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A B S T R A C T   

Ecological risk management has emerged as a critical research and policy development area in energy and 
environmental economics. Sustained ecology is crucial for the standard of living and food security. As the adverse 
impacts of environmental degradation and climate change become increasingly apparent it is imperative to 
understand ecological risk and its interconnectedness with environmental pressure, clean energy, economic 
activity, globalization, and green technology. Ecological risk is assessed using the environmental performance 
index which is a holistic indicator of climate change, environmental pressures and human actions in which most 
of these indicators have spatial effects. This paper explores the multifaceted relationship between identified 
anthropogenic critical factors and their role in effectively managing ecological risk globally. This study has 
developed the second-generation dynamic panel quantile regression considering spatial effects of economic 
activities on ecology across borders of 55 countries between 1995 and 2022. This innovative hybrid estimation 
scheme that integrated theoretical and econometric aspects makes the model robust to major regression issues. 
Several implications ranked in decreasing order of its effectiveness are reducing environmental pressure, expe-
diting energy transition, and embracing economic integration while there is a need to work on rejuvenating 
green technology and green growth.   
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1. Introduction 

The 21st century presents a unique set of challenges for societies 
across the globe as environmental degradation and climate change pose 
unprecedented risks to ecosystems and human well-being. The Inter-
governmental Panel on Climate Change (IPCC) (2018) indicates that 
persistent environmental degradation may permanently damage the 
ecosystem. This biodiversity contributes to half of the world’s GDP 
(World Bank, 2021). Many industries benefit from the diverse biota 
(Hoffmann, 2022) as input and the environment building up the climate 
change resilience. Considering these challenges, studies are required to 
assess the socio-economic and technological factors’ role with ecological 
risk. National ecological risk mitigation risk efforts are required because 
of diverse environmental conditions and socio-economic dynamics 
across countries (Zhang et al., 2022). Literature has coined ecological 
risk as a potential harm to ecosystems and their associated services 
caused by natural or human factors. These risks are a threat to the sta-
bility of the ecosystem which includes pollution, species extinction, 
habitat destruction, natural disasters, and climate change. Managing 
these challenges in diverse geographical and ecological contexts de-
mand studies that can form strategies for mitigation and adaptation 
(Landis et al., 2013) which can understand the nature and magnitude of 
the ecological risk at national level and provide targeted interventions. 

The anthropogenic activities that led to the loss of ecosystem ser-
vices, had increased healthcare costs and other pollution related dis-
eases (Fatima et al., 2021), has disrupted agricultural productivity 
(Arshed and Abdulqayumov, 2016), and caused damage to infrastruc-
ture. Healthy ecosystem services help economic activities and improve 
public health and well-being using facilities like clean air and water, 
fertile soils, climate regulation and diverse biota. Failing to stabilize 
these services could undermine national resilience to climate change 
thus necessitating an integrated approach to explore environmental, 
economic and social dimensions of ecological risk. The outcomes of this 
effort can lead to interdisciplinary collaborations, stakeholder engage-
ment, and scientific knowledge integration. This study contributes to 
this domain by exploring role of environmental pressure, clean energy, 
economic activity, globalization and green technology on ecological risk 
using robust econometric assessment at national level. 

Ambient air pollution has the highest share in ecological risk as it 
represents the ecosystem’s integrity and health. This risk can originate 
from mold, suspended particles, scarcity of green fields, or an inability to 
trap carbon (Sampson, 2012). The current air pollution must be trapped 
within Earth in order to improve ecological quality (Berger et al., 2017) 
and for the US Environmental Protection Agency to assess and improve 
ecological risk (EPA, 1998). 

The transition to clean energy sources, such as renewables and low- 
carbon technologies, is vital in mitigating ecological risk. Renewable 
energy reduces greenhouse gas emissions and curbs air and water 
pollution associated with conventional energy sources. It also increases 
business competitiveness (Rusinko, 2007). The recent COP27 has 
highlighted the complete transition towards renewable energy. The 
behavior of clean energy consumption helps control the environmental 
impacts which take the pollution from energy consumption processes 
(Wang and He, 2006). Improving clean production levels and the pro-
portion of new energy resources could effectively save and mitigate air 
pollutants and CO2 emissions (Chen et al., 2018) where biomass energy 
consumption has shown great potential (Danish and Wang, 2019). 
Numerous studies have highlighted the negative correlation between 
renewable energy deployment and CO2 emissions (IPCC, 2018; Yu-Ke 
et al., 2022; Zahid et al., 2020). As countries increase their reliance on 
renewable energy, they are able to curb greenhouse gas emissions 
simultaneously. However, there is a need to explore if it can decrease 
their ecological risk (Arshed et al., 2024). 

While driving growth and prosperity, economic activities can also 
pose significant ecological risks. Environmental economists advocate for 
delinking economic progress with environmental deterioration. 

Industrial production, agriculture, transportation, and urbanization 
pressure natural resources and ecosystems. Balancing economic devel-
opment with ecological sustainability is a complex task that requires 
effective policy instruments and innovative strategies. Species endan-
germent is highly correlated with population and GDP, and per capita 
GDP is a significant regressor of species endangerment (Czech et al., 
2012). The findings of Kirikkaleli et al. (2020) reveal that (i) in the long 
run globalization impacts ecological footprint positively and (ii) trade 
openness reduces ecological footprint in the short run while ecological 
footprints are negatively affected by GDP growth in both the short and 
the long run. Stern et al. (1996) highlighted the need to decouple the 
link between economic activity and environmental degradation to 
achieve environmental sustainability and another study iterated 
decoupling against biodiversity (Arshed et al., 2024). 

Ecological risks are also connected with the interconnection between 
different ecologies globally. The changes in human living practices, 
infrastructural changes, introduction of new foods and non-native ani-
mals in the ecology do have unpredictable effects (Landis et al., 2013). 
Globalization has transformed the global economic landscape, enabling 
the flow of goods, services, and capital across national boundaries. 
While globalization brings economic benefits it also intensifies ecolog-
ical risks through increased resource consumption, pollution emissions, 
and ecological degradation. The findings of Teng et al. (2020) show that 
globalization adversely and significantly influences environmental 
degradation; globalization reduces environmental degradation in the 
long run while globalization positively and significantly influences 
environmental degradation in the short run. Political globalization is 
shown to be a tool for mitigating environmental degradation while 
economic globalization harms it (Leal and Marques, 2020; Zandi and 
Haseeb, 2019). On the one hand, globalization enables the dissemina-
tion of green technologies and expertise, facilitating the adoption of 
sustainable practices worldwide (Kolk et al., 2008). Similarly, global-
ization led increased trade and consumption (scale effect) of natural 
resources can cause degrade environment and escalate ecological risk 
(Sachs and Warner, 2001). It calls for exploration and careful manage-
ment in order to reduce ecological risks. 

Long term growth is reliant on technological innovation (Romer, 
1986) but sustainability arrives when this technology reduces the de-
pendency on natural resources (Han et al., 2022; Zhang et al., 2023) 
rather than using scale effect to increase natural resource demand 
(Mirza et al., 2019). In this premise, green technologies play a vital role 
in promoting sustainable development. These technological advance-
ments include energy efficiency, waste reduction, economic circularity, 
and resource management which can initiate low-carbon transition and 
minimization of footprints. Vienneau et al. (2017) showed that green 
technology can reduce mortality risk and increase environmental 
exposure resilience. Its development contributes in environmental sus-
tainability (Ismail et al., 2013) and climate change resilience (Arshed 
et al., 2023). Nizam et al. (2020) conclude that green technology is 
imperative for achieving long-term sustainable growth in a country 
along with green energy (Doğan et al., 2020a). Studies have shown that 
green technology can significantly mitigate ecological risk (Acemoglu 
et al., 2016). 

By unraveling the interplay between ecological risk and clean en-
ergy, environmental pressure, economic activity, globalization, and 
green technology, this study aims to comprehensively understand the 
determinants of ecological risk at national level. The following are the 
proposed research questions.  

a. What is the long run role of renewable energy on ecological risk after 
accounting for major estimation issues of panel data?  

b. What is the long run role of environmental pressure on ecological 
risk after accounting for major estimation issues of panel data?  

c. What is the long run role of globalization on ecological risk after 
accounting for major estimation issues of panel data? 
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d. What is the long run role of economic activity on ecological risk after 
accounting for major estimation issues of panel data?  

e. What is the long run role of green technology on ecological risk after 
accounting for major estimation issues of panel data? 

Through an analysis of theoretical frameworks and empirical evi-
dence, this study seeks to contribute to the body of knowledge on sus-
tainability and provide valuable insights for policymakers, researchers, 
and stakeholders striving to address the pressing challenges of envi-
ronmental degradation and achieve a more sustainable future. This 
study also highlights the gains from globalization and clean energy as 
potential indicators of reducing ecological risk across all quantiles while 
there is a need to explore the reasons behind the ineffectiveness of green 
technology. 

Following the introduction in the first section, this study explores the 
theoretical and empirical link between the selected variables and 
ecological risk in Section 2. Section 3 discusses data and methods, fol-
lowed by results and discussions in Section 4. 

2. Theoretical and empirical review 

The carbon emissions and risk relationship is complex as it involves 
feedback mechanisms building up climate change over time. By 2009 
there was 70 million tons of CO2 emissions per day (Kannan and James, 
2009) creating a major ecosystem stressor (Lu et al., 2018). Lu et al. 
(2018) showed that a consistent increase in CO2 via feedback loops 
would heat up the environment thereby causing melting of polar ice. 
This feedback effect amplifies the negative effect on ecosystem. Theo-
retical frameworks, such as tipping points and threshold effects, explain 
how increasing CO2 emissions can push ecosystems beyond their resil-
ience limits, resulting in abrupt and irreversible ecological changes 
(Cho, 2021). Anthropogenic activities led to CO2 emissions significantly 
affecting the biodiversity scenario 2100 (Sala et al., 2000). CO2 in-
creases lead to changes in many marine life characteristics, devastat-
ingly affecting marine ecology (Doney et al., 2012), and may lead to the 
risk of extinction by 2100 (Gattuso et al., 2015). High carbon-intensive 
businesses may deprive older people, pregnant women, and children of 
better lives (Belokon’ et al., 2019). 

In the case of Chinese iron and steel companies interview with a 
sample of 85 questionnaires, CO2 reduction practices play a significant 
role in environmental performance. (Zhang et al., 2012). Regulations on 
CO2 enhance environmental performance in the case of US coal power 
plants (Sueyoshi and Goto, 2010). Proper planning in forestation is 
required to ensure that carbon absorption leads to biodiversity recovery 
(Di Sacco et al., 2021). 

The environmental Kuznets curve (EKC) has confirmed the link be-
tween economic activity and ecological risk (Stern et al., 1996). Liter-
ature has discussed the GDP effect on ecological indicators like species 
extinction, water pollution, and deforestation concluding its role in 
ecological risk. The GDP – ecological risk relationship can be studied 
under scale and composition effects. Scale effect explains the propor-
tional relationship between growth and resource consumption leading 
to emissions and ecological risk (Li et al., 2014). Hereby growth leads to 
higher demand for energy, natural resources, and mechanization for 
increased extraction, production, and waste generation. While compo-
sition effect relates to the economy’s structural transformation from 
agriculture/primary goods to industry/value-added goods, service 
sector transition can reduce ecological risks due to resource intensity 
decrease. Studies by Ang (2007) and Shafik and Bandyopadhyay (1992) 
had provided details on the scale and composition effect of GDP. 

Türkiye experienced a positive GDP to footprint link (Udemba, 2020) 
but GDP positively effects environmental performance in a 78 country 
analysis (Kumar et al., 2019) and for 31 provinces of China between 
1989 and 2009 (Li et al., 2014). Yang et al. (2012) concluded no effect of 
GDP on environment in the Zhejiang province of China. Similar results 
are confirmed using a super learner algorithm on global data (Kartal 

et al., 2024a). 
Economic globalization, marked by trade and investment liber-

alization, can contribute to ecological risk through several channels. The 
expansion of international trade leads to increased production, resource 
extraction, and transportation, resulting in higher pollution levels and 
ecological degradation (Dasgupta and Chattopadhyay, 2004). Global-
ization often involves the international division of labor where pro-
duction processes are fragmented across different countries. This 
division of labor can lead to environmental outsourcing, where countries 
with weak environmental regulations attract polluting industries 
(Akbostanci et al., 2007), shifting the ecological risk to these regions 
which is termed as Halo effect (Doytch and Uctum, 2016). Arshed et al. 
(2024) explored 66 country sample to conclude positive globalization 
effect on natural habitats which is an indicator of ecological risk. 

Hornborg (1998) proposed ecologically unequal exchange frame-
work proposing that globalization leads to ecological risk by ecological 
burden transferring to low developed countries (LDCs). Multinational 
corporations (MNCs) contribute in shaping the globalization and 
ecological risk relationship. MNCs pursuing for profits and market share 
operating in agriculture, manufacturing and extractive sectors can 
create environmental implications in terms of unsustainable resource 
extraction, pollution and deforestation causing ecological risks (Barbier, 
2007; Buckley et al., 2019). 

Corresponding to them, a study by Ebrahimi et al. (2021) assessed 
Italy and Japan for their collaboration as globalization indicators on air, 
water, and waste pollution; the results showed that globalization had led 
to improvement in ecological factors in both countries. Similar results 
were concluded from a 148-country study by Wang et al. (2021). The 
reason behind this is that globalization leads to firm-level self-regulation 
as confirmed in the case of China (Christmann and Taylor, 2001; Zhu 
and Sarkis, 2004). 

Developing clean energy infrastructure, such as wind and solar 
farms, often requires land use, potentially impacting local biodiversity. 
However, clean energy installations generally have lower biodiversity 
impacts than fossil fuel extraction or large-scale hydropower projects. 
Furthermore, the mitigation of climate change through clean energy 
adoption helps safeguard the environment (Doğan et al., 2020b, 2022; 
Kartal, 2022, 2023) and ecosystems, and protect biodiversity from the 
adverse effects of global warming (Strassburg et al., 2018; Tittensor 
et al., 2014), energy security (Kartal et al., 2024b), and natural resource 
utilization (Li et al., 2024). Studies have shown that a 1% increase in 
renewable energy would lead to an improvement in the environment by 
0.59% in E7 (Gyamfi et al., 2021) and 0.17% in ASEAN (Anwar et al., 
2021). Multiple scenarios for Chinese provinces also showed that green 
energy does improve the Environmental Performance Index (Abbas 
et al., 2021). 

Urbanization as an indicator of increased economic activity involves 
the conversion of natural habitats into built-up areas resulting in land 
use change and habitat fragmentation which disrupts biodiversity 
(Alberti et al., 2003; Foley et al., 2005) and human well-being. With 
increased economic activity in urban city centers, there is increased 
demand for water purification, climate regulation and biodiversity 
conservation and failing to provide these ecosystem services leads to 
ecological risk (Costanza et al., 2014; Millennium Ecosystem Assess-
ment, 2005). The concentration in urban centers creates a heat island 
effect because of the replacement of natural vegetation with concrete 
surfaces. The urban heat island effect can lead to various ecological 
impacts including changes in microclimates, altered species distribu-
tions, and increased energy demand for cooling, further exacerbating 
ecological risks (Oke, 1982; Sailor, 2011). In China, urbanization rose 
from 17.9% to 54.8% between 1978 and 2014 which led to an increase 
in it’s ecological footprint and a depreciation in environmental perfor-
mance while some aspects of environmental performance improved in 
terms of an increase in waste treatment infrastructure (Huang et al., 
2016). A study in Iran showed that there was a fall in vegetation 
coverage from 37.3% to 14.54% between 1987 and 2018 because of an 
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increase in roads and the build up of areas has led to an increase in the 
natural climate change risk by 3.62%, the most prominent of which is 
the increase in soil erosion (Esmaeilzadeh and Ehteshami, 2020). 
Excessive land use/land cover (LULC) changes represent a satellite im-
agery method to assess urbanization and have an impact on several di-
mensions of Sustainable Development Goals in Türkiye (Agdas and 
Yenen, 2023). 

Green innovation helps in improving resource efficiency and con-
servation. It reduces the ecological risk from resource extraction and 
depletion. Patents promote sustainable practices like circularity, energy 
efficiency, and recycling that reduce the demand for natural resources 
and waste generation. This green innovation is expected to mitigate 
ecological risks (Geissdoerfer et al., 2017; Mignacca et al., 2020). Green 
technology can help the transition towards cleaner energy, energy effi-
cient mechanism, and waste management which helps reduce air and 
water pollution. 

Theoretical frameworks, such as life cycle assessment and environ-
mental impact analysis, highlight the link between green technology 
adoption and reduced ecological risk through pollutant emission 
reduction (Bovea and Powell, 2016). Studies have also shown that 
adopting green technologies reduces environmental footprints (Lenzen 
et al., 2018; Wiedmann et al., 2015). 

A subregional analysis in Italy showed that an increase in green 
technologies positively affected environmental productivity in 2005 
(Ghisetti and Quatraro, 2017). Green technology generated from inter-
nal factors (pollution reduction and green supply chain) and external 
factors (sustainable product development) implemented by ISO14001 
adoption does diminish environmental impacts in 3490 firms from 58 
countries (Miroshnychenko et al., 2017). 

2.1. Literature gap 

Literature has pointed out essential ecological risk indicators 
including GDP, globalization, clean energy, urbanization, environ-
mental pressure, and green technology but this specific combination, 
along with the theoretical and statistical treatment of estimation issues, 
had been scarcely discussed. While assessing research between the years 
1995 and 2022, most studies overlooked issues like heteroskedasticity, 
non-stationarity, cross-sectional dependence, and non-normality of the 
data among other estimation issues of panel data analysis. This study 
assesses 55 countries using the Panel Quantile Regression with Dynamic 
Fixed Effect (Arshed et al., 2022) and Common Correlated Effects Mean 
Group (Pesaran and Tosetti, 2011) as a novel estimation strategy to 
make the model robust to the said issues which makes the estimates 
robust, efficient, and suitable for inference. Empirical study like 
Ul-Durar et al. (2024) have used this estimation method integration 
approach. 

3. Methods 

3.1. Data and variables 

This methods section starts with variable descriptions, estimation 
equations, and the estimation econometric method. 

Table 1 details all the variables selected for this study, including their 
units and sources. Here the Environmental Performance Index (EPI) is 
used as a dependent variable while other variables are used as inde-
pendent variables. The data is collected for 55 countries (Table 7 in the 
appendix). 

3.2. Methodology and econometric methods 

This study focuses on ecological risk which is a global issue (Heading 
and Cavaciuti-Wishart, 2024) where not all countries are equally 
affected (Bhargava and Bhargava, 2023). Most of the risks faced today 
are accumulated from past human activities and these challenges are not 

concentrated within country factors but rather it has across border ef-
fects. These four dimensions discussed led to the selection of a panel data 
sample for global generalization of effects using quantile-based esti-
mates robust to outliers. The dynamic specification is used to allow for 
the past (lagged) effects and second-generation model is used to allow 
for cross country spill-over effects (cross sectional dependence). These 
theoretical and applied aspects motivated this study to explore global 
data and form a second-generation panel quantile ARDL model. 

Using the variables from Table 1, the following Equation (1) is the 
primary statistical equation this study estimates. Here, the subscript ‘i’ 
describes countries, and ’t’ describes the time periods leading to an 
unbalanced panel data with white noise error ’e’. 

EPIit = α1 + α2LGDPit + α3KOFit + α4RENEit + α5CO2it + α6TECHit + eit

(1) 

Since the number of years per country is more than 19 this study 
cannot assume the data to be stationary (Eberhardt, 2012), thus there 
are statistical and theoretical reasons to use dynamic models. Further, 
with many cross-sections this study considers the presence of 
cross-sectional dependence in estimating the effects of selected man-
agement practice interventions for ecological risk management. These 
characteristics are tested using second-generation panel unit root and 
cross-sectional dependence tests. 

This study integrates the Common Correlated Effects Mean Group 
(CCEMG) model (Kapetanios et al., 2011; Pesaran, 2006; Pesaran and 
Tosetti, 2011) to address cross sectional dependence. Studies like Iqbal 
et al. (2024) have used CCEMG model to determine biodiversity as an 
important component of ecological risk. This CCEMG model is used for 
non-stationary cross-sectional dependent variables with the Two Step 
Error Correction Model (ECM) model to form the Quantile Autore-
gressive Distributed Lag (ARDL) model for estimating distribution 
robust long run and short run estimates (Arshed et al., 2022, 2024; Iqbal 
et al., 2023; Ul-Durar et al., 2023) to propose second generation Panel 
Quantile ARDL. Here the Panel Quantile ARDL setup enables researchers 
to estimate marginal impacts at tails or any specified quantile position 
(Wang et al., 2024). The long-run estimates would be estimated using 
Equation (2) whereby the cross-sectional average forms (from α8 to α13)

are used (Chudik and Pesaran, 2015) to absorb the cross-sectional 
dependence effect according to the CCEMG model (Adeneye et al., 
2021). 

EPIit = α1i + α2LGDPit + α3KOFit + α4RENEit + α5CO2it + α6TECHit

+ α7LGDPi + α8KOFi + α9RENEi + α10CO2i + α11TECHi + eit (2) 

The short-run estimates are generated using the ECM specification in 
Equation (3). Here, the variables with Δ show short-run effects, the 
variables with lag are long-run multipliers, δ2 denotes the convergence 
coefficients, and the variables with coefficients from β8 to β13 are long- 

Table 1 
Variables and their data sources.  

Name (Symbol) Definition and Units Source 

Ecological Risk/Ecological 
Sustainability (EPI) 

A scorecard to assess 
environmental performance 
(0–100) 

Wolf et al. (2022) 

Gross Domestic Product 
(LGDP) 

Real GDP per capita US$ 
(Natural Log) 

WDI (2021) 

Globalization (KOF) Index (0–100) KOF Swiss Economic 
Institute (Gygli et al., 
2019) 

Clean Energy (RENE) Renewable energy 
consumption as % of total 
energy consumption 

WDI (2021) 

Environmental Pressure/ 
Environmental 
Pollution (CO2) 

CO2 emissions per capita British Petroleum 
(bp, 2022) 

Green Technology (TECH) Green technology investment 
% of GDP 

OECD (2023)  
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run cross-sectional dependence absorbers. Since they are time-invariant, 
their lags are the same as present and their first difference forms will be 
dropped. The intercept in both equations varies across cross sections 
making this model a Dynamic Fixed Effect (DFE) type of ARDL model 
(Blackburne and Frank, 2007). This study has estimated this 
second-generation Quantile ARDL model with DFE specification for the 
25th, 50th, and 75th percentiles in order to explore the changes in the 
coefficients across the distribution. For incorporation of policy sensi-
tivity, the algorithm can include more distribution positions. 

ΔEPIit = β1i + α2ΔLGDPit + α3ΔKOFit + α4ΔRENEit + α5ΔCO2it

+ α6ΔTECHit + δ2EPIit− 1 + β2LGDPit− 1 + β3KOFit− 1 + β4RENEit− 1

+ β5CO2it− 1 + β6TECHit− 1 + β7LGDPi + β8KOFi + β9RENEi + β10URBi

+ β11CO2i + β12TECHi + uit

(3)  

4. Results and discussion 

This section starts with data descriptives and background tests to 
lead to the estimation of the regression method. 

Table 2 provides the descriptive statistics of the included variables. 
Here, one can see that variables like EPI, LGDP, and KOF, are under- 
dispersed1 while RENE, CO2, and TECH are over-dispersed.2 Moreover, 
since the Jaque Bera and Shapiro-Wilk test for normality indicates that 
the variables are non-normal (Jarque and Bera, 1980; Shapiro and Wilk, 
1972), the mixture of under and over-dispersed requires advanced panel 
data models to address the distribution heterogeneity. 

Fig. 1 also added to this distribution heterogeneity evidence that the 
correlation among the variables with the dependent variable does vary 
because of changes in the distribution position of the dependent vari-
able. Most of the correlation patterns are inverted U-shaped, indicating 
that at median levels of EPI it is most strongly associated with the in-
dependent variables except for CO2 which depicts an N-shaped pattern. 

Table 3 provides the CIPS test’s second-generation panel unit root 
test results (Pesaran, 2007). According to it, other than LGDP all the 
variables are insignificant at the level thus confirming that they are 
non-stationary. Based on the Pesaran Cross section ADF test (Pesaran, 
2003), RENE is non-stationary at level. This indicates that the cointe-
gration test followed by a restricted ECM equation must be used to 
confirm the non-spuriousness of long-run estimates. 

Table 4 provides the selected specification’s panel cross-sectional 
dependence and cointegration tests. Here, it can be seen that by using 
the Breusch Pagan LM (Baltagi et al., 2012) and Pesaran’s (2014) CD test 
the model residuals are cross-sectionally dependent, prompting 
second-generation panel data models. The variables are of mixed order 
and have cross-sectional dependence; cointegration is needed among the 
variables. Table 4 provides the second-generation Westerlund (2005) 
panel cointegration test and Pedroni (2004) test with adjusted 
cross-sectional averages are significant, confirming cointegration in the 
specification provided in Equation (1). 

Building on the pre-tests and descriptive statistics, Table 5 provides 
the long-run estimates of Equation (2). Here, in all percentiles, one can 
see that the intercept is negative, showing that all other excluded vari-
ables jointly increase ecological risk in selected countries. This increase 
shows the importance of selected independent variables as potential 
policy options to reduce ecological risk. For the case of the 25th 
percentile the independent variables explain 46% of changes in the 
dependent variable. For the case of median, the independent variables 
explain 65% of changes in the dependent variable and for the case of the 
75th percentile the independent variables explain 51% of changes in the 
dependent variable. Lastly, the overall Wald test is significant 

confirming that models are fit. 
While discussing the effects of renewable energy in Tables 5 and it 

leads to a decrease in the ecological risk for all percentiles and it is most 
effective at the median of environmental performance. The quantile- 
wise/distribution asymmetric changes in the long-run effects are also 
visualized in Fig. 2. A study by Abbas et al. (2021) showed that an in-
crease in the proportion of clean energy leads to improved environ-
mental performance. 

In the case of environmental pollution, an increase of CO2 emissions 
increases ecological risk at all percentiles and it is most harmful in the 
case of highly environmentally performing (low ecological risk) coun-
tries. The quantile-wise/distribution asymmetric changes in the long- 
run effects are also visualized in Fig. 2. Many studies have asserted 
this effect (Doney et al., 2012; Zhang et al., 2012). 

Globalization has shown to be ecological performance promoting at 
all percentiles. It is highly effective in the case of high ecological risk. 
The quantile-wise/distribution asymmetric changes in the long-run ef-
fects are also visualized in Fig. 2. These results are similar to Ebrahimi 
et al. (2021) and Wang et al. (2021) and the major reason is the 
self-regulation promoted because of globalization (Christmann and 
Taylor, 2001; Zhu and Sarkis, 2004). 

Results showed that increased GDP and green technology did not 
significantly affect the ecological risk. The quantile-wise/distribution 
asymmetric changes in the long-run effects are also visualized in 
Fig. 2. The GDP results are similar to Yang et al. (2012). The primary 
reason for insignificance is the equal incidence of substitution and scale 
effects of GDP. The insignificance of green technology is also supported 
by Ma et al. (2020) whereby technological innovation does not neces-
sarily mitigate all forms of pollution. 

While discussing the dependence effects, national averages of 
renewable energy and globalization have negative and positive spillover 
effects on environmental performance respectively. Studies like Strass-
burg et al. (2018) and Tittensor et al. (2014) have discussed the potential 
biodiversity-deterring effect of renewable energy. Studies like Zahid 
et al. (2020) pointed out that during the phase of renewable energy 
infrastructure development there are some environmental effects 
because of logistics and construction processes. 

Table 6 uses Equation (3) to form an ECM equation estimating short 
run coefficient, convergence coefficient, independent variable multi-
pliers, and cross-sectional dependence multipliers. In the short run, the 
intercept is negative for the 25th and 50th percentiles indicating that 
other excluded variables hinder environmental performance in the short 
run. 

CO2, LGDP, and KOF contribute to ecological risk in the short run 
while RENE reduces ecological risk. The effects of CO2 are well docu-
mented in the literature. The effect of LGDP and KOF is noticeable from 
the fact that it takes time for the responsible activities to create a change. 
It is discussed under the environmental Kuznets curve (EKC) hypothesis. 

While assessing the convergence coefficients are shown in Fig. 3. 
These coefficients are negative and significant at the 25th and 50th 
percentiles, with the highest effect at the 25th percentile and insignifi-
cant at the 75th percentile. This means the proposed model has the 
highest convergence speed/effectiveness for highly ecologically risky 
regions/periods while these policy options have diminishing returns 
which leads to its ineffectiveness in the long run for the case of low 
ecologically risky regions. 

The multiplier effect of independent variables is shown with ‘L.’ as a 
prefix. They are the long-run effects adjusted for the convergence co-
efficient. It represents how much the dependent variable would change 
for one unit change in the independent variable in one time period. 
Here, signs are to be inverted as current signs show the movement of the 
dependent variable to rectify disequilibrium. It is shown that LGDP has a 
negative multiplier effect in disequilibrium correction while KOF and 
TECH have a positive multiplier in disequilibrium correction from 
environmental performance. Average GDP is positive while average KOF 
has a negative multiplier effect on environmental performance in the 

1 Means are higher than standard deviations.  
2 Means are lower than standard deviations. 
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Table 2 
Descriptive statistics for selected variables.  

Variables EPI LGDP KOF RENE CO2 TECH 

Obs. 1366 1366 1366 1366 1366 1366 
Mean 42.139 9.305 68.311 10.869 0.924 288.842 
Std. dev. 12.653 1.217 14.191 13.589 0.942 10306.8 
Skewness 0.127 − 0.301 − 0.412 1.995 2.862 5.747 
Kurtosis − 0.751 − 0.959 − 0.733 4.437 1.018 34.987 
JB Test 34.601 63.657 57.191 6723.6 545.63 148.93 
Prob. (JB) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 
S-Wilk 0.974 0.951 0.961 0.758 0.703 0.286 
Prob (S-Wilk) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

*Significant at 10%. **significant at 5%. ***Significant at 1%. 

Fig. 1. Distribution asymmetric correlation plots.  

Table 3 
Second Gen. Panel unit root tests.  

Variable CIPS Test (Prob) Pesaran ADF (Prob) 

EPI − 1.618 (0.100) − 2.043 (0.00)** 
CO2 − 0.645 (0.100) − 2.385 (0.00)** 
LGDP − 2.132 (0.017)** – 
KOF − 1.951 (0.100) − 9.981 (0.00)** 
TECH − 1.503 (0.100) – 
RENE − 1.507 (0.100) − 0.406 (0.342) 

* Significant at 10%, ** significant at 5%, *** significant at 1%. 

Table 4 
Cross-sectional dependence and cointegration tests.  

Test Test Statistic Prob. 

Breusch-Pagan LM Test 9293.9 0.000b 

Pesaran CD Test 11.642 0.000b 

Westerlund Variance Ratio Cointegration Test − 1.351 0.094a 

Pedroni Modified PP Cointegration Test 7.857 0.000b 

Pedroni PP Cointegration Test 4.427 0.000b 

Pedroni ADF Cointegration Test 5.125 0.000b  

a Significant at 10%, **significant at 5%. 
b Significant at 1%. 
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selected countries. 

5. Conclusion 

Ecological risks include climate change, biodiversity loss, defores-
tation, and water and waste pollution. These risks contribute to colossal 
costs in sustaining the standard of living. In pursuit of mitigating and 
abating the ecological risk there is a need for strong evasive action at 

national level. This study used the multidimensional ecological risk 
assessment using the Environmental Performance Index, enabling 
countries to assess changes in their habitat, environment, and biodi-
versity quality. Depreciation of ecological habitat diversity would 
greatly influence the standard of living from multiple dimensions dis-
cussed in the literature (Dasgupta and Levin, 2023; Hedin et al., 2022). 

In an effort to understand long run and robust estimates of ecological 
risk, this study explored 55 countries for ecological risk management. 
The literature and theoretical review have led to the utilization of in-
dicators like renewable energy (as clean energy), environmental pres-
sure, GDP (as economic activity), economic and financial globalization, 
and green technology. All of these indicators are either direct human 
actions or consequences of human actions. Further, the ecological stock 
of the country does depend on the neighboring countries and this 
spillover effect is confirmed using the cross-sectional dependence tests. 
This study developed second generation panel data model that makes 
regression estimates robust to cross-sectional dependence. 

Building on debates and estimation models in previous studies, this 
study used a novel estimation model by integrating two approaches. The 
first approach is the regression algorithm named Quantile regression. 
The second approach is the regression specification named CCEMG and 
DFE. The hybrid model used by the study has an inbuilt capacity to 
address several post-regression issues like unobserved heterogeneity, 
non-normal variables, time-series autocorrelation, and cross-sectional 
dependence. 

The panel data estimation results showed that renewable energy, 
CO2 emissions, and globalization are the major factors determining the 
ecological risks in the long run at medians. While economic activity and 

Table 5 
Long run CCEMG quantile regression.   

At 25th Percentile At 50th Percentile At 75th Percentile 

Variables Coef. (Prob). Coef. (Prob). Coef. (Prob). 

Cons. − 17.883 (0.000)c − 0.151 (0.023)b − 15.810 (0.032)b 

RENE 0.636 (0.000)c 0.803 (0.000)c 0.754 (0.000)c 

CO2 − 2.229 (0.443) − 4.100 (0.016)b − 6.519 (0.045)b 

LGDP − 0.589 (0.805) 0.286 (0.928) − 0.803 (0.827) 
KOF 0.329 (0.000)c 0.250 (0.012)b 0.223 (0.088)a 

TECH − 0.001 (0.761) − 0.0005 (0.897) − 0.0001 (0.964) 
RENE_AVG − 0.688 (0.000)c − 0.836 (0.000)c − 0.788 (0.000)c 

CO2_AVG − 2.412 (0.396) − 0.002 (0.999) 2.544 (0.502) 
LGDP_AVG 2.628 (0.388) 1.689 (0.662) 3.344 (0.436) 
KOF_AVG 0.296 (0.052)a 0.364 (0.025)b 0.362 (0.051)a 

TECH_AVG 0.002 (0.586) 0.001 (0.646) 0.001 (0.739) 
R squared 0.458 0.652 0.513 
Wald (Prob) 86121.46 (0.000)c 57404.09 (0.000)c 52675.22 (0.000)c  

a Significant at 10%. 
b Significant at 5%. 
c Significant at 1%. 

Fig. 2. Distribution asymmetric long run effects.  
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green technology do not have effect on ecological risks, results implicate 
that excessive emissions could lead to feedback loops leading to global 
warming (Lu et al., 2018). It is not only the environmental pollution that 
is affected; emissions do tend to destroy other habitats and shrink the 
biodiversity. Globalization has shown a sustainability promoting effect 
(Kolk et al., 2008). Economic and financial integration across countries 
helps them to learn and support each other to develop biodiversity as the 
most important public good. At the same time, GDP plays a role in the 
short run which is opposed to the empirical study like Wang et al. 

(2020). Changes in economic activity, if not catered for ecological 
footprints, do tend to destroy biodiversity. Policy interventions are 
much needed in this case in order to make economic activity greener as 
discussed EKC hypothesis. 

The cross-section averages absorb the spillover effect as suggested by 
the CCEMG model. Surprisingly, the incorporated spillover/dependence 
effects showed that high averages of renewable energy hinder envi-
ronmental performance while high averages of globalization contribute 
as a multiplier on environmental performance. The average is negative 
showing that this negative effect is not a local effect but rather it is a 
cross-country effect (negative spillover effect). Infrastructure develop-
ment may force the habitat to migrate across regions and countries, 
disturbing their habitat balance. In this case, globalization positive 
spillover effect can be used to form intergovernmental collaborations to 
support vulnerable habitats and ecosystems. 

5.1. Limitations of the study and future research 

The study outcomes are limited to the DFE specification, assuming 
that the long and short-run effects are homogenous across countries 
hence these results are assuming that there is long run slope homoge-
neity. Future studies can firstly explore the quantile-based slope het-
erogeneity test and develop the model using MG and PMG specifications 
to allow for slope heterogeneity and expand the model to subindices of 
the environmental performance index. Secondly, future studies can also 
explore the strategies for mitigating ecological risk in the low-risk re-
gions which this study is unable to do. Lastly spatial models can be used 
to assess the climate change spill over effects across countries. 

Ethical approval 

The entire research process is in line with our institutional research 

Table 6 
CCEMG quantile regression with ECM specification.   

At 25th Percentile At 50th Percentile At 75th Percentile 

Coef. (Prob). Coef. (Prob). Coef. (Prob). 

Const. − 1.973 (0.000)c − 0.821 (0.003)c 0.727 (0.248) 
D.RENE 0.144 (0.000)c 0.129 (0.000)c 0.120 (0.001)c 

D.CO2 − 0.802 (0.129) − 0.854 (0.079)a − 0.816 (0.484) 
D.LGDP − 2.917 (0.036)b − 3.317 (0.002)c − 3.223 (0.050)b 

D.KOF − 0.058 (0.027)b − 0.007 (0.726) − 0.022 (0.555) 
D.TECH 0.000 (0.924) 0.000 (0.919) 0.000 (0.216) 
L.EPI − 0.022 (0.000)c − 0.006 (0.056)b 0.006 (0.334) 
L.RENE 0.009 (0.527) 0.004 (0.821) 0.012 (0.633) 
L.CO2 0.052 (0.866) 0.012 (0.935) − 0.063 (0.781) 
L.LGDP − 0.629 (0.074)a − 0.531 (0.023)b − 0.510 (0.161) 
L.KOF − 0.003 (0.802) 0.023 (0.004)c 0.050 (0.000)c 

L.TECH 0.000 (0.768) 0.000 (0.597) 0.000 (0.066)a 

L.RENE_AVG − 0.009 (0.490) − 0.003 (0.841) − 0.010 (0.714) 
L.CO2_AVG − 0.284 (0.374) − 0.136 (0.417) 0.102 (0.712) 
L.LGDP_AVG 0.899 (0.011)b 0.698 (0.009)c 0.464 (0.205) 
L.KOF_AVG 0.009 (0.473) − 0.022 (0.024)b − 0.043 (0.001)c 

L.TECH_AVG 0.000 (0.720) 0.000 (0.802) 0.000 (0.177)  

a Significant at 10%. 
b Significant at 5%. 
c Significant at 1%. 

Fig. 3. Distribution asymmetric convergence coefficient.  

S. Ul-Durar et al.                                                                                                                                                                                                                               



Journal of Environmental Management 366 (2024) 121741

9

ethics policy. We declare that all ethical standards are met and complied 
with in true letter and spirit. 

Informed consent 

All participants in this study volunteered themselves during the 
entire research process, and their consent was taken at inception. 

Funding 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit sectors. 

CRediT authorship contribution statement 

Shajara Ul-Durar: Writing – original draft, Supervision, Project 

administration, Methodology, Formal analysis, Data curation, Concep-
tualization. Noman Arshed: Methodology, Formal analysis, Data 
curation. Marco De Sisto: Writing – original draft, Supervision, Inves-
tigation. Alireza Nazarian: Writing – original draft, Supervision, 
Conceptualization. Ashina Sadaf: Writing – original draft, Software, 
Methodology, Formal analysis. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request.  

Appendix  

Table 7 
Sample Countries  

Algeria Denmark Kazakhstan Poland 

Argentina Ecuador Kuwait Qatar 
Australia Estonia Lithuania Romania 
Austria France Malaysia Saudi Arabia 
Azerbaijan Germany Mexico Slovenia 
Bangladesh Greece Morocco Spain 
Belarus Hungary Netherlands Sweden 
Belgium India New Zealand Thailand 
Brazil Indonesia North Macedonia Turkmenistan 
Bulgaria Iraq Norway Ukraine 
Canada Ireland Oman UAE 
Chile Israel Pakistan UK 
Colombia Italy Peru Uzbekistan 
Croatia Japan Philippines   
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Gattuso, J.-P., Magnan, A., Billé, R., Cheung, W.W.L., Howes, E.L., Joos, F., Allemand, D., 
Bopp, L., Cooley, S.R., Eakin, C.M., Hoegh-Guldberg, O., Kelly, R.P., Pörtner, H.-O., 
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