CATEGORIFICATIONS OF NON-INTEGER QUIVERS:
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ABSTRACT. We define the notion of a weighted unfolding of quivers with real weights,
and use this to provide a categorification of mutations of quivers of finite types Hy, Hs
and I3(2n+1). In particular, the (un)folding induces a semiring action on the categories
associated to the unfolded quivers of types Eg, Dg and As, respectively. We then define
the tropical seed pattern on the folded quivers, which includes ¢- and g-vectors, and
show its compatibility with the unfolding.
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1. INTRODUCTION AND MAIN RESULTS

Cluster algebras were introduced by Fomin and Zelevinsky [27] in an effort to describe
dual canonical bases in the universal enveloping algebras of Borel subalgebras of simple
complex Lie algebras. A cluster algebra of geometric type is completely defined by an
integer skew-symmetrizable n X n exchange matriz (or, equivalently, by the corresponding
cluster quiver), which undergoes involutive transformations called mutations. A cluster
algebra possesses a distinguished set of generators, cluster variables, organized in groups
of the same cardinality called clusters. Pairs composed of a cluster and the corresponding
exchange matrix are called seeds which form a combinatorial structure called a seed
pattern.

A distinguished class of cluster algebras consists of algebras of finite type, i.e. cluster
algebras having only finitely many distinct cluster variables. These algebras were clas-
sified by Fomin and Zelevinsky in [28] by establishing a connection with Cartan-Killing
classification of simple Lie algebras. More precisely, it was shown in [28] that cluster al-
gebras of finite type are in one-to-one correspondence with finite root systems, and there
is a bijection between the set of cluster variables and the set of roots consisting of all
positive roots and negative simple roots.

A categorification of cluster algebras associated to quivers of finite type was constructed
in a series of papers by Buan, Marsh, Reineke, Reiten, and Todorov [6, 7, 8] and by

Research was supported by the Leverhulme Trust research grant RPG-2019-153.
1



2 DREW DAMIEN DUFFIELD AND PAVEL TUMARKIN

Caldero, Chapoton and Schiffler [11, 12]. The categorification involves the construc-
tion of the cluster category and the development of cluster-tilting theory. Cluster-tilting
theory has since inspired exciting new directions in the representation theory of finite-
dimensional algebras, prompting further developments in topics concerning exceptional
sequences [5, 43], 7-tilting theory [1], and the wall and chamber structure of finite-
dimensional algebras [3] (to name but a few). The theory is particularly well-understood
in the finite type setting as a result of the formal connection made between cluster al-
gebras of finite type and cluster categories via the Caldero-Chapoton map [10], which
induces a bijection between the cluster variables of a cluster algebra of finite type and
the indecomposable objects of the corresponding cluster category (cf. [13]).

Cluster algebras of finite type correspond to finite root systems and thus to finite
crystallographic Coxeter groups. In this paper, we consider cluster structures defined
from finite non-crystallographic Coxeter groups and their associated root systems (in
the sense of Deodhar [18]). The main goal is to extend the cluster combinatorics and
categorification to the exchange matrices and quivers of types Iy(n), Hs and Hy.

Mutations of matrices with real entries were considered e.g. in [34, 25]. In contrast
to the usual integer framework, the seed pattern defined as in the integer setting lacks
some basic good properties. We show that the tropical degeneration of the seed pattern
can nevertheless be consistently defined, and mutations of quivers of types I5(2n+1), Hs
and H, can be categorified in line with the integer counterparts. There are additional
technical considerations and slight differences in theory for the I5(2n) cases which arise
from the existence of short and long roots. As such, categorification of quivers of types
I5(2n) are addressed in a separate paper ([21]).

One of our main tools is a weighted (un)folding of a quiver (see Section 3 for the
details), the application of which follows the projection of root systems of types FEg, Dg
and A, developed in [36, 42, 37]. In particular, the (un)foldings give rise to projections of
dimension vectors of objects in module categories of integer quivers to the roots associated
to folded quivers (Section 5). We obtain the following theorem.

Theorem 1.1 (Theorem 5.2, Proposition 5.14). Let F: Q® — Q*' be a weighted folding
of quivers, where Q* is a quiver of type A € {Ay,, Dg, Es} and Q%" is a quiver of type
A" € {I5(2n+1), H3, Hy}. Then F determines a weighting on the rows of the Auslander-
Reiten quiver of mod KQ® such that the following hold:

(a) The dimension vectors of the modules in the rows with weight 1 project onto the
positive roots of A'.

(b) Let Ry and Ry, be rows (with respective weights 1 and w) that correspond to the
same vertex of the folded quiver. Then the projected dimension vector v, of a
module M,, € R, is such that v,, = wvy, where vy is the projected dimension
vector of the module My € Ry in the same column as M,,.

Moreover, these results naturally extend to the bounded derived category D°(mod KQ).

This, in turn, gives rise to a semiring action on the module, derived and cluster cat-
egories of the integer quiver, where the semiring (which we denote by R,) is defined
from the weights of arrows of the folded quiver (Section 6). The main result here can be
formulated as follows.

Theorem 1.2 (Theorems 6.3, 6.13). Let F, A and A’ be as above. Then mod KQ* has
an action of the semiring Ry.. The collection of indecomposables of mod KQ® whose
projected dimension vector is a root of A" forms a minimal set of R.-generators for
mod KQ*. These results naturally estend to the bounded derived category D°(mod K Q).
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The semiring action also applies to the cluster category of Q%, and this allows us to
extend the results of [6] to categorify mutations of folded quivers by considering distin-
guished objects with respect to the action, which we call R,-tilting objects (Section 7).
We prove the following.

Theorem 1.3 (Theorems 7.13, 7.14, 7.16, 7.20, 7.21). Let F: Q* — Q%' be a folding of
quivers with A" € {Hs, Hy, I;(2n + 1)}. Then the following holds for the category cluster
category Cp of Q4 :
(a) Every basic R, -tilting object T € Cg (injectively) corresponds to a basic tilting
object T € Cp.
(b) If T is a basic R, -tilting object, then T has |Q5"| indecomposable direct summands.
(c) If T is an almost complete R -tilting object, then it has exactly two complements.
(d) If T is a basic R, -tilting object, and Ar is the cluster-tilted algebra corresponding
to f, then there exists an Ry -action on mod Ar.
(e) Let T be an almost complete R, -tilting object with complements X, and Xo, let
T =T X}\ and 7;\2 =T @ Xs, and let Ay, Ay be cluster-tilted algebras corre-
sponding to Ty and Ty. Then the (non-integer) folded quivers associated to Ay and
Aqy differ by a single mutation.

We also note that for the two complements in (c) one obtains triangles between inde-
composables that are R, -generated by the complements (see Corollary 7.18).

Finally, we define the tropical seed patterns of folded quivers. We define c-vectors
and C-matrices as in the integer case, and we consider two definitions of g-vectors (or
G-matrices). The first definition goes along the results of [39] by defining G-matrix as
the inverse of the transposed C-matrix. The second way to define g-vectors is to apply
the projection with respect to the folding to g-vectors (corresponding to vertices with
weight 1) of the unfolded quiver. We then prove the following (see Section 8 for details).

Theorem 1.4 (Theorem 8.4, Lemma 8.1, Corollary 8.10). Let F': Q® — Q% be a folding
of quivers with A" € {Hs, Hy, I;(2n + 1)}. Then c-vectors of Q~" are roots of A’ (and
thus are sign-coherent), and the two definitions of g-vectors of Q~" coincide. Further,
C-matrices of Q*' can also be obtained by projection of C-matrices of Q™.

We note that Theorem 1.4 provides a categorical interpretation of g-vectors and G-
matrices of Q2', which we describe in Section 8.3. Theorem 1.4 can also be used to provide
an explicit construction of non-crystallographic generalized associahedra, see [26].

The paper is organised as follows. In Section 2 we recall the basics about mutations of
quivers and exchange matrices. In Section 3, we describe the projections of root systems
we will use throughout the paper, remind the classical definition of unfolding, and define
a generalisation called weighted unfolding. Section 4 is devoted to the basic properties
of Chebyshev polynomials of second kind. In Section 5, we construct the projections of
module and bounded derived categories induced by the (un)foldings of quivers. Section 6
is devoted to the description of the semiring action on the module and bounded derived
categories. In Section 7, we extend the semiring action to the cluster categories of the
unfolded quivers, thus providing a categorification of mutations of the folded quivers.
Finally, Section 8 is devoted to the construction of the tropical seed pattern, and to the
compatibility of the projections and mutations.
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2. EXCHANGE MATRICES, QUIVERS AND THEIR MUTATIONS

In the theory of cluster algebras and mutations of quivers, one classically has an integer
skew-symmetric (or more generally, skew-symmetrizable) matrix, called the exchange
matriz. The exchange matrix can equivalently be viewed as an integer-weighted (valued)
quiver. One can then perform mutations on the exchange matrix (or quiver) to obtain a
new exchange matrix (resp. quiver). It is easy to see that exactly the same mutation rule
can be applied to any skew-symmetrizable matrix with entries from any totally ordered
ring. Throughout this section, we will assume that R is a totally ordered ring. We also
do not consider ‘frozen vertices’ in our quiver, and thus all exchange matrices in this
paper are assumed to be square ones.

Throughout the paper, ) is a quiver with vertex set )y, arrow set ().

Definition 2.1. By an exchange matriz over R we mean a skew-symmetric matrix with
entries in R. We will abuse notation by using the notion exchange matriz instead if there
is no ambiguity what the ring R is.

Definition 2.2. Let )y be a set of indices and let B = (b;;); jeq, be an exchange matrix
over R. A mutation of B at an inder k € QQp is an exchange matrix ju(B) = (b};)ijeq,
whose entries are given by the mutation formula

o —bi]’ 1fz:k0rj:/<:
= by b +bire | bres .
Y bij + Lbs b +bik | kj; kel o therwise.

Remark 2.3. The mutation formula above is precisely the same formula used in the
classical setting of mutations of integer exchange matrices [27].

Definition 2.4. An R-quiver is a quiver () that has at most one arrow between distinct
vertices, and each such arrow has a strictly positive R-weight. Specifically, ) is a tuple
(Qo, @1, &) such that the following holds:

(R1) (Qo, Q1) is a quiver without loops and 2-cycles.
(R2) For any a: i — j and a': ¢/ — j" in @)y such that a # o/, we have i # i’ or j # j'.
(R3) &: Q1 — R-o is a function mapping each arrow to its strictly positive weight.

Exchange matrices over R are in bijective correspondence with R-quivers. Given an
exchange matrix B = (b;;); jeq,, one obtains an R-quiver @7 in the following way. The
set of vertices QF of QP is precisely the index set Qo of B. There exists an arrow a: i — j
in Q¥ if and only if b;; > 0r. Moreover, each arrow a: i — j in Q¥ has weight £(a) = b;;.

Definition 2.5. Let QF be an R-quiver and let B be its corresponding exchange matrix.
A mutation of QF at the vertex k € QF is the R-quiver Q*+(®) corresponding to yu,(B).

Since mutation is an involution, one can define mutation classes as sets of quivers that
can be obtained from each other by iterated mutations. A quiver is called mutation-finite
if its mutation class is finite.

3. FOLDING AND UNFOLDING

In this section, we define weighted foldings and weighted unfoldings of skew-symmetrizable
matrices, and then apply it to quivers constructed from root systems of finite non-
crystallographic Coxeter groups.
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3.1. Unfolding a skew-symmetrizable matrix. Here we define a notion of a weighted
unfolding of a skew-symmetrizable matrix, and show how it relates to the notion of
unfolding due to A. Zelevinsky (see [24] and [23] for details).

3.1.1. Rescaling. We will first need the definition of a rescaling of a skew-symmetrizable
matrix introduced by N. Reading in [41].

Definition 3.1. Let B and B be skew-symmetrizable matrices. Then B s a rescaling of
B if there exists a diagonal matrix P with positive entries p; such that B = P7'BP. In
particular, the ij—entry of B is p;/p; times the ij-entry of B.

Example 3.2. The matrix B below is a rescaling of the matrix B. Here the rescaling
matrix P has diagonal entries (1,1,1/v/2,1//2).

0 -1 0 0 0 -1 0 0
~ _ 1 0 -1 0 1 0 —/2 0
B=P'BP = B=

0 2 0 -1 0 v2 0 -1

0 0 1 0 0 0 1 0

Remark 3.3. Every skew-symmetrizable matrix has a skew-symmetric rescaling: if B is
skew-symmetrizable and D is a diagonal matrix such that BD is skew-symmetric, then
it is easy to check that the matrix v D=1 B+ D is skew-symmetric.

It was shown in [41] that rescaling commutes with mutations. Therefore, we can
associate any skew-symmetrizable exchange matrix with its skew-symmetric rescaling,
and thus with the corresponding quiver (with real weights).

3.1.2. Weighted unfoldings. We will now give the definition of a weighted unfolding.
Throughout this subsection, we let S be an m x m skew-symmetric matrix and B be
an indecomposable n X n skew-symmetrizable matrix with real entries.

Definition 3.4. Suppose that there exist disjoint index sets Ey, . .., E, of the rows/columns
of S such that m = > | |E;|. We say that the pair of matrices (B, S) is an origami pair
if
(1) the sum of entries in each column of each E; x E; block of S equals b;;;
(2) if b;; > 0 then the E; x E; block of S has all entries non-negative.

Given an origami pair (B, S), we define a composite mutation pi; = [ [;cp ps on S. This
mutation is well-defined, since all the mutations p;, i € E;, for given i commute (as it
follows from (1) and (2) that every E; x E; block is a zero submatrix).

Suppose that there exists some rescaling P~'BP of B, and a diagonal m x m matrix
W = (w;) with positive entries (called weights) such that the pair (P~'BP,WSW 1) is
origami. We say that S is a weighted unfolding of B with weights w; if for any sequence
of iterated mutations ju, ..., of B, the pair

(P_llulﬂ ce :U’kz(B)P7 W,akl T ﬁkl(S)W_l)
is also origami.

Remark 3.5. Note that the elements in any given index set E; need not be indices of
consecutive rows/columns. See Examples 3.7 and 3.8.

From Definition 3.4, one can recover the classical notion of unfolding an indecomposable
n X n integer skew-symmetrizable matrix B (due to A. Zelevinsky) in the following way.
First, let BD be a skew-symmetric matrix, where D = (d;) is a diagonal integer matrix
with positive diagonal entries. Then an m x m skew-symmetric integer matrix S is an
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(integer) unfolding of B if S is a weighted unfolding of B with all weights equal to 1, and
if the index sets are such that |E;| = d;.

Example 3.6. The matrix S below is an integer unfolding of the matrix B. Here d; =
dy=1,d3=dy =2, By = {1}, By = {2}, E5 = {3,4}, E; = {5,6}.

0O -1 0 0 0 0

0 -1 0 0 1 0 -1 -1 0 0
1 0 -1 0 01 0 0 —1 0
B=1g 9 o _1 S=10 1 0 0 0 -1
0 0 1 0 0O 0 1 0 0 0
00 0 1 0 0

The matrix B defines a cluster algebra of type Fj, and S is of type Eg. The matrix S is
also an unfolding of the rescaled matrix B from Example 3.2.

Example 3.7. Denote ¢ = 2cos(m/5), and consider the following two matrices

0 -1 0 0
(0 —p {10 10
B_<30 0) S=1o -1 0 -1
0 0 1 0

It is easy to check that S is a weighted unfolding of B with weights (1, ¢, ¢, 1), where
Ey ={1,3}, E; = {2,4} and P = Id. We can observe that the matrix S is of type Ay,
and it is natural to say that the matrix B is of type Hy = I5(5).

Example 3.8. Consider the following two matrices

0 -1 0 0 0
1 0 1 0 0
B:(\(/)g _5/3) S=10 =1 0 =1 0
0 0 1 0 1
0 0 0 —10

Again, it is easy to see that S is a weighted unfolding of B with weights (1,v/3,2,v/3,1),
where Fy = {2,4}, Ey = {1,3,5} and P = Id. Here, S is of type As, and B is of type
I5(6) (which is a rescaling of the Dynkin type G3).

Henceforth, we will abuse notation by omitting the word “weighted” throughout the
paper and specify the weights instead.

Examples 3.7 and 3.8 fit into a series of unfoldings: for every dihedral group Io(k + 1)
there is an unfolding of the corresponding matrix to A, with weights

w; = Uz’—l <COS 2 _7:; 1)

and P = Id, where Uj is the i-th Chebyshev polynomial of the second kind (see Section 4).

Example 3.7 also gives rise to unfoldings of matrices corresponding to groups Hsz and
Hy to Dg and Eg respectively, see Fig. 3.1 for the weights (the unfolding blocks are
composed of two vertices each, given by vertices in the same column).

3.2. Weighted foldings of quivers. The unfoldings described above are consistent with
foldings/projections of root systems of Coxeter groups. The construction goes back to
Lusztig [36] who noticed the embedding of the root system of the Coxeter group of type
H, into the root system of the Coxeter group of type Ejg in the context of admissible
maps of Coxeter groups. An embedding of the root system of the dihedral group I(n)
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FIGURE 3.1. Foldings of quivers Q”¢ — Q™ and Q¥ — QM. Weights
are labelled next to the appropriate vertices or arrows. Each collection of
edges that appear in the same column in the domain of the folding are

either all pointing left or all pointing right, and these arrows are mapped
to an arrow in the codomain with the same orientation.

into the root systems of the Coxeter group of type A,_; was observed in [42, 38]. These
constructions have later been further developed and extensively used in various contexts
(see [42, 37, 22, 35]).

In this section, we formalise the notion of folding in the context of weighted quivers,
of which the projection above features as an example. To formally define foldings onto
R-quivers, we need the notion of a vertex-weighted quiver.

Definition 3.9. An R-vertez-weighted quiver @ is a tuple (Qo, @1, k) such that (Qo, Q1)
is a quiver and k: ()9 — R is a function mapping each vertex to its weight.

The above definition allows us to define the dual notion of weighted unfolding of ex-
change matrices — the folding of weighted quivers.

Definition 3.10. Let QF be an R-quiver and Q° be an R-vertex-weighted quiver. We
call a morphism of quivers F: Q% — QP a weighted folding of quivers if the following
holds.

(i) QP is the R-quiver of an n x n exchange matrix B over R,
(ii) Q7 is the quiver of an m x m integer exchange matrix S,
(iii) S is a weighted unfolding of B with weight matrix W = (w;) such that each
w; € R, and the blocks of S are given by index sets E1,..., F,,
(iv) k(i) = w; for each i € Qf,
(v) F is a surjective morphism such that for any j € QF, we have F(i) = j for all
i€ L.
We call QF a (weighted) folding of Q¥ if there exists a folding of weighted quivers F': Q° —
Q".

Henceforth, for each i € Q5, we will write [i] € QF as the vertex such that F(i) = [i],
and thus, [i] = [j] for any i,j € QF such that F(i) = F(j). The exchange Z-matrix S
then has the structure of a block matrix (S[i][j})[i],[j]ng?- Given a simply-laced Dynkin
diagram of type A, we mean by Q® a quiver whose underlying graph is of shape A.
Similarly, given a Coxeter diagram A’, we mean by Q* an R-quiver whose underlying
graph is of shape A’ and whose arrows are weighted by &(a) = 2cos 6, for each a € Q%
where 0, is the dihedral angle of the edge o € A’ that corresponds to the arrow a € Q5.

Example 3.11. Figure 3.1 shows the foldings onto H-type quivers. In terms of projec-
tions of root systems, the simple roots of the root system FEg with prescribed weights 1
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are mapped to simple roots of the root system Hy, and the simple roots from the same
unfolding blocks with weights ¢ are mapped to p-multiples of the corresponding simple
roots of Hy. Extending this map by linearity results in a bijection between the roots of
Eg and roots of Hy together with their p-multiples. The projection of Dg onto Hj can be
obtained by considering the natural embedding of the root system of type Dg into Eg.

The construction can also be extended to the projections of Aj onto Iy(k + 1) by
mapping each simple root from one of the unfolding blocks to w;e*™/*+1 and each
simple root from the other blocks to w;. If k is even, then extending this by linearity
results in a bijective map to the union UEZBQ)/Q w;®, where ® is the root system of I(k+1)
(cf. Lemma 5.11).

If k is odd, then the projection is a bit more subtle. Extending the map above by
linearity, we obtain |J w;e™/**+) If we consider the roots in the root system of

i+J even
type Iz(k + 1) to be of two distinct lengths 1 (short roots) and 2cos(w/(k + 1)) (long
roots), then the result of the projection can be rewritten as the union of U Wo; D
0<i<(k—1)/4
and U (woip1/wy) Py, where &5 and ®; denote the set of short and long roots
0<i<(k—3)/4
respectively.

Remark 3.12. For (un)foldings of type I>(k + 1), we will focus mainly on the case where
k is even, and we will investigate the case where k is odd in a forthcoming paper. Thus
for this paper, we will work with foldings F': Q42 — Q21 where n > 2 and Q*2" is
the bipartite quiver

0 1 2 3 - 2n—1
or its opposite), with k(i) = U;(cos s==) for i € Q/?*. On the other hand, Q2@"+1 ig
2n+1 0

the Z [2 coS ﬁ] -quiver

2cos 51—
[0} ——"—[1]
(or its opposite). In particular, F'(i) = F(j) if and only if ¢ and j are either both even or
both odd.

4. CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

As highlighted from the last section, Chebyshev polynomials of the second kind are
central to the paper. Thus, we will briefly review them here and define some technical
tools based on their properties.

4.1. Definitions and basic properties. The k-th Chebyshev polynomial of the second
kind is the polynomial Uy (z) that satisfies the relation

Uk (cos a) sin v = sin(k + 1)a.

It is a well-known fact that the polynomial Uy(x) is a degree k polynomial with integer
coefficients. In the case where x = cos 77, the Chebyshev polynomials of the second
kind satisfy nice symmetry properties, which are also well-known.

Lemma 4.1. Define a sequence (0y)rezs, by Ok = Ui(cos ;55). Then
(a) 0y = 2cos 7,
(b) 6, =0,
(C) ek = enflfkn
(d) Opsr, = =0, for k <n,
(6) erl = Zé’:o Qk,prgj fO’/’ k Z l.
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(f) O > 1 for0 <k <mn-—1.

Proof. All statements except for (e) immediately follow from trigonometric identities.
The statement (e) follows from evaluating the imaginary part of the geometric series

. . i(2l+1)7 i(k=l4+1)m i(l+1)=w —i(l+1)m i(k+1)m
l e% (1 — e nil )e nt1 (e ntl  — @ ntl )e ntl
3 s = 2im = im —im

R S1n —— _ nt1 3 s Tl — el : T
=0 nt1 <1 ent ) sin 5 <en+ entl ) sin

. 1+1 i(k+1)m

S1n % e nt
- : s : Tt
R K |

i

Motivated by the properties above, we will define a class of rings and semirings that
will be used extensively throughout the paper.

Definition 4.2. Let n > 2. Then we define the following family of commutative rings
and semirings by

X(2n+1) = ZW}l? s 7¢n—1]
anﬂ) = Zzo[%; s ,wnfl]

L) = 7 [2 cos

T
2n +1
such that

l
Vet = Pk = > Wkie; (k2 1),
j=0

where the symbols ¢ with k& ¢ {1,...,n — 1} resulting from the above product are
interpreted by the following axioms

(a) ¢0 = 17

(b) ¥y = thop_1_ for k < 2n.

One should notice that property (c) of Lemma 4.1 corresponds to axiom (b) of Def-
inition 4.2, and that the multiplication rule in Definition 4.2 is just property (e) of
Lemma 4.1.

Remark 4.3. As a result of the multiplication rule in Definition 4.2 and Lemma 4.1(e),
we have a ring epimorphism

£ 2]/ (U r(Z) = Un(2)) — x @+,

2n—1 2n—1
> aqUi(3) = > ag.
j=0 J=0

Note that we have f(z) = v and one obtains axiom (b) of Definition 4.2 under f via the
relations
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in Z[z]/(Up-1(5) — Un(5)). In particular, Ker f = 0 and thus we actually have an
isomorphism

XY = Za] ) (Un 1 (3) = Un(3))
A consequence of this isomorphism is that {¢,...,%¥,_1} is an integral basis for "1,

and that X(2 ") g isomorphic to the subsemiring of the above quotient ring whose ele-
ments are non-negative sums of the polynomials Us(§) with 0 <7 <n — 1.

Remark 4.4. The reader may be wondering why we have decided not to work with, for
example, the semiring

T T
L {Ul (0082n+1),...,Un_1 (COSZn—i—l)]' (%)

The reason is due to technicalities later in the paper. We will later define an action
of X(QTH ) on a category mod K Q42" and for this action to be well-defined, we want to
ensure that the generators v, are linearly independent for £ < 2n — 1. The problem
occurs where for some values of n we have

T
Uy, <C082 +1> Zaj <0082n+1) a; € Z>o

This happens whenever the degree of the minimal polynomial of cos(5"~ +1) is strictly
less than n. For example, this happens in the case of n = 4 where we want to have
{to,...,1¥3} as a basis for Xf), but we also have U3(cos g) Uo(cos §) + Up(cos 5). On

the other hand, if the minimal polynomial of cos(57*=) is of degree n, then we have

Int1
2t = 9, 1 and we can write XSF"H) as in (x). For example, one can safely define

XS-) = Z>olp], where ¢ is the golden ratio.

Remark 4.5. There exist homomorphisms of rings

(2n+1) . . (2n+1) >(2n+1)

o X — X

(/3'\(2n+1)2 X\(QnJrl) SR

defined by o@"t(yy) = Uy (

(2n+1)

) and where 5" is the canonical embedding.
(2n+1)

Snri
In particular, o is an epimorphism. We also have a restriction of o
homomorphism of semirings

to a

2n+1 2n+1 ~(2n
o7 g,

(2n+1)

The ring R is totally ordered, which endows X with a partial ordering given by

r<ser=sor g e (r) < GO (),

4.2. Representations of y(>"*!) and weighted (un)foldings. Suppose S is an ex-

change matrix over Z that is obtained by unfolding an exchange matrix B over x(>»+1
of type Hy, Hs or Iy(2n + 1). In this case, the regular representation of the ring x(27+V
plays an important role with respect to the structure of S. We will see that the blocks
of S are the matrices that arise from the Z-linear action of ¥ on the ring Y"1, First
let us investigate the regular representation of y(?*+1).

Definition 4.6. Consider the basis of x(***V) given in Remark 4.3. We denote by
p: X(2n+1) _y XN

with respect to this basis. That is, p is the ring homo-
4D where v(r) = (ag, . .., n_1) €

the regular representation of (271

morphism such that p(¢;)v(r) = v(;r) for any r € X!
7™ is the vector representing r = Z?;(} a; ;.
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Lemma 4.7. For any i € {0,...,n — 1}, we have the following.

(a) The entries of p(1;) are either O or 1.

(b) p(¢;) is symmetric.
Proof. From the product formula, it is easy to see that the matrix of p(¢;) is the following,.
The matrix p(1)g) is the identity. The matrix p(¢,,_1) is such that (p(¢,,—1));x = 1 if and

only if j > n —k — 1 (note that we use a zero-based index here, so the bottom right
triangle of the matrix consists of ones). If 0 < i < n — 1, then p(1);) is of the form

where the top triangles and bottom left triangle consists of zeros, and the bottom right
triangle consists of ones. The rectangular hatches in the middle consist either entirely of
ones or entirely of zeros, where the corners of the first hatch are at the the (7,0) (0,1),
(n—1—i,n—1)and (n—1,n—1—1)-th entries. In particular, the (7, j)-th entry is 1 if j
is even and 0 if j is odd for any j such that (4, j) is within the area of the first hatch. All
of these matrices are clearly symmetric with entries that are precisely either 0 or 1. [J

Now let us consider a weighted folding F': Q° — QP that corresponds to a weighted
unfolding S of an exchange matrix B over X(***1. In particular, we consider F to be
either one of the H-type foldings of Figure 3.1 or I-type foldings of Remark 3.12. Recall
that the exchange Z-matrix S has the structure of a block matrix (Sp;))y jeqz, Where
for any i € QF, we have F(i) = [i]. Under this notation, we have the following result.

Lemma 4.8. Let B = (by))p,yjee be an exchange matriz over XD of type H or

I(2n +1). Suppose S = (si);jeqs is an integer block matriz (S, ieqe such that
Sy = pjyp), where by € XY s such that U(Q”H)(bfim]) = b and p is the

reqular representation of Y21,

(a) S is block skew-symmetric: Sy = =Sy -
(b) S is skew-symmetric: s;; = —Sj;.

(c) S satisfies (1) and (2) of Definition 3.4.

Proof. First note that by definition we have byj;; € {0, 1, £2 cos #ﬂ} The correspond-

ing values of x(***Y we need to consider are therefore the values by € {0, +1, £¢1 }.

Since B is skew-symmetric and p is a representation of Y"1 S is a skew-symmetric

block matrix (that is, S} = —Sj)7)- This proves (a). In particular, S is skew-symmetric
since p(bfy;)) 1s symmetric, which proves (b). Moreover, (2) of Definition 3.4 is satisfied
by Lemma 4.7(a).

[t remains to show that (1) holds. Let W = (/V[Z)Ogign,l be the diagonal matrix

such that W; = o) (3hy) = Uy(2 cos 37 )- Consider the weight matrix W with block

diagonal structure (Wj;);cqz such that Wy = W) = W for any [i],[j] € QF. The matrix
WSW~ then has a block structure indexed by QF, with (WSW 1) = /WS[i”j]/W_l.
Since p is the regular representation of x(?"*1 the sum of entries in the k-th column of
the matrix WSy is the value 0(2"+1)(b’[i”j]1/1k). Multiplying on the right by the matrix
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W~ has the effect of multiplying the k-th column of Ws[i][j] by (o ()"t Thus,
the sum of each column of W Sy W~ is 0(2”+1)(b@]{j]) = by;- Hence, (1) holds. O

Proposition 4.9. If F: Q° — QP is a folding as in Figure 3.1 or Remark 3.12, then
there exists an ordering < of Q5 such that S = p(b’[i”j]), where b/[i}[j] € x® ) s such

that U(2n+1)(b/[i”j]) = b[i”j].

Proof. Let < be any total ordering of QF. Define i < j if and only if k(i) < k(j) and
[i{] < [j]. For foldings as in Figure 3.1, we have by;; = 0, byj;) = £1 or by = ¢ for
each entry of B. It is easy to see that the corresponding block of S under this ordering is

0 0 10 01
S[z'nj]:i(() 0)> Smmzi(o 1> or Smmzi(l 1)

respectively. We also have x(® = ¥0®) in this setting, and it is easy to see that we
precisely have Sp;) = p(bj;)- For foldings as in Remark 3.12, one notes that for any
vertex i € 5, we have arrows (of some orientation) between pairs of vertices (i,i — 1)
and (i,i + 1) in Q°, unless i € {0,2n — 1}, in which case we have only one arrow. In
particular, this mimics the relation ©;1; = ;1 + ;41 for i € {0,2n—1}. Further noting

that 0" (¢y) = 2cos 575 and that by € {0, £2cos 575}, the result follows. O

5. PROJECTIONS OF MODULE AND DERIVED CATEGORIES UNDER FOLDINGS

One of the earliest and most celebrated results in the representation theory of path
algebras is Gabriel’s Theorem [30]. In short, Gabriel’s Theorem states that a finite
connected quiver @) has finitely many iso-classes of indecomposable representations (over
an algebraically closed field) if and only if the underlying graph of @ is a simply-laced
Dynkin diagram. Furthermore, the dimension vectors of the iso-classes of indecomposable
representations bijectively correspond to the positive roots of the root system of the
Dynkin diagram. This result was extended by Dlab and Ringel in [20] to show that a finite
connected valued quiver has finitely many iso-classes of indecomposable representations
if and only if the underlying graph is a Dynkin diagram (including the multiply-laced
diagrams). Moreover, the dimension vectors of these representations are also in bijective
correspondence with positive roots.

The purpose of this section is to review and investigate the connection between a
folding of quivers Q® — Q?, where A is a simply-laced Dynkin diagram, and categories
associated to a quiver of type A. For cases where A’ corresponds to a crystallographic
system, some work has already been done in this respect (for example, [16, 17, 44]). Our
main focus will be on the non-crystallographic cases where A" € {Hy, H3, I,(2n + 1)}.
Recall that in this case Q2 is a Y*"*Y-vertex-weighted quiver with weight function x
(see Definitions 3.9 and 3.10).

From now on, we assume K to be an algebraically closed field. We denote by K@) the
path algebra of () and mod K@) the category of finitely-generated right K(¢) modules. In
particular, paths in K@ are read from left to right. In a category with Auslander-Reiten
sequences (such as with mod K@), we denote the Auslander-Reiten translate by 7.

We will show a result analogous to Gabriel’s Theorem holds for these non-crystallo-
graphic foldings. Specifically, we will show that one can project the dimension vectors of
indecomposable K Q“-modules onto the set of vectors Ule w; ®%,, where ®F, is the set of
positive roots of A’. This in itself is not surprising for type H, as it follows directly from
both Moody and Patera’s projection of root systems and Gabriel’s Theorem. We show
this also holds for type I5(2n+1). However what is surprising is that this projection has a
remarkably well-organised structure, in the sense that each row in the Auslander-Reiten
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quiver of mod KQ* is such that either every module in a row projects onto positive A’
roots, or every module in a row projects onto a specific multiple of positive A’-roots. The
end result of this projection is a module category that has a well-defined semiring action.

5.1. Definitions and results. Henceforth, for any given quiver ), we respectively de-
note by S(i), I(i) and P(i) the simple module, indecomposable injective module, and
indecomposable projective module in mod K@) corresponding to the vertex ¢ € Q).

Definition 5.1. Let F: Q® — Q% be a folding of weighted quivers, where A’ €
{Hs, Hy, I,(2n + 1)}. Then there exists a unique arrow a € Qf such that &(a) =

2cos 57, where n = 2 if A" € {H3, Hy}. Define a function

dp: 7)1 5 (5en1)ieg
that maps a vector v = (v;);eqa to dr(v) = (vg,)i,eQOA/ by the weighted sum

vl = Z k(i)v;.

i:F (i) =4’

In addition, we define a map dp: Ob(KQ?) — (2(2”“))‘@0&‘, where Ob(KQ?) is the class
of objects of mod K@Q. We define §p(M) = dp dim M and call §g(M) the F-projected

dimension vector of M.

The aim of this section is to prove the following result for module categories, which we
will later extend to the bounded derived categories.

Theorem 5.2. Let F: Q® — Q' be a weighted folding of quivers, where A € {As,, Dg, Eg}
and A" € {I,(2n + 1), H3, Hy}. For A" € {H3, H,}, define n = 2.

(a) For each 0 < j <n—1, define a set

; : ‘ : T
70 = {Tm](z) € mod KQ* :i € Q, k(i) = U; (cos T 1),m € Zzo}-

Then 6p(M) is a positive oot of A for any M € T,
(b) For any i,j € Q5 such that F(i) = F(j) and any m € Zso, we have

K(3)0p (T 1)) = K(1)0p(T™1(])).

(¢) For each 0 < j <n —1, we have ||6p(M)|| = U; (cos ﬁ) for all M € TV,

Remark 5.3. Given the folding in the above theorem, let i € Q5. Then let j € Q5 be such
P(j) = 7™I(i) for some m > 0. The folding forces the quiver @ to be of a particular
weighting such that k(i) = (7). This is easy to see from the Auslander-Reiten theory of
AD E-quivers.

Remark 5.4. Since KQ* is representation-finite, one could dually work with the set

P = 77mP(i) € mod KQ* : i € Qf, k(i) = Uj ( cos i ,m € L
2n +1 -
for Theorem 5.2(a). Similarly, one could write (b) as

K(7)0p (77" P(i)) = K(1)or (1™ P(7)).
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5.2. Folding onto H-type quivers. Foldings onto a diagram of type H are given in
Figure 3.1. Recall that ¢ = 2cos , the golden ratio. The Z[p]-quiver of type H, is
unique up to a relabelling of the vertices, and thus serves as an easy starting point. This
will provide a motivating example for the theory we will develop.

Example 5.5. The folding F': Q4 — Q2 must be of the following form (or its opposite).
1 —¢2
¥
— [1—[2]
P1—2

The vertices labelled 7 have weight 1, the vertices labelled ¢; have weight ¢, and the
vertices labelled ¢ and ¢; map onto [i]. Noting the relation ¢? = ¢ + 1, Theorem 5.2
becomes obvious from the Auslander-Reiten quiver of mod K @44, which is illustrated in
Figure 5.1.

2 (Lo) (¢,1)
SN LSS SN N
¢2 2 12 ¢1 (07 90) (1 +o, 1+ 30) (907 O)
~N 5 e \1 ¢/ (\ /) (\ /)
1 1 p, 14+ 1+,
2 ¢2\ p P2 N AN RN
2 g; 1 (071) (50790) (LO)

FIGURE 5.1. Left: Auslander-Reiten quiver of KQ“* in the folding
F: Q4 — QM. Right: The corresponding F-projected dimension vec-
tors of the indecomposable KQ44-modules.
For the quivers of type H3 and Hy, the following technical lemma is incredibly useful.
Lemma 5.6. Let F: Q® — Q" be a folding of quivers and write
Qp ={i:1<i<nk()=1}U{si:1<i<nnr(¢)=¢}
such that F (i) = F(¢;) for each i. For each 1 <1 < n, consider the radical series
7 1(i) Drad (i) D ... Drad™ 77 I(i) = 0
with factors X, ;) = rad” 771(i)/ rad*™ 791(i), and the corresponding radical series
T 1(¢;) Drad T/ I(¢;) D ... D rad™ 77 I(¢;) = 0
with factors Xy, i1, = rad” 77 1(¢;)/rad™ ' 771(¢;). Then m =m’ and
0p(Xg,jk) = Or(Xijik)
for each 1 <i<n and j k> 0.

Proof. 1t is sufficient to consider the case where A = Eg and A’ = Hy, as the quivers of
type A4 and Dg may be embedded into Fg in the natural way. In this case, F is of the
form

1—2—3—¢4
e
P1——r——P3— 4

P
— [—2—{3l—4]
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where all arrows in the same column point in the same direction, each vertex labelled j
has weight 1 and each vertex labelled ¢; has weight ¢. We will first prove the result for
projectives. That is, we will show that

Or(vad® P(¢;)/ rad"™ P(¢;)) = pop(rad” P(i)/ rad™" P(i)) (*)

for each i and k.

First note that S(v) C rad® P(u)/rad*™ P(u) with u,v € Q&® if and only if there
exists a path in Q" of length k from w to v. Thus, to prove the result for projectives,
it is sufficient to compare the arrows of source [ for each 1 < [ < n with the arrows of
source ¢; in QFs. It follows from the folding F' that we have

By o | o E By - o & E By o | P4 E
o l=1eQ?, Eaol= N\ € Q7 o= N\ e Q.
U o ¢s 4 b4 ¢3 3 ®3
Now note that a maximal path in Q¥ from a vertex 7 has the same length as a maximal
path from ¢;, and note that

0r(S(¢r)) = dr(ey,) = pem = pdr(er) = wor(S(1))
5p(S(1) & S(dr)) = dr(er+eg) = (L+ @)ey = ©ep = @dr(ey,) = ©r(S(er)),

where e, is the Z3-vector with a 1 at entry v and 0 otherwise, and ey, is the (Z[¢])*-vector
with a 1 at entry [v] and 0 otherwise. This proves the result for projectives. The proof
for injectives is similar — we merely compare the arrows of target [ and ¢; instead. That
is, it is easy to see that we also have

dp(rad® I(¢;)/ rad*™ 1(¢:)) = or(vad” 1(i)/ rad"™ 1(2)) (%)

for each ¢ and k.
The proof for the more general result in the lemma statement works by induction. So
let suppose there exists 1 < i < n and 7 > 0 such that

0p (X, j) = ©0p(Xijn)
for all £ > 0. We will show that this implies
0r(Xojr1k) = 0O (Xijr1k)

for all £ > 0.
First consider the projective presentations

P —P— M-—D0,
P, — P, — M, — 0,

where M = 79(I(i)) and M, = 79(I(¢;)). Since dp(Xy,0) = ©Ir(Xij0), we have
dp(top P,) = @op(top P). By (), this implies that

or(rad” P,/ rad"*! P,) = pdp(rad® P,/ rad*"! P)
for each k£ > 0, and thus
op(rad” Q(M,)/rad"™ ! Q(M,)) = pdp(rad® Q(M)/rad* Q(M)),
op(rad” P/ rad®*t! P)) = wop(rad® P’/ rad®*t P').
The projective presentations above give rise to exact sequences
0—=7M —1I'— 1,

0— 7M, — I, — I,
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where I, I', I, and I, are the injective envelopes of top P, top P, top P, and top P,

respectively. By similar reasoning to the projective presentations and by (#x), we get
0r(TMy) = 0F (X, jr16) = ©OF(Xij1k) = pOr(TM),

as required. Since we know that dp(Xy, 0%) = @Ir(Xiox) forall 1 <i < n and k > 0,

this proves the result. O

Example 5.7. Consider the folding F': QP — Q3 given by

1—2—3 0
= [I}—[2—[3]

P1—p2—3
where the vertices labelled ¢ have weight 1, the vertices labelled ¢; have weight ¢, and

the vertices labelled ¢ and ¢; project onto [i ] One can see Theorem 5.2 (and Lemma 5.6)
holds in Figure 5.2.

1 1
? 2

\/3%\/ A

¢3 3 2 ¢¢2 ¢2 2 P2 ¢2 2 ¢23¢2 2

/\/Q?gbi/\/
?3 2¢z)23 2 <Z>2 g2 <l52 22 2 ¢2 2
\/\/\/\/\
¢2 2¢2 ¢2£2 ¢22
\/\/\/\/\
H % ;’Zz 2 !

FIGURE 5.2. The Auslander-Reiten quiver of mod KQP¢ associated to the
folding QPs — Q™ where Q'3 is linearly oriented.

The lemma above allows us to prove Theorem 5.2 for the cases where A’ € {Hy =
12<5>7 H37 H4}

Proof. By Gabriel’s Theorem, dim(M) is a positive root of A for any indecomposable
KQ*-module M. It follows from Figures 5.1 and 5.2 and [36, 37] that the set

Vi = {6p(M) : M indecomposable KQ*-module}
may be partitioned into two subsets Vi and V}¥ such that V2 is the set of positive roots
of A" and
VE={pv:veVi}

We know that for each i € Q5', we have that §p(7™1(i)) is either in V4 or Vi£. There is
precisely one other vertex j € Q4 such that F(i) = F(j), and by Lemma 5.6, the vector
dr(7™1(7)) belongs to a different one of the sets Vi or V¥ compared to dz(7"1(i)). The
result for (b) then follows.

For (a), that we specifically have dx(M) € Vi for any M € Z follows from (b). d
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5.3. Folding onto I-type quivers. Throughout this section, we will work with the
folding F: Q42» — Q2"+ defined in Remark 3.12. Recall that the orientation of both
Q“2r and Q"2("*Y is such that all arrows go from an even vertex to an odd vertex.

Remark 5.8. A consequence of Lemma 4.1(c) is that the vertex weights of Q42" are such
that k(k) = k(n — 1 — k).
Lemma 5.9. Let F': Q4 — Q2"+ be as above. Then for any 0 < k,1 < 2n—1, such
that k and | are either both even or both odd, we have

(a) K()0p(I(K)) = K(k)or(I(1)); and

(b) K(1)or(P(k)) = K(k)or(P(1)).

Proof. (a) Assume that Q42" is oriented as above — the proof for the opposite quiver is
dual. For the purpose of readability, we will write 6, = U,,(cos 575). It follows from
the definitions, that we have

op(I(k)) = (0K, 0)

for k even. In this case, it is obvious that (a) holds. We also have

5F([<k)) = {

for k odd, where by Lemma 4.1, we may write
(Or—1 + Oky1, 0r) = (0101, 0),
(Oon—9,02n,1) = (01, 1).
Since each k(k) = 0y, it is clear that (a) holds.

(b) The proof is dual to (a). O
Lemma 5.10. Let F: Q4 — QIQ(Q”H) be as above. Then for any i,j € QOAQ" such that
F(i) = F(j), and for any m € Z>y,

K(7)0r(T™1(2)) = K()0p(T™1(])).
Proof. The proof follows by induction. Assume the statement holds for a given m € Zxy.

The path algebra K Q42" is radical square zero. Moreover for any indecomposable non-
projective M € mod KQ*?", we have

dr(top M) = (r,0) and  dp(rad M) = (0,7)

2n+1)

(Qk—l + 0k+17 Qk) if K <2n— 1,
(02n—27 92n—1) it k=2n— 17

for some r, 7" € x( It is therefore easy to see from Lemma 5.9 that the projective

presentations
PP — P s 7mI(i) = 0
PY = BY = 7™I(j) = 0
satisfy the property
w(1)0r(By) = w(i)or (P

for each k. It is also straightforward to deduce from Lemma 5.9 that with the exact
sequences

0 — 7)) — vPY = vPP — v I(i) = 0
0 — 7" () = vPY = Py — vr™I(5) = 0
where v is the Nakayama functor, we have

K(7)0r(vPY) = K(1)0r(vPY)
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and thus,
K(5)0r (T (1)) = K(1)0p (T (f)).
Lemma 5.9 then completes the proof. O

Lemma 5.11. Let F: Q4 — Q"D be as above and denote 6 = cos s Let ep

be the linear change-of-basis transformation from the basis of positive simple roots of
I(2n + 1) to the standard basis over R. That is,

er(1,0) = (1,0) er(0,1) = (cos2nd, sin 2nd).
Then
erdp(T™1(0)) = (cos 2mb, sin 2mo) (0 <m < n),
epdp(T™I(2n — 1)) = (cos(2m + 1)6, sin(2m + 1)6) (0 <m < n).

Proof. The results follow from trigonometric identities and known results on the Auslander-
Reiten theory of quivers of type A, (in particular, see [9] for results on the Auslander-
Reiten translate). We will assume the orientation of Q2" given at the start of this
subsection — the proof for the opposite quiver is dual. For the purpose of readability,
we will also write
sin(k +1)6

sinf

(a) The row of the Auslander-Reiten quiver containing the injective module 1(0) is
such that

0, = Ug(cos ) =

top7™I1(0) = S(2m) and rad 7™I(0) = S(2m — 1)
for any 0 < m < n, and 1(0) = S(0) and 7"1(0) = S(2n — 1). Thus, we have

(1,0) m =0,
5F(Tm](0)) = (6’2m,92m_1) 0<m<n,
(0,1) m=n,
and hence,
(1,0) m =0,
erdp(T™I1(0)) = < (f2m + 021 cOs2n6, 05, 1 sin2n0) 0 < m < n,
(cos 2n#, sin 2nf) m=n.

The result clearly holds for m € {0,n}, so we need only consider 0 < m < n. By the
angle summation identity

sin 0 cos 2mé = sin(2m + 1)0 — sin 2m#@ cos 6 = sin(2m + 1) + sin 2mé cos 2nb,
we obtain
cos 2mb = 0Oy, + 0oy, 1 cOs 2n0.

Trivially, we also have

in 2mo
S 2 sin 2nf

sin 2m6 =

sin
So erpdp(7™1(0)) = (cos 2mb, sin 2m#@), as required.
On the other hand, the row of the Auslander-Reiten quiver containing the injective
module /(2n — 1) is such that

Op(T™I(2n — 1)) = (b2n—2m—2, O2n—2m—1)
= (62m+17 02m)
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for any 0 < m < n. By similar arguments to the above, the result follows from the
identities

sin 6 cos(2m + 1)0 = sin(2m + 2)6 + sin(2m + 1) cos 2n6,
_ sin(2m +1)0

in 2nf.
e sin 2n

sin(2m + 1)6

We can now prove Theorem 5.2 for foldings onto I-type quivers.

Proof. (a) That 6x(M) is a positive root of I5(2n + 1) for any M € Z follows from
Lemma 5.11.
(b) This is a direct consequence of Lemma 5.10.

(c) This follows directly from (a) and (b). O
Example 5.12. Consider the folding F: Q¢ — QD of the form
0—1
P23 = [0 2%

4 — 5
where F'(0) = F'(2) = F(4) = [0], F(1) = F(3) = F(5) = [1], and k(i) = Uj(cos 7) for

each 7. Explicitly, we have

k(0) =1, k(1) = 2z,
K(2) = 42® — 1, k(3) = 42 — 1,
k(4) = 2z, k(5) =1,

where z = cos Z. The module category K Q% then maps to the I5(7) root lattice via the
function dr as shown in Figure 5.3

5.4. Projections of derived categories. Theorem 5.2 naturally extends from the mod-
ule category to the bounded derived category. Recall that the bounded derived category
Da = D*(KQ?) of the module category Ma = mod KQ? is a triangulated category with
shift functor X, where as before, A € {A,,, D¢, Es}. The indecomposable objects of Da
are isomorphic to chain complexes with an indecomposable K Q*-module in some degree
7 and 0 in degree other than i. By a slight abuse of notation, for each indecomposable
module M € M we denote by M € Da the indecomposable object corresponding to M
in degree 0. The object XM is then the indecomposable object corresponding to M in
degree i. The morphisms of Dp are given by

Extl (M,N) ifi<j,

HomDA(EiM XN) = {0 otherwise

and a composition of morphisms is given by the Yoneda product
Ext)y’ (M, N) x Exty (N, L) — Exth* (M, L).

The category Da also has Aulsander-Reiten triangles and an Auslander-Reiten quiver
with Auslander-Reiten translate 7p, .
The following statements are easy consequences of the known structure of D, where

A € {Ay,, Dg, Es}.
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SN N N
1 0 24 4

/mw Rl

Fi1GURE 5.3. Above: The Auslander-Reiten quiver of the module category
mod K Q4. with the ray of source P(0) highlighted blue. Below: The
projection of mod KQ“¢ onto R? via the function 6z. The vertices of the
innermost heptagons are the roots of I5(7), with the positive roots being
those that are labelled. The vertices of the middle pair of heptagons are
the 2 cos T multiples of the root vectors, and the outermost vertices are the

(4cos® T — 1) multiples.

Lemma 5.13. Let F': Q® — Q*' be a weighted folding of quivers with A € {Aa,, D, Es}
and A" € {I,(2n + 1), Hs, Hy}. Then for any i € Q5, we have

Tp X P(i) = X ())
such that k(j) = k(7).

Proof. For foldings F: Q42" — Q21 with vertices labelled as in Subsection 5.3, it is
known that

o PP () =2 M (20 — 1 — 5).
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We know from Lemma 4.1(d) that x(j) = k(2n — 1 — 7). For foldings onto quivers of type
Hj3 and Hy, the result is straightforward, as

T O E=D ey ()
for any i € Q5. O
One can extend the projection map dp to the derived category with the map
dp: Ob(Da) — Y
defined for each object M = @;cz 3 M; € Da with M; in degree 0 by

op(M) =" 0p(M;) = > 6p(M;).

2i€Z 2i+1€Z
Proposition 5.14. Let F': Q® — Q*' be a weighted folding of quivers with A € {As,, D, Es}
and A" € {I,(2n + 1), Hs, Hy}. Let X¥M,YX*N € D be indecomposable objects for some
k € Z such that S*M = 78 1(i) and SFN = 77 1(j) for some m € Z and some i,j € Qf
such that F(i) = F(j). Suppose that k(i) = 1. Then

(a) SF(E’“M) is a positive root of A if k is even and is a negative root of A" if k is

odd;
(b) K(i)op(EEN) = r(j)0p(ZFM).

Proof. This follows directly from Theorem 5.2, Lemma 5.13 and the definition of ZS\F O

6. SEMIRING ACTIONS ON CATEGORIES ASSOCIATED TO UNFOLDED QUIVERS
Given a folding F': Q* — Q4" with A € {Ay,, Dg, Es} and A’ € {I,(2n + 1), Hs, H,},

the projection map dp hints at a nice semiring action on mod KQ* and its bounded
derived category, which we explore in this section.

6.1. R,-coefficient categories. First we will define how we want a semiring R, to act
on the categories.

Definition 6.1. Let R, be a partially ordered commutative semiring and M be a Krull-
Schmidt, K-linear, abelian or triangulated category. We say M has the structure of
an R, -coefficient category (or equivalently, has a weak semiring action of R.) if it is
equipped with a family of endofunctors {7 : r € R, } such that the following axioms hold
for any r,s € R,:

M) 7+ s~7®3

s
[2
=

) )
oy
+
12
_
<

Ry ~ OM .
is exact (if M is abelian) or triangulated (if M is triangulated).

r is faithful and K-linear on all Ext-spaces. That is, for any ¢ € Z and any
objects X,Y € M, the element r € R, induces an injective linear map

eyt Extiy(X,Y) — Extly (FX,7Y).

>

222 EE
W N

S O
= O =

Given any morphism f € Homp (X, Y) in an R -coefficient category, the (weak) semir-
ing action of R, on M is well-defined up to natural isomorphism. Therefore for any
morphism f € Homp(X,Y), we often abuse notation and write 7f € Hom,(7X,7Y) as
rf € Homp(rX,rY) for each r € R,. Thus, the objects and morphisms will appear to
have coefficients in R, hence the name.

An immediate consequence to the axioms above is the following.
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Remark 6.2. Let M be an R -coefficient category and let R be the corresponding ring
given by the Grothendieck group construction on the additive commutative monoid struc-
ture of R;. Then the Grothendieck group Go(M) of M has the structure of an R-module
via the action +r[M] = +[rM] for each r € R, and [M] € Go(M).

The main aim of this section is to prove the following result.

Theorem 6.3. Let F': Q® — Q*' be a folding of quivers with A' € {Hs, Hy, I,(2n+1)}.
Then My = mod KQ* and Dp = D*(KQ?) are anﬂ)—coeﬁicient categories, where
n=2 ZfA, S {Hg,H4}.

To prove the above, we will define how XSF ") acts on the category Mp = mod KQ*.

Firstly, we will describe the principle of how we want X(%H) to act on objects. Let a be

a positive root of A’. Then by Theorem 5.2, there exists a set
M, = {M", .. . M-V}
of pairwise non-isomorphic indecomposable objects of Mg such that
Sp(M®) = U z
(M) A COSQn+1 a
Moreover, for any positive root 5 # a, the elements of M, Mg = 0. Given 0 <1 <k <
@+ on M such that

n — 1, we will define the action of ¥, € x
UMD = M = () M, (Z Vi z+2y> = DM (%)

That is, the action of ¥, on a module MY respects the multiplication rule for Chebyshev
polynomials of the second kind.

Describing the action on morphisms of Mg requires us to be more explicit. So next,
let us establish the following notation. Let {n; : i € Q5'} be a complete set of primitive
orthogonal idempotents of KQ® and let M be a KQ*-module. Let a:i — j € Q%
and let M,: M; — M, be the restriction of the linear action of a on M to the vector
subspace M; = Mn;. The data given by all vector subspaces M; and all linear maps M,
entirely determine the structure of M — this is equivalently the module M expressed as
a K-representation of Q®, which in this setting, is more convenient to work with. For
any N € Mp and morphism f € Homy,, (M, N), we then recall by Schur’s lemma that
f can be written diagonally as (fl)zeQA with f; = flu,: M; — N;.

For H,,-type quivers, recall that X+ = Zsolp ] and Qo = {4, ¢; : 1 <i <m}. Through-
out, the reader may notice that the relation ¢? = ¢ + 1 comes into play. We define the
object ¢ M € My to be the KQ?-module with the following structure. We have vector

subspaces
(SOM)l = M¢i and (SDM)@ = Mdh‘ © M.

For each arrow a: ¢ — j and corresponding arrow b: ¢; — ¢;, we have

M, 0
(pM), = M, and (M), = < Ob Ma) .
For the unique arrows c¢;: ¢; — j, ca: ¢; — ¢; and c3: i — ¢;, we have

M., wM, M,
<QDM>‘31 - (MC2 MCs) ) (SOM)@ - (WM; 0 3) ’ (SOM)CS - (Mcj> )

where w € K \ {0,1,27'}. The construction is independent (up to isomorphism) of the
choice of w subject to the condition above. The exclusion of the subset {0,1,27!'} C K
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is to ensure the isomorphism (%) holds. For any f € Hom, (M, N), we define ¢f €
Hom i, (9 M, o N) by

ehi=te wdena= (% 7).

For I-type quivers, the principle of the construction is similar to the above. For this
case, we need some additional notation. Recall that Q5 = {i : 0 < i < 2n — 1} and
k(i) = Uj(cos 5,57). We will assume that even vertices are sources and odd vertices are
sinks — the construction is dual for the opposite quiver. Let Q2 = {a,...,az,_1}, where

each arrow a; is the unique arrow between the vertices i — 1,7 € Q5. Define a surjection
of sets h: QF — {0,...,n — 1} by h(i) = k if Uj(cos 575) = Uk(cos 575). For each
j € QF, define an injection of sets h;': {0,...,n — 1} — QF by h; (k) =i if h(i) = k
and F(i) = F(j), and note that h is a left inverse to hj_1 for all j € Q5. Next, for each

i € Q5 and each 0 < k < n — 1 define an index set
V(i,k)={h'() € QOA : 1y is a summand of Y)Yy € anﬂ)}_

We may now proceed with the construction, for which we will later provide a specific
example. Given an object M € My, we define the object ¥, M € Mp to be the KQ*-
module with the following structure. We have vector subspaces

(VxM); = @ M;.

JEV (k)
We define the linear map (1 M),, to be the restriction onto (¢, M); of the linear map
AM,, M,, 0 - 0
0  AM,, M, ;
. _ 0<2j<2n—2 0<2j+1<2n—1
: : K o M,,,
0 0 - 0 AM, ,

composed with the canonical surjection onto (¢, M );», where ¢’ and i" are the source and
target vertices of a; respectively, A = 1 if ¢ is odd, and A € K \ J for some finite set
J if i is even. The set J is determined such that the isomorphism (x) holds. For any
f € Hompy,. (M, N), we define ¢y f € Homp, (¢ M, 1 N) by

(Wnh)i= B -
JEV (i,k)
Finally, for both H and I-type quivers, we define
(r+s)f:(r+s\M —(r+s)N=rf@sf:rM &sM —rN ®sN
(2n+1) (2n+1)

for any 7,5 € x such that r + s is irreducible, and we define 1y =1 € x| to act
by the identity functor.

Example 6.4. Let F' be the folding given in Example 5.12. Then Xf) acts on an object
M € My in the following way.

(Y1 M)g = My (Y1 M)y = M3 @ Ms;
(01 M)e = My & M, (Y1 M)3 = My & M;
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(M, (AM,, M,
(¢1M)a1 - (M%) (wlM)az - ( 0 )\Ma5>
M, 0 AM,, M,
(V1M)aq = (M Ma4) W1M)as = ( 0 /\M;>
(¢1M)a5 - (Ma1 Maz)
(YaM)g = M, (YoaM)y = My @ Ms
(YaM)g = Moy @ My ® My (YaM)3 = My @ M3 @ Ms;
(YoM )y = My @ My (Yo M)s5 = Ms
M, AM,, M, 0
(¢2M)a1 - (Maz) (¢2M)a2 - ( 0 )\M; Ma4)
Mal MU«Q 0 MCLQ 0
(¢2M>a3 = 0 Mas Ma4 (¢2M)a4 = )‘Mas Ma4
0 0 M, 0 AM,,

(¢2M)a5 = (Mas Ma4)
where A € K\ J. The set J can be computed to be
J = {Oa 1a 2_17 3- 2_17 3_17 C17 CQ) 2_1 ’ Clv 2_1 ’ C2}’

where (i, (, are roots of 22 — 3z + 1. Figure 6.2 shows the Aulsander-Reiten quiver of

M, with indecomposable objects written as images under the actions of 11,y € XSZ)-

Proof of Theorem 6.3. First we will prove the theorem for the module category Mp.

(M1)-(M4) follows by definition — and in particular, the isomorphism (x). (Mb5)-(M6)

follows from the fact that each r € anﬂ) acts diagonally on morphisms.

To see that the bounded derived category Dp is also a Xi”“—coefﬁcient category, one
defines r¥*X = ¥*rX for any kK € Z and any object X € Dy in degree 0. Since

KQ* is hereditary and that R, acts linearly and faithfully on Ext}\/lp—spaces, the result

follows. O
P(3) 71P(3) 721(3) 71(3) 1(3)
\/ﬂp(l) ot P(1) er?I(1) eTI(1) eI(1)
©P(2) T 1 P(2) ©r?1(2) 71(2) ©l(2)
©P(3) @11 P(3) p1°1(3) eTI(3) ©I(3)
P2) 1P(2) 721(2) 71(2) 1(2)
P(1) (1) 72I(1) 71(1) (1)

FIGURE 6.1. The Auslander-Reiten quiver of mod K Qs viewed as Zx[¢]-
coefficient category under the folding F': QPs — Q3.
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FIGURE 6.2. The Auslander-Reiten quiver of mod KQ%¢ viewed as XSZ)—

coefficient category under the folding F': Q46 — QI?(”. Modules are la-
belled such that §(M;) corresponds to the point e'7 .

For each of the weighted foldings F': Q® — Q?', we respectively call the categories M p
and Dr equipped with the appropriate semiring actions given in Theorem 6.3 the abelian

and triangulated R -coefficient categories corresponding to F', where R, = anﬂ).

Remark 6.5. For each of the foldings F: Q® — Q* with A’ € {Hs, Hy, I;(2n + 1)}, the

action of R, = anﬂ) on My and Dp is defined such that the following hold for any

M e Mp, any X € D and any r € R,
(a) If X is concentrated in degree k, then rX is concentrated in degree k.
(b) 0p(rM) = afn+1)(r)5F(M) and 0 (rX) = an+1)(r)gF(X), where ofnﬂ): anﬂ)
X+ is the homomorphism described in Remark 4.5.

(c) M (resp. rX) is a direct sum of objects that belong to the same column of the
Auslander-Reiten quiver of Mg (resp. Dg). In particular, Homu,, (N, N') = 0
(resp. Homp, (Y,Y’) = 0) for any non-isomorphic indecomposable direct sum-
mands N, N' C rM (resp. Y,Y’ C rX). Moreover, Tp,rM = r7p, M and
DT X = 1r7p, X.

(d) Suppose rM = M; & ... ® M,,. Then the action of r maps an Aulsander-
Reiten sequence starting (or ending) in M to a direct sum of Auslander-Reiten
sequences starting (resp. ending) in each M;. A similar statement holds for rX
and Auslander-Reiten triangles starting/ending in X.

Corollary 6.6. Let F: Q® — Q* be a folding of quivers with A € {Hs, Hy, I,(2n +
1)}, and let Mg be the corresponding abelian anﬂ)—coeﬁﬁcient category. Then the
Grothendieck group Go(Mp) has the structure of a free x?"+tY-module of rank |Q5"|.

Proof. The x?"*Y-module structure of Go(Mp) follows from Remark 6.2(a). That
Go(Mp) is free of rank |Q5'| follows from the fact that a basis for Go(Mp) is given
by the iso-classes of simple modules, and that any simple module is obtained as an R, -
multiple of a simple module that projects onto a simple root of A’. O

6.2. The reduced Auslander-Reiten quiver of an R, -coefficient category. It
is possible to construct a simplified version of the Auslander-Reiten quiver for an R, -
coefficient category, which we call the reduced Auslander-Reiten quiver. This takes its
inspiration from the valuations on the Auslander-Reiten quiver of the module category
of Artin algebras over non-algebraically-closed fields (cf. [2, VII]).

Definition 6.7. Let R, be a partially ordered semiring and R be the associated ring
(Remark 6.2) and suppose M is an abelian R, -coefficient category. We say an object
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N € M is R, -generated by M € M if there exists a split exact sequence
0—=sM —rM—L—0

such that N = L. Similarly, for a triangulated R -coefficient category D, we say an
object N € D is R -generated by M € D if there exists a split triangle

sM —rM — L — YXsM

with monic first morphism such that N = L. In both the abelian and triangulated cases,
we call the pair (r, s) the R, -generating pair of N by M, and call the element r — s € R
the R-index of N with respect to M. We denote the class of all objects R, -generated by
M by G-

Let T" be a set of objects of M and define M(T") to be the full subcategory of M whose
objects are isomorphic to finite direct sums of the objects in the set

r={L€Gy:MecTl}
We say I is a set of R -generators of M if M(T") ~ M.

Remark 6.8. By the properties of triangulated categories, the condition that f is a
monomorphism in a triangle

sM LML s

is strong enough to ensure that rM = sM @ L, that g is an epimorphism and that h is
the zero morphism. Thus, the triangle is split. See [31, IV.1] for an account.

Definition 6.9. Given a set I' of objects of M, we can endow the category M(I") with a
partial ordering given by L; < Lo if and only if L; = Ly or Ly and L, are R -generated
by a common M € I' with respective R-indices r; and 7y such that 1 < rs.

Definition 6.10. We say a set I" of R,-generators of M is basic if the elements of I'
are pairwise non-isomorphic indecomposable objects of M. We say a set I' of basic R, -
generators is minimal if for any other set of basic R, -generators I/, we have an injective
map of sets 0: I' — I'" and inclusions ¢: I' - T'UI” and //: IV — ' UT” such that for any
M €T, we have «(M) < /(M) in the category M(I' UT") =~ M.

For the R, -coefficient categories M and D that we have constructed from a weighted
folding of quivers F', the above notions of R, -generators and minimality can be deduced

from the geometry given by the projection maps dr and ZS\F respectively.

Lemma 6.11. Let F: Q® — Q~ be a folding of quivers with N' € {Hs, Hy, I,(2n +
1)} and let Mg and Dr be the corresponding abelian and triangulated R. -coefficient
categories, respectively.
(a) Let M, € Mg be an indecomposable object such that 0p(M,) = « is a positive
root of A’. Then an indecomposable L € Mg is R, -generated by M, if and only
if 0p(L) is collinear to .
(b) Let X, € Dp be an indecomposable object such that 25\F(Xa) = « is a root of
A’. Then an indecomposable Y € D is R, -generated by X, if and only if Y is
concentrated in the same degree as X, and gF(Y) 15 collinear to a.

Proof. (a) For clarity, we have R, = anﬂ) in all /-type cases and R, = Xf) = Zole]

in the H-type cases. Recall that by Theorem 5.2, the construction in Theorem 6.3, and
by Remark 6.5(b), for each positive root a of A’, there exists a set

M, = { My, V1M, ..., 0y 1M}
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of pairwise non-isomorphic indecomposable modules such that

Op(iM,) = Ufn+l)(¢i)5F(Ma) =U <COS 27;:_ 1) a.

It follows that L € My is anH)—generated by M, if and only if L is isomorphic to
a direct sum of objects in M,. The sufficiency follows from the fact that any element
of anﬂ) is of the form r = a4y + ... 4+ a™ Y, with each o) € Zsy and that
Uaca, (any Ma is a complete set of non-isomorphic indecomposables of M, where ., (A’)

is the set of positive roots of A’. The necessity follows from the split exact sequences

0— sM, — (s+r)M, = rM, — 0

for any s € anﬂ). On the other hand, it is also clear that for any L, L, € M,, we have

that dp (L) is collinear to dp(Ls). Conversely, if an indecomposable L € M is such that
dr(L) is collinear to M, for some positive root « of A’; then Theorem 5.2 tells us that
L € M,, as required.

(b) This follows from the proof of (a) along with Remark 6.5(a) and that R acts by
a triangulated functor. O

Proposition 6.12. Let Mg and Dg be as previously stated and < be the partial ordering
i Definition 6.9.

(a) For any indecomposable Ly, Ly € Mg, we have the following:
(i) Ly and Ly have a common R, -generator if and only if 6p(Ly) is collinear to
(SF(LQ);
(i) Ly < Lo if and only if §p(Ly) is collinear to p(Ls) and ||0p(L1)|| < ||6r(L2)]|-
(b) For any indecomposable X1, Xo € Dp, we have the following:
(i) Xy and X have a common R, -generator if and only if X1 and X5 are con-
centrated in the same degree and §p(Xy) is collinear to dp(Xs);
(ii) X1 < Xo if and only if X1 and X5 are concentrated in the same degree,
dp(X1) is collinear to 0p(Xs), and ||0r(X1)|| < [|0r(X2)]|-

Proof. We will prove (b), as the proof for (a) is identical to (b) concentrated in degree 0.
(b)(i) By Remark 6.5(a), if X; and X, are both R, -generated by Y € Dp, then X;
and X, are concentrated in the same degree. It further follows from Proposition 5.14 and

Remark 6.5(b) and (c) that 6(X;) and 6(X3) are some Y2n + 1-multiples of a common
root o of A’. Thus, X; and X, have a common R, generator only if X; and X, are

-~ ~

concentrated in the same degree and §(X;) and 0(X5) are collinear. Conversely, if X;

~ ~

and X, are concentrated in the same degree and 0(X;) and 0(X3) are collinear, then X;
and X5 have a common R, -generator by Lemma 6.11.

(il) X7 < Xy if and only if X; 2 X5 and both have a common R, -generator with
respective (positive) y(?"*V-indices 7, < r5. By Lemma 6.11 and Remark 6.5(b), this is
true if and only if X; and X, are concentrated in the same degree, S(Xl) and /5\(X2) are
collinear, and "+ DgrH+)(r)) < @ +gEn+1) (1)) The result then follows from the

fact that ||67(X,)|] < ||07(X2)|| if and only if GCDgCml (p)) < GEHD gD (1) O

Theorem 6.13. Let F: Q* — Q% be a folding of quivers with A = {Ay,, Ds, Fs}
and A" = {Hy, Hs, I,(2n + 1)}, and let Mg and Dp be the corresponding abelian and
triangulated R, -coefficient categories respectively. Define sets

Ly = {M € Mg : M indecomposable and 0r(M) is a positive root of A},
Ip, ={X € Dr : X indecomposable and SF(X) is a oot of A'}.
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Then I' v, and I'p,. are minimal sets of Ry-generators for Mg and Dp respectively that
are both unique up to isomorphic elements.

Proof. Let A denote the category Mg or Dp. That I'4 is a basic set of R -generators
for A follows from Theorems 5.2, Proposition 5.14, 6.3, and Lemma 6.11. That I'4
is minimal follows from Proposition 6.12 and Remark 6.5. That I'y, is unique up to
isomorphic elements follows from the fact that there exists a unique object M, € Mpg
up to isomorphism for each positive root of A’. That I'p, is unique up to isomorphic
elements follows from the fact, in each even degree, there exists a unique object X, € Mp
up to isomorphism for each positive root of A’, and in each odd degree, there exists a
unique object X, € Mg up to isomorphism for each negative root of A’ O

Corollary 6.14. For each non-projective object M € I'pq,., we have Ty, M € I'pq,,. For
each object X € I'p,., we have 7p, X € I'p,,.

Proof. This follows from Theorem 5.2 and Proposition 5.14 and the fact that the objects
in I'yq, and I'p,, map to roots of A’ under d and ép respectively. O

Remark 6.15. Let F: Q® — Q* be a weighted folding with A’ = {H,, Hs, I,(2n + 1)}.
Given the minimal set of R -generators I' for Mg, we can actually use a simpler notion
of R,-generation. In particular, we have

gM:{LGMFILg’I“M,TGRJ,_}
for any M € I'. Note however that this statement is not necessarily true for N ¢ T'.

Definition 6.16. Let M be an R, -coefficient category with an Auslander-Reiten quiver
and suppose that M has a minimal set of R -generators I" that is unique up to isomorphic
elements and closed under 7. The reduced Auslander-Reiten quiver A(M) of M is an
R-valued translation quiver such that the following hold:

(A1) The vertices of A(M) are R -generators I' C M.

(A2) The translation of A(M) is the Auslander-Reiten translation 7.

(Tl 1T2)

(A3) There exists a valued morphism M ——> N in A(M) if and only if (i)-(iii) hold.
(i) There exist irreducible morphisms X; — N and M — X, such that X,
is Ry -generated by M with R-index r; and X5 is R,-generated by N with
R-index r9.
(ii) If there exists an Auslander-Reiten sequence/triangle

TmN = X' - N —

then X’ = X[ @& X, for some (possibly zero) object X{, such that no direct
summand of X is in Gy,.
(iii) If there exists an Auslander-Reiten sequence/triangle

M — X" = 1M —

then X” = X & X, for some (possibly zero) object X{/ such that no direct
summand of X[ is in Gy.

7. CLUSTER CATEGORIES AND MUTATIONS ARISING FROM WEIGHTED FOLDINGS

Throughout this section, let F: Q® — Q% be a weighted folding of quivers with
A" = {Hy, Hs,I,(2n + 1)}. By the results of the last section, the folding F' gives rise
to an associated R,-coefficient category My by Theorem 6.3, and the corresponding

bounded derived category Dp = D’(Mp) inherits the semiring action on Mp. Here

R, = anﬂ), where n = 2 in the H-type cases.
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P(3) *1p(3) 721(3) 71(3) 1(3)
) o ) (o (o
\ /42 \1 y \ / \ / \
P(2) =1P(2

\/\/\/\/\

P(1) T 1P(1 TI(1) (1)

M; M,
M, M, M,

FIGURE 6.3. Reduced Auslander-Reiten quivers of type Hj (top) and
Ir(2n+1) (bottom). The top is a reduction of the Auslander-Reiten quiver
of mod KQP¢ with respect to the action of Zsg[p]. The bottom is a re-

(2n+1)

duction of mod KQ#>" with respect to x. Unlabelled arrows have

valuation (1,1).

The category Mg is the module category of a finite-dimensional hereditary algebra
of finite-representation type. Thus it makes sense to construct its cluster category Cp
(see for example [4]). Recall that the cluster category of Mp is the quotient category
Cr = Dr/(7p,%). This category inherits the Auslander-Reiten triangles and translation
from Dp with the identification ¥M = 7p,M. Moreover, Cp naturally inherits the
semiring action on Dpg. Specifically, one has a canonical quotient functor G: D — Cp
that is triangulated (due to [33]) such that M = N = G(M) = G(N) and 7¢,G(M) =
G(rp, M) for any M, N € Dg. The R, -action on Cr is then defined by rG = Gr, which is
well-defined because the R, -action on Dy preserves the degree of indecomposable objects
and commutes with both ¥ and 7p,. Given any minimal set of R, -generators I'p, of Dp
that is closed under ¥ and 7p,., one can similarly define a set of minimal R -generators
for Cr as the set of iso-classes

FCF = {[M] eCr:Mce G(FDF)},

and we can define the corresponding reduced Auslander-Reiten quiver of Cr. We also
have an analogue of Remark 6.15 for sets of minimal R, -generators.

Further recall from [6] the following definitions, which we will later generalise to the
setting of R, -coefficient categories.

Definition 7.1 ([6]). Let C4 be the cluster category of a finite-dimensional hereditary
algebra A. An object T' € Cy4 is called a (cluster)-tilting object if
(i) T is rigid: Home, (T, 7¢,T) = 0; and
(ii) T is maximal: if there exists X € C4 such that Home, (T & X, 7, (T & X)) =0,
then X € addT, where addT is the full subcategory of C4, containing direct
summands of finite direct sums of copies of T'.
We say T is basic if the indecomposable direct summands of 7" are pairwise non-isomorphic.
We call the algebras Morita equivalent to Endc, (T')P cluster-tilted algebras.

Proposition 7.2 ([6]). Let T € C4 be a basic tilting object. Then T has |Qo| indecom-
posable direct summands.

Proposition 7.3 ([7]). Let T € C4 be a tilting object. Then the functor Home, (T, —)
induces an equivalence of categories Co/add ¢, T — mod End¢, (T')°P.
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Definition 7.4 ([6]). An object T' € C4 is called an almost complete tilting object if
Home, (T, 7¢,T) = 0 and there exists an indecomposable object X € C4 such that T & X
is a cluster-tilting object. We call such an object X a complement of T'.

Proposition 7.5 ([6, 8]). Let T € Cy be an almost complete tilting object. Then T has
exactly two complements X and X'. The corresponding cluster-tilted algebras Ende , (T ®
X')°P and End¢, (T & X")°P are respectively isomorphic to algebras KQ'/I' and KQ"/I"
such that Q' differs from Q" by a mutation at a single vertex.

For the next result from classical cluster-tilting theory, we require the notion of approz-
imations in additive categories, which is similar to the notion of almost split morphisms
in Auslander-Reiten theory. Let X be an additive category and let V C X be an ad-
ditive subcategory. We say a morphism f € Homy (Y, X) with Y € Y is called a right
YV-approzimation if for any morphism f’ € Homyx(Y’, X) with Y’ € Y, there exists a
morphism ¢ € Homy (Y’ Y') such that the following diagram commutes:

Y/

N
g
vy Lo ox

We say that a morphism f € Homy (X, X') is right minimal if for any g € Endy(X) such
that fg = f, the morphism ¢ is an automorphism.

There is also a notion of left YV-approximations and the notion of left minimal mor-
phisms, which are both dual to their right counterparts. We say that a morphism is a
right (resp. left) minimal Y-approximation if it is both right (left) minimal and a right
(left) YV-approximation.

Proposition 7.6 ([6]). Let T € C4 be an almost complete tilting object with complements
X1,Xo € Ca. Then there exist triangles

X TCAX1

X, X, 70, X

in Ca such that f and f' are right minimal add T-approzimations, and g and ¢' are left
minimal add T -approrimations.

We shall now generalise these concepts and results to our setting of cluster categories
arising from foldings. For the theory that follows, we will define the following sets for
each object M € Cp:

Gy ={LeCr:L=rM,re R}
Iy = {L € Gy : L indecomposable}

The latter of these sets satisfies some small but important properties which we will use
later. Namely, we have the following lemmas:

Lemma 7.7. Let F: Q® — Q% be a folding of quivers, and suppose T' is a minimal set
of Ry-generators for Cp. Then for any M € T we have |Q5| = |Za||Q5|.

Proof. For foldings onto H-type quivers, this follows from the fact that Z,; = {M, pM}
for any M € T and that Q5] = 2|Q5'|. For foldings F: Q42» — Q=71 this fol-
lows from the shape of the Auslander-Reiten quiver of a bipartite As, quiver and Re-

mark 6.5(c). O
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Lemma 7.8. Suppose I' is a minimal set of R, -generators of Cp. Then My, My € T' are
distinct if and only if Ty, N Iay, = 0.

Proof. It My = M,, then we clearly have that Zy;, NZy, # 0 by Lemma 7.7. Conversely,
if My % My then note that Zy, N Zy, = () by Proposition 5.14, Remark 6.5(c), and the
fact that the action of R} commutes with both ¥ and 7p,.. O

We shall now generalise cluster-tilting to our setting.

Definition 7.9. Let F': Q2 — Q®' be a weighted folding, and let Cp be the cluster cat-
egory of the associated R, -coefficient category. Let I' be a minimal set of R -generators
for Cr. We say that an object T' € Cp is basic (cluster)-R. -tilting if the following hold:
(T1) T = ., T; with each T; € " and T; 2 T for any i # j.
(T2) T is Ry-rigid: Home, (77, 7¢,T") = 0 for any 7", 7" € Gr.
(T3) T is maximal: if there exists X € I' such that T'&® X is R,-rigid, then X is
isomorphic to a direct summand of T

Before we proceed with our main results for this section, we must prove some technical
lemmas which further quantify the above conditions.

Lemma 7.10. Let I' be a minimal set of R, -generators of Cr, and let'T' = @El T, € Cp
with each T; € T. Then T is Ry -rigid if and only if for any i,5 € {1,...,|T|} we have
Home,.(Zi, 7¢, Z;) = 0 for any Z; € Iy, and Z; € Ir,.

Proof. By definition, we have T € Gp if and only if we have T" = rT = @g'l rT; for
some r € Ry. For each such 77 = rT € G, write 1] = r7T;. Now since T; € T,
every indecomposable direct summand Z; of T is such that Z; € Zr,. Conversely, for
any Z; = r'I; € I, there exists 7" = r'T' € G such that Z; is a direct summand of
T". Thus, we have Home, (7", 7¢,T") = 0 for any 7", 7" € Gr if and only if for any
i,j € {1,...,|T|}, we have Home,(Z;, 7¢,.Z;) = 0 for any Z; € Iy, and Z; € Ip,, as
required. O

Lemma 7.11. Let " be a minimal set of R, -generators for Crp and let My, My € T'.
Suppose there exists i and j such that Home, (1; My, ;M) # 0. Then

(a) Home,, (1/11%;]\/[1,1/13‘71]\/[2) # 0 and Home,, (¢1¢¢M1,¢j+1M2) #0;
(b) HOHICF (¢i—1M1,¢1¢jM2) #0 and HomcF (1/1i+1M1,¢11/1jM2) # 0.

Proof. We have Homp,, (S¥); My, X1 My) # 0, where X*M;, 'M, € Dp are representa-
tives of My, My € Cr, and by an abuse of notation, My, My € Mp. In particular, either
l=Fkorl=Fk+1.

Consider the case where [ = k. Then we have a pair of exact sequences

0 Ker g wi]\Al/l ! Im]? 0

0 Imf h

1 My—>Coker h—0,

where f € HomMF(%Ml, zp]MQ) is non-zero. Since wZMl and %Mg are non-isomorphic
indecomposable modules, Coker h is either zero (if I is surjective) or it is isomorphic to
a direct sum of mdecomposable modules that reside in columns of the Aulsander-Reiten
quiver distinct from the columns containing Ml and MQ Importantly, we note from this
that v M2 is not a direct summand of Coker h for any 7. Multiplying by v; yields

—~ 19
0——=1); Ker 9—>¢1%M1—g>¢1 Im f—>0
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0——11 Im fﬂ% My @ ¢g+1M2—>¢1 Coker h—=0.

Now we necessarily have that Im 1, hﬁwj M, # () and Im wlhmwj+1M2 # (): otherwise ei-
ther ¢;_ 1]\/[2 or %HMQ is a direct summand of 1/, Coker h which by Remark 6. 5( ) would
contradict the previous observation that w] Mg is not a direct summand of Coker h. Thus,
there must exist non-zero morphisms f 4 %%Ml — Y 1]\/[2 and fj 41 wlszl
ij]T/[/g. This implies that Home,, (v19; My, ¥;_1M>) # 0 and Home,, (Y190, My, 141 M) #
0, as required. That we also have Home, (¢;_1 My, Y110 Ms) # 0 and Home,, (¢;1 My, Y190 Ms) #
0 follows by dual reasoning to the above.

Now consider the case where [ = k+1. Then Ext}MF (wi]/\\/[/l, wj]T/[;) # (0 and consequently
we have a morphism of non-split exact sequences

0 W Py ; Py UMy —0
T
0—>1b@]/\\/[/1 N 2—>0

where the top row is a projective resolution of ijg, and N is determined by g. Multi-
plying by ¢ yields

00— 1/1j71§1 @ 1/1j+1§1 — i/fjflﬁo > 1/1j+1§0 — 1/1j71]T/[/2 s> ¢j+1M2 —0

|0 | |

0—>¢1'¢/}iﬁ1 ¢1N %‘—MT/E @%HMQ —0,

where by the previous argument, we have ¢, g = (- 3+ ) with g_, g, # 0. Restricting to
either direct summand yields a non-split exact sequence. The dual argument also applies,
which proves (a) and (b) for this final case. O

Lemma 7.12. Let I' be a minimal set of R, -generators for Cg, and let My, My € T'.

(a) Suppose there exists Ly € Ty, such that Home, (Ly, Lo) = 0 for any Ly € Iy .
Then Home, (L}, L) = 0 for any L € Ty, and LYy € Tyy,.

(b) Suppose there exists Ly € Iy, such that Home, (L1, La) = 0 for any Lo € Lyy,.
Then Home, (LY, L)) = 0 for any L € Ty, and LYy € Tyy,.

Proof. (a) By Remark 6.15, every element of Z,;, may be written as v, M},. We will prove
the contrapositive of the lemma statement in this notation. Namely, that if there exist
i and j such that Home, (¢; M7, 1;My) # 0, then for any j’, there exists ¢’ such that
Home, (i My, My) # 0. The result is trivial in the cases where either M; = M, or
where j = 0, so we will assume neither is the case (a priori). For all other cases, the result
is actually a straightforward consequence of the inductive application of Lemma 7.11(a).

(b) The proof is similar to (a), with the use of Lemma 7.11(b) instead. O

The condition of being R, -tilting is closely related to the classical notion of tilting. In
fact, the next theorem shows that basic R, -tilting objects of Cr correspond to a subset
of basic tilting objects of Cp.

Theorem 7.13. Let T = @El T; € Cr, and let
|T|

:@@ZECF.

i=1 ZeIr,
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Then T is a basic R, -tilting object if and only if T is a basic tilting object.

Proof. If T basic then T basic by Lemma 7.8 and property (T1). The converse follows
from the fact that 7; € Zr,.

By Lemma 7.10, T is R,-rigid if and only if for any ¢,5 € {1,...,|T|} we have
Home, (Zi, 7¢,Z;) = 0 for any Z; € Iy, and any Z; € Ip,. But this is true if and
only if Home, (f, TCFf) = 0, and thus 7" is R, -rigid if and only if T is rigid.

We can now prove the proposition statement. The remaining condition to check is the
equivalence of the maximality conditions, which is easier to prove by the contrapositive
statement. So suppose T is basic and R, -rigid, but not maximal. Then there must exist
some X € I' such that '@ X is basic and R -rigid. This implies that T @& X is basic and
rigid, where X = . zery Z- But then clearly T is not maximal, because X ¢ add T by

the fact that 7 & X is basic.

Conversely, suppose T is basic and rigid, but not maximal. Then by Proposition 7.2,
we must have |T)| # |Q5|. In fact, we actually have 7| < Q5| — |Zx| for some X € T.
Let Y € Cr be such that T @Y is basic and rigid, and let X € I'" be such that Y € Zx.
Then by Lemma 7.12, we know that T @ X is basic and rigid, where X ®Z€Ix Z.
But this is true if and only if T'&® X is basic and R, -rigid. So T' cannot be maximal, as
required. U

Henceforth, we will refer to the basic tilting object Tec r defined in the above theorem
as the tilting object that corresponds to the basic R, -tilting object T'.

Theorem 7.14. Let T € Cg be a basic R, -tilting object. Then T has |QOA/] indecompos-
able direct summands.

Proof. This is a consequence of Lemma 7.7, Theorem 7.13 and Proposition 7.2. U

Definition 7.15. Let F': Q® — Q® be a weighted folding, and let Cr be the cluster cat-
egory of the associated R, -coefficient category. Let [' be a minimal set of R -generators
for Cr. An object T € Cp is called an almost complete basic R, -tilting object if T is
R, -rigid and there exists an object X € I" such that T'& X is a basic R, -tilting object.
We call such an object X a complement of T.

Theorem 7.16. Let T be an almost complete basic R, -tilting object of Cr. Then T has
exactly two complements.

Proof. For foldings F: Q42" — Q2("*1) the theorem is a straightforward consequence of
well-known results on the Auslander-Reiten theory of A-type quivers (cf. [12, Lemma 2.3,
2.5, Theorem 2.13] for the setting of cluster categories and [9, pp. 166-172], [14, Sec. 2,
Theorem| for module categories of type A). In particular, for any indecomposable object
M € Cp, let Ny, Ny € Cr be the indecomposable objects in the top-most and bottom-most
rows of the Auslander-Reiten quiver that are given by the rays of irreducible morphisms
of source M (of which there are at most two). Note that if M is already located on the
top-most (resp. bottom-most) row of the Auslander-Reiten quiver, then we set Ny = M
(resp. Ny = M). Next, let L € Cr be the indecomposable object given by the intersection
of the (unique) rays of source N; and Ns. Note that if Ny = M (resp. Ny = M), then
L = Ny (resp. L = Ny). Then Home, (M, M') # 0 if and only if M’ is located within
the rectangular lattice of the Auslander-Reiten quiver spanned by the corners M, Ny, N,
and L (inclusive of the boundary). See Figure 7.1 for an illustration.

Now in the case of the folding F': Q42 — Q27+ e have T' € T' by Theorem 7.14.
By Theorem 7.13, T' corresponds to a basic and rigid object T', which is precisely the
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direct sum of indecomposable objects in a single column of the Auslander-Reiten quiver
of Cp. It therefore follows from the exposition above that Home,. (7', M’) = 0 for any
indecomposable object M’ that resides in a column of the Auslander-Reiten quiver be-
tween 2n to 2n + 2 places to the right of the column containing 7" (inclusive). In fact, the
converse is also true: HomcF(T\, M') # 0 if L resides in a column at most 2n — 1 places
to the right of T, as illustrated in Figure 7.1. Thus, Home, (T, 7¢, M’) = 0 if and only
if M’ is an indecomposable residing in a neighbouring column to 7', or the same column
as T. Consequently, T' has exactly two complements X and X', which correspond to the
neighbouring columns of 7" in the Aulsander-Reiten quiver. This proves the result for the
folding F': Q42 — Q™2(7+D  Thus, we will assume for the remainder of the proof that
F' is instead a folding onto a H-type quiver.

First, we show that T Ilas at least two complements. By definition, 7" has at keast
one complement X;. Let T & X, € CQ be the corresponding tilting object, where X; =
X1 @ ¢X;. Consider the object T'@® X;/X; € Cr. This object is almost tilting, and by
Proposition 7.5, has exactly two complements, one of which is X;. Let Y be the other
complement and let Xy € I" be such that YV € Zx, = {X3,9X2}. Then T @Y is basic
and rigid, and X, is necessarily/\not iAsomorphic to any direct sumrlland of T® X;. By
Lemma 7.12, this implies that T' & X5 is basic and rigid, where Xy = X5 @& ¢X5. By
Lemma 7.7 and Proposition 7.2, T'® X5 is also maximal and hence tilting. Thus T'® X5
is R -tilting (Theorem 7.13), and hence X, is another complement of 7. So T has at
least two complements.

We now show that 7" has at most two complements. Let X; and X» be as previously
stated, and let Y’ 22Y be the other object in Zx,. To summarise, we already know that

ToXioeX, ToeYaY, TaoYd®eX;

are basic tilting objects. The first step of the proof is to show that To X, @Y is also
a tilting object, and thus that X; is a complement to T @Y’ In this regard, we know
that Home,. (X1, 7¢,Y) # 0 or Home, (Y, 7¢, X1) # 0, otherwise T @ X, & ¢ X1 ® Y would
be tilting. In the former case of Home, (X1, 7¢,Y) # 0, suppose for a contradiction that
Home, (X1, 7¢,.Y’) # 0. Then we have Home, (9 X1, 7¢,.¢Y’) # 0. Lemma 7.11(a) then
implies that we have Home, (¢ X1, 7¢,.Y) # 0, which contradicts the fact that T®Y ® X,
is tilting. So we must have Home, (X1, 7¢,.Y’) = 0. The dual argument applies to the
latter case of Home, (Y, 7¢,. X1) # 0. Thus, T & X, &Y’ must also be tilting.

o o
o]

o o
[e]

o o

FIGURE 7.1. The Auslander-Reiten quiver of Cp for a folding F': Q46 —
Q2™ with irreducible morphisms omitted. The leftmost column
represents an object T € [' which is almost complete R, -tilting.
Home, (M, M') # 0 for an indecomposable M’ if and only if M’ resides
in the shaded region spanned by the corners M, Ny, Ny and L (inclusive of
the boundary). Home, (T, M’) # 0 for an indecomposable M’ if and only
if M’ resides within any shaded region (or line).
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Suppose for a contradiction that X3 is a complement of T distinct f{f)m X7 and X,.
Let Z 2 X3 be a complement of the almost complete tilting object T'@® ¢ X3. Then
Z & Ix, UTx,UTIx,, since this would otherwise contradict the fact that almost complete
tilting objects in Cr have exactly two complements. Thus, the existence of a third distinct
complement of 7" implies the existence of a fourth distinct complement X, with Z € Zx,.
By similar reasoning to the above, there must also exist distinct basic tilting objects

T X3 d 0Xs, TeZoZ,
TaZopXs, TaoXsa 7

with Z, 7' € Ix,.
By Proposition 7.6, there exist triangles

X1 E ! Y TCFXI

E' Y’ TerPX1

Xy—B" Tz ot X

In particular, f is both a minimal right add(’f @ pXj)-approximation and a minimal
right add(f @ Y’)-approximation. So f must be a minimal right add T -approximation,
and hence E € add T By a similar argument, we also have E’, E” € add T. Applying
the functor Home, (—, X3) to the first and second triangles, and applying the functors
Home,. (—, X1) and Homa(—, ¢X7) to the third triangle yields

HOHICF (Xl, TCFXg) = HOIHCF (@Xl,TCFXg) = 0
Home,, (X3, 7¢, X1) = Home, (X3, 7,0 X1) = 0.

But then this implies that M = T )?1 @ X3 is basic tilting, which cannot possibly
be true, since |[M| > |Q5|. Hence our supposition of the existence of a third distinct
complement must be false. Il

A number of useful corollaries result from the proof of the above Theorem, which we
will highlight here.

Corollary 7.17. LetT € Cg be a basic almost complete R, -tilting object and let X1, Xs €
Cr be its distinct complements. For any Y € Lx,, there exists Z € Lx, such that Z is a

complement of the basic almost complete tilting object T & )A(l/Y.

Proof. We have already shown this for H-type foldings. For I-type foldings, this is a
straightforward consequence of the Auslander-Reiten theory of A-type quivers, which can
easily be deduced from Figure 7.1. Suppose that X; represents the neighbouring column
of the Aulsander-Reiten quiver to the right of T' (and thus X5 is to the left of T"). Since
the object T'@® X is basic R, -tilting, the obJect T X1 is basic tilting. Consequently, it
follows from property (T3) that Home, (T ® X1, 7¢, M') = 0 for an indecomposable M’ if
and only if M’ is a summand of TeX 1, or equivalently, if and only if M’ resides in the
same column as 1" or Xj.

Now let Y € Zy, and consider the rectangular lattice of the Auslander-Reiten quiver
that determines all indecomposables M’ such that Home, (Y, M’) # 0. Necessarily, the
rightmost corner of the lattice corresponds to an indecomposable object 7¢,.Z € ITCF X,
Moreover, it can easily be seen that for any Y’ € Zx, with Y’ 22 Y, the rightmost corner
of the rectangular lattice corresponding to Y is an idecomposable 7¢c, 2" € T, x, with
A=A
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Taking the quotient ToX 1/Y corresponds to removing the rectangular lattice in the
Auslander-Reiten quiver originating from Y. This frees up precisely one object 7¢,.Z in
the column represented by 7¢, Xs. Thus, we have Home,, (f &) Xl/Y, TepZ) = 0. In fact,
Z = 10,.Y, so we also have Home, (Z, 7¢, (T ® X,/Y)) = 0, as required. The argument
for where X represents the column to the left of 7" is similar. U

Corollary 7.18. Let T € Cg be a basic almost complete R -tilting object, and let
X1, Xy € Cp be its distinct complements. Let T' € Cr be the basic rigid object corre-
sponding to T'. Then for any Y € Lx,, there exists Z € Lx, such that there exist triangles

y_4.p1

Y S T

A TCFY

A

in Cr, where f and [’ are right minimal addf—approximations, and g and ¢ are left
minimal add T-approximations.

Proof. This is a consequence of Corollary 7.17, Proposition 7.6 and the reasoning used in
the proof of the previous Theorem for H-type foldings, which can readily be applied to
I-type foldings too. O

~

Definition 7.19. Let T € Cr be a basic R,-tilting object. We define Endc,(T)°P to

be the corresponding cluster-R. -tilted algebra, where T e Cr is the basic tilting object
corresponding to 7.

Theorem 7.20. Let T € Cr be a basic R -tilting object, and let A be the corresponding
cluster-R. -tilted algebra. Then mod Ar has the structure of an R.-coefficient category.

A~

Proof. From [7], it is known that the functor Home, (7, —) induces equivalences
H:Cr/add Tch — mod Ay and H: addT — proj Ar,

where proj Ar is the full subcategory of finitely generated projective Apr-modules. This
endows mod Ay with an R -action by defining rH = Hr for all » € R,. The additivity
of this functor ensures (M1) and (M2) of Definition 6.1 are satisfied. (M3)-(Mb5) are
satisfied directly from the definition of the R -action on mod Ay. (M6) follows from the
fact that H and H' are fully faithful. O

Theorem 7.21. Let T' be a basic almost complete anﬂ)—tilting object of Cg with comple-

ments X, and Xo. Let Aj ~ KQ®'/(p1) and Ay ~ KQ*2/(ps) be the cluster—xfnﬂ)-tilted

algebras corresponding to the basic anﬂ)-tiltmg objects T'® X1 and T & X5 respectively,

where py and ps are relations on the respective path algebras. Then
(a) There exist X" -quivers Q1 and Q> and respective weighted foldings Fy: Q™ —
Q2 and Fy: Q2 — Q2.
(b) Q21 and Q> differ by mutation at a single vertex.

Proof. In this proof, we use the fact that the objects of Cr may be represented by the
objects of M and the shift of the indecomposable projectives of M g. First consider the
basic tilting object T' € Cr and an associated object T" € Cp represented as

T=@ri@ ad T= H Pl

i€Qd 1€QE k(i)=1
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In particular, P(i) € I for any 7 such that x(i) = 1, and there exist precisely |Q5"| such
indecomposable projectives, so T is in fact the an+1)—tilting object corresponding to 7.

Under the equivalences

H:Cr/add Tch — mod Ay and H': addT — proj Ar,

one has Ap ~ KQ*, where Ay is the cluster—xfnﬂ)—tilted algebra associated to T. Now

consider the almost complete tilting object T/P(k) for some k such that (k) = 1. Let
M, be the complement distinct from P(k), and let X € T be such that My € Zx. By [8],
Proposition 7.5 and the equivalence H’, the quiver Q" of cluster-tilted algebra Az, differs
from Q® by a mutation at vertex k, where 7/ = T /P(k) & M.

Next, consider an almost complete tilting object 7" /P(j) for some j # k such that
F(j) = F(k). Let M; be its complement distinct from P(j) and write T" =~ f’/P(j) ®
M;. Now F(j) = F(k) if and only if P(j) = rP(k) for some r € anﬂ). Thus, by
Corollary 7.17, M; € Zx. Similar to before, the quiver Q" of cluster-tilted algebra Az,
differs from @’ by a mutation at vertex j. But since F' is a folding and F(k) = F(j), we
have 15 (Q%) = ppt; (Q2).

Proceeding through the above steps iteratively for all other vertices j € Q5 such that
F(j) = F(k), we obtain a tilting object

T, = b role b M
i€QEF (i) £F (k) JEQF F(j)=F (k)
Now P(k) € I' and M; € Zx for any j such that F(j) = F(k). So in particular, Tr
corresponds to the an+1)—tilting object T}, = T/P(k) ® X. Moreover, the quiver Q*
of the cluster-tilted algebra Az differs from Q* by a well-defined composite mutation
HjGQOA:F(j):F(k) w;. But I is a folding, which means that such a composite mutation of

Q* must agree with a mutation of Q2" at the vertex F(k). Thus, there must exist a
folding F': Q¥ — ppy(Q2"), which proves (a).
O

Corollary 7.22. Let F': Q4 — Q2" be a weighted folding of quivers, and let Cp be
the corresponding cluster category. Let T' € Cp be an R -tilting object, and let A be the

corresponding cluster-R. -tilted algebra, which is Morita equivalent to KQ/(p) for certain
quiver Q. Then either Q = Q42" or Q = (Q"2r)°P,

Proof. This is a consequence of the fact that Q2"+ is a rank 2 quiver, and thus the
only possible quiver mutations are sink/source mutations. O

Example 7.23 (Mutations of Hs). Consider the folding F': QP5 — Q3 given in Ex-
ample 5.7. The Auslander-Reiten quiver of Mg is given in Figure 5.2, and the cate-
gory has the structure of a Zxo[p|-coefficient category. Moreover, My has a minimal
set of Zsg|p]-generators that is unique up to isomorphic elements and closed under the
Auslander-Reiten translation. Thus, Mg has a reduced Auslander-Reiten quiver, which
is given in the top of Figure 6.3.

All of this carries over to the cluster category Cr. The Auslander-Reiten quiver of Cp
is similar to Figure 5.2, but with additional objects

7o, 1(1) =XP(1) = 7, P(1), 7o, 1(¢1) =XP(¢1) = 71¢, P(61),
7o 1(2) =X P(2) = 10, P(2), 7o 1 (¢2) =XP(¢2) = 70, P
70, 1(3) ZEP(3) = 7, P(3), 72, 1(93) =EP(¢3) = 7e,. P

I
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Likewise, the reduced Auslander-Reiten quiver of Cg is similar to Figure 6.3, but with
additional objects

chFlM(LO’()) gEM(luLSD) - 7'(:}4_‘]\4-(1’1’@)7
TCTFIM(LLO) gZM(Ovlv‘p) = TCFM(Ovl#’)’
T(:_FIM(%w,l) =XMo0,1) = Ter M0,0,1)-

Figure 7.2 provides examples of mutations of both Zs[¢]-tilting objects of Cr and of the
corresponding quivers in the folding F. In fact, the cluster-Zs[p]-tilted algebra A =~
KQ/(p) of the Z>[p]-tilting object T" given in each rectangle is such that @ is the quiver
on the left-hand side of the folding. The category mod Az has the structure of a Zo[p]-
coefficient category by Theorem 7.20 and also has a reduced Aulsander-Reiten quiver.
The indecomposable projective objects of mod A are given by the direct summands of T°
(black vertices in Figure 7.2) and their ¢p-multiples. The reduced Auslander-Reiten quiver
of mod Ar can also be obtained from Cr by removing all vertices and arrows associated
to 7¢,T. This is analogous to what is presented in [6] for the Auslander-Reiten quiver of
cluster-tilted algebras.

8. g-VECTORS AND c-VECTORS

There is a classical notion of g-vectors and c-vectors for integer exchange matrices
introduced in [29], which play an important role in the theory of cluster algebras. In this
section we adapt these notions to exchange matrices of types Hy, Hs and I5(2n+1), and
show that natural properties of ¢- and g-vectors continue to hold.

8.1. Extended exchange matrices and tropical y-seeds. Let J be an index set and
denote by T, the |J|-regular tree with edges labelled by elements of J, such that every
vertex is incident to edges with all labels distinct. Choose a vertex tg of T;. Fix an
|J| x |J| exchange matrix B over R, and define a 2|J| x |J| extended exchange matriz
over R

where B,, = B and C,, is an identity matrix. Define the initial tropical y-seed as
{Biy,;¢jt, = j € J}, where each ¢y, is the j-th column of the matrix Cy,. The vectors
c;j+, are called initial c-vectors. We can now define a tropical y-seed pattern by assigning
to every vertex ¢ of T; a tropical y-seed {By;cj4, : j € J}, where {c;4, : j € J} are the

. k .
column vectors of the matrix C;, and for an edge t —— t' the matrices

~ B ~ By
B, = (CZ) and By = (C:/)

are related by a mutation at £ € J. The matrices C; are called C'-matrices, and the
vectors c;, are c-vectors. Abusing notation, we will refer to tropical y-seeds as seeds (as
we have no other types of seeds in the paper).

It was conjectured in [29] and proved in [19, 32] that for R = Z the c-vectors are sign-
coherent: for every c-vector all its components are either non-positive or non-negative. If
B defines an acyclic quiver, the sign-coherence is also implied by the following result [19,
43]: all c-vectors are roots of a certain root system constructed by B. Although the sign-
coherence does not hold in general for R-quivers, a straightforward computation shows
the following:

Lemma 8.1. Let B be of type Hy, H3 or Is(n). Then all c-vectors are roots of the
corresponding root system.
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FIGURE 7.2. Examples of mutations of Hz. FEach rectangle contains
a weighted folding F': Q@ — @ of type Hs (bottom) and the reduced
Auslander-Reiten quiver of Cr and Mg (top). For the Auslander-Reiten
quiver: black vertices correspond to an R, -tilting object T' € Cp; red ver-
tices correspond to 7¢,.T'; arrows marked with ¢ have valuation (¢, ¢); and
the leftmost arrows with (seemingly) no source vertex are identified with
the rightmost arrows with no target vertex. The reduced Auslander-Reiten
quiver of M is obtained by deleting all red vertices and arrows. For the
folding: vertices labelled ¢; have weight ¢, and all other vertices and the
unlabelled arrows have weight 1. All rectangles are related by mutation.

In particular, Lemma 8.1 implies that all c-vectors for quivers of types Hy, Hs or I5(n)
are sign-coherent. We will show later that Lemma 8.1 can also be proved without any
computations by applying results on the associated module category (see Corollary 8.10).
It was shown in [39] that, assuming sign-coherence of c-vectors, integer ¢- and g-vectors
satisfy tropical duality: given C- and G-matrices C; and Gy, one has G; = (CI)~. This
motivates the following definition.

Definition 8.2. Let §t = (B, Cy) be an extended exchange matrix with columns in-
dexed by a set J, where By, is an exchange matrix of type Hy, H3 or I3(n). Define the
corresponding G-matrixz by

Gt - (CtT)_l
We define g-vectors {g;;: j € J} to be the column vectors of G;.
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Remark 8.3. Note that the definition 8.2 gives us a way to mutate G-matrices: given a
G-matrix, we compute the corresponding C-matrix, mutate the seed, and then take the
inverse transpose of the C-matrix again. The results of [39] actually show that mutating
G-matrices in this way is the same as mutation given by the explicit formula in [29,

(6.12)—(6.13)].

8.2. Compatibility of c- and g-vectors with (un)folding. Recall that given a weighted
folding of quivers F': Q® — Q*' with A’ € {H,, Hs, I,(2n+1)}, we have projection maps
0r = dp dim and gp that respectively map the objects in the categories My and Dy to
vectors in the root lattice of A’ (see Definition 5.1 for a recollection of the map dp.) We
will define a matrix generalisation of the map dr by

dp: ZIQeIXIQE! yﬁllx@oﬁ
<Vj)j€Q0A = (dF(Vj))jGQOA:n(j):lv

where each v; is a column vector.

Consider seed patterns for the exchange matrices B and B’ corresponding to Q* and
Q~'. If t is a vertex of Tqar with assigned seed {Biicy, L] € Q5'}, we denote by t the
vertex of Tpa with assigned seed {Bg;c;7: j € Q5} obtained as a result of the unfolding
procedure. That is, if B; is obtained from Bj by a mutation sequence pif,]. .. fi,.],
then B is obtained from B; by a mutation sequence fif,] . . . [i[z,,], Where [y, denotes
composite mutation at each vertex [ € Q5 such that F(I) = [k;]. The main aim of this
section is to establish the following compatibility result.

Theorem 8.4. Let F: Q® — Q~' be a weighted folding of quivers, with A" = {H,, H,
L(2n+1)}. Let ty and ty be vertices of Tgar connected by an edge labelled [k]. Then the
following diagram commutes:

In particular, Theorem 8.4 gives an equivalent definition of ¢- and g-vectors for types
{Hy, H3, I5(2n + 1)}: these can be defined by the projection of ¢- and g-vectors in the
(weighted) unfolding via the map dp.

Remark 8.5. The front and back faces of the cube follow from sign-coherence and [39],
so we need only prove that the other four faces of the cube are commutative.

The regular representation p: Y"1 — Z"*" (Definition 4.6) and the surjective ring
homomorphism ¢+ : x@rt1) . $@n+1) (Remark 4.5) will play a crucial role in the
proof. Throughout, we use the ordering < of Q5 from Proposition 4.9. This, in turn,
determines a ‘nice’ ordering of the rows and columns of the associated exchange matrix
that allows us to prove a number of results on C-matrices, G-matrices.
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Lemma 8.6. Let X = (a:ij)iJEQOA be a matriz with entries in Z, let Y = (y[i][j])[i],[j]erA/
be a matriz with entries in X"V and let 7 = (200113 jjeqa be a matriz with entries
in XY, Consider X as a block matriz (X[i][j])[i}’[j]erA/, where xy is an entry of Xy
if F(k) = [i] and F(I) = [j]. Suppose that X, Y and Z are such that X1 = p(yp;) and
0(2n+1) (ymm) = Z[[5]- Then dF(X) =Z.

Proof. For each [j] € Q2, consider the block column vector X = (Xmm)[i]erA/. By
assumption, we have Xp; = (p(y[i”ﬂ))m Q2 for some yj; € X", Since p is the regular
representation of x?"™V)_ it is clear that each column of X[; is uniquely determined by
Yo-th column of each matrix p(yp;)). In particular, this implies that every column of
X|; is uniquely determined by the column indexed by [ € Qf such that F(I) = [j] and
k(1) = 1. Now given any k € Q5 such that F(k) = [i], the ordering < of Q5 is such
that the k-th row of X coincides with the ¢-th row of the matrix p(yp;)) for some
0 < k' < n — 1. In particular, our setup is such that x(k) = "9 (¢y,). It is then a
consequence of the definitions that we have dp(X) = Z. O

Given t € Tga, recall that the matrix (Bg);jcqa has block structure (Bg)[i]j[j]erA/,
where the ([é], [j])-th block consists of entries indexed by (k,[) such that F'(k) = [i] and
F(l) = [j]. This block structure can be extended to the matrices C; in the natural way.
This allows us to prove a result similar to Proposition 4.9 for C'-matrices.

Proposition 8.7. Let t; be a vertex of TQOA/, and consider the corresponding vertex
t € Toa related to t; by unfolding.
(a) For any [i], [j] € Q5, we have Clagn = Py a) for some ry7 € A C @+

2n+1)

where p: X' — Z"™" s the regular representation of x*"tY),

n—1
A= {Z ayag, ..., an—1 € Zysgn(ag) = ... = sgn(an_l)} ,
1=1

and sgn(a) denotes the sign of a € Z. In particular, the entries of Cla are
sign-coherent.

(b) Let t,—2

o ) Cuma if [5] = [K]
illgl,te T 3
I Can + 5en(Clng ) [Clapn B+ otherwise,

ty be an edge of Toar. Then the matriz C, = i (Cy,) is such that

where sgn(Cpypyz,) is the sign of the ([i], [k])-th block of Cf,, and for any matriz
A = (a;j), we define [A]lL as the matriz whose entries are given by [a;|; =
maX(O,aij).

Proof. We show first that (a) implies (b), and then prove (a).
k

(a) = (b): Suppose that Cf, = (c;;7, )i jeqa satisfies (a). For any edge L
recall that by the classical mutation formula, the matrix Cy = 1,(Cy,) is given by

—Cit g ifj=Fk
Cijy = i .
iz T senlcps)Cinn bl otherwise.

t/ ln TQOA7

Note that for all i, we have c¢;;v = ¢;;7 for any j such that j # k and F(j) = F(k).
This is because the entry by,7 belongs to the block By 7 which is a zero matrix due
to the definition of unfolding. Thus, it immediately follows that the matrix (7, is such
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that c;;7, = —c;7 for any j such that F'(j) = [k]. Furthermore, one can see that by
iteratively takmg mutations we have

Ciji, = Cijin T Z Sgn(czl,?l)[ciz,a blj,a]Jr
F()=[K]
for any j such that F(j) # [k]. Since Cj, 7 is sign-coherent by (a), this reduces to

Cijto = Cishy +sgn(CM tl) Z [Ciz,?lblj,?l]+
F)=[k]

= ¢z 580(Clyp ) (Crm .2 B )+ )is»
which shows that the block mutation formula in (b) follows from (a).
(a): Firstly, one notes that it is a trivial consequence of Lemma 4.7(a) that if a block
Cign = Py n) for some 7y 7 € A, then Gy 7, is sign-coherent. Thus, we will focus

on proving that the blocks of all C-matrices are indeed expressible by such representations.
It is immediate the lemma is true for Cf, as we have Cy;17 € {p(0), p(1)} for any

[i],[j] € Q5. So suppose for an induction argument that a matrix Cy, satisfies (a). For
each [i], [j] € QF, let Sua € Y@ be such that Baia = PSu5n); Whi(/l\h we may
do due to Proposition 4.9. By the block mutation formula, the matrix Cy, = fip(Cy,) is
such that

Ciyw iz = ~Claman = —Prama) = P(=Tam )
for any [i] € Q5. For [j] # [k], we have

C[i][j],t} = P(T[i][j],a) + sgn(p(r T3k 2 1))[0( [i][K] a)p(s[k][j] ?1)]+

= P(T[i][j],a) +Sgn( T[], t1>[ ( Tl (k)8 Sk 1), tl)]+
By Lemma 4.8, we may reduce this further to
Cage = PapLa) + o800 ) Mam a S al+)
= P(T[z'][j],a + sgn(r [z‘}[k],ﬂ)[r[i][k],ﬂS[k][j],fl]Jr)'

So each block of Cf, is expressible as the matrix regular representation of some value
in >+t Now we must show that each block is specifically the matrix representation
of a value in the subset A. Indeed, if there exists a block Cpy;7, = p(ry;z) with
s € A the column of p(r; 7)) representing multiplication by 19 = 1 would not be

sign-coherent. In particular, this would imply that c-vectors for Q* are not sign-coherent,
which is false. This proves the matrix (7, satisfies (a). Thus every C-matrix obtained by

composite mutations associated to vertices in Q3" satisfies (a) by induction. U
A number of results follow as a consequence of the above proposition. The first impor-

tant consequence is the commutativity of the left face of the cube in the compatibility
theorem.

Corollary 8.8. For any vertexr t € Tpar, we have dr(Cy) = C}. In particular, the left
square of Theorem 8.4 commutes, and c-vectors are sign-coherent.

Proof. 1t is clear from Lemma 8.6 that dx(Cy ) = Cj,, as these are both identity matrices.
That dp(C;) = Cj for each t € Tga follows by induction on mutation. So suppose there

exists a vertex {1 € Tgar such that dp(Cy) = G, = (¢.4,)- In particular, this implies by
Lemma 8.6 and Proposition 8.7(a) that for each [i], [j] € Q& we have Cpyy = o a)
with O—(zn—‘rl)(rm[j]’?l) = c,m[j],tl' Write B{Ll = ( /[l][j],t1) and let 8[74][]]7?1 S {O,il,iwl} C
X® be such that o (s 7 ) = by, » which we may do due to Proposition 4.9.
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(]

Now we shall compare mutation formulas. Let ¢; ty € 'JI‘QOA/. Then
oo P(=Tim.5) if [j] = [K]
FILE N o 7+ sgn(Fm 2 ) [P o Sz J4) - otherwise;
P55 ST, 62 T a1 k] 22 STk B 1+ ’
Cllljts = ~ ikt if (7] =[]
il[7],t2 T s
1],t2 C/[i][j},tl + sgg]fl(c’[i][k}’tl)[c’mMtlb’[k”j],tl]Jr otherwise;
_ o (—rpna) if [j] = [K]
oD (7, + sen (i ) M 7 S )+) - otherwise.

Thus, it is clear from Lemma 8.6 that we have dp(C3,) = C},. So dr(C;) = Cj for each
t € Tgar by induction. It automatically follows from this that dpiip (Cr) = pwdr(Cy)
for each vertex t € TQOA/, as required. O

Corollary 8.9. For any vertext € ’]I‘QOAI, the blocks of Cy commute. That is Clyp; :Cpu s =
C[k][l],fc[i”j]f Jor any [Z]a [j]7 [k]7 [l] € Qg Py

Proof. This follows from the fact that the blocks of C; arise from the regular representation
of x®**1) which is a commutative ring. O

The next consequence of Proposition 8.7 can be verified explicitly by computation.
Nevertheless, we provide a proof using the module category of an unfolded quiver.

Corollary 8.10. The c-vectors of Q*" are roots of A’

Proof. By the results of [19, 32], the c-vectors of Q* are roots of A. By Gabriel’s Theorem,
the c-vectors of Q* are therefore the +1 multiples of dimension vectors of some indecom-
posable KQ*-modules. Now recall that KQ* has the structure of a an+1)—coefﬁcient
category Mp. So by Theorems 5.2 and 6.3, for any indecomposable KQ*-module M,
there exists 0 < k < n—1 and a positive root o of A’ such that M = 1, M,. In particular,
or(M) = o™ (1 )a.

Let t be a vertex of TQOA/. Suppose for a contradiction that there exists a column c;7
of C7 indexed by j € Q5 with k(j) = 1 such that c;): = dr(c;7) is not a root of A'. Let
M Dbe the indecomposable KQ*-module with dimension vector tc;7 Then M = ¢ M,
for some k > 0 and positive root o of A’. Now by Proposition 8.7(a), for any i € Q5',
the [i][j]-th block of Cf is the matrix regular representation of some 7y, 7 € X,
Consequently, for any other column c; 7 of C' indexed by j' € Q5 such that k(j") # 1
and F(j') = [j], we have dp(c; ) = 0(2"“)(¢l)dp(cj$) = 0@ (Ypah))a with [ # 0.

But by the product rule of x?"*1) (Definition 4.2) and the axioms of a an+1)—coefﬁcient

category (Definition 6.1), this is the F-projected dimension vector of the decomposable
object Yy M, € Mp. Moreover, there exists no indecomposable KQ*-module M’ with
Sp(M') = @) (Ypih)a by Theorem 5.2 and the fact that vy, ..., 1, 1 are linearly
independent (Remark 4.3). But then cj 7is not the £1 multiple of a dimension vector of
an indecomposable KQ*-module — a contradiction. Thus, every column ¢, of (7 with
k(j) = 1 is such that dp(c;z) is a root of A, and hence every column of C; = dp(C%) is
a root of A’ as required. O

The commutativity of the top and bottom squares also follows from Proposition 8.7,
but first we must prove a technical result on the determinants of C-matrices over the
ring x®"*Y, which for integer C-matrices is already well-known. Henceforth, given any
matrix A, we denote its determinant by |A].
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Corollary 8.11. Let t be a vertex of Toar. Let Xy = (rupz) be the matriz with entries
m X(2n+1) such that p<r[7,][]},?> = C[’][ﬂ]v? and U(2n+1) (TM[JL?) = C/[’L][]],t Then

(a) |G} = +1,
(b) |X3] = =1 and o>V (|X5) = |C3).

Proof. (a) Fix indices [j] and [k]. Since c-vectors of Q*" are sign-coherent, one sees that
the mutation formula for iy (CY) is given by adding some Ya,41-multiple of column c/[k],t

of Cy to some other columns, and then multiplying c’[k]t by —1. By the rules governing
determinants, this gives us |C}| = —|up(Cy)|. That this quantity is 1 follows from the
fact that Cf is the identity matrix.

(b) By the fact that o(®**1 is a homomorphism mapping positive elements to positive

k
elements, X; is column sign-coherent. Given an edge tlt’ € TQOA" applying the

mutation formula to X7 similarly yields | X7 = —|X3[, and X3 = (rj;;7) is the matrix
SuCh that p(T[ZH]L?) — C[Z][]],? and U(2n+1) (TM[]L?’) - C/[i][j},t" Again’ that thlS quantlty iS
+1 is a result of the initial matrix being the identity matrix. That c®"+V(|X7|) = |C!]
follows from the fact that @™ (| X7 |) = |C} | = 1. O

Proposition 8.12. For any verter t € TQOA/, we have dp(Gy) = Gy. In particular, the
top, bottom and right squares of Theorem 8.4 commute.

Proof. The proof will not require mutation, and so for the purpose of readability, write
C = (Cyy) = Gy and " = dp(C) = (d;;) = C;. Consider the corresponding matrices

G =Gr=(CT)"'and G = G, = (C'"")"'. We can describe the structure of these
G-matrices explicitly in terms of the C-matrices. The matrix C’ is at most 4 x 4 with
|C"| = +1, and so it is easily verified by computation that the matrix G’ = (g{;;) is such

that gfy; € Z[V') with V' = {¢j : [K], 1] € Q5"'}- B

Now define V' = {Cpyp : [k],[[] € Q4'} and define a new matrix G with blocks indexed
by QOA/ such that é[i]m € Z[V] is the polynomial given by replacing each term Cl[k][l} in
gfi] 1] by the block matrix Cp;. This is well-defined because the blocks of C' commute. It
is easy to see that dp(G) is the matrix given by substituting each block Cpyp = p(rmp)
with entry ¢y = o (ryqp). Hence, we have defined G in such a way that we have

dp(G) =G

We claim that we actually have G = G. That is, we shall verify that G = (CT)~*.
To check this, we note that each block Cyyj;) is symmetric by Lemma 4.7(b). Thus, the
matrix CT has block structure C[:f][ 1= Clla-

For H-type foldings, we have x(® = ¥ 2 Z[], so we can abuse notation and dispense
with the homomorphism ¢V and write C; = p(cjyy) for each [, [j] € Q5. Thus,

. N
(C* iy = D Co Gwai
[kleQd’

= > oy

[KleQs’

: TN— : :
But since G’ = (C"")~!, we have ka][ﬂgik][j] = 1 whenever [zl: ] and ¢y 9 = 0
otherwise. It therefore follows that (C*T Q) = id,, and (CTG)pyp = 0 for any [i] # [4].
So G = G, as required.
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On the other hand, if A" = I5(2n + 1), then C” is a 2 X 2 matrix and so we specifically

have
¢ —c
eamled (_[Cll][ll ) {11[01) |
[o][1] [0][0]
where |C'| = |C'|7" = £1 by Corollary 8.11(a). Let X = (ry) be the matrix with

entries in x***1) such that p(ry;) = Clay) and o1

& ( P X ) ﬂ(—!XIT[ll[O}))
p(=[Xlro) (I X)) )
where | X| = |X|™! = |C’| = 1 by Corollary 8.11(b). So we have
T <P(T[O][o]) P(T[u[o])) (P(|X\T[1M1J) P(—|X’T[1][0]))
p(roy)  p(runy) ) \p(=X|rem) o1 X]ro)0)
_ (p(lX | (rooy ) — T o) p(0) )

) = - Then we have

p(0) (X[ (rooyrmng = rojm7 o)
(p(XA) p0) \ _ [(p() p(0)) .
- ( p(0) p(!X|2)> - (p(O) p(l)) = iz,

as required. So we indeed have G = G in all cases. Hence, dp(G;) = G, for each

vertex t € ’]I’QOA/. We have also shown that the top and bottom squares of Theorem 8.4

commute. That the right square also commutes follows from the fact that the map (—7)~!

is involutive and that that all other squares of the cube commute. Il

8.3. Categorification of the G-matrices of Q*. One has a categorification of g-
vectors of Q2 due to [15] and [40]. We will show how folding and the g-vectors of Q%'
fits into this categorification.

Consider the full subcategory P C Cp consisting of objects that belong to classes
P(i) € Dp, where P(i) is the complex of the projective object corresponding to i € Q5
concentrated in degree 0. For any object M € Cr, we have a triangle

P — PO - M —XP
where Py, P, € P. In particular, we may write
Py= @ a;P(i) and P = bP(i),
i€Qp i€Qf
where each a;,b; € Z>(. Alternatively, we may write
Py = @ T[i]P(j[i]) and Py = @ S[i}P(j[i])a
[i]€Q0 [i]eQ0

where each 7y, s € anﬂ) and each jj; € QF is such that F(j;)) = [i] and x(ji)) = 1.
In fact, this is equivalent to writing

Py = @ ryuM and P = @ raM,
Melp MeTlp

where the set I'p consists of the iso-classes of objects of P that belong to the minimal set

of anﬂ)_generators of Cr, and where each ry, s € X(fn-i—l).

Definition 8.13. For any object M € Cg, we define two g-vectors associated to M by

gr = (@i —bi)icgp  and  gX = () — 55 eqa'-
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It is in fact easy to see that dp(gX') = gX, and that g%/ = rga/. Now turning our

attention to G-matrices, this is where anﬂ)—tilting objects come in.

Definition 8.14. Let T = @[i]EQOA/ Ty € Cr be a anﬂ)—tﬂting object and let T =
@[i] o @D2ecz, Z € Cr be the corresponding tilting object. We define a matrix associ-
0

ated to T by
Z
Gz = (gA)ZGITm,[i]EQ@/
and define a matrix associated to T" to by

Ty
T = (8a ey’

Classically, we know that G is indeed a G-matrix of Q*. However by construction,

we also have that the columns of G4 consist of g-vectors gﬁj T for each [i] € Q5 and
0 < j7 <n—1. Since the blocks of G-matrices obtained by composite mutations are
matrix regular representations of y(?"*1) this is precisely a G-matrix G7 for some vertex
t € Tyar. Moreover, we can see that dr(G7) = G7, which is a G-matrix of Q*" by the

0
compatibility theorem (Theorem 8.4). In terms of mutation, we know that the G-matrix

of a tilting object in Cr corresponds to a classical mutation of the G-matrix. Thus, by

Theorem 8.4, we can see that the mutation of a anﬂ)—tﬂting object T corresponds to

the mutation of its G-matrix. Thus, we have the following.

Corollary 8.15. Let F': Q® — Q' be a weighted folding of type Hy, Hs or I(2n + 1)

and let Cr be the associated cluster category. Let Ty and Ty be basic anﬂ)—tiltmg objects

that differ by a single indecomposable direct summand. Then G7, and G, are G-matrices
of Q¥ that differ by mutation at a single vertex in Q™ .
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