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Abstract. The ability to model rigid body interaction with highly deformable solids is a very useful
tool in geoengineering, including the modelling of drag anchors on seabeds and seabed ploughing [7, 1].
However, these simulations entail several numerical challenges, such as modelling frictional contact,
and incorporating inertia forces for analyses whose simulated time is considerable. Here the implicit
Generalised Interpolation Material Point Method (GIMPM) is adopted to model the highly deformable
solid, whilst a rigid body is used to model the significantly stiffer engineering object, such as an anchor.
The whole system is integrated in time with the Newmark method with interaction between the two
bodies occurring through a normal penalty contact and a penalty enforced Coulomb stick-slip friction
law.
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1 Introduction

Understanding the penetration potential of an anchor is important for buried offshore infrastructure,
such as power transmission cables for offshore renewable energy installations. However, modelling the
penetration of an anchor into the seabed is challenging due to non-linear processes (large deformation,
plasticity, contact) that must be taken into account. In this work an implicit GIMPM [4] is used to
model the soil, whilst the anchor is represented by a discretised rigid body. The interaction between the
bodies is achieved using a penalty contact [3]. An implicit analysis is used since it facilitates larger time
increments compared to explicit approaches, particularly important with a refined discretisation. This
paper outlines the key ingredients required to model anchor penetration using the material point method.

2 GIMP formulation with rigid body contact

For this approach an updated Lagrangian framework is adopted to model a system undergoing large
deformations, [5, 4]. The weak statement for a material with domain, Q and boundary dQ, interacting
with a rigid body, Qg, with boundary, dQg,via the contact surface dQ¢ C dQp is
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where the component in the last row is the contact between the two bodies. For the deformable body, ¢,
is its motion, M the test function, 6;; is Cauchy stress, u; are the displacements with acceleration ii;, V,
is the gradient operator in the updated coordinate system (denoted by the lower case x), b; is the body
force. @F is the motion of the rigid body, w; and 1; are its displacement and acceleration, { is the test
function, and g; is the body force. Here the rigid body is considered to be the main contact surface whilst
the deformable body is the secondary, the interaction between the two therefore is integrated over the
contact surface of the rigid body @ (dQc¢) with f; being the normal and frictional forces imparted from
the deformable body onto the rigid body modelled using the penalty method [2].

The domain corresponding to the deformable body, Q, is discretised by a number of GIMP material
points on a regular hexahedral background grid, with the GIMP basis used to link the material points p
to the vertices of the background grid v, [4]. The GIMP basis functions and associated derivatives take
the matrix forms [S,,] and [VS,,]. The rigid body domain is discritised by tetrahedral elements K to
form the mesh 7, with flat triangular elements 0K discretising the contact boundary 07;. Linear basis
functions are used for the tetrahedral and triangular elements of the rigid body and have the respective
matrix forms [M] and [M]. With these definitions, the discretised from of (1) is
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where {R.} is the contact residual, described in the next section, [C]” is a condensation matrix that
ensures no relative movement between rigid body nodes, condensing all nodal degrees of freedom to
only six; three for displacement and three for rotation. To form a linear set of equations to be solved, (2)
is integrated in time with the Newmark method and is linearised about its primary variables (displacement
of the background grid and motion of the rigid body).

3 Rigid Body interaction with Material Points

To model contact, the node-to-surface type formulation is applied here to the GIMPM [2, 3]. It is im-
portant to track any of the corners of the GIMP domains that interact with the rigid body, Figure 1,
with contact determined using the closest point projection (CPP) method with the gap and gap vector
functions, g" and g7,

gl (E"(1),1) = ¢"(€%(1), mi(§%(1),7) = x(1) —x(§%(v),7)  and " =gim: 3)

Above, T is time, x; is the GIMP domain’s corner position, x; is the projected position onto the rigid body
and &%, with o € [1,2], is the local coordinate of the triangular element dK that the GIMP corner is in
contact with, shown in red in Figure 1. The derivative of g with respect to time gives the normal g7
and a relative tangential velocity, ¢, which enables a description of the movement of a particle along the
rigid body,

g = / g dr = / G} dr+ / gk dr = g'"" + gk, )
T
Using the above definitions, and following the work of [3], the contact residual can now be written as
R. :/ S¢"miplt +8E%pL) dx =0 5
{R} aKeaTC(g P +8E%pq) (5)
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where 8g”" and 8§ are first variations provided in [3], p? and p/, are respectively the normal and tan-
gential point forces, with (-)* and () respectively defining the contravariant and covariant variables.
The covariant form of the tangential force is pl, = p! (dx}/0E*) where p! is a Cartesian vector of the
frictional force and €, is the normal penalty, and p} = €,g" is the Cartesian form of the normal force.
P is modelled using Coulomb stick-slip friction, it has two states, an elastic stick state and a dissipative
slip state, respectively given as,

o slip
p?tlck — etg?lle and pf p —_ Iu|pn| olSTPH lf ||pSltck|| > ,U|pn| (6)
8i

where u|p"| is the sticking force, u is a constant coefficient of friction and €, is the tangential penalty. The
law is subject to the Karush-Kuhn-Tucker (KKT) conditions: f = ||p%®¥|| — up, < 0,A>0and fA =0,
where f is a yield surface and A is the rate of tangential slip. The state of contact is found using the trial
elastic state provided in [2], if the elastic trial state is within the yield surface there is a stick condition,
otherwise the contact points is slipping.

Zoom of contact
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Figure 1: Diagram of the contact between a GIMP domain and a rigid body triangle.

4 Numerical investigation

To validate the method, two problems are considered: a sphere rolling down an inclined slope to test the
stick/slip contact [6], and an anchor is dragged through soil to demonstrate that the method is robust.

3D Rolling sphere: The results for this problem are provided in Figure 2a. The slope has dimensions
W = L = 5m and the sphere a diameter d = 0.5m. The background element size, 2 = 0.25 m, with 8
GIMPs within each element. A time step of 0.01s is used and to make the slope rigid all degrees of
freedom are constrained. Three coefficients of friction are considered, at u = 0.0 and 0.2 slip behaviour
should occur, whilst at 0.4 it is a stick condition. The results in Figure 2a show very good agreement
with the analytical result [6].

Anchor: The second problem is an anchor being dragged through a soil with a relative density of 38%,
the material is modelled as linear elastic-plastic, the latter modelled with the Drucker-Prager model;
both the anchor and soil are subject to gravity. This example demonstrates the method to be robust
to a complex engineering scenario, and demonstrates the potential to model complicated geotechnical
engineering problems. The anchor is being pulled at a velocity of 0.5 m/s, the grid size is 4 = 0.2 m with
8 GIMPs per element and the time step is 0.04 s. Figure 2b shows the anchor at load step 5 and Figure
2c at load step 100. Blue and red are respectively negative and positive vertical displacements.
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Figure 2: (a) shows a comparison of numerical and analytical results of a ball rolling down a hill, inset is
the problem geometry. (b) and (c) show half an anchor being pulled through soil at load steps 5 and 100.

5 Conclusion

A GIMPM for modelling contact with rigid bodies has been presented, it shows good agreement with
analytical solutions and is able to model complicated geoengineering problems. The next step is to use
the method to quantify the penetration of different anchor geometries in realistic soil conditions.
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