at some
initial temperature and magnetic field, T̃0 and B̃0, using the FC
schedule.

(2) Decrease B̃ to zero in 100 steps �B̃ (here we choose
�B̃i = 0.02 for each step i).

(3) Increase B̃ in 800 steps until a sufficiently high field
(B̃ = 0.8) is reached, where the configuration has collapsed to
the ferromagnetic phase.

(4) Decrease the field back to B̃0 in 100 steps, again record-
ing the observables.

We refer to the schedule here as a field loop. We perform
this procedure for B̃0 = 0.2 and T̃0 between 0.001 and 0.6, in
steps of 0.05.

In the above algorithm, the integral (25) can then be ap-
proximated using finite differences:

G(T̃0, B̃)n = G(T̃0, B̃)0 +
n∑

i=1

(B̃i − B̃)(Mi − Mi−1), (26)

where B̃i and Mi are the values of B̃ and M at the ith step of the
field loop. Carefully note that this equation may be used only

195114-6



CHARTING THE FREE ENERGY LANDSCAPE OF … PHYSICAL REVIEW B 109, 195114 (2024)

FIG. 3. Magnetization M, topological charge Q, and derivative of the magnetization dM/dB̃ as a function of B̃, for the field loop schedule,
defined in Sec. IV, at T̃ = 0.001 and for D2d -type DM interactions. The small peak in dM/dB̃ and the quick change in Q at around B̃ � 0.55
are early signs of the phase transition, corresponding to a local collapse of some of the anti-Skyrmion structures, which leads to a small region
in the lattice being in the ferromagnetic state, in coexistence with the larger anti-Skyrmion phase.

to compute the Gibbs free energy for a series of consecutive
points belonging to the same macrostate. The reason for this
is illustrated in Fig. 3, where we display M, Q, and dM/dB̃
as functions of B̃ in an example scenario. We find that the
numerical derivative of the magnetization suddenly diverges
when the system evolves to a different phase along the loop
schedule, indicating a first-order phase transition. Since the
phase transition arises in jumps, through the disappearance
of an integer number of (anti)Skyrmions in each jump, the
derivative of the magnetization varies wildly in a relatively
small section of the loop until the phase transition is com-
pleted. Equation (26) can only generate the relative values
of G for a series of consecutive points in the same phase.
Along these lines, to assemble different series corresponding
to different phases, we use the fact that �G equals �F at
its minima, �G = �F . The latter can be computed by the
method described in Sec. III. We thus shift all the points in
each series of points by the same amount for the difference
between minima to match the value computed from �F . In
Fig. 4, we show some example profiles of the Gibbs free
energy along a loop schedule constructed using the above
procedure. As a cross check, we have verified the crucial
property that G approaches 〈H〉 at low temperatures. The anti-
Skyrmion phase is the ground state at B̃ = 0.2, and metastable
at B̃ = 0.4, with the ferromagnetic phase playing the
opposite role.

In this scenario, we can estimate the value of the energy
barrier between phases, Ga, by taking the maximum value of
G along the piece of the loop between the two local minima.
While Fig. 4 illustrates these energy barriers for specific val-
ues of the external field, B̃ = 0.2 and 0.4, respectively, our
field-loop approach is able to chart the Gibbs free energy
landscape over the entire phase diagram in temperature and
magnetic field. We illustrate this in Fig. 5. Here, we perform
the field loop mentioned before for (metastable) states at
different temperatures and external field. These states are pre-
pared through an FC schedule. As an example, we study the
low-temperature regime, 0.15 � T̃ � 0.55, where, depending
on the magnetic field, the metastable states are conical, topo-
logical, or helical or a superposition of these (see third column
Fig. 2). Performing the field loop will then drive the system

to the true ground state, shown in the rightmost panels of
Fig. 2. In Fig. 5, we track this transition and illustrate the
energy barrier between these phases, Ga, together with the
energy difference between vacua, �G = �F , computed via
the method described in Sec. III. Rough estimates for bound-
aries between the different phase transitions are indicated by
the dashed lines. We also show the ratio �G/Ga as a quick
indication of what could be measured in an experiment, which
we will briefly comment on later.

Clearly, for both crystal structures at high magnetic fields
and large temperatures, the ferromagnetic phase dominates
and the energy barrier between vacua vanishes. Similarly, for
a T or O symmetric structure, featuring Bloch Skyrmions,
the free energy difference grows for small magnetic field,
indicating that the dominant helical phase in this region is well
separated from other vacua, further reinforced by the right
panel of the figure. This showcases the potential of our method
to determine the separation between vacua everywhere in the
thermodynamical phase diagram.

We note that our results for the activation energy and free
energy difference illustrated in Fig. 5 are given as dimension-
less quantities, that do not have a physical meaning a priori.
At the same time, in principle, the results we have obtained
in this section can be tested experimentally in materials in
which the ferromagnetic and DM interactions dominate. A
potential procedure for this would be to prepare the system
in the topological phase in the region where it is metastable
through an FC schedule and then perform a loop schedule,
tracking the magnetization along it. The activation energy Ga

and free energy difference �G can be computed in physical
units using Eq. (26). The ratio �G/Ga should agree with the
one for the dimensionless version of both quantities we have
shown in this paper.

V. PREDICTING THE EVOLUTION
FOR ARBITRARY SCHEDULES

In the previous sections, we have established that several
phases can exist at the same temperature and magnetic field,
T̃ and B̃, corresponding to the different minima of the Gibbs
free energy, G(T̃ , B̃). We now want to address the question
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FIG. 4. Example profiles of the Gibbs free energy density G/V as a function of the magnetization density M/V for different temperatures
and B̃ = 0.2 (left) and B̃ = 0.4 (right), with DM interactions of D2d type. These profiles have been generated through numerical integration
along the loop schedule described in Sec. IV. The local minima correspond to the topological and ferromagnetic phases. The inset axis on
the left zooms in to show the ferromagnetic local minimum. The dotted line represents the piece of the path in which M has discontinuities,
signaling a first-order phase transition between these two phases.

of how to predict which of these phases is chosen by the
system at the end of some process, using as the input data

the initial state of the system and the path it follows in (T̃ , B̃)
space.

FIG. 5. Activation energy Ga (left), free energy difference �G (center), and their ratio �G/Ga (right) as a function of temperature and
magnetic field, T̃ and B̃. The upper row illustrates a T or O symmetric crystal (featuring Bloch Skyrmions), while the lower one illustrates
a D2d system (featuring anti-Skyrmions). These quantities are associated to the transition between metastable states and the true ground
state. The states are either conical (Co), topological (Top), helical (He), or ferromagnetic (Fe), or even a nontrivial superposition of these.
Rough estimates for boundaries between the different phase transitions are indicated by the dashed lines. The rightmost panel is included for
experimental indication (see main text). Here, the white region shows the divergence of the ratio due to a vanishing barrier height at high
temperatures and large magnetic fields.
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FIG. 6. Schematic representation of the three sheets ξ (0)(T̃ , B̃), ξ (1)(T̃ , B̃), and ξ (2)(T̃ , B̃) of the surface of free minima of the Gibbs free
energy G. Left: Individual representation for all sheets. Right: All sheets were drawn together, with arrows indicating the paths in (T̃ , B̃, ξ )
space through the different schedules we consider in this paper.

We assume the existence of a continuous function ξ (Sbkg)
in the space of Sbkg configurations that takes different values
ξxy < ξtopological < ξhelical at the different phases, where ξxy

corresponds to the xy-translation invariant phase (conical, for
T/O crystals, or ferromagnetic, for D2d ). The set of minima
of G(T̃ , B̃)[Sbkg] forms a surface in (T̃ , B̃, ξ ) space with three
sheets:

ξ (0)(T̃ , B̃) � ξ (1)(T̃ , B̃) � ξ (2)(T̃ , B̃). (27)

At a (T̃ , B̃) space in which there is only one possible phase,
we have ξ (0) = ξ (1) = ξ (2). A schematic representation of this
surface is shown in Fig. 6.

Throughout the four schedules we have considered so far
(ZFC, FC, HFC, and loop), the evolution of the system con-
sistently shows a tendency to stay in the same ξ (i) sheet unless
that sheet ceases to exist for the given (T̃ , B̃). More concretely,
the path that the system follows in (T̃ , B̃, ξ ) space can be
predicted from the initial state by following two rules.

(1) ξ is continuous as one moves along the path.
(2) When ξ branches at a point, the evolution follows along

the current sheet.
The states predicted by these rules match those we find in

our simulations in all four schedules in both types of crystals.
In order to test them in a different scenario, we consider a new
schedule, defined by performing an HFC to the region where
a conical (for T or O crystal) or ferromagnetic (for D2d ) state
is reached, with the final B̃ in the region where the topological
phase is the ground state at higher temperatures, and then
increasing the temperature. Following the rules, the system
will reach the topological phase, which agrees with what we
find in the previous simulations. We have thus shown that they

work across all the boundaries of the regions in (T̃ , B̃) space
corresponding to the different phases, for multiple points of
crossing and various previous histories of the system.

Finally, we conjecture that these rules, which we have de-
rived for the quasistatic evolution of the system under Monte
Carlo simulations, will hold for materials dominated by ferro-
magnetic and DM interactions. This is supported by the fact
that such simulations have been shown to correctly reproduce
the phase diagram of Bloch Skyrmions [32]. Again, these
rules can be tested experimentally by preparing the system on
each available state at some external parameter point, chang-
ing the temperature or magnetic field to make it go through
the branching regions, and observing the phase transitions.

VI. CONCLUSIONS

In this paper, we have studied the structure and properties
of metastable states in chiral magnets using Monte Carlo sim-
ulations of a spin-lattice system with ferromagnetic and DM
interactions. Depending on the path followed by the system,
as the temperature and external magnetic field are varied, the
final state can be in different thermodynamical phases for the
same initial state and final parameter values of T̃ and B̃. In
fact, this leads to a multivalued free energy function, with one
branch per metastable state.

We have implemented a general method for computing free
energy differences between metastable states of the system.
By this method, we have found the ordering in the free ener-
gies of the different states, and, using these results, we have
obtained a complete phase diagram providing the ground state
at every value of the temperature and external magnetic field
for both types of DM interactions we consider. Furthermore,
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we have determined the free energy difference �F between
the topological phase and the xy-translation invariant phase,
which is conical or ferromagnetic, depending on the DM
interaction type.

Crucially, we have also proposed a procedure for com-
puting the Gibbs free energy, which plays the role of the
Hamiltonian function, including thermal corrections, along a
path connecting the topological phase and the xy-translation
invariant phase. In practice, we have successfully employed
this procedure to obtain the energy barrier, i.e., the, activation
energy Ga, separating both phases (at a distance �G). In prin-
ciple, these quantities can also be measured experimentally in
a similar way. We expect our numerical results for the ratio
�G/Ga to provide a robust prediction for the values obtained
through the experiment. Determining Ga is relevant in tech-
nological applications because it controls the lifetime of the
corresponding (anti)Skyrmion structures when metastable.

Finally, we have provided a set of rules to predict the ther-
modynamical phases a chiral magnet will go through when
following an arbitrary schedule. According to these rules,
one can use the map we have generated for the three-sheeted
surface of the Gibbs free energy’s local minima and assume
continuity and the system’s tendency to stay on the same sheet
to get a well-defined prediction for every schedule. Similar
to the activation energy, we expect that these rules can be
robustly tested in an experiment. They can potentially be
used to prepare a chiral magnet in any available state or even
trigger any desired phase transition between thermodynamical
phases.
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APPENDIX: NEXT-TO-NEAREST
NEIGHBOR CORRECTIONS

The microscopic model Hd [Eq. (3)] approximates the
coarse-grained system described by H [Eq. (2)] for small
lattice spacing a, with a relative error of order a2. This can
be improved to a relative error of order a4 by introducing
next-to-nearest neighbor interactions with the same structure,
as shown in Ref. [32]. We provide here an alternative proof
based on the Taylor expansion

Ms(Sr+aei − Sr ) =
∞∑

n=1

an

n!
∂n

i M (A1)

where e1 = x, e2 = y and e3 = z.
The lattice approximation to the ferromagnetic exchange

term can be derived from

M2
s

∑
i

(Sr+aei − Sr )2 = a2(∇M)2 + a4

4

∑
i

(
∂2

i M
)2

+ [odd] + O(a6), (A2)

where [odd] denotes terms with an odd number of derivatives,
which vanish when integrated over r with periodic boundary
conditions. Neglecting these terms, we have

M2
s

a2

∑
i

(Sr+aei − Sr )2 = (∇M)2 + O(a2). (A3)

Expanding the left-hand side one obtains the nearest neighbor
Hamiltonian Hd up to constant terms. Including next-to-
nearest neighbor interactions with the same structure a
suitable coefficient allows us improve this to

4M2
s

3a2

∑
i

[
(Sr+aei − Sr )2 − 1

16
(Sr+2aei − Sr )2

]

= (∇M)2 + O(a4). (A4)

A similar procedure can be applied to the DM interaction
terms. They can always be written as

∑
i jk Ki jkMi∂ jMk , with

Ki jk = −Kk ji. One then has

M2
s

∑
i jk

Ki jk (Sr )i(Sr+ae j − Sr )k

=
∑
i jk

Ki jk

(
aMi∂ jMk + a3

6
Mi∂

3
k Mk

)

+ [even] + O(a5). (A5)

In this case, because of the antisymmetry of K, the terms
[even] with an even number of derivatives vanish under the
r integral. Neglecting them, one gets the following approxi-
mation with nearest neighbor interactions only:

M2
s

a

∑
i jk

Ki jk (Sr )i(Sr+ae j − Sr )k

=
∑
i jk

Ki jkMi∂ jMk + O(a2). (A6)

The inclusion of next-to-nearest neighbor interactions of the
same form with an appropriate coefficient gives

4M2
s

3a

∑
i jk

Ki jk (Sr )i

[
(Sr+ae j − Sr )k − 1

8
(Sr+2ae j − Sr )k

]

=
∑
i jk

Ki jkMi∂ jMk + O(a4). (A7)

The order a2 corrections eliminated through this method
are anisotropic in both cases. Since the continuum Hamilto-
nian to be approximated is isotropic, it is particularly useful to
keep the symmetry up to higher orders in the lattice version.

The practical utility of this method can be assessed by
comparing the results obtained using it with the experimental
observations. It has been shown in Ref. [32] that the correct
phase diagram for Bloch Skyrmions is obtained in this way,
which was not possible with just the nearest neighbor version
for the typical lattice sizes we consider. In order to ensure that
there is no need to include additional finite-size effects (which
would now be of order a4), we have performed simulations
for a larger 60 × 60 × 60 lattice, at several representative
points in parameter space. We have not found any noticeable

195114-10



CHARTING THE FREE ENERGY LANDSCAPE OF … PHYSICAL REVIEW B 109, 195114 (2024)

differences between them and the ones for the 30 × 30 × 30
lattice that we have used in the rest of this paper.

The effects of these corrections have been studied in
Refs. [60,61], in the context of the O(N ) nonlinear σ model
which, for N = 3, coincides with the system we study at

K = B = 0 and in two dimensions. It has been found that they
significantly improve the convergence to the continuum limit
of observables in Monte Carlo simulations. Similar ideas have
been applied to other systems, such as the 3D Ising model [62]
and quantum chromodynamics [63].
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