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Effect of Source Signal Traffic on Signal Detection
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Abstract— Ambient backscatter communication (ABC) is a
promising method of reducing energy consumption in wireless
communications. Previous works on signal detection for ABC
often assume that the ambient source signal is always present
during backscattering. However, this may not be the case due to
the random traffic of the ambient source and the asynchronous
operation between source and tag. In this work, the effect of
source signal traffic on the detection performance is studied for
ABC systems. Firstly, the performances of the existing detectors
are analyzed in the presence of source traffic. Both random ar-
rival and random departure are considered. The exponential and
uniform traffic models are used. Their bit error rate expressions
are obtained by taking advantage of different approximation
methods. Then, new detectors taking into account the random
traffic models are derived by weighting the samples exponentially
or linearly with their arrival times. Numerical results show
that the random source traffic could cause large performance
degradation to the existing detectors, leading to error floors at
small signal-to-noise ratios (SNRs). In particular, the exponential
departure causes the largest performance degradation, followed
by the uniform arrival and departure. Numerical results also
show that the new detectors could have significant performance
gains over the conventional detectors in the presence of source
traffic. In some case, the gain could be over 3 dB in SNR, and it
increases with the sample size and traffic parameters. However,
this gain could become negative for large SNRs and small sample
sizes due to the use of heuristic detection thresholds.

Index Terms— Ambient backscatter communications, signal
traffic, signal detection.

I. INTRODUCTION

With the rapid development of wireless communications,

the number of wireless devices has increased dramatically.

Consequently, their energy consumption becomes a serious
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concern. One promising way of reducing the energy consump-

tion in wireless communications is to use existing signals in

the ambient environment instead of generating new signals for

ambient backscatter communication (ABC) [1] - [7]. In ABC,

a radio frequency (RF) tag utilizes signals radiated from the

existing wireless systems in the ambient environment, such as

Wi-Fi, radio broadcast or mobile, to deliver its information

to a reader by controlling the reflection of these signals [1] -

[7]. This makes ABC systems passive to save energy but also

makes their signal detection very challenging, as the reflected

signals that carry useful information could be much weaker

than the interference directly from the RF source. Hence, it is

crucial to design efficient signal detectors for ABC systems.

Previous works on signal detection for ABC include the

following. In [8] and [9], Gaussian approximation was used

to derive the maximum likelihood (ML) detectors, where the

ambient source signal was assumed to be Gaussian. In [10]

and [11], semi-coherent and energy detectors for backscattered

signals were derived and their performances were analyzed,

where the ambient source signal was assumed to be either

Gaussian distributed or phase shift keying (PSK) modulated.

Reference [12] applied Manchester coding to the signals

before backscattering them for both Gaussian distributed and

PSK modulated ambient sources to improve the detection per-

formance. The ML detector was then obtained. Similar to [12],

differential encoding and ternary encoding were applied to the

original information at the tag followed by ML and maximum

a posteriori detection in [13] and [14], respectively. In [15],

different ML and improved energy detectors, which include

the conventional energy and magnitude detectors as special

cases, were derived for both Gaussian distributed source and

PSK modulated source. In [16], the statistical covariance of

the signal was calculated, while in [17], two non-coherent

detectors without knowledge of the channel coefficients were

derived for single-carrier ABC systems. References [18] - [20]

took advantage of the properties of the orthogonal frequency

division multiplexing signals to derive non-coherent detectors

for multi-carrier systems, while references [21] - [25] derived

both coherent and non-coherent detectors for multi-antenna

systems, aiming to improve the detection performance by

using either multiple carriers or multiple antennas. Other

works have used machine learning for signal detection. For

example, in [26], deep transfer learning was applied to signal

detection for ABC. In [27], constellation learning was used,

while in [28], different learning methods, including supervised

learning, unsupervised learning, reinforcement learning and

deep learning, were discussed for ABC signal detection.

All the aforementioned detectors have good performances
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and are suitable for different applications. However, most have

assumed that the ambient source signal is always present

during backscattering. This may be true for TV and radio

systems with continuous broadcasting but may not be true for

Wi-Fi, mobile or radar systems with intermittent traffic. For

the latter systems, the ambient source signal may appear or

disappear during backscattering, instead of being present all

the time, as the backscattering has no control over the activity

of the ambient source and the tag is not synchronized with the

source. Hence, it is of great interest to examine and improve

the performances of the signal detectors for ABC when the

ambient source signal is dynamically changing due to traffic.

Similar issues have been studied for cognitive radios. For

example, in [29] - [34], the effect of the dynamic primary user

traffic on the performance of spectrum sensing was studied.

However, to the best of the author’s knowledge, this issue has

not been considered for ABC.

Motivated by the above observations, in this work, the

effect of the ambient source signal traffic on the detection

of ABC signals is studied. The contributions of this work can

be summarized as follows:

• Both exponentially arriving or departing source signals

and uniformly arriving or departing source signals are

studied. Also, both random Gaussian source and deter-

ministic PSK source are considered.

• The performances of the existing energy detectors and

magnitude detectors are analyzed in the presence of

source traffic by deriving new bit error rate (BER) expres-

sions. Insights are given to show that the performances of

the existing detectors degrade greatly when the ambient

source signal is dynamically changing during backscatter-

ing. In particular, when the source signal is exponentially

departing, the BER reaches error floors very early at small

values of signal-to-noise ratio (SNR) to have the largest

performance degradation.

• New energy and magnitude detectors using the traffic

models of the ambient source signal are derived. Insights

are presented to show that the derived new detectors can

largely improve the existing detectors in the presence

of dynamic source signal by weighting the samples

used in the energy and magnitude detectors linearly or

exponentially with their arrival times.

The rest of the paper is organized as follows. In Section

II, the system model is introduced. In Section III, the per-

formances of the existing energy and magnitude detectors

with ambient source signal traffic are analyzed. Section IV

discusses the new energy and magnitude detectors by taking

the traffic model into account. Numerical results are presented

in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Similar to the previous works on ABC signal detection in

[8] - [17], this work also considers a single-carrier and single-

antenna ABC system. The ABC system is made of three links:

the source-to-tag (ST) link, the tag-to-reader (TR) link and

the source-to-reader (SR) link. The ambient source signal is

denoted as s[n], where n = 1, 2, · · · , N index the samples. In

the literature, it has been modeled as either a Gaussian random

variable with mean zero and variance Ps or a deterministic

PSK modulated value as s[n] =
√
Pse

jφn , where φn is the

phase of the n-th bit or sample of the source signal and

is unknown. The ambient source signal reaches the reader

directly via the SR link but could also be reflected by the

tag via the ST and then TR links.

A. Signal Model

If the tag needs to send data to the reader via the TR link,

it will reflect the received ambient source signal for bit ’1’

and will not reflect the received ambient source signal for bit

’0’. This is achieved by adjusting the impedance or reflection

coefficient at the tag. In this case, the reader will receive

both the useful signal from the tag via the TR link and the

interfering signal from the ambient source via the SR link so

that its received signal is

y1[n] = hsrs[n] + ηhtrhsts[n] + w[n] (1)

for bit ’1’, where n = 1, 2, · · · , N index the sequence of the

samples, hsr, htr and hst are the channel coefficients of the

SR, TR and ST links, respectively, s[n] is the ambient source

signal either Gaussian distributed or PSK modulated, η is the

constant reflection coefficient, and w[n] is the additive white

Gaussian noise (AWGN) with mean zero and variance σ2
w.

Similarly, for bit ’0’, its received signal is

y0[n] = hsrs[n] + w[n] (2)

where the reflected signal is not there because of bit ’0’ but

the direct interference from the ambient source and the noise

remain. The equations in (1) and (2) can also be rewritten as

y1[n] = h1s[n] + w[n] (3)

and

y0[n] = h0s[n] + w[n] (4)

for bit ’1’ and bit ’0’, respectively, where h1 = hsr + ηhtrhst

and h0 = hsr. Combining (3) and (4), one has

y[n] = hs[n] + w[n] (5)

where h = hsr+dηhtrhst and d is the data bit of the tag. If the

tag transmits bit ’1’, one has d = 1, h = h1 and y[n] = y1[n]
in (5). If the tag transmits bit ’0’, one has d = 0, h = h0

and y[n] = y0[n] in (5). Note that the signal detector needs to

determine whether d = 1 or d = 0 by using y[n] in (5). Note

also that the tag data rate is often much smaller than the source

data rate so that d is treated as a constant within the N samples

of the ambient source signal s[n], n = 1, 2, · · · , N . However,

this also means that the ambient source is more dynamic than

the tag so that the ambient source signal s[n] may appear

or disappear during backscattering, as the tag and the ambient

source are not necessarily synchronized. In the previous works,

s[n] 6= 0 for n = 1, 2, · · · , N so that the ambient source

signal is always present during backscattering. In our work, the

random traffic of s[n] will be considered so that the ambient

source signal leaves or arrives during backscattering and part

of the N samples will become zero. Next, the traffic models

of the ambient source will be described. For later use, define

σ2
0 = |h0|2Ps + σ2

w and σ2
1 = |h1|2Ps + σ2

w.
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B. Traffic Model

Assume that the ambient source signal appears or disappears

only once during the backscattering [29] - [34]. If it randomly

arrives or becomes active at the end of the n0-th sample, the

source signal becomes s̃[n] = 0 for n = 1, 2, · · · , n0 and

s̃[n] = s[n] for n = n0+1, · · · , N , where n0 = 0, 1, · · · , N−
1. In this case, the received signal at the reader is

ỹ[n] = hs̃[n] + w[n]. (6)

One sees that the received signal contains only noise when

n = 1, 2, · · · , n0 before the arrival of the source signal. One

also sees that the conventional signal in (5) is a special case

of (6) when n0 = 0. Two models of source traffic will be

studied in this work. If the source traffic follows an exponential

distribution, the probability mass function (PMF) of the arrival

time n0 is given by [32] [34]

PrEA{n0} = [1− e−λaT ]e−n0λaT , n0 = 0, · · · , N − 1 (7)

where λa is the arrival parameter of the traffic and T is the

time interval of each sample. If the source follows a uniform

distribution, the PMF of n0 is given by

PrUA{n0} =
1

N
,n0 = 0, · · · , N − 1. (8)

Note that the exponential distribution is commonly used in

wireless systems. For example, the traffic of primary users

often follows the exponential distribution in cognitive radios

[39], [40]. Similarly, 3GPP also recommended exponential

distribution for the packet arrival time in sensing [41]. On the

other hand, the uniform distribution is widely used in Bayesian

problems as a non-informative prior, when no knowledge on

the source traffic available [42].

Similarly, assuming that the ambient source signal randomly

departs or becomes inactive at the end of the n1-th sample, the

source signal becomes ŝ[n] = s[n] for n = 1, 2, · · · , n1 and

ŝ[n] = 0 for n = n1 + 1, · · · , N , where n1 = 1, 2, · · · , N . In

this case, the received signal is

ŷ[n] = hŝ[n] + w[n]. (9)

The received signal contains only noise when n = n1 +
1, · · · , N after the source becomes inactive or the source

signal leaves, and the conventional signal in (5) is a special

case of (9) when n1 = N . If the source traffic follows an

exponential distribution, the PMF of the departure time n1 is

given by [32] [34]

PrED{n1} = [1− e−λdT ]e−n1λdT , n1 = 1, · · · , N (10)

where λd is the departure parameter of the traffic. If the source

follows a uniform distribution, the PMF of n1 is given by

PrUD{n1} =
1

N
,n1 = 1, · · · , N. (11)

Next, these traffic models will be used in Section III to analyze

the performances of the existing energy and magnitude detec-

tors and in Section IV to derive new energy and magnitude

detectors in the presence of source traffic.

III. PERFORMANCE ANALYSIS OF EXISTING DETECTORS

WITH TRAFFIC

A. Gaussian Source

Start with the Gaussian source in this section, where s[n] ∼
CN (0, Ps). The Gaussian assumption stems from the fact

that many orthogonal-frequency-division-multiplexing source

signals are approximately Gaussian in the time domain [35].

Also, in a complex radio environment, the source could be a

sum of many random signals and according to the central limit

theorem, the overall signal can be approximated as Gaussian

[12]. Therefore, this assumption has been widely used in the

previous works too [8] - [17]. In this case, it was derived in

[11] that the conventional energy detector is given by

H0

Z =
∑N

n=1 |y[n]|2 ≷ TED1, σ
2
0 > σ2

1

H1

(12a)

H0

Z =
∑N

n=1 |y[n]|2 ≶ TED1, σ
2
0 < σ2

1

H1

(12b)

with

TED1 = N
σ2
0σ

2
1

σ2
0 − σ2

1

ln
σ2
0

σ2
1

(13)

where H0 represents the hypothesis that bit ’0’ has been

transmitted, H1 represents the hypothesis that bit ’1’ has been

transmitted, and σ2
0 and σ2

1 are defined as before.

Similarly, the conventional magnitude detector was derived

in [15] as

H0

R =
∑N

n=1 |y[n]| ≷ TMD1, σ
2
0 > σ2

1

H1

(14a)

H0

R =
∑N

n=1 |y[n]| ≶ TMD1, σ
2
0 < σ2

1

H1

(14b)

with

TMD1 =

√

[

N +
π

4
N(N + 1)

] σ2
0σ

2
1

σ2
0 − σ2

1

ln
σ2
0

σ2
1

. (15)

In both (12) and (14), y[n] is given by (5).

1) Without Traffic: Consider the case without traffic first

as a benchmark. In this case, the BER of the conventional

detector in (12) was derived in [11] as

Pe =
1

2Γ(N)

[

γ

(

N,
TED1

σ2
0

)

+ Γ

(

N,
TED1

σ2
1

)]

(16)

for σ2
0 > σ2

1 and

Pe =
1

2Γ(N)

[

Γ

(

N,
TED1

σ2
0

)

+ γ

(

N,
TED1

σ2
1

)]

(17)

for σ2
0 < σ2

1 , where Γ(·) is the Gamma function [36,

eq. (8.310.1)], γ(·, ·) is the lower Gamma function [36, eq.

(8.350.1)] and Γ(·, ·) is the upper Gamma function [36,

8.350.2].
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The BER of the conventional magnitude detector was also

derived in [15] as

Pe ≈ 1

2Γ(m)

[

γ

(

m,
mT 2

MD1

[N + π
4N(N − 1)]σ2

0

)

+Γ

(

m,
mT 2

MD1

[N + π
4N(N − 1)]σ2

1

)]

(18)

for σ2
0 > σ2

1 and

Pe ≈ 1

2Γ(m)

[

Γ

(

m,
mT 2

MD1

[N + π
4N(N − 1)]σ2

0

)

+γ

(

m,
mT 2

MD1

[N + π
4N(N − 1)]σ2

1

)]

(19)

for σ2
0 < σ2

1 , where m is determined by solving
Γ(x+0.5)
Γ(x)

√
x

=

N
√

π/4√
N+N(N−1)π/4

for x. The approximation signs in (18) and

(19) are due to the use of the Nakagami-m approximation to

the distribution of R in (14), as its exact distribution is not

available.

2) Random Arrival: In this case, the ambient source signal

s[n] randomly arrives at the end of the n0-th sample. Using

ỹ[n] in (6) to replace y[n] in (12), the decision variable of the

conventional energy detector becomes

Z̃ =
N
∑

n=1

|ỹ[n]|2 =

n0
∑

n=1

|w[n]|2+
N
∑

n=n0+1

|hs[n]+w[n]|2. (20)

One sees that, due to the absence of the ambient source signal

in the first n0 samples, only the last N − n0 samples contain

useful signal for detection. This may degrade the detection

performance. The larger the value of n0 is, the poorer the

performance will be. When n0 = N − 1, only the last sample

contains useful signal with the worst performance.

Next, we will derive the BER for the conventional energy

detector with randomly arriving source using (20). Both the

first and second terms of (20) are Gamma distributed but with

non-identical parameters. The exact distribution of the sum

of two independent Gamma random variables with different

parameters is an infinite series whose coefficients need to be

calculated iteratively [37]. This is too complicated. We use the

Gamma approximation to Z̃ instead by matching its mean and

variance to those of a Gamma distribution [38]. Using (20),

its means and variances can be derived as

µED1
0 = E{Z̃|H0} = n0σ

2
w + (N − n0)σ

2
0 (21a)

V ED1
0 = Var{Z̃|H0} = n0σ

4
w + (N − n0)σ

4
0 (21b)

µED1
1 = E{Z̃|H1} = n0σ

2
w + (N − n0)σ

2
1 (21c)

V ED1
1 = Var{Z̃|H1} = n0σ

4
w + (N − n0)σ

4
1 . (21d)

Thus, the probability density functions (PDFs) of Z̃ can be

approximated as

fZ̃(z|H0) ≈
zka0−1e−

z

θa0

θka0

a0 Γ(ka0)
, z > 0 (22)

and

fZ̃(z|H1) ≈
zka1−1e−

z

θa1

θka1

a1 Γ(ka1)
, z > 0 (23)

under H0 and H1, respectively, where ka0 = (µED1
0 )2/V ED1

0 ,

θa0 = V ED1
0 /µED1

0 , ka1 = (µED1
1 )2/V ED1

1 , θa1 =
V ED1
1 /µED1

1 from the Gamma approximation [38]. Using (22)

and (23) in the conventional energy detector in (12) with Z̃
in (20) as the decision variable, the BER conditioned on n0

is derived as

PED1
e (n0) ≈

γ(ka0,
TED1

θa0
)

2Γ(ka0)
+

Γ(ka1,
TED1

θa1
)

2Γ(ka1)
(24)

for σ2
0 > σ2

1 and

PED1
e (n0) ≈

Γ(ka0,
TED1

θa0
)

2Γ(ka0)
+

γ(ka1,
TED1

θa1
)

2Γ(ka1)
(25)

for σ2
0 < σ2

1 . They are functions of the arrival time n0, because

the means and variances of the Gamma distributions in (21)

are functions of n0. The unconditional BER for exponential

arrival can be obtained by using (7) as

Pe =

N−1
∑

n0=0

PED1
e (n0)[1− e−λaT ]e−n0λaT (26)

and the unconditional BER for uniform arrival can be obtained

by using (8) as

Pe =
1

N

N−1
∑

n0=0

PED1
e (n0) (27)

where PED1
e (n0) is given by (24) for σ2

0 > σ2
1 and (25)

for σ2
0 < σ2

1 . Note that the value of PED1
e (n0) decreases

when n0 decreases, because a smaller n0 leads to a larger

N − n0 and the conventional energy detector has a smaller

BER when the sample size is larger. Hence, n0 = 0 has the

smallest BER and the same performance as those in (16) and

(17) without traffic, which can be verified by letting n0 = 0
in (24) and (25), but n0 > 0 has a larger BER than those

in (16) and (17) without traffic. Note also that in (26) the

conditional BERs are exponentially weighted while in (27)

they are equally weighted, due to the different traffic models

used.

For the conventional magnitude detector, when the ambient

source signal randomly arrives, the decision variable in (14)

becomes

R̃ =

N
∑

n=1

|ỹ[n]| =
n0
∑

n=1

|w[n]|+
N
∑

n=n0+1

|hs[n] + w[n]|. (28)

Again, only the last N −n0 samples contain useful signal for

detection. In this case, the first term and the second term of

R̃ are sums of n0 and N − n0 Rayleigh random variables,

respectively, which do not have closed-form expressions for

their PDFs. Similar to [15], we use the Nakagami-m approx-

imation by matching the mean and variance of R̃ with those

of a Nakagami-m distribution. This gives

µMD1
0 = E{R̃|H0} =

n0

2

√

πσ2
w +

(N − n0)

2

√

πσ2
0 (29a)

V MD1
0 = Var{R̃|H0} = n0(1−

π

4
)σ2

w + (N − n0)(1−
π

4
)σ2

0

(29b)
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µMD1
1 = E{R̃|H1} =

n0

2

√

πσ2
w +

(N − n0)

2

√

πσ2
1 (29c)

V MD1
1 = Var{R̃|H1} = n0(1−

π

4
)σ2

w +(N −n0)(1−
π

4
)σ2

1 .

(29d)

Thus, the PDF of R̃ can be approximated as

fR̃(r|H0) ≈
2mma0

a0 r2ma0−1

Γ(ma0)Ω
ma0

a0

e−
ma0

Ωa0
r2 , r > 0 (30)

and

fR̃(r|H1) ≈
2mma1

a1 r2ma1−1

Γ(ma1)Ω
ma1

a1

e−
ma1

Ωa1
r2 , r > 0 (31)

for H0 and H1, respectively, where Ωa0 = V MD1
0 +(µMD1

0 )2,

Ωa1 = V MD1
1 + (µMD1

1 )2, ma0 is determined by
Γ(x+0.5)
Γ(x)

√
x

=
µMD1

0√
Ωa0

, and ma1 is determined by
Γ(x+0.5)
Γ(x)

√
x

=
µMD1

1√
Ωa1

. Using

(30) and (31) in the conventional magnitude detector in (14),

the BER conditioned on n0 is derived as

PMD1
e (n0) ≈

γ(ma0,
ma0

Ωa0
T 2
MD1)

2Γ(ma0)
+

Γ(ma1,
ma1

Ωa1
T 2
MD1)

2Γ(ma1)
(32)

for σ2
0 > σ2

1 and

PMD1
e (n0) ≈

Γ(ma0,
ma0

Ωa0
T 2
MD1)

2Γ(ma0)
+

γ(ma1,
ma1

Ωa1
T 2
MD1)

2Γ(ma1)
(33)

for σ2
0 < σ2

1 . The unconditional BERs for the magnitude

detector are similar to (26) and (27), except that PED1
e (n0) is

replaced by PMD1
e (n0) in (32) and (33) in this case.

3) Random Departure: For random departure, the ambient

source signal s[n] leaves at the end of the n1-th sample. Using

(9), the decision variable of the conventional energy detector

in (12) becomes

Ẑ =
N
∑

n=1

|ŷ[n]|2 =

n1
∑

n=1

|hs[n]+w[n]|2+
N
∑

n=n1+1

|w[n]|2. (34)

In this case, only the first n1 samples contain useful signal

for detection. The larger the value of n1 is, the better the

performance will be.

Next, we derive the BER of the conventional energy detector

with randomly departing source using (34). Again Ẑ is a sum

of two Gamma random variables with different parameters,

whose exact distribution is too complicated. Applying the

Gamma approximation, one has the means and variances of

Ẑ from (34) as

µED2
0 = E{Ẑ|H0} = n1σ

2
0 + (N − n1)σ

2
w (35a)

V ED2
0 = Var{Ẑ|H0} = n1σ

4
0 + (N − n1)σ

4
w (35b)

µED2
1 = E{Ẑ|H1} = n1σ

2
1 + (N − n1)σ

2
w (35c)

V ED2
1 = Var{Ẑ|H1} = n1σ

4
1 + (N − n1)σ

4
w. (35d)

Similarly, using the approximate Gamma distributions of Ẑ in

the conventional detector in (12) with Ẑ in (34) as the decision

variable, the BER conditioned on n1 is derived as

PED2
e (n1) ≈

γ(kd0,
TED1

θd0
)

2Γ(kd0)
+

Γ(kd1,
TED1

θd1
)

2Γ(kd1)
(36)

for σ2
0 > σ2

1 and

PED2
e (n1) ≈

Γ(kd0,
TED1

θd0
)

2Γ(kd0)
+

γ(kd1,
TED1

θd1
)

2Γ(kd1)
(37)

for σ2
0 < σ2

1 , where kd0 = (µED2
0 )2/V ED2

0 , θd0 =
V ED2
0 /µED2

0 , kd1 = (µED2
1 )2/V ED2

1 , θd1 = V ED2
1 /µED2

1

in this case [38]. The unconditional BER for exponential

departure can be obtained by using (10) as

Pe =
N
∑

n1=1

PED2
e (n1)[1− e−λdT ]e−n1λdT (38)

and the unconditional BER for uniform departure can be

obtained by using (11) as

Pe =
1

N

N
∑

n1=1

PED2
e (n1) (39)

where PED2
e (n1) is given by (36) for σ2

0 > σ2
1 and (37) for

σ2
0 < σ2

1 .

For the conventional magnitude detector, when the ambient

source signal randomly departs, the decision variable in (14)

becomes

R̂ =
N
∑

n=1

|ŷ[n]| =
n1
∑

n=1

|hs[n] + w[n]|+
N
∑

n=n1+1

|w[n]|. (40)

No closed-form expressions for the PDF of R̂ is available.

Using the Nakagami-m approximation by matching the mean

and variance of R̃ with those of a Nakagami-m distribution,

one has

µMD2
0 = E{R̂|H0} =

n1

2

√

πσ2
0 +

(N − n1)

2

√

πσ2
w (41a)

V MD2
0 = Var{R̂|H0} = n1(1−

π

4
)σ2

0 + (N − n1)(1−
π

4
)σ2

w

(41b)

µMD2
1 = E{R̂|H1} =

n1

2

√

πσ2
1 +

(N − n1)

2

√

πσ2
w (41c)

V MD2
1 = Var{R̂|H1} = n1(1−

π

4
)σ2

1 +(N −n1)(1−
π

4
)σ2

w.

(41d)

Following a similar procedure to before, the BER conditioned

on n1 is derived as

PMD2
e (n1) ≈

γ(md0,
md0

Ωd0
T 2
MD1)

2Γ(md0)
+

Γ(md1,
md1

Ωd1
T 2
MD1)

2Γ(md1)
(42)

for σ2
0 > σ2

1 and

PMD2
e (n1) ≈

Γ(md0,
md0

Ωd0
T 2
MD1)

2Γ(md0)
+

γ(md1,
md1

Ωd1
T 2
MD1)

2Γ(md1)
(43)

for σ2
0 < σ2

1 , where Ωd0 = V MD2
0 +(µMD2

0 )2, Ωd1 = V MD2
1 +

(µMD2
1 )2, md0 is determined by solving

Γ(x+0.5)
Γ(x)

√
x

=
µMD2

0√
Ωd0

,

and md1 is determined by
Γ(x+0.5)
Γ(x)

√
x

=
µMD2

1√
Ωd1

in this case. The

unconditional BERs are similar to (38) and (39), except that

PED2
e (n1) is replaced by PMD2

e (n1) in (42) and (43) in this

case.
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B. PSK Source

If the source is PSK modulated, one has s[n] =
√
Pse

jφn ,

where φn is unknown and can be removed by taking the

absolute value of the sample. In this case, the conventional

energy detector has the same form as (12) but the detection

threshold TED1 in (12) is replaced by [11]

TED2 =
Nσ2

w

2
+

N

2
(44)

√

√

√

√

(2σ2
0 − σ2

w)(2σ
2
1 − σ2

w)(1 +
2σ2

w ln(
2σ2

0
−σ2

w

2σ2

1
−σ2

w

)

NPs(σ2
0 − σ2

1)
).

Similarly, the conventional magnitude detector in this case

has the same form as (14) but the detection threshold becomes

[15]

TMD2 = max{N k1p0 − k0p1
p0 − p1

+
Np0p1
p0 − p1

(45)

√

(
k0
p0

− k1
p1

)2 − p0 − p1
p0p1

(
k21
p1

− k20
p0

+
2

N
ln

p1
p0

),

N
k1p0 − k0p1
p0 − p1

− Np0p1
p0 − p1

√

(
k0
p0

− k1
p1

)2 − p0 − p1
p0p1

(
k21
p1

− k20
p0

+
2

N
ln

p1
p0

)}

with

k0 =

√

πσ2
w

2
L 1

2

(−|h0|2Ps/σ
2
w) (46a)

p0 = σ2
wL1(−|h0|2Ps/σ

2
w)− k20 (46b)

k1 =

√

πσ2
w

2
L 1

2

(−|h1|2Ps/σ
2
w) (46c)

p1 = σ2
wL1(−|h1|2Ps/σ

2
w)− k21 (46d)

where L(·) is the Laguerre polynomial.

1) Without Traffic: When the ambient source signal is

always present during backscattering, the BER of the con-

ventional energy detector using the detection threshold in (44)

was approximated as [11]

Pe ≈ 1

2

[

1−Q

(

TED2 −Nσ2
0

√

N(2|h0|2Psσ2
w + σ4

w)

)]

+
1

2
Q

(

TED2 −Nσ2
1

√

N(2|h1|2Psσ2
w + σ4

w)

)

(47)

for σ2
0 > σ2

1 , and

Pe ≈ 1

2

[

1−Q

(

TED2 −Nσ2
1

√

N(2|h1|2Psσ2
w + σ4

w)

)]

+
1

2
Q

(

TED2 −Nσ2
0

√

N(2|h0|2Psσ2
w + σ4

w)

)

(48)

for σ2
0 < σ2

1 , where the Gaussian approximation is applied

to the distribution of the decision variable Z, as its exact

distribution is not available.

For the conventional magnitude detector using the detection

threshold in (45), its BER was approximated as [15]

Pe ≈
1

2

[

1−Q

(

TMD2 −Nk0√
Np0

)]

+
1

2
Q

(

TED2 −Nk1√
Np1

)

(49)

for σ2
0 > σ2

1 , and

Pe ≈
1

2

[

1−Q

(

TED2 −Nk1√
Np1

)]

+
1

2
Q

(

TED2 −Nk0√
Np0

)

(50)

for σ2
0 < σ2

1 , where again the Gaussian approximation is used

as the exact distribution of R is not available, and k0, p0, k1,

p1 are given in (46).

2) Random Arrival: Similar to the Gaussian source case,

when the PSK modulated source randomly arrives at the end

of the n0-th sample, using (6), the decision variable of the

conventional energy detector in (12) becomes

Z̃ =

N
∑

n=1

|ỹ[n]|2 =

n0
∑

n=1

|w′[n]|2 +
N
∑

n=n0+1

|h
√

Ps + w′[n]|2

(51)

where w′[n] = w[n]e−jφn is still AWGN with mean zero and

variance σ2
w and s[n] =

√
Pse

jφn has been used. Unlike the

Gaussian case where the samples are Gaussian distributed with

mean zero, the PSK source gives samples following Guassian

distributions with a mean of h
√
Ps from (51). Thus, the first

and second terms of Z̃ follow chi-square distributions with

different parameters and they don’t have closed-form expres-

sions for their PDFs. Applying the Gaussian approximation to

Z̃, one has its means and variances as

µED3
0 = E{Z̃|H0} = n0σ

2
w + (N − n0)σ

2
0 (52a)

V ED3
0 = Var{Z̃|H0} = n0σ

4
w + (N − n0)(2|h0|2Psσ

2
w + σ4

w)
(52b)

µED3
1 = E{Z̃|H1} = n0σ

2
w + (N − n0)σ

2
1 (52c)

V ED3
1 = Var{Z̃|H1} = n0σ

4
w + (N − n0)(2|h1|2Psσ

2
w + σ4

w)
(52d)

from which the BER conditioned on n0 is derived as

PED3
e (n0) ≈

1

2
[1−Q(

TED2 − µED3
0

√

V ED3
0

)]+
1

2
Q(

TED2 − µED3
1

√

V ED3
1

)

(53)

for σ2
0 > σ2

1 and

PED3
e (n0) ≈

1

2
[1−Q(

TED2 − µED3
1

√

V ED3
1

)]+
1

2
Q(

TED2 − µED3
0

√

V ED3
0

)

(54)

for σ2
0 < σ2

1 . The unconditional BERs are the same as those

in (26) and (27) except that PED1
e (n0) in (26) and (27) is

replaced by PED3
e (n0) in (53) and (54).

For the conventional magnitude detector, when the ambient

source signal randomly arrives, the decision variable in (14)

becomes

R̃ =
N
∑

n=1

|ỹ[n]| =
n0
∑

n=1

|w′[n]|+
N
∑

n=n0+1

|h
√

Ps+w′[n]|. (55)
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It does not have closed-form expressions for its PDF. Using

the Gaussian approximation, one has

µMD3
0 = E{R̃|H0} =

n0

2

√

πσ2
w

+
(N − n0)

2

√

πσ2
wL 1

2

(−|h0|2Ps/σ
2
w) (56a)

V MD3
0 = Var{R̃|H0} = n0(1−

π

4
)σ2

w

+(N − n0)[σ
2
0 −

πσ2
w

4
L2

1

2

(−|h0|2Ps/σ
2
w)] (56b)

µMD3
1 = E{R̃|H1} =

n0

2

√

πσ2
w

+
(N − n0)

2

√

πσ2
wL 1

2

(−|h1|2Ps/σ
2
w) (56c)

V MD3
1 = Var{R̃|H1} = n0(1−

π

4
)σ2

w

+(N − n0)[σ
2
1 −

πσ2
w

4
L2

1

2

(−|h1|2Ps/σ
2
w)] (56d)

Thus, the BER conditioned on n0 is derived as

PMD3
e (n0) ≈

1

2
[1−Q(

TMD2 − µMD3
0

√

V MD3
0

)]+
1

2
Q(

TMD2 − µMD3
1

√

V MD3
1

)

(57)

for σ2
0 > σ2

1 and

PMD3
e (n0) ≈

1

2
[1−Q(

TMD2 − µMD3
1

√

V MD3
1

)]+
1

2
Q(

TMD2 − µMD3
0

√

V MD3
0

)

(58)

for σ2
0 < σ2

1 . The unconditional BERs are the same as those

in (26) and (27) except that PED1
e (n0) in (26) and (27) is

replaced by PMD3
e (n0) in (57) and (58).

3) Random Departure: In this case, since the ambient

source signal s[n] leaves at the end of the n1-th sample, the

decision variable of the conventional energy detector in (12)

becomes

Ẑ =

N
∑

n=1

|ŷ[n]|2 =

n1
∑

n=1

|h
√

Ps + w′[n]|2 +
N
∑

n=n1+1

|w′[n]|2.

(59)

Using the Gaussian approximation, the means and variances

of (59) are

µED4
0 = E{Ẑ|H0} = n1σ

2
0 + (N − n1)σ

2
w (60a)

V ED4
0 = Var{Ẑ|H0} = n1(2|h0|2Psσ

2
w + σ4

w) + (N − n1)σ
4
w

(60b)

µED4
1 = E{Ẑ|H1} = n1σ

2
1 + (N − n1)σ

2
w (60c)

V ED4
1 = Var{Ẑ|H1} = n1(2|h1|2Psσ

2
w+σ4

w)+(N −n1)σ
4
w.

(60d)

Similarly, the BER conditioned on n1 is derived as

PED4
e (n1) =

1

2
[1−Q(

TED2 − µED4
0

√

V ED4
0

)]+
1

2
Q(

TED2 − µED4
1

√

V ED4
1

)

(61)

for σ2
0 > σ2

1 and

PED4
e (n1) =

1

2
[1−Q(

TED2 − µED4
1

√

V ED4
1

)]+
1

2
Q(

TED2 − µED4
0

√

V ED4
0

)

(62)

for σ2
0 < σ2

1 . The unconditional BERs are the same as those

in (38) and (39) except that PED2
e (n1) in (38) and (39) is

replaced by PED4
e (n1) in (61) and (62).

For the conventional magnitude detector with random de-

parture, the decision variable in (14) becomes

R̂ =

N
∑

n=1

|ŷ[n]| =
n1
∑

n=1

|h
√

Ps+w′[n]|+
N
∑

n=n1+1

|w′[n]|. (63)

Using the Gaussian approximation to R̂, one has

µMD4
0 = E{R̂|H0} =

N − n1

2

√

πσ2
w

+
n1

2

√

πσ2
wL 1

2

(−|h0|2Ps/σ
2
w) (64a)

V MD4
0 = Var{R̂|H0} = (N − n1)(1−

π

4
)σ4

w

+n1[σ
2
0 −

πσ2
w

4
L2

1

2

(−|h0|2Ps/σ
2
w)] (64b)

µMD4
1 = E{R̂|H1} =

N − n1

2

√

πσ2
w

+
n1

2

√

πσ2
wL 1

2

(−|h1|2Ps/σ
2
w) (64c)

V MD4
1 = Var{R̂|H1} = (N − n1)(1−

π

4
)σ4

w

+n1[σ
2
1 −

πσ2
w

4
L2

1

2

(−|h1|2Ps/σ
2
w)] (64d)

and the BER conditioned on n1 is derived as

PMD4
e (n1) =

1

2
[1−Q(

TMD2 − µMD4
0

√

V MD4
0

)]+
1

2
Q(

TMD2 − µMD4
1

√

V MD4
1

)

(65)

for σ2
0 > σ2

1 and

PMD4
e (n1) =

1

2
[1−Q(

TMD2 − µMD4
1

√

V MD4
1

)]+
1

2
Q(

TMD2 − µMD4
0

√

V MD4
0

)

(66)

for σ2
0 < σ2

1 . The unconditional BERs are the same as those

in (38) and (39) except that PED2
e (n1) in (38) and (39) is

replaced by PMD4
e (n1) in (65) and (66).

IV. DERIVATION OF NEW DETECTORS WITH TRAFFIC

In this section, new detectors will be derived by taking the

traffic model of the ambient source into account.

A. Random Arrival

For randomly arriving signals, if the energy detector knows

the arrival time of n0, the decision variable should be Z(n0) =
∑N

n=n0+1 |y[n]|2 by using samples that contain the useful

signal only. In practice, the value of n0 is not known and

needs to be removed from the decision variable. If the ambient

source signal is exponentially arriving, using the traffic model

in (7), the averaged decision variable becomes

Z̄EA =

N−1
∑

n0=0

[1− e−λaT ]e−n0λaTZ(n0)

=

N
∑

n=1

[1− e−λaTn]|y[n]|2 (67)
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and the new energy detector becomes

H0

Z̄EA =
∑N

n=1[1− e−λaTn]|y[n]|2 ≷ TED−EA, σ
2
0 > σ2

1

H1

(68a)
H0

Z̄EA =
∑N

n=1[1− e−λaTn]|y[n]|2 ≶ TED−EA, σ
2
0 < σ2

1 .
H1

(68b)

The new decision variable Z̄EA does not require knowledge of

n0. One sees that, unlike the conventional energy detector in

(12) that treats all samples equally, the new detector weights

the samples exponentially with their arrival times so that the

late-arriving samples have larger weights, as they are more

likely to contain useful signals. This agrees with intuition.

If the ambient source signal is uniformly arriving, using (8),

the average decision variable can be derived as

Z̄UA =

N−1
∑

n0=0

1

N
Z(n0) =

N
∑

n=1

n

N
|y[n]|2 (69)

and the new energy detector is

H0

Z̄UA =
∑N

n=1
n
N |y[n]|2 ≷ TED−UA, σ

2
0 > σ2

1

H1

(70a)

H0

Z̄UA =
∑N

n=1
n
N |y[n]|2 ≶ TED−UA, σ

2
0 < σ2

1 .
H1

(70b)

In this case, the weighting coefficient is linear with the arrival

time of the sample. Again, late-arriving samples are given

more weights.

Similarly, for magnitude detection, when the ambient signal

is exponentially arriving, one has

H0

R̄EA =
∑N

n=1[1− e−λaTn]|y[n]| ≷ TMD−EA, σ
2
0 > σ2

1

H1

(71a)
H0

R̄EA =
∑N

n=1[1− e−λaTn]|y[n]| ≶ TMD−EA, σ
2
0 < σ2

1

H1

(71b)

and when the the ambient signal is uniformly arriving, one

has

H0

R̄UA =
∑N

n=1
n
N |y[n]| ≷ TMD−UA, σ

2
0 > σ2

1

H1

(72a)

H0

R̄UA =
∑N

n=1
n
N |y[n]| ≶ TMD−UA, σ

2
0 < σ2

1 .
H1

(72b)

Note that the above new detectors are applicable to both

the Gaussian source and the PSK source. Note also that, to

minimize the BER, the optimal detection threshold needs to

be derived by using the PDFs of the decision variables in

H0 and H1. However, neither the exact nor the approximate

PDFs of Z̄EA, Z̄UA, R̄EA, R̄UA are available. Thus, we set

TED−EA = TED−UA = TED1 and TMD−EA = TMD−UA =
TMD1 for the Gaussian source, and TED−EA = TED−UA =
TED2 and TMD−EA = TMD−UA = TMD2 for the PSK

source. In this case, the new detectors have the same detection

thresholds as the conventional detectors. This is a heuristic

choice.

B. Random Departure

For randomly departing signals, if the energy detector knows

the departure time of n1, the decision variable should be

Z(n1) =
∑n1

n=1 |y[n]|2, where only the samples that contain

the useful signal are used. Again, in practice, the value of n1

is not known and can be averaged out using the traffic model.

For exponentially departing ambient source, using (10), the

averaged decision variable becomes

Z̄ED =

N
∑

n1=1

[1− e−λdT ]e−n1λdTZ(n1)

=

N
∑

n=1

[e−λdTn − e−λdT (N+1)]|y[n]|2

≈
N
∑

n=1

e−λdTn|y[n]|2 (73)

when N is large so that e−λdT (N+1) is close to zero, and the

new energy detector becomes

H0

Z̄ED =
∑N

n=1 e
−λdTn|y[n]|2 ≷ TED−ED, σ2

0 > σ2
1

H1

(74a)
H0

Z̄ED =
∑N

n=1 e
−λdTn|y[n]|2 ≶ TED−ED, σ2

0 < σ2
1 .

H1

(74b)

In this case, the new detector still weights the samples expo-

nentially with their arrival times but the early-arriving samples

have larger weights, as they are more likely to contain useful

signals, when the source is randomly leaving.

If the ambient source signal is uniformly departing, the

average decision variable can be derived as

Z̄UD =
N
∑

n1=1

1

N
Z(n1) =

N
∑

n=1

N + 1− n

N
|y[n]|2 (75)

and the new energy detector is

H0

Z̄UD =
∑N

n=1
N+1−n

N |y[n]|2 ≷ TED−UD, σ2
0 > σ2

1

H1

(76a)
H0

Z̄UD =
∑N

n=1
N+1−n

N |y[n]|2 ≶ TED−UD, σ2
0 < σ2

1 .
H1

(76b)

In this case, the weighting coefficient is linear with the arrival

time of the sample but early-arriving samples are given more

weights.
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Similarly, for magnitude detection, when the ambient signal

is exponentially departing, one has

H0

R̄ED =
∑N

n=1 e
−λdTn|y[n]| ≷ TMD−ED, σ2

0 > σ2
1

H1

(77a)
H0

R̄ED =
∑N

n=1 e
−λdTn|y[n]| ≶ TMD−ED, σ2

0 < σ2
1

H1

(77b)

and when the the ambient signal is uniformly departing, one

has

H0

R̄UD =
∑N

n=1
N+1−n

N |y[n]| ≷ TMD−UD, σ2
0 > σ2

1

H1

(78a)
H0

R̄UD =
∑N

n=1
N+1−n

N |y[n]| ≶ TMD−UD, σ2
0 < σ2

1 .
H1

(78b)

Again, neither the exact nor the approximate PDFs of Z̄ED,

Z̄UD, R̄ED, R̄UD are available. Thus, we set TED−ED =
TED−UD = TED1 and TMD−ED = TMD−UD = TMD1 for

the Gaussian source, and TED−ED = TED−UD = TED2 and

TMD−ED = TMD−UD = TMD2 for the PSK source, to have

the same detection threshold as the conventional detectors.

The Gaussian approximations do not work well in this case,

as Z̄EA, Z̄UA, Z̄ED, Z̄UD, R̄EA, R̄UA, R̄ED, and R̄UD are

weighted sums with each term having different means and

variances so that the central limit theorem may not apply.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, the performances of the conventional and

new detectors are examined. In the examination, the SNR is

defined as γ = Ps

σ2
w

and changes from 0 dB to 30 dB with a

step size of 5 dB. The channel coefficients hsr, hst and htr

are complex Gaussian distributed with mean zero and variance

σ2
sr, σ2

st and σ2
tr, respectively, and the signal-to-inference ratio

is defined as
η2σ2

st
σ2

tr

σ2
sr

and is fixed at 20 dB, unless otherwise

stated. A number of 104 random values of hsr, hst and htr

are used to average the BERs. For the existing detectors with

traffic, their BER performances are calculated by using the

expressions derived in Section III, while for the new detectors

with traffic, their BER performances are simulated, as their

BER expressions are not available. In the figures, ’ED’ refers

to the energy detector, and ’MD’ refers to the magnitude

detector.

Figs. 1 - 4 show the performances of the existing energy

and magnitude detectors for a Gaussian ambient source with

different traffic models. Fig. 1 is for the case when the source

signal arrives exponentially during backscattering. From this

figure, the performances of both energy and magnitude de-

tectors degrade considerably when the ambient source arrives

exponentially. For example, at γ = 30dB, the energy and

magnitude detectors without traffic have a BER of 9× 10−3,

while the energy detector with exponential arrival has a BER

of 2.5 × 10−2 and the magnitude detector with exponential
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arrival has a BER of 4×10−2, when N = 40. Thus, the source

traffic has significant impact on the detection performance.

Also, the conventional energy and magnitude detectors have

very similar performances when there is no traffic but this is

not true any more when the source is exponentially arriving.

At the BER of 4 × 10−2, the two detectors almost have a

performance difference of 10 dB, when N = 40. One also

sees that the magnitude detector degrades more and reaches

error floors earlier than the energy detector, when N increases

in this case.

Fig. 2 shows the case of exponential departure. Similar

observations can be made. Again, the detection performances

degrade considerably in the presence of exponential departure

and the performance difference between energy detector and

magnitude detector with traffic is much larger than that without

traffic. Moreover, in this case, the performance degradation

caused by the source traffic is much larger than that in the case

of exponential arrival. Thus, an exponentially departing source

is more damaging to the detection performance than an expo-

nentially arriving source. This can be explained by comparing

(26) and (38) as an example. Both BERs in (26) and (38)

are sums of N terms. For the exponential departure in (38),

when n1 increases, due to the exponential weighting factor

of e−n1λdT , only the first few terms in (38) are dominant. In

these terms, since the effective sample size (number of samples

containing useful signal) n1 is small, the BER PED2
e (n1) is

large. Thus, the overall BER for exponential departure is large.

For the exponential arrival in (26), when n0 increases, due to

the exponential weighting factor of e−n0λaT , again only the

first few terms in (26) are dominant. However, in these terms,

since the effective sample size N − n0 is large, the BER

PED1
e (n0) is small. Thus, the overall BER for exponential

arrival is small. One sees that the BERs of the conventional

detectors with exponential departure change very little when

the SNR increases from 0 dB to 30 dB, or they reach the error

floor at very small SNRs.

Figs. 3 and 4 show the detection performances with uniform

traffic. Although uniform arrival is different from uniform

departure statistically, mathematically their BER expressions
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are similar. This can be found by comparing (27) and (39) as

an example. Hence, their BER performances are very similar

to each other by comparing Figs. 3 and 4. Also, the uniform

traffic has a larger impact than the exponential arrival traffic

but a smaller impact than the exponential departure traffic

on the detection performance by comparing Fig. 3 with Fig.

1 and Fig. 2, respectively. This is because of the removal

of the exponential weighting factors in the sums of (26)

and (38) compared with (27) and (39). Another interesting

observation is that the sample size has little impact on the

detection performance for the same detector with uniform

traffic, especially at large SNRs.

Figs. 5 and 6 show the effects of the traffic parameters on

the detection performance. One sees that λa has a significant

impact on the detection performance. Specifically, the detec-

tion performance degrades dramatically as λa decreases from

1 to 0.1 but when λa = 1, the conventional detectors with and

without traffic have very similar performances and only differ

at large SNRs. On the other hand, the detection performance

still degrades dramatically as λd decreases from 1 to 0.1,

even when λd = 1. Thus, when the source is exponentially
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departing, the detection performances are very poor in all the

cases considered, which agrees with the observation from Fig.

2. Similar observations can be made for other cases. Hence, in

the following, results for exponential departure are not shown

to save space.

Figs. 7 - 9 compare the performances of the existing

detectors with those of the newly derived detectors in Section

IV. For the exponential arrival, one sees from Fig. 7 that the

new detectors can have considerable performance gains over

the conventional detectors. For example, at a BER of 10−1,

the new energy detector has a performance gain of around 3

dB over the conventional energy detector, when N = 40. This

gain diminishes as the SNR increases and could become a loss

for large SNR and small values of N. This is because the new

detectors use the same detection thresholds as the conventional

detectors, instead of their optimum detection thresholds. The

optimum detection threshold for the new detector could be

obtained by finding the exact distributions of (67) and (73),

calculating the error probabilities using (68) and (74), and then

minimizing the error probabilities with respect to the detection

thresholds. However, this is not possible due to the difficulty
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Fig. 10. Performances of existing detectors with exponentially arriving
PSK source for different N when λa = 0.1.

in finding the exact distributions of (67) and (73). In this

case, the conventional detection threshold is used, leading to

a large performance loss, especially at large SNR and small

N. For the uniform arrival, one sees from Fig. 8 that the

new detectors always outperform the conventional detectors

for different values of SNR and N and that the performance

gain increases as the SNR decreases. One also sees from Fig.

9 that the new detectors in this case always outperform the

conventional detectors and that the performance gain increases

when λa increases from 0.1 to 1. In fact, at λa = 1, the

performance gain remains large even at large SNRs.

Figs. 10 - 12 show the performances of the existing detectors

for the PSK source with random traffic. Again, the source traf-

fic degrades the detection performance considerably, especially

when N is small, λa is small, or the SNR is large. Also,

the performance difference between energy and magnitude

detectors is increased with traffic. The performance degrada-

tion caused by uniform arrival is larger than that caused by

exponential arrival. These agrees with the observations for the

Gaussian source. Also, comparing Fig. 10 with Fig. 1, one sees
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that the source traffic leads to larger performance degradation

for the PSK source than for the Gaussian source.

Figs. 13 - 15 compare the new and conventional detectors

in the presence of random ambient PSK source. Similar obser-

vations to those from Figs. 7 - 9 for the Gaussian source can

be made. The new detectors also outperform the conventional

detectors when N = 40, the SNR is small or λa increases. This

is only for the new detectors using the non-optimized detection

thresholds. When the detection thresholds are optimized, the

performance gain is expected to further increase. Fig. 16

compares different approximations and the simulation. The

upper part compares Gamma approximation with simulation,

where the markers represent the approximation and the solid

lines represent the simulation. One sees that they agree with

each other very well, showing the accuracy of the approxi-

mation. The lower part compares Gamma approximation and

Nakagami approximation with the Gaussian approximation for

the Gaussian source, where the markers represent results from

Gamma or Nakagami approximations while the solid lines

represent results from Gaussian approximation. Again, they

are indistinguishable from each other. Similar comparisons can
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Fig. 16. Comparison of different approximations and simulation for
Gaussian source.

also be made for other cases but due to the length restriction,

they are not shown here.

Note that the case without traffic is used as a benchmark and

therefore most equations in this case are from the literature.

However, in the cases with traffic, both the conditional and

unconditional BERs are new, as one has to consider the

traffic in the derivation of means and variances. They are

not straightforward extensions of the case without traffic. For

example, (20) becomes a sum of two Gamma random variables

and their exact distribution is not Gamma any more. Moreover,

Gamma approximation is only a statistical tool used to analyze

the BER performances and is not the novelty of the work.

Note also that in (12) and (14) as well as in other detectors,

values of σ2
0 and σ2

1 are required. These values can be

estimated using training symbols, as described in [11, Section

IV] or [12, Section III]. To save space, they are not repeated

here. Similarly, the traffic model parameters λa and λd are also

required. They can be obtained from traffic modelling using

measurements [39] - [41].

VI. CONCLUSION

The effect of source signal traffic on the performances of

existing energy and magnitude detectors for ABC systems

has been studied for both exponential and uniform random

models. The performance degradation caused by different

traffic models has been examined for different values of sample

sizes, SNRs and traffic parameters. New detectors accounting

for the source traffic models have also been derived. Numerical

results have shown that the performance degradation caused by

random traffic could be very significant. In particular, for ex-

ponentially departing ambient source, the BER of the existing

detectors reaches an error floor at very small SNRs. For other

traffic models, the performance degradation is determined by

the sample size, the traffic parameters and the SNR. Also, the

PSK source is more damaging to the detection performance

than the Gaussian source. Numerical results have also shown

that the new detectors outperform the conventional detectors

in all the cases for the uniform traffic models. They also

outperforms the conventional detectors for the exponential

arrival model in certain cases but could become worse than

the conventional detectors when the sample size is small or

the SNR is large. Future works will focus on the derivation of

the optimal detection threshold for the new detectors as well

as their extension to multi-carrier or multi-antenna systems to

improve the performances of the new detectors.
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