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Abstract. This work evaluates the use of the Material Point Method (MPM) with continuum damage-
plasticity to model fracture for the use of a combined pre- and post-failure simulation. MPM is used to
allow for large deformations and geometry changes without mesh distortion and damage diffusion. An
integral non-local continuum damage model is used to model brittle fracture, which avoids the mesh-
dependency issues exhibited by local models. The modelling approach is demonstrated on chalk cliff
collapse problems, where the final state of the rock formation after the failure is of importance and
critically linked to further failure processes.
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1 Introduction

Cliff collapse represents a significant danger to communities that are situated or operate near cliff fronts
[1], causing damage when the debris falls down onto the beach-front below, but also posing a hazard
to structures and people situated at the top of the cliff. Coastal chalk cliffs ranging from 10m to 100m
tall are a prominent feature around South-Eastern United Kingdom, Northern France, and Germany [2].
These cliffs experience very high rates of erosion, making them a geo-hazard that must be evaluated
carefully. The chalk cliffs tends to undergo brittle failure when under moderate shear and tensile loads of
≈ 1MPa [3]. Collapse causes large piles of debris to form around the base of the cliffs, which provides
stability and helps protect the cliff from further collapse [2]. It is therefore important to not only under-
stand the initiation of failure, but also the mass transport and post-failure behaviour of the collapse to
accurately model recurrent failures. Modelling both the fracture and mass transport of the collapse is not
trivial with the Finite Element Method (FEM), due to the large deformation run-out causing highly dis-
torted meshes that introduce numerical issues. Pre-failure FEM-based models of chalk cliffs have been
presented in [3] and [4], evaluating the effects of geometry and shear strength in a linear elastic or elasto-
plastic setting. This paper uses the Material Point Method (MPM) [5] to allow for large deformation and
geometry changes, while using damage and plasticity to model failure and collapse.

2 Material Point Method

The MPM [5] combines an Eulerian computational mesh with Lagrangian material points (MPs) that are
allowed to move through the mesh. Multiple discrete bodies in a system are approximated as groups of
MPs, and as such geometry changes are represented by the motion of MPs. As the mesh is reset at the
beginning of every step, it may never become degenerate. A key advantage of the MPM is that history
dependant variables are stored and used on the MPs, so fields like damage cannot suffer any numerical
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diffusion.

The MPM uses finite element machinery, with interpolation (or shape) functions, Svp, linking the ver-
tices of the mesh, v, with the MPs, p. The momentum balance equation is solved at the nodes of the
background mesh, with the strong form:

ρ
Dv
Dt

= ∇ ·σ+ fb, (1)

where ρ is the density of the body with a velocity, v, which is subject to body forces, fb that generate a
Cauchy stress field, σ. Applying Galerkin’s method, discretising and approximating the volume integrals
over the body Ω as summations over MPs, each representing a volume, Vp, and associated mass, mp, we
arrive at an equation that may be solved explicitly at the nodes

Mvav =
Nmp

∑
p

∇SvpσpVp +
Nmp

∑
p

Svpmpg, (2)

where Mv is the nodal mass matrix (in this case lumped and diagonal). Once accelerations av, and
subsequently velocities are found at the nodes, the velocity of the MPs are found by interpolating from
nodes to MPs. The MPs are then advected in space, and the original computational mesh discarded and
reset (or redefined).

3 Continuum damage

The use of continuum damage combined with plasticity allows for modelling progressive failure of ma-
terial under combined tension and shear loading [6]. In linear elastic damage, based on the strain equiv-
alence hypothesis that the undamaged strain is equal to the damaged strain ε = ε, the undamaged stress
σ can be related to the actual damaged stress state σ via

σ = (1−d)σ = (1−d)[De]ε = (1−d)[De]ε. (3)

Here a uniform single scalar isotropic degradation function is shown, where 0 ≤ d ≤ 1 is the scalar
damage (0 represents an undamaged material), and [De] is the elastic constitutive matrix. As in [6], this
is weakly coupled with a plasticity model based on a Mohr-Coloumb yield surface where plasticity acts
in the undamaged stress space, and damage effectively acts as a softening law. By separately degrading
the volumetric and deviatoric components it is possible for a tensile-compressive split in degradation,
such as

σ = (1−gv(d, tr(σ)))tr(σ)+(1−gd(d))(σ− 1
3

tr(σ)) (4)

The aim of the model is to have some residual shear and compressive strength, governed by the limits of
the functions gv and gd as d → 1. Stress is updated with a local elastic-predictor plastic-corrector, and
Eq. (4) is then used as a non-local damage-corrector to map the undamaged plastic stress into damaged
space. The current damage level is set by a viscous-regularised maximum stress history κ and a softening
parameter η, via an exponential softening function. A characteristic time τ enforces a maximum damage
increment rate. A damage criteria is required to define the driving stress Y which updates κ, here a form
of Drucker-Prager criterion is used

Y =
3

3+ tanθ

(√
3J2 +

I1

3
tanθ

)
(5)
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where I1 and J2 are the first and second invariant of the undamaged Cauchy stress and its deviator, and θ
is the damage frictional angle. The driving stress is regularised with a non-local integral scheme [6], to
avoid mesh dependency in the strain softening.

4 Numerical results: Joss Bay case study

An example of chalk cliff collapse measured in [7] and analysed in [4] with FEM and a Mohr-Coloumb
model is analysed using the proposed MPM framework. The cliff is modelled as a homogeneous chalk
material, of density 1700kgm−3, with initial Young’s modulus E = 1GPa and Poisson’s ratio of ν= 0.24
[4]. A 2D plane strain section of height H = 15.5m, with a length of 2H is considered. The front of the
cliff has three main features: a sloped lower section with an angle of around 78 degrees, a wave cut notch
Ln = 0.5m at the foot with an angle of 45 degrees, and an initial tension crack 2.2m back from the cliff
front [7].

78◦

Initial crack
0.5H

2H

45◦

H = 15.5 m

0.15H

Figure 1: Numerical problem setup

Strength parameters of the plastic model are taken as the highest possible bound of cohesion c= 1000MPa,
and friction angle φ = 50◦, with zero dilatancy. It is assumed that under compression the residual bulk
modulus of the material is reduced to 1 %, the tensile bulk modulus vanishes to 1×10−7%, and the shear
modulus of the material is varied from 1−0.5 %.

The damage criteria parameters are: a frictional angle θ = 60◦ and tensile initiation stress σ f = 20kPa
inferred from [4], a ductility of η = 5, giving a very low fracture energy ≃ 10Jm−2, and the viscous
characteristic time is taken as τ = 1 s. Experimentally finding a length scale is possible, however here it
is numerically taken as lc = 0.18 m - a patch size roughly 4 times the mesh resolution.

As seen in Fig. 2, the shape of the debris pile is highly sensitive to the residual strength of the chalk. In
Fig. 2a the very small residual strength causes a highly mobilised flow of chalk forming a debris pile
similar in angle θ ≃ 15◦ to larger collapses in [2]. In Fig. 2b the larger residual shear strength causes
a steeper pile - more closely matching the measured 44◦ debris angle in [7], with a qualitatively more
intact debris texture.

5 Observations

The MPM shows promise for modelling cliff collapse in pre and post failure behaviour, and that it may
be used for forward modelling of other brittle cliff collapse such as in marine ice cliffs. It was found
the use of plasticity and isotropic damage allows for the modelling of shear failure under gravity driven
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(a) Residual shear strength 0.5 %
φresidual = 30◦
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(b) Residual shear strength 1 %
φinitial = φresidual = 50◦

Figure 2: Numerical results

loads, with the damage model allowing for non-local softening behaviour and plasticity de-activating the
damage at large inelastic strains. Numerically the shape of the chalk debris post failure is highly sensitive
to the residual shear strength, further work should find a meaningful way of calibrating this parameter.

Acknowledgements

The authors would like to thank the non-linear solid mechanics group at Durham University for pro-
viding fruitful discussion and insight on related topics. This research has been funded by the Durham
Department of Engineering through an Engineering Doctoral Studentship. The second and fourth authors
acknowledge the support of the Royal Society (IES\R1\211032).

REFERENCES

[1] Eric C.F. Bird. “Cliff Hazards and Coastal Management”. In: Journal of Coastal Research (1994),
pp. 299–309.

[2] Elisabeth T. Bowman and W. Andrew Take. “The runout of chalk cliff collapses in England and
France—case studies and physical model experiments”. en. In: Landslides 12.2 (Apr. 2015), pp. 225–
239.

[3] Guido Wolters and Gerald Müller. “Effect of Cliff Shape on Internal Stresses and Rock Slope
Stability”. In: Journal of Coastal Research 24.1 (2008), pp. 43–50.

[4] T. D. Styles, J. S. Coggan, and R. J. Pine. “Back analysis of the Joss Bay Chalk Cliff Failure using
numerical modelling”. In: Engineering Geology 120.1 (June 2011), pp. 81–90.

[5] D. Sulsky, Z. Chen, and H. L. Schreyer. “A particle method for history-dependent materials”. en.
In: Computer Methods in Applied Mechanics and Engineering 118.1 (Sept. 1994), pp. 179–196.
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