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Abstract. The thickness of shear bands, which form along slip surfaces during certain modes of geotech-
nical failure, depends directly on the size of the soil particles. Classical continuum models, however, are
invariant to length scale, so the strain localisation zone cannot converge to a finite size when employ-
ing numerical techniques such as the finite element method. Instead, the present approach adopts the
micropolar (Cosserat) continuum, a weakly non-local higher-order theory which incorporates a charac-
teristic length and allows independent rotations of the material micro-structure as well as transmission of
couple stresses. As a result, strain can localise naturally in micropolar continua to form realistic finite-
sized shear bands. By extending an elastic finite-strain micropolar implementation of the material point
method (a numerical method well-suited to modelling large deformation problems) with an elasto-plastic
constitutive model suitable for geomaterials, this novel combined approach will provide a powerful tool
to analyse numerically challenging localisation problems in geotechnics.
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1 Introduction

When modelling geotechnical failure events with conventional mesh-based techniques underpinned by
a classical continuum theory, two key problems arise. The first concerns the magnitude of deformation
generally brought about by such events. Attempts to use numerical techniques like the finite element
method (FEM) here can lead to severe distortion of the mesh – and, in extreme cases, element inversion
– such that the method begins to falter and accuracy is not guaranteed, if a solution can even be produced
at all. Moreover the remedial task of subsequently re-meshing the deformed domain only brings further
problems, particularly surrounding projection of history variables and the increase in computational cost
and algorithmic complexity. Far better suited to modelling such large-deformation problems are the
various particle-based methods which are not, conversely, hindered by any deviation from an initial
geometry. Here we introduce the material point method (MPM) [1], a particle method which utilises
a mesh only for the purpose of computations – not for tracking the material – which is reset for each
time- or load-step and does not therefore experience significant distortion. Although the material body
is discretised into particles, the MPM has a commonality with much of the FE idiom through the way
it operates on the mesh, readily allowing for implementation of FE formulations. This is the method
adopted for this work.

The second problem is less insidious but far more fundamental and more complicated to remedy. Shear
failure in geomaterials usually occurs in concentrated regions called shear bands in a process known as
strain localisation. But because shear bands represent a sharp discontinuity in the displacement field, if
the underlying partial differential equation (PDE) used to describe the event has the local displacement as
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its sole primary field variable – and does not impose an artificial smoothing technique – then it loses one
of its conditions for ellipticity (or hyperbolicity in the case of dynamic analysis). The governing system
is now ill-posed for the problem at hand and will not produce reliable results; numerical simulations do
not converge to a particular failure load or shear band thickness with mesh refinement, and are instead
fully mesh-dependent.

Our chosen solution is to supplant the classical approach with micropolar (or Cosserat) theory [2], which
supposes that the rotation of each element of the micro-structure is independent of the rotation of the sur-
rounding continuum. The independent micro-rotations and their spatial gradient (curvature) regularise
the ill-posedness of the PDE, smoothing the solution field around the shear band with respect to a length
scale which is generally taken to be indicative of the size of the micro-structure (e.g. the diameter of a
soil particle). Numerical simulations based on the micropolar continuum can therefore reliably predict
shear bands with a thickness depending on the scale of the constituent micro-structure, as observed in
real localisation events.

This paper details an approach building on [3–6], whereby the geometrically-exact micropolar theory
is extended for elasto-plasticity with a pressure-dependent yield surface, and implemented within the
MPM. A cursory overview of the adopted continuum theory and numerical method is given, and further
details including numerical examples will be provided during the oral presentation.

2 The micropolar continuum

2.1 Kinematics

With reference to Figure 1a, a micropolar continuum occupies a volume Ω in its current (deformed)
configuration. The translation vector ui emanates from the Cartesian reference position Xi of each point
in the undeformed volume Ω0 to its current position xi in Ω, and the deformation gradient tensor Fiθ =

∂xi
∂Xθ

provides the fundamental link between reference and current coordinates. At every point in the micro-
continuum there exists a rigid body, attached to which is a set of axes that are free to rotate independently
of deformation occurring at the continuum scale. Each rotated axis wi in the current configuration is
related to its counterpart Wψ in the reference configuration via wi = QiψWψ, where Qiψ ∈ SO(3) is a
proper orthogonal tensor termed the micro-rotation tensor. The rotation may also be parameterised as
a vector ϕk, identified as the axis of rotation with the angle its magnitude. A skew-symmetric tensor
Φi j =−ei jkϕk (where ei jk is the third-order Levi-Civita, or permutation, tensor) is then used to compute
the micro-rotation tensor using the (Euler-)Rodrigues formula

Qiψ = δiψ +
sin |ϕ|
|ϕ| Φiψ +

1− cos |ϕ|
|ϕ|2 Φi jΦ jψ, (1)

where δiψ denotes the Kronecker delta and |ϕ| is the magnitude of ϕk. For our purposes, two spatial
measures are used to quantify micropolar deformation: a stretch tensor, and a measure of the rotation
gradient named the left curvature tensor which endows the theory with its non-local property

Vi j = FiθQ jθ and ki j =−1
2

QiγeγτηQpτ
∂Qpη

∂Xπ
Q jπ. (2)

A multiplicative elasto-plastic split is assumed for both the deformation gradient Fiθ = Fe
iAF p

Aθ and the
micro-rotation tensor Qiθ = Qe

iAQp
Aθ, where the superscripts denote the elastic and plastic parts. Hence
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the elastic stretch is defined V e
i j = Fe

iAQe
jA and the curvature simply decomposes additively:

ki j = ke
i j + kp

i j. (3)

2.2 Elastic constitutive laws and balance equations

The Cauchy stress σi j and couple-stress mi j (moment per unit area) are obtained from the elastic defor-
mation measures using a neo-Hookean hyperelastic model [3]

Jσi j =
λ
2
(J2 −1)δi j +µ(V e

ikV
e
jk −δi j)+

κ
2
(V e

ikV
e
jk −V e

ikV
e
k j) (4)

Jmi j =Vik(αke
llδk j +βke

k j + γke
jk) (5)

where J = det(F) is the volume ratio between the original and deformed states, and λ (first Lamé con-
stant), µ (second Lamé constant), κ, α, β and γ are constitutive parameters. An internal length scale L
is then given by L =

√
(β+ γ)/2µ. The spatial forms of linear and angular momentum balance in the

quasi-static case read

∂σi j

∂x j
+ pi = 0 and

∂mi j

∂x j
− ei jkσ jk +qi = 0, (6)

where pi and qi are the body force and body couple respectively.

2.3 Elasto-plastic constitutive model

This formulation uses a conventional elastic predictor-plastic corrector algorithm to map the stress state
at a material point onto the yield surface f , which has the Drucker-Prager form [5]

f =
√

3J2 +
A
3

σkk − c (7)

using the modified second invariant J2 of deviatoric stress si j = σi j − 1
3 σkk,

J2 = a1si js ji +a2si jsi j +
a3

L2 mi jm ji (8)

where a1, a2 and a3 are heuristics, and constants A and c which are related to the material’s internal
friction, dilatancy and cohesion. The yield function is satisfied through the use of plastic flow rules which
chart the evolution of the elastic stretch and plastic curvature – see [3] for an implicit implementation.

3 Numerical formulation

To initialise an MPM analysis, the material is discretised into a number of Lagrangian material points
which occupy a grid of elements joined together at nodes. All history variables including volume, stress,
strain, force and translation are tracked using the MPs. In each step, the requisite quantities are mapped
from the MPs to the nodes using grid shape functions in order to perform a standard FE-type computation.
Once the nodal solution is obtained, it is then mapped to the MPs and their positions and state variables
are updated. At this point, the grid is reset to its initial position ready for the next step. This process
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(a)

MPs to nodes

reset grid

solve at nodes

update MPs

(b)

Figure 1: (a) the total kinematics of a micropolar continuum, with the rotational elements shown in blue;
(b) the main steps of an MPM algorithm, reproduced from [6].

is then repeated for as many time- or load-steps the analysis requires. See Figure 1b for a graphical
overview of a general MPM algorithm.

Although our general approach to modelling strain localisation in geomaterials has been set out, the
format of this contribution limits any further elaboration of the formulation or presentation of examples.
Specific details of the implementation of elasto-plastic geometrically-exact micropolar theory within the
MPM will instead follow in the oral presentation. It is hoped that this novel numerical tool will offer a
more robust and reliable way to analyse challenging localisation problems involving large deformations
such as landslides.
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