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A B S T R A C T   

Historical masonry arch bridges constitute the backbone of many existing transportation networks in different 
countries in Europe and worldwide. They represent valuable cultural heritage assets and play an essential social 
and economic role. Since construction, old masonry bridges have accumulated structural damage from traffic and 
environmental actions. Furthermore, depending on their geometrical and mechanical characteristics, they may 
be particularly vulnerable to extreme events like earthquakes. Thus, accurate structural assessment under 
different loading conditions is critical for the conservation of these structures. Realistic assessment requires 
suitable numerical models to represent the characteristic 3D behaviour. The complexity of this task is further 
compounded by the practical difficulty in obtaining essential information on the internal bridge structure and the 
masonry mechanical parameters, which are vital to achieve accurate response predictions against service and 
extreme actions. 

This paper presents an advanced calibration procedure for a refined macroscale bridge model, allowing for the 
anisotropic nature of the masonry material. The proposed calibration approach is applied to an actual multi-span 
masonry viaduct, where sonic, ultrasonic, and ground penetrating radar tests are conducted to investigate the 
internal structure of the viaduct and determine the elastic properties of the masonry materials. In addition, the 
dynamic characteristics of the bridge are evaluated through in-situ measurements under environmental vibra-
tions and used for model validation. The results from a standard simplified model calibration and an enhanced 
calibration are compared considering the vibration modes of the bridge. Simplified calibration is carried out 
using the results from in-situ tests, while a statistic inference procedure and numerical optimisation are adopted 
in the refined calibration to achieve improved accuracy. Although the paper focuses on a specific case study, the 
adopted methodology can be easily applied to studying other masonry bridges and cultural heritage masonry 
structures.   

1. Introduction 

Masonry arch bridges represent vital transportation infrastructures 
for many countries worldwide. In Europe, about 200,000 masonry 
railway bridges are still in service. They constitute approximately 60 % 
of the existing bridge stock [1], playing a crucial role in the economic 
and social life of the countries where they are located. However, most 
masonry bridges are more than one hundred years old and have been 

subjected to increasing traffic loading [2] and extreme environmental 
actions, as the effects of earthquakes or foundation scouring [3,4] due to 
river flooding, leading to progressive accumulation of damage that in 
turn can cause the reduction of structural performance or even bridge 
collapse [5,6]. Accurate simulation of the bridge response under 
different loading conditions, accounting for a realistic description of the 
different bridge components and their interaction, is essential to assess 
structural safety and implement potential strengthening to preserve and 
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maintain such valuable cultural heritage assets. In this regard, advanced 
assessment frameworks have been recently proposed and applied to 
determine the ultimate load-carrying capacity of masonry arch bridges, 
accounting for material and geometric uncertainties and statistical de-
scriptions of traffic and environmental actions [7,8]. 

Typical 2D modelling strategies for evaluating the load capacity of 
masonry bridges are based on limit analysis methods, which require a 
limited number of model parameters to obtain results that are easy to 
interpret [7,9]. However, more sophisticated models are needed to ac-
count for the complex 3D response and local failure mechanisms such as 
the out-of-plane failure of spandrel walls, ring separation in multi-ring 
arch bridges, and the actual nonlinear interaction between backfill 
and the masonry parts of the bridge [10]. Macroscale [11] or mesoscale 
[4] finite element models or discrete modelling approaches [12-14] can 
properly simulate crack propagation in the masonry and 
masonry-backfill separation and sliding. However, these refined ap-
proaches require complex 3D plastic damage constitutive laws and so-
phisticated calibration procedures [10,15] to determine several model 
material parameters. 

The in-situ mechanical characterisation of masonry arch bridge 
materials (masonry, backing and backfill) and the evaluation of the 
bridge internal structure are complex tasks, bringing practical diffi-
culties due to the characteristic structural complexity and the inacces-
sibility to some portions of the structure. In addition, masonry bridges 
represent valuable cultural heritage, often protected by law. 

Minor destructive tests such as flat-jack tests or endoscopies are 
consolidated methods, but their application is typically limited to avoid 
causing extensive damage to the protected material fabric. Moreover, 
flat-jack tests cannot be used to characterise the inner core filling ma-
terial and are highly time-consuming. 

For this reason, non-destructive tests (NDTs) have attracted the in-
terest of the academic and engineering communities. Many techniques, 
including sonic methods, Ground Penetrating Radar (GPR) tests, and 
infrared thermography, have been validated against the results of more 
invasive tests [16,17] and then used to study masonry bridge compo-
nents [6,18]. However, fewer attempts to characterise the backfill ma-
terial through geophysics tests have been performed in the literature. 
One example is represented by [19], where multi-sources of 
non-destructive methods have been employed, including terrestrial laser 
scanner and GPR tests to determine the bridge external and internal 
geometry, and multichannel analysis of surface waves (MASW) for 
characterising the backfill. 

The accuracy of the information provided by NDTs and the conse-
quent model calibration can be effectively validated or improved by 
performing ambient vibration measurements, which offer an experi-
mental evaluation of the fundamental modes of vibration of the bridge, 
including frequencies and mode shapes. The experimental dynamic 
properties can be compared with those provided by the calibrated nu-
merical model [19], or used within advanced model updating proced-
ures to improve the accuracy of the parameters evaluated by NDTs or 
establish unknown parameters not experimentally assessed [20]. 

This paper presents the results of an extensive in-situ experimental 
campaign conducted on a 5-span railway viaduct in Northern Portugal. 
The study aims to achieve a detailed geometrical characterisation of the 
bridge and the elastic masonry properties for a refined 3D macroscale 
bridge model [11] by combining different non-destructive material tests 
and environmental vibration measurements. According to the adopted 
strategy, the optimal mechanical parameters of masonry and infill ma-
terials are determined by solving a multi-modal optimisation problem 
based on statistic inference and metaheuristic models to limit the 
computational effort due to the dimension of the problem and the 
number of unknown parameters. The results confirm that NDTs can be 
effectively used to achieve a detailed characterisation of the bridge 
structure when combined with the proposed refined model calibration 
procedure. Despite focusing on a specific case study, the presented 
methodology is general and can be easily applied to other existing 

masonry structures. 

2. The case study 

The paper investigates the Quebradas viaduct (Fig. 1a) belonging to 
the Linha do Douro railway line, Baião, northern Portugal. It is a 5-span 
bridge, characterised by relatively large spans of 20 m, tall piers with 
variable height from 18 m to 29 m and large transversal slenderness due 
to a narrow cross-section of approximately 5 m width (Fig. 1b). These 
geometric features render the bridge vulnerable to transversal lateral 
loads, such as the inertia forces induced by earthquakes. The masonry 
viaduct was built in the 1930s to replace a steel bridge structure. The 
Portuguese infrastructure company provided detailed technical docu-
mentation for the original masonry bridge project, as schematically 
displayed in Fig. 2. 

The external layers of the piers, barrel vaults and spandrel walls are 
made of granitic stone masonry with 600 mm×300 mm (length x 
height) blocks connected by 10 mm thick mortar joints (Fig. 3). The core 
of the piers is filled with concrete material (Fig. 2) as specified in [21] 
and confirmed by the in-situ tests. Fig. 4 displays a longitudinal view 
(Fig. 4a) and a vertical section (Fig. 4b) highlighting critical external and 
internal features of the masonry viaduct. Importantly, two different 
geometrical layouts of the barrel vaults can be observed, in which a 
constant-thickness arch characterises the two end faces below the 
spandrel walls (Fig. 4a). In contrast, the internal arch has a variable 
thickness, as displayed in Fig. 4b, where the horizontal dashed lines 
indicate changes in the thickness of the spandrel walls. From the tech-
nical documentation, it can be seen that the concrete backing layer ex-
tends approximately up the vital section of the arches. According to 
historical information [21], a backfill layer of soil or masonry materials 
is located above the backing. In previous research [7], the ultimate 
load-carrying capacity of the bridge was evaluated using 2D limit 
analysis procedures, also considering geometric and mechanical un-
certainties within a probabilistic framework. The technical drawings 
indicate that the piers are supported by sturdy foundations constructed 
on firm soil (see Fig. 2b), allowing the piers to be considered fully fixed 
at their base. 

3. In-situ tests 

3.1. Dynamic identification 

The dynamic properties of the viaduct were evaluated by applying an 
output-only modal identification procedure. This technique is widely 
applied in the context of historical structures, where the dynamic 

Fig. 1. Quebradas viaduct: (a) global view of the bridge and (b) detail of the 
railway track. 
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response is measured using ambient excitations, as those caused by wind 
and traffic, which are random in time and space. The procedure requires 
the installation of accelerometers on the bridge at different locations to 
record the accelerations of the structure (Fig. 5). The used equipment 
included uniaxial piezoelectric accelerometers (PCB model 393B12) 
with a sensitivity of 10 V/g and a frequency range from 0.15 to 1000 Hz 
(measurement range ± 0.5 g), a data acquisition system from National 
Instruments (cDAQ-9174 chassis and three 4-channel modules NI-9234), 
a personal computer and cables, Fig. 5. 

Tests were carried out with accelerometers located at the top of the 
spandrel walls, in correspondence with the middle section of piers and 
half-span sections. The sensor layout showing the location and direction 
of the accelerometers is schematically illustrated in Fig. 6. Here, the two 
accelerometers marked in blue at the middle of the central span, where 
the largest displacements are expected to occur, were used as reference 
accelerometers to correlate the two setups carried out. Since the two 
sides of the bridge are expected to behave uniformly, most of the ac-
celerometers were placed on the same side of the viaduct. Only three 
accelerometers were placed on the other side to corroborate the assumed 
uniform behaviour. Based on the expected fundamental mode shape, 
most accelerometers were arranged horizontally, perpendicularly to the 
bridge longitudinal direction (direction Y in Fig. 6). Two pairs of vertical 
accelerometers were placed at two positions along the longitudinal axis 
of the viaduct on both sides to capture possible rotations of the top 

structure of the bridge due to the flexural deformation of the piers. The 
frequency sampling used during the recording was equal to 200 Hz. The 
total recording duration for each test setup varied between 20 and 
30 minutes. 

The results were processed by ARTeMIS software [22]. Three 
methods were used for the modal identification: (a) Frequency Decom-
position Domain (FDD), (b) Enhanced Frequency Decomposition 
Domain (EFDD) and (c) Stochastic Subspace Identification based on 
Unweighted Principal Component (SSI-UPC). Fig. 7 shows the results of 
the EFDD and SSI analyses. The combination of the three methods 
allowed the identification of the first four natural modes of the bridge 
with associated frequencies, reported in Table 1. 

The consistency of the modes obtained by the EFDD and the SSI-UPC 
methods was evaluated using the Modal Assurance Criterion (MAC), a 
statistical indicator ranging from 0 to 1, with 1 indicating complete 
consistency [23,24]. The results are presented in Table 2. All MAC 
values are higher than 0.8, confirming that the modes are substantially 
independent from the adopted approach (usually, values close to 0.9 
indicate a consistent correspondence of the two mode shapes). 

The four natural mode shapes identified are shown in Fig. 8. As ex-
pected for this structural typology, the first three modes involve trans-
versal horizontal movement of the bridge. Mode 1, with a frequency of 
about 1.66 Hz, is the fundamental mode of the structure with no 
inflexion point. Mode 2 and mode 3, with frequencies of about 2.69 Hz 
and 3.95 Hz, are other transversal modes with one and two inflexion 
points, respectively. Finally, Mode 4, with the frequency of 5.23 Hz, is 
the first vertical mode of the structure, which is mainly captured by the 
vertical accelerometer at the middle of the central span. 

The measured modes describe the typical structural behaviour of a 
long viaduct with multiple piers whose longitudinal dimension is 
significantly larger than the width. Several piers along the viaduct 
length inhibit the development of local vertical modes for the individual 
barrel vaults. The bridge also shows an overall nearly symmetrical 
behaviour, despite some height differences for the northern and south-
ern piers. The second and third modes show slightly higher amplitudes 
in the north side, which may indicate higher structural flexibility at that 
side of the bridge. 

3.2. Sonic and ultrasonic tests 

Acoustic sonic and ultrasonic tests were carried out on the viaduct 
piers. These tests, which are widely used for structural diagnosis of 
historical masonry structures [25-27], are based on evaluating the 
characteristics of the propagation of elastic waves within the 

Fig. 2. Original drawing provided by Portuguese infrastructure company; a) longitudinal section; b) detail of a pier foundation structure and soil.  

Fig. 3. Masonry details at the base of the first pier from the northern side of 
the viaduct. 
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investigated structural component. The wave propagation velocity is 
measured, allowing the evaluation of the physical and mechanical 
properties of the structural material, namely Poisson’s ratio and dy-
namic modulus of elasticity [25]. Sonic tests were executed utilising an 

impact hammer (PCB model 086D05) with a measurement range of 
±22,240 N pk, one accelerometer (PCB model 352B) with a measure-
ment range of ±5 g and 1000 mV/g sensitivity, a personal computer, 
cables and a data acquisition system from National Instruments 

Fig. 4. Geometrical characteristics of (a) the external and (b) internal structure of the viaduct (dimensions in m).  

Fig. 5. Dynamic identification tests: (a) view of the data acquisition system, computer, and accelerometers, located at the top of the bridge; and (b) accelerometers 
placed along the top of the bridge. 

Fig. 6. Schematic location of the accelerometers in the dynamic identification test at the top of the viaduct (the positive x direction corresponds approximately to the 
south): (a) test setup 1; (b) test setup 2. 
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(cDAQ-9174 chassis and one 4-channel module NI-9234). The ultrasonic 
tests were conducted using Pundit Lab equipment with 0.1 μs precision 
and 54 Hz frequency transmission transducers. 

The tests were performed at the base of the first pier from the 
southern side of the bridge. A multi-step procedure was used to char-
acterise the stone material properties, the thickness of the external walls 
and the properties of the inner core of the pier. It consists of 4 steps:  

(1) Ultrasonic tests on the stone blocks (US). These tests aim to obtain 
the wave propagation velocity within the stone blocks of the 
external layer of the pier.  

(2) Impact-echo tests on the stone blocks (IE). After estimating the 
wave propagation velocity within the stone blocks, the impact 
echo technique is employed to assess the thickness of the stone 
masonry layer.  

(3) Direct sonic tests on the stone masonry pier (DS). After knowing 
the wave propagation velocity within the stone blocks and the 

thickness of the stone masonry layer, direct sonic tests allow for 
the estimation of the velocity throughout the core of the pier.  

(4) Indirect sonic tests on the stone masonry pier (IS). Indirect sonic 
tests contribute to evaluating the elastic properties of the stone 
masonry external layer of the piers. 

More in detail, the characterisation of the pier materials was carried 
out by five ultrasonic tests (US-1,., US-5), five impact echo tests (IE1,., 
IE5), four direct sonic tests (DSA, DSB, DSC1, DSC2), and twenty indirect 
sonic tests performed using two 3×3 grids (grid A and grid B on the pier 
transversal southern and northern side), denominated IS-A1,., IS-A9, 
and IS-B1,., IS-B9. The specific locations of the tests are shown in Fig. 9. 

3.2.1. Ultrasonic tests on stone blocks 
Ultrasonic tests on stone blocks were performed using the indirect 

transmission method by placing both transducers on the external surface 
of the blocks, as the internal surface was inaccessible. The wave prop-
agation velocity is computed by dividing the distance between trans-
ducers into the time of flight, i.e., the time it takes for the ultrasonic 
wave to propagate from the transmitter to the receiving transducer. 
Indirect sonic tests provide both primary (P) wave velocity (vp) and 
surface or Rayleigh (R) wave velocity (vR). Two examples of the common 
waveforms obtained from an indirect test are shown in Fig. 10. The first 
waves arriving are the P waves, which have greater velocity but lower 
amplitude. The increase in the amplitude of the waveform typically 
corresponds to the R waves, which are stronger [25]. In Fig. 10, the 
arrival of the P wave is indicated at point “1” and the arrival of the R 
wave at point “2”. 

It should be noted that a perfect coupling between the transducer and 
the stone surface was not fully achieved, thus the signal received was 
low (particularly when increasing the distance between the trans-
ducers). This rendered the identification of the exact point of arrival of 
the P-wave with lower energy and amplitude particularly difficult. As a 
result, the analysis focused on identifying the arrival of the R-waves, 
which was clearer for all signals. 

Fig. 7. Mode selection using different methods: (a) EFDD; (b) SSI-UPC [22].  

Table 1 
Natural frequencies of the first four modes by FDD, EFDD and SSI-UPC methods.  

Modes Frequencies (Hz) 

FDD method EFDD method SSI-UPC method 

Mode 1  1.70  1.66  1.62 
Mode 2  2.72  2.69  2.70 
Mode 3  3.98  3.95  4.00 
Mode 4  5.25  5.23  5.22  

Table 2 
MAC values comparison between the EFDD and the SSI-UPC mode shape results.  

Mode 1 
(1.623 Hz) 

Mode 2 
(2.697 Hz) 

Mode 3 
(3.995 Hz) 

Mode 4 
(5.223 Hz)  

0.84  0.92  0.99  0.84  

Fig. 8. Mode shapes of the first four natural modes obtained by the EFDD method.  
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Following the recommendations from the European Standard [28], 
the wave velocity can be evaluated as the ratio between transducer 
spacing and time of flight, repeating the measurements with the trans-
ducers at different distances apart. In this study, the transmitter was kept 
fixed, and the receiver was placed at a distance of 50, 100, 200, and 
300 mm (Fig. 11). Three readings were taken for each position of the 
transducers, and the velocities of the P- and R-waves were obtained by 
regression analysis as the slope of the best straight line drawn through 

the points (Fig. 12). The correlation coefficients obtained for the linear 
equations were, in all the samples, higher than 0.98, evidencing a good 
quality of the registered data. 

The relationship between the R-wave and P-wave velocities is based 
on the fundamental physics of elasticity and elastic wave motion [29]. 
According to this theory, the relationship between the parameters of 
elasticity and the velocity of wave propagations can be expressed by Eqs. 
(1) and (2). The wave velocities obtained for the five tests are reported in 

Fig. 9. Sonic and ultrasonic tests conducted at the base of the first pier from the bridge’s southern side.  

Fig. 10. Example of waveforms received and characteristic points of arrival of P waves (1) and R waves (2). Note that the vertical axes are normalised by the 
maximum amplitude measured; a) sample US-5 (d = 100 mm) and b) sample US-4 (d = 200 mm). 

Fig. 11. Ultrasonic tests carried out on the pier’s central (a) and corner (b) parts at different positions of the transducers with increasing distance.  
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the first two columns of Table 3. 

vP

vR
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2(1 − ν)(1 + ν)2

(1 − 2ν)(0.87 + 1.12ν)2

√

(1)  

vP =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E
ρ

(1 − ν)
(1 + ν)(1 − 2ν)

√

(2) 

For all examined blocks, the ratio between the P-wave and R-wave 
velocities is 1.791, which corresponds to a Poisson’s ratio (ν) of 0.2 by 
Eq. (1). The dynamic modulus of elasticity (E) is evaluated using Eq. (2) 
and assuming a density of ρ=2500 kg/m3. The results are reported in the 
third column of Table 3. The obtained values show a reasonable ho-
mogeneity (a coefficient of variation, COV, of 14 % based on the five 
investigated stones). This variability can be justified by some local 
degradation affecting the external surface of the stone. 

The average P-wave velocity is approximately 3300 m/s, which is in 
the lower range for granite stones [29]. Stone 3 showed particularly low 
velocities, which may indicate a higher level of deterioration. The 
average P-wave velocity results in an average dynamic modulus of 
elasticity of approximately 24 GPa, also in the lower range of values 
found in the literature for granite stones [30]. 

3.2.2. Impact-echo tests on stone blocks 
Impact-echo tests were performed at the exact locations where ul-

trasonic tests were executed to estimate the thickness of the facing 
stones. This technique consists of generating an acoustic P-wave using 
an impact hammer and measuring the accelerations at a point very close 
to the impact point (Fig. 13). The generated wave propagates into the 
object undergoing multiple reflections between the tested surface and 
the opposite surface [31]. This gives rise to a periodical arrival whose 
frequency (f) (i.e. the inverse of the time it takes the wave to go and 
return to the same point) can be expressed as a function of the thickness 
of the stone (w) by Eq. (3), where vP is the P-wave velocity previously 
estimated by ultrasonic tests and Δt is the travel time. The inverse of Eq. 
(3) provides an estimation of the thickness w, given the frequency f and 

the velocity vP. 

f =
1
Δt

=
vP

2w
(3) 

The resulting time domain complex waveform is transformed into a 
frequency domain to identify the dominant frequency related with the 
thickness of the stone. Fig. 14 shows two clear frequency spectra ob-
tained for stones 2 and 3. However, internal imperfections or an irreg-
ular surface of the back of the stones may result in a complex frequency 
spectrum. In these cases, there may be multiple dominant frequencies 
and their interpretation may not be clear. 

The tests showed overall consistent results as summarised in Table 4. 
The thickness of the facing stones ranges between 0.4 and 0.7 m with an 
average of 0.6 m, which is consistent with on-site measurements. Stone 
3 shows the lowest thickness (0.4 m), which is also confirmed by the low 
velocity estimated by the ultrasonic tests. In summary, the combination 
of ultrasonic and impact-echo tests revealed that the thickness of the 
facing stone is about 0.60 m, and the P-wave velocity is around 3200 m/ 
s. 

3.2.3. Direct sonic tests on external masonry wall of pier 
After estimating the wave propagation velocity within the stone 

blocks and the thickness of the external stone masonry layer, direct sonic 
tests were performed to investigate the characteristics of the infill ma-
terial of the piers. Specifically, these tests enable the evaluation of the 
wave propagation velocity throughout the core of the piers, which 
provides information on the elastic properties of the pier material. Sonic 
tests by direct transmission involve placing the hammer and the accel-
erometer at opposite pier surfaces. The wave propagation velocity can 
be computed by measuring the pier thickness (distance between the 
hammer and accelerometer), divided by the time between the emission 
of the input signal by the hammer and its reception by the accelerom-
eter. There is no standard for sonic testing, but the physical principle is 
the same as that used in the ultrasonic pulse velocity test. Four locations 
were chosen for direct sonic tests (Fig. 15). 

The pier has a rectangular cross-section of approx. 5.0 m × 7.2 m at 
the base, slightly decreasing with the height. Two tests were carried out 
along the long side (7.2 m): (A) direct sonic test at 0.2 m from the pier 
edge; and (B) direct sonic test at 1.5 m from the edge. Other two tests 
were carried out along the short side of the pier (5.0 m) at about the 
centre of the pier (C1 and C2), as shown in Fig. 15. 

Ten hits were performed at each location. The results are summar-
ised in Table 5, where the coefficient of variation (CoV) calculated for 
each location is also reported. The low coefficients of variation 
confirmed the good quality of the signal obtained at the receiver 
accelerometer. All positions show significantly high velocity (average 
velocity over 4000 m/s). Note that this velocity is higher than the 

Fig. 12. Correlation between distance and propagation time for evaluating the R-wave velocity of test (a) US-1 and (b) US-2.  

Table 3 
Velocities and dynamic modulus of elasticity on the masonry pier stones ob-
tained by ultrasonic tests using the indirect transmission method.  

Test vR (m/s) vP (m/s) E (GPa) 

US-1 1886 3378 25.68 
US-2 2135 3825 32.92 
US-3 1478 2647 15.76 
US-4 1998 3579 28.82 
US-5 1687 3022 20.55 
Average (COV) 1837 (14 %) 3290 (14 %) 24.75 (27 %)  
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velocity estimated for the stone (average velocity of 3290 m/s). It in-
dicates that the core is composed of a good-quality homogeneous ma-
terial with no voids. 

The velocity at location A is slightly lower than at other positions, 
which should be due to the specific test location close to the pier edge. In 
this case, the wave could have partially gone through the external stone 
masonry layer. Thus, the lower velocity at location A confirms that the 
wave velocity through the inner core is greater than that of the wave 
going through the facing stones. Note that the masonry joints tend to 
lower the velocity of the wave. Given the velocity of the P-waves 
through the stones (vp,block) and the block thickness (w), the average 
velocity of the P-waves through the infill material (vp,infill) can be eval-
uated using Eq. (4), where vp is the velocity of the P-waves measured in 
the test and L represents the distance between the hammer and the 
accelerometer. The results are reported in Table 6. 

vp,infill =
vPL − 2vP,blockw

(L − 2w)
(4) 

In summary, the results of the direct sonic tests on the masonry pier 
seem to indicate that the inner core is composed of a solid homogeneous 

material with no significant voids. Velocities close to 4400 m/s are 
typical of sound concrete (3000–4500 m/s [32]). 

The combined use of impact-echo and ultrasonic and sonic testing 
indicates that the pier is composed of approximately a facing stone 

Fig. 13. (a) Schematic drawing of the impact-echo test principles (reflections will occur at the different boundaries of the analysed object); (b) impact-echo tests 
carried out on-site. 

Fig. 14. Examples of frequency spectra obtained from (a) Stone 2; and (b) Stone 3.  

Table 4 
Velocities obtained in the Impact-echo tests carried out at the masonry pier with 
the indirect transmission method.   

vP (m/s) f (Hz) w (m) 

IE-1 3378 2520 0.67 
IE-2 3825 2680 0.71 
IE-3 2647 3205 0.41 
IE-4 3579 3215 0.56 
IE-5 3022 2285 0.66 
Average (COV) 3290 (14 %) 2781 (15 %) 0.60 (20 %)  

Fig. 15. (a) Pier cross section and (b) external view to the pier with direct sonic 
test locations. 
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masonry layer (0.6 m thick) and an inner core of a homogenous concrete 
material with no significant voids. Using Eq. (1), assuming a Poisson’s 
ratio equal to 0.2 and a density of 2400 kg/m3, the dynamic modulus of 
the infill material is estimated equal to 42 GPa. Note that the static 
modulus is typically smaller than the dynamic modulus. Experimental 
studies from the literature estimate that the ratio between the two 
moduli is around 1.2 [33,34], which results in an estimated static 
modulus of elasticity of about 35 GPa. This value reveals a good quality 
concrete in the inner core of the piers. 

3.2.4. Indirect sonic tests on external wall of pier 
Indirect sonic tests were carried out to estimate the elastic properties 

of the stone masonry external layer of the pier. The procedure for 
implementing the tests starts with the definition of a suitable grid of 
points on the investigated wall and the subsequent positioning of the 
hammer and accelerometer on the same surface (indirect transmission). 
The wave propagation velocity is computed by measuring the time be-
tween the emission of the input signal by the hammer and its reception 
by the accelerometer, and the distance between them. As previously 
mentioned, indirect sonic tests provide both primary waves (P waves) 
velocity (vp) and surface or Rayleigh waves (R waves) velocity (vR), 
which have different travel times (Fig. 10). As previously discussed for 
the ultrasonic testing, knowing the density of the material (ρ), the 
relationship among the velocities of both waves can be correlated with 
the dynamic modulus (E) and the Poisson’s ratio (ν) by using Eq. (1) and 
(2). However, it should be noted that these expressions were originally 
developed for homogeneous isotropic elastic materials, which is not the 
case of stone masonry. Moreover, the dynamic modulus of elasticity is 
usually higher than Young’s static modulus recommended in the codes 
and typically used in structural analysis. Thus, the expressions must be 
used carefully, acknowledging that the results are an approximate esti-
mation of the mechanical properties. 

The facing stone masonry wall under evaluation is a regular ashlar 
granite masonry wall in an overall good state of conservation, despite 
the visible accumulation of salt crusts on the exterior surfaces. Fig. 16 
shows the 3×3 grid layout adopted for the tests with a separation of 
0.7 m between points. At each position, the hammer and the acceler-
ometer were aligned vertically and horizontally to capture a possible 
anisotropic behaviour of the masonry, with 0.7 m (e.g. 1–4/1–2) and 
1.4 m (e.g. 1–3/1.7) distance, resulting in a total of 20 tests. The results 
are summarized in Table 7. It is noted that the identification of the 
arrival of the P-wave was clear for these tests and, therefore, only these 
results are reported. The results show a significant homogeneity with an 
overall low variability. Lower velocities are consistently observed when 
the test points are closer (0.7 m distance). This may be because the wave 
does not travel in a straight vertical or horizontal path, but instead 
follows the fastest route, which could involve passing partially through 
the infill (where higher velocities are observed) and avoiding crossing 
multiple mortar joints. 

The average P-wave velocity (vP) is 2300 m/s for the vertical 

direction and 2190 m/s for the horizontal direction, denoting a good 
quality of masonry, which was expected from the well-preserved regular 
granite masonry wall observed on-site. 

Moreover, the velocity in the horizontal direction is very similar to 
that obtained in the vertical direction, indicating a low level of masonry 
anisotropy. Furthermore, the low variability of the results (CoV lower 
than 20 %) highlights that the masonry is significantly homogeneous. 

Assuming a Poisson’s ratio of 0.25 and a 2300 kg/m3 density, the 
masonry dynamic modulus of elasticity is estimated using Eq. (1) and 
(2). In the literature, values between 1.2 and 1.3 are generally accepted 
for the ratio between static and dynamic modulus of elasticity of ma-
sonry [35,36]. However, recent studies performed on masonry panels 
evidenced lower values [17]; therefore, in this study, a value of 1.1 is 
adopted. 

The results for the modulus of elasticity are expressed in probability 
terms using a lognormal distribution based on the average value and 
standard deviation (STD), which will facilitate future probabilistic as-
sessments of the bridge structural safety. Fig. 17 shows the lognormal 
distribution of the estimated static modulus of elasticity for the vertical 
(Fig. 17a) and horizontal directions (Fig. 17b). 

The mean values of the static masonry moduli of elasticity resulted in 
9.4 GPa (STD 2.04 GPa) and 8.5 GPa (STD 1.86 GPa) in the vertical and 

Table 5 
Velocities obtained in the direct sonic tests carried out at the masonry pier.   

A (CoV) B (CoV) C1 (CoV) C2 (CoV) 

vP (m/s) 3760 (1.4 %) 4080 (3.2 %) 4460 (1.1 %) 4215 (0.6 %)  

Table 6 
Estimation of the velocity of the P-waves through the pier infill material.  

Direction vp (m/ 
s) 

L 
(m) 

vp,block (m/ 
s) 

w 
(m) 

vp,infill (m/ 
s) 

Longitudinal (test B) 4080 5.0 3290 0.6 4329 
Transversal (Tests C1, 

C2) 
4338 7.2 3290 0.6 4548 

Average 4438  
Fig. 16. Grid applied for the indirect sonic tests performed on the northern wall 
of the pier. 

Table 7 
Velocities obtained direct sonic tests carried out at the external layer of the 
masonry pier.  

Grid Path Direction vP (m/s) 

A 1–2 Vertical 1690 
1–3 2125 
4–5 2350 
4–6 2445 
7–8 2085 
7–9 2390 
Average (COV) 2180 (13 %) 
2–5 Horizontal 2130 
2–8 2285 
3–6 1700 
3–9 2520 
Average (COV) 2160 (16 %) 

B 1–2 Vertical 2460 
1–3 2255 
4–5 2280 
4–6 2770 
7–8 2190 
7–9 2580 
Average (COV) 2420 (9 %) 
2–5 Horizontal 2390 
2–8 2435 
3–6 2045 
3–9 2030 
Average (COV) 2225 (10 %) 

Total Average (COV) Vertical 2300 (12 %) 
Average (COV) Horizontal 2190 (12 %)  
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horizontal directions, respectively, which are within the expected range 
of values for ashlar granite masonry [30]. 

3.3. Ground-penetrating radar 

Ground-penetrating radar (GPR) [26] is a powerful tool for charac-
terizing the internal morphology of construction elements and providing 
information on homogeneity, structural configuration, voids, and ir-
regularities [37]. The method is based on the emission of high-frequency 
electromagnetic waves (radar waves) into a structural element using a 
dipole antenna. The wave propagates through the material, and part of it 
is reflected in correspondence of discontinuities in the dielectric prop-
erties of the medium, revealing defects, cracks, or interfaces between 
different materials, namely the backside of a wall or a stone. The time 
between the emission and reception of the reflected waves can be 
measured and it allows the determination of the location and depth of 
the observed anomaly given the propagation velocity of the radar waves 
within the media. According to the literature, the average radar-wave 
velocity in masonry is 12–14 cm/ns [30]. In this study, GPR tests were 
performed to estimate the thickness of the piers and spandrel walls using 
the RAMAC/GPR system from MALA (Guideline Geo) and a 1600 MHz 
antenna. A series of GPR profiles were carried out at the first pier from 
the southern side of the bridge and the walls of the bridge abutments 
(Fig. 18). 

Fig. 19a shows a radargram in the horizontal direction at the wall of 
the southern bridge abutment. There are clear reflections at a depth of 
0.4–0.6 m, which seems to imply the opposite surface of the facing 
stones. The antenna was moved over three different stones and show a 
slightly varying thickness within this 0.4–0.6 m range. There are no 
reflections after the facing stone layer, indicating that either the signal is 
significantly attenuated after the stone or the presence of a homoge-
neous material. Fig. 19b shows the vertical scan of the bridge abutment 
and very similar conclusions can be extracted. Again, there are clear 
reflections at a depth of 0.35–0.55 m, indicating the opposite surface of 
the facing stones. The antenna was moved over five different stones that 
also show a slightly varying thickness. There are also no reflections after 
the facing stone layer. 

Fig. 20a shows a radargram in the vertical direction at the masonry 
pier of the bridge. It is similar to the ones obtained from the bridge 
abutment. There are clear reflections at a depth of 0.45–0.55 m, which 
seems to indicate the opposite surface of the facing stone layer. The 
antenna was moved over six different stones, which show a varying 
thickness, but the variations are lesser than the ones observed at the 
abutment. It is noted that the depth of the stones measured with the 
impact-echo tests was 0.6 m (average) and varied between 0.4 and 
0.7 m. The range obtained by the two techniques independently is thus 
similar. There are again no reflections after the facing stone layer, which 
could indicate the presence of a homogeneous material or that the signal 
is significantly attenuated after the stone. Finally, Fig. 20b shows a 
radargram carried out in the vertical direction at the edge of the 

masonry pier. In this case, the depth of the stones is known because the 
antenna passes over the external facing stone masonry wall instead of 
the inner core. 

The radargram in Fig. 20b is significantly different from that in 
Fig. 20a, and it is consistent with the block-masonry arrangement 
observed on site. This confirms that (i) the inner core is not made of 
regular stone masonry; (ii) the external layer is composed of a single- 
facing stone layer. The presence of a homogeneous material after a 
facing stone layer also matches the results of sonic and ultrasonic 
investigations. 

4. Numerical model 

A 3D numerical model for the entire bridge (Fig. 21), including 
external masonry parts and infill material layers has been developed 
using the finite element (FE) code ADAPTIC [38]. The numerical model 
was generated by a recently developed parametric modelling tool for 
masonry arch bridges [39], which corresponds to an add-on component 
to the commercial 3D computer graphics and computer-aided design 
application software Rhino and its parametric environment Grasshopper 
[40]. The tool defines independent parametrically defined components 
(arch barrel, multi-layered backing/backfill domain, spandrel walls, and 
composite piers) that are further connected to form a bridge model. This 
approach allows for a flexible definition of model fidelity, where each 
component can be modelled at either meso- or macroscale. These ca-
pabilities are further enhanced by the possibility of incorporating 
nonlinear interfaces acting between each of the bridge masonry parts (i. 
e., vaults to spandrel walls) or between masonry and backfill, also 
allowing for non-conforming mesh generation [41]. The tool automat-
ically introduces efficient model partitioning enabling parallel compu-
tation [42] which is essential to improve computational efficiency when 
analysing large structures. Finally, fully fixed boundary conditions are 
considered at the base of the piers and at the two vertical ends of the 
viaduct. 

According to the results from the in-situ tests, the piers are modelled 
considering perimeter masonry walls and inner concrete filling. The 
barrel vaults are modelled with variable thickness to reproduce the 
effective internal structure of the bridge. This geometry is extended to 
the entire transversal dimension of the bridge, approximating the actual 
geometry of the external walls characterised by constant arch thickness. 
Fig. 4. Quadratic 20-noded continuum solid elements are employed in 
the model. Fig. 21a shows the mesh discretisation used for the bridge 
external masonry walls (piers, vaults, and spandrel walls); while the 
inner core, backfill, and backing layers are shown in Fig. 21b. 

Linear-elastic 16-noded interface elements [43] are employed to 
describe the contact regions, as shown in Fig. 21c. This hybrid 
continuum-discrete approach allows for the description of the elastic 
deformability of the contact regions. 

A recently developed anisotropic macroscale continuum model, 
implemented in the software ADAPTIC [38], is used to represent the 

Fig. 17. Lognormal distribution of the static modulus of elasticity for the: (a) vertical and (b) horizontal directions.  
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masonry components of the bridge structure: arches, lateral walls and 
the external walls of the piers. The masonry material model is based 
upon a two-scale description, where a mesh of solid finite elements is 
used at the macro-level (Fig. 22a). Each solid element is coupled at the 
level of integration Gauss points with an orthotropic micro-level 
discontinuous representation with distributed internal layers (ILs), 
allowing for both the elastic and nonlinear behaviour of masonry 
(Fig. 22b) [44]. Three local material directions (x, y, z) characterise the 
model, where x and y identify the two in-plane directions orthogonal 
and parallel to the mortar bed joints, while z identifies the out-of-plane 
direction when modelling a masonry wall component or the radial di-
rection in the case of curved elements. Simple rules are used to evaluate 
the deformations of the internal layers from the macroscopic de-
formations by following the procedure described in [44]. The generic 

i-th (i=x, y, z) internal layer is characterised by three deformation pa-
rameters, 

(
εi γi,k γi,l

)
, where εi is the normal deformation, and γi,k; γi,l 

(with k,l=x,y,z and k,l∕=i,) the shear deformations in the two local di-
rections parallel to the internal plane, parallel and orthogonal to the 
masonry plane (or the local tangent panel in the case of curved ele-
ments) [11]. Three internal stresses 

(
σi τi,k τi,l

)
, dual to the internal 

deformations, are independently evaluated by integrating the constitu-
tive laws of each internal layer. In this study, the elastic constitutive 
behaviour of the layer is governed by a diagonal stiffness matrix ki =

diag{Eni Eik Eil }. Therefore, in the elastic field, the model is char-
acterised by three normal moduli (Eni), two in-plane shear moduli (Exz ,

Ezx), and four out-of-plane shear moduli (Ezy , Eyz , Exy , Eyx). The local 
stiffness matrix, evaluated at each Gauss point, is obtained by imposing 
internal Cauchy conditions, as described in [44]. Finally, linear elastic 

Fig. 18. GPR tests at two different locations of the bridge.  

Fig. 19. GPR (a) horizontal and (b) vertical scan at the wall of the bridge abutment.  
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Cauchy models are adopted for the backing and backfill layers and the 
inner parts of the piers. 

The adopted model has a significant advantage in accounting for the 
masonry bond with much lower computational effort compared to 
standard two-scale strategies. In the proposed model, the periodic cell is 
used to calibrate the properties of the internal layers, eliminating the 
need to explicitly solve representative periodic cells at each integration 
point [44]. The computational performance of the proposed modeling 
strategy has been evaluated in [11] and [44] in terms of computing time, 
which resulted in approximately 10 % of that required by more refined 
mesoscale models. 

5. Experiment-based model calibration 

A preliminary calibration of the model elastic material parameters is 
based on the results from the material (local) NDTs. The accuracy of the 
calibrated model in the elastic range is checked by comparing the pre-
dicted main modes of vibration of the viaduct against the results from 
the experimental dynamic identification in terms of frequency errors 
(%) and MAC indexes. Subsequently, parametric analyses are performed 
to evaluate the influence of the main material properties on the bridge 
dynamic characteristics. The results presented in this section represent 
the starting point for a more advanced calibration in Section 6, where 
optimisation algorithms and statistic inference methods are employed to 
evaluate the optimal set of model parameters. 

5.1. Evaluation of the material parameters 

The elastic material parameters for masonry, pier-fill, backfill and 
backing layers are determined according to the results from the in-situ 
NDTs, data from the literature, historical documentation and straight-
forward homogenisation [11,44]. The results are summarised in Table 8. 
More specifically, the NDTs allowed the evaluation of the Young’s 
modulus for the inner material of the piers (Epr=35 GPa). The properties 
for the backing and backfill were assumed based on the historical 
documentation available for the investigated bridge and for similar 
bridges built in the same period [21]. More specifically, the backing is 
assumed to be made of poor concrete with Young’s modulus of 25 GPa, 
while the backfill is supposed to be made of an inconsistent material (soil 
or irregular masonry) with Young’s modulus of 1.5 GPa. 

The Young’s modulus of masonry in the direction parallel to the bed 
joints (Emp) is assumed equal to the average value obtained from the 
indirect sonic tests on the piers along the horizontal direction (Etest,h =

8.5 GPa). On the contrary, the modulus obtained by the same tests 
conducted in the vertical direction (Etest,v = 9.4 GPa) is not directly used 
to characterise the masonry in the direction orthogonal to the joints 
(Emo), since the experimental value does not account for Poisson effects. 
Instead, Etest,v is used to estimate the Young’s modulus of the mortar (Em) 
by considering an homogeneous medium with stiffness equivalent to the 
stiffness of the stone blocks and the masonry joints arranged in series, 
using Eq. (5), where hb = 300 mm is the average height of the blocks, 
hm = 10 mm is the thickness of the mortar joints and Eb = 24 GPa is the 
Young’s modulus of the stone blocks. It results in Em = 480 MPa. 

Fig. 20. GPR vertical scan at the (a) edge and (b) corner of the bridge masonry pier.  
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1
Etest,v

=
hb

Eb(hm + hb)
+

hm

Em(hm + hb)
(5) 

Then, according to the procedure described in [11], the macroscopic 
Young’s modulus of masonry in the direction orthogonal to the joints 
(Emo) is evaluated by Eq. (6), where νb = νm = 0.2 are the Poisson’s co-
efficients of the blocks and mortar. It leads to Emo = 10 GPa. Finally, the 
shear modulus of masonry is evaluated using Eq. (7) [11]. 

Emo =

[
hb

Eb(hm + hb)
+

hm

Em(hm + hb)
−

hbhm

Emh(hm + hb)
2

(
νb

Eb
−

νm

Em

)2
]− 1

(6)  

Gm =

[
2(1 + νb)hb

Eb(hm + hb)
+

2(1 + νm)hm

Em(hm + hb)

]− 1

(7)  

5.2. Calibration of the masonry model 

The macroscopic masonry parameters determined in the previous 
section have been used to calibrate the macroscale masonry model 
described in Section 4, and more specifically, the elastic parameters of 
the Internal Layers (ILs) oriented along the three main material di-
rections (x,y,z), where x, z are the in-plane directions orthogonal and 
parallel to the bed joints, and y is the out-of-plane direction (Fig. 22b). 

Following the practical calibration procedure described in [11], the 
Young’s moduli of the ILs in the local x and y directions are assumed 
equal to the Young’s moduli in these directions: (Enz = Emo; Enx = Emp); 
the two in-plane shear modulus of the ILs in the x and z directions are 
assumed Exz=Ezx=2Gm; the two out-of-plane shear moduli of ILs in the x 
and y local directions (Exy = Eyx) and the z and y local directions ( Ezy =

Eyz) are evaluated by combining in series the shear deformability of the 

blocks and the mortar joints using Eq. (8), where bb and hb are the width 
and hight of the bricks. Finally, the normal modulus of IL in the local 
direction z (Enz) is assumed to be coincident with the Young’s modulus 
of the stone blocks. The complete set of the mechanical parameters for 
the macromodel are reported in Table 9. Finally, the masonry-backfill 
interface stiffnesses kn = 60 kN/mm and kt = 30 kN/mm are assumed 
according to [4]. Previous studies [4,11] and preliminary analyses 
conducted in this study, which are not reported here for the sake of 
brevity, have confirmed that variations in the stiffness values from those 
adopted in the literature do not significantly affect the dynamic char-
acteristics of the bridge. Therefore, these parameters are being kept 
fixed and are not included in the optimization algorithms in order to 
limit the number of parameters to be optimized. 

Exy = Eyx = 2[GmGb(bb + hm)/(Gbhm +Gmbb) ] (8a)  

Ezy = Eyz = 2[GmGb(hb + hm)/(Gbhm +Gmhb) ] (8b)  

5.3. Numerical validation 

Numerical simulations with the calibrated viaduct model were con-
ducted to predict the first three natural frequencies, which were 
compared against the experimental values. It has been decided to 
exclude the fourth experimental mode from the comparisons because it 
has been obtained processing the data from a single accelerometer, and 
therefore it is unsuitable to evaluate the modal shape. 

The percentage errors are reported in Table 10, while the predicted 
mode shapes and the MAC indexes measuring the consistency between 
the numerical and experimental vibration modes are indicated in  
Fig. 23. The fourth experimental vibration mode, which is characterised 

Fig. 21. 3D FE viaduct model: (a) external and (b) internal structure; (c) interface elements.  
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by a significative component of vertical acceleration, is not considered 
here since it has been identified using a single accelerometer. Table 10 
confirms that the first numerical frequency fits well with the experi-
mental results, with errors ranging between 3 % and 8 %. On the con-
trary, the second and the third frequencies show higher errors between 
13 % and 15 %. The initial material properties directly obtained from 
the sonic inspections seem slightly underestimated, as the experimental 
frequencies are higher than the numerical ones. This may be due to the 
fact that the values of Poisson’s ratio and density used to obtain Young’s 
modulus were assumed and not measured. Moreover, the chosen ratio 
between the static and dynamic moduli is also based on empirical data 
and could be lower than the actual value. Finally, good consistency is 
observed in terms of mode shapes for all three fundamental modes with 
MAC values close to or greater than 0.9, evidencing a good agreement 
between the numerical and experimental results. 

5.4. Parametric analyses 

The results reported evidence a good agreement between numerical 
and experimental data, even when using a straightforward model cali-
bration procedure. Indeed, the reached level of approximation is judged 
suitable for engineering applications, considering all uncertainties 
involved in modelling historical bridges. However, in addition to accu-
racy, assessing the model sensitivity to the main material parameters is 
fundamental to evaluating its robustness against the variation of mate-
rial parameters. With this aim, a sensitivity analysis has been conducted 
by varying the eight parameters that affect the bridge response most 

significantly. More in detail, the investigated parameters include:  

• Three masonry properties, namely the Young’s modulus orthogonal 
to the bed joints (Enz), the anisotropy ratio (Enx/Enz) by varying the 
Young’s modulus parallel to the joints and the in-plane shear 
deformability ratio (Exz/Enz) by varying the moduli Exz=Ezx.  

• Two parameters that characterise the inner fill material of piers, 
namely the Young’s modulus (Epr) and the Poisson ratio (νpr).  

• Three backfill/backing parameters, namely the Young’s moduli of 
backfill (Ebf) and backing (Ebk), and the Poisson’s ratios (νbf = νbk). 

Each parameter is changed one at the time within the upper and 
lower bounds reported in Table 11, while keeping all the other param-
eters constant and equal to the reference value in Table 8. The ranges of 
material parameters considered in the analyses are chosen according to 
specific literature [45] to cover a wide range of material scenarios and 
possible factors and defects potentially affecting the material properties, 
including pre-existing damage. For this reason, they are not centered on 
the values resulting from the in-situ tests, which are within the consid-
ered range in all cases. More specifically, the Young’s modulus of ma-
sonry is varied from 2 GPa to 20 GPa according to [30]. The concrete fill 
material in the piers, as indicated by the sonic tests, is varied from 
10 GPa to 40 GPa. The Young’s moduli of backing and backfill materials 
are varied in the ranges 10–35 GPa and 0.5–1.5 GPa assuming a lower 
bound of poor concrete and an incoherent material, respectively. 

The results of the parametric analyses are shown in Fig. 24 for the 
masonry parameters, in Fig. 25 for the fill parameters of the piers, and in  
Fig. 26 for the backfill and backing parameters. These figures show the 
frequency percentage error as the envelopes for the different methods 
used for the modal identification, and the MAC indexes for the three 
fundamental modes of the bridge. Generally, the frequency error 
showed much higher variability than the MAC, which is about 0.9 for 
most of the parameter ranges. However, it can be observed that, in some 
cases, a reduction of the frequency errors corresponds to a decrease in 
the MAC index, confirming the potential benefit of using multi-objective 
optimisation with frequency errors and MAC values as target functions 

Fig. 22. Schematic representation of the two-scale description of the masonry 
macroscale model [44]: (a) continuum FEM description at the macro-scale 
level; (b) transfer of information from the macroscale level to the inter-
nal layers. 

Table 8 
Material mechanical parameters based on the in-situ tests.  

Masonry Pier infill (Strong Concrete) Backing (Poor Concrete) Backfill (Incoherent material) 

Emo 

(GPa) 
Emp 

(GPa) 
Gm 

(GPa) 
ρm 

(kN/m3) 
Epr 

(GPa) 
νpr 

(-) 
ρpr 

(kN/m3) 
Ebk 

(GPa) 
νbk 

(-) 
ρbk 

(kN/m3) 
Ebf 

(GPa) 
νbf 

(-) 
ρbf 

(kN/m3) 

10 8.5 3.9 23 35 0.20 24 25 0.20 23 1.5 0.2 22  

Table 9 
Elastic masonry parameters employed to calibrate the equivalent continuum 
macro-model (GPa).  

In-plane interfaces Out-of-plane interfaces 

Enx Enz Exz=Ezx Enz Exy = Eyx Ezy = Eyz 

10 8.5 7.8 24 11 7.8  

Table 10 
Numerical frequencies.   

Frequency (Hz) Error (%) 

Experimental Numerical 

Lower 
bound 

Upper 
bound 

Lower 
bound 

Upper 
bound 

First mode  1.62  1.70  1.56  3.7  8.1 
Second 

mode  
2.69  2.72  2.34  13.2  13.9 

Third 
mode  

3.95  4.00  3.40  13.9  14.9  
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for an improved model calibration. 
Fig. 24 shows that all the considered masonry parameters signifi-

cantly affect the bridge dynamic properties. It can be observed that 
varying the Young’s modulus Enz from 5 to 20 GPa leads to an error on 
the first frequency ranging from approximately 25–0 % while the error 
for second and third frequencies varies from 35 % to 0 %. Also, the 
masonry anisotropy (Enx/Enz) has a significant effect on the modes, 
evidencing that the use of isotropic models, often employed in research 
and engineering applications, may lead to inaccurate prediction of the 
dynamic response. 

It is also worth highlighting the influence of the masonry in-plane 
shear deformability (Exz/Enz). This result can be explained due to the 
shear deformations of the barrel vaults involved in the transversal 
deformation of the bridge, characterising all three fundamental modes 
of the structure. 

The sensitivity analysis confirms that the Young’s modulus of the 
pier fill material has a major effect on the frequencies reducing predic-
tion error for the first frequency by up to 25 % and second and third by 
up to 13 % (Fig. 25). 

On the contrary, a lower influence of the backfill and backing ma-
terial is observed. The variation of the Young’s moduli of backing (10 – 
35 GPa) and backfill (0.5 – 5.0 GPa) produces a change in frequency 

errors of the higher modes by approximately 4 %, while a limited in-
fluence on the first frequency is observed (Fig. 26). It is also worth 
noting that only a limited influence of the Poisson’s coefficient variation 
is observed for all the investigated cases. Finally, Figs. 24–26 show lower 
variability of the MAC indexes against the variability of the material 
parameters compared to that observed for the frequency errors. It may 
indicate that MAC indexes are most related to the bridge geometry and 
boundary conditions rather than material parameters. 

6. Statistical inference procedure 

In this section, a more advanced approach for determining the ma-
terial properties of the viaduct model is presented, where multi- 
objective optimisation is employed to obtain accurate fitting with the 
experimental results. The model parameters reported in Table 11 are 
assumed as free variables. Two target functions are employed: the ab-
solute error of frequencies and the MAC indexes using different gradient- 
free and space-partitioning methods. The multi-modal nature of the 
problem and the number of free variables may require a high number of 
iterations and considerable computation time to achieve convergence 
[46] due to the size of the numerical bridge model. Moreover, 
gradient-free algorithms may not converge or converge to local optimal 

Fig. 23. Predicted numerical and experimental mode shape.  

Table 11 
Ranges of material parameters considered in the parametric analyses.   

Masonry Pier Infill Backfill/Backing 

Eny (GPa) Enx/Eny (-) Exy/Eny (-) Epr (GPa) νpr (-) Ebk (GPa) Ebf (GPa) νbf = νbk (-) 

Upper bound 20 1.5 1.5  40 0.35  35 5.0 0.35 
Lower bound 1.5 0.5 0.5  10 0.15  10 0.5 0.15  
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solutions. Thus, approaches based on statistical inference can be used to 
increase the efficiency of the calibration procedure. In this research, a 
metaheuristic model, also referred to as surrogate model [47,48], has 
been developed via a stochastic Bayesian algorithm with randomization 
and exploration of the global space of the material parameters [49]. The 
surrogate model is used as an adequate replacement of the finite element 
model of the bridge within an optimisation procedure to establish an 
optimal set of model material parameters. 

6.1. The metaheuristic model 

Following a metaheuristic modelling approach, the 3D FEM model of 
the bridge is replaced with the 6-vector 8-variable function as defined in 

Eq. (9). 

f(X) =
[
Φ1

T ,Φ2
T ,Φ3

T ,ω1,ω2,ω3
]

(9)  

where: 
X = [x1, x2,…, x8] is the vector containing the unknown mechanical 

parameters; 
ω1,ω2,ω3 are the first three natural frequencies; 
Φi

T =
[
ϕ1

i ,ϕ
2
i ,…,ϕ7

i
]

(i=1,2,3) are the modal shapes associated with 
the first three modes measured at the seven points monitored by the 
accelerometers. 

The Kriging method is used to represent the numerical model results 
in Eq. (9). This method has been successfully applied in the literature 

Fig. 24. Model sensitivity to masonry parameters.  
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[48] to solve different problems, including structural robustness design 
[50]. It approximates each component fp(X)(p = 1,…, 24) of the func-
tion f(X) in Eq. (9) as a stochastic process M (X): 

fp(X) ≈ M (X) = G p(X)+Z (X) (10)  

where G p(X) represents a polynomial regression function defining the 
mean of the stochastic process M , and Z (X) denotes the correlation 
function, an independent stationary covariance process with zero mean 
and covariance σ2

G, representing the difference between regression mean 
G p
(
Xi) and the observed value fp

(
Xi) at the sampled point Xi. 

The correlation function is defined by adopting the Gaussian kernel 
model (ℛ) in Eq. (11), where dh (k = 1,2,.,8) represents the absolute 
distance between the sampled points Xi and Xj, θh denotes the hyper-
parameters defining the regression function. The Gaussian kernel model 
is adopted due to the nature of the problem, where a smooth transition is 
expected within the model dombain [51]. 

R
(
Xi,Xj) =

∏m=8

h=1
exp
(
− θh⋅d2

h
)

(11) 

Combining Eqs. (10) and (11), the Kriging model predictor can be 
expressed as in Eq. (12), where X∗

{1×8} stands for the predicted points, 
while X̂{N×8} denotes points utilised in the creation of the Kriging model. 

Eq. (12) depends on the hyperparameters associated with both cor-
relation and regression functions for each real-valued function of the 
model, which are obtained by maximising the log-likelihood of the 
sampled points [48], as in Eq. (13). 

L = −

(
fp − G p

)
⋅ℛ− 1⋅

(
fp − G p

)

2⋅σ2
G

−
1
2

⋅ ln(|ℛ|) − N
2

⋅
(
ln
(
σ2

G
)
+ ln(2π)

)

(13)  

where |ℛ| is the determinant of the correlation matrix and N is the 
number of sampled data points, used to define the metamodel. 

Eq. (13) represents the objective function of the global multi-modal 
optimisation problem, used to evaluate the values of the hyper-
parameters corresponding to its minimum. This optimisation problem is 
solved using the genetic algorithm approach implemented in MATLAB 
[52] employing 150 initial population size and a stopping condition 
based on a maximum of 800 generations and a function tolerance of 
10− 10. 

The initial sample set considered for constructing the Kriging model 
comprises 6561 observations, corresponding to a hypercube of the 8th 
order, with each side consisting of 3 points located at the ends and at the 
middle of the parameter domain. Individual values for each variable are 
presented in Table 12. This model is used in the optimisation algorithms 

Fig. 25. Sensitivity analyses on piers’ infill material.  

M
(
X∗

{1×8}
)
= G p

(
X∗

{1×8}
)
+ℛ

(
X∗

{1×8}, X̂{N×8}
)Tℛ

(
X̂{N×8}, X̂{N×8}

)− 1
(

fp
(
X̂{N×8}

)
− G p

(
X̂{N×8}

))
(12)   
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Fig. 26. Sensitivity analyses on backing/backfill parameters.  

Table 12 
Kriging sample options.  

Sample set Masonry Pier Infill Backfill/Backing 

Enz (GPa) Enx/Enz (-) Exz/Enz (-) Epr (GPa) νpr (-) Ebk (GPa) Ebf (GPa) νbf = νbk (-) 

Initial 1.5 0.5 0.5 10 0.15 10 0.5 0.15 
10 1.0 1.0 20 0.25 20 2.5 0.25 
20 1.5 1.5 40 0.35 35 5.0 0.35 

Validation 2.5 0.75 0.75 12.5 0.2 15 1.5 0.2 
5 15 

7.5 17.5 
12.5 1.25 1.25 25 0.3 27.5 3.5 0.3 
15 27.5 

17.5 30  
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described in Section 6.2 to replace the numerical model. 
The model predictions are compared against a validation set con-

sisting of 2304 elements (Table 12), where higher refinement is selected 
for variables indicating a more complex behaviour according to Section 
5.4. According to [50], the overall accuracy of the prediction models is 
measured by the mean absolute relative error (MARE): 

MARE =

∑N

k=1

⃒
⃒
⃒vpred

k − vsample
k

⃒
⃒
⃒

N⋅
(
max

(
Vsample) − min

(
Vsample)) (14)  

where vpred
k represents the value of prediction for the k-th sample point in 

the validation setVsampleconsisting of N individual observations. 
Fig. 27 shows the comparison between the metamodel predictions 

(3D surfaces), the sample points used to build it (black points), and the 
points used for validation (red points) considering some of the material 
parameters included as free variables in the optimisation problem. 

The Kriging model predictions resulted within acceptable error 
margins for both MAC values (maximal error for mode one – 2.1 %) and 
mode frequencies (maximal error for mode three – 1.4 %). Considering 
the small errors, further optimisation of the hyper-parameters is not 
required, as it is not expected to substantially improve the achieved 
model accuracy. 

6.2. The optimisation problem 

The developed surrogate model of the analysed viaduct is employed 
for the solution of a multi-objective optimisation problem to evaluate 
the material parameters that correspond to the best fit with the exper-
imental results in terms of mode shapes (measured by the MAC indexes) 
and frequencies (measured by percentage errors). The consideration of 
the first three experimental modes of vibrations (Section 5) leads to a 
total of six objectives. A local space defined by the admissible domain of 
the free variables, ranging from the lower to the upper bounds of ma-
terial parameters in Table 11, is assumed. The solution is achieved when 
all the optimisation criteria are within the allowable range, i.e. the MAC 
indexes are above 0.9, and the numerical frequencies are within the 
range of the experimental values indicated in Table 10. The exponential 
“bump” function 

(
H e

k
)

in Eq. (15) is considered for the six objectives of 
the optimisation problem. 

H e
k = 1 − exp

(

−

(
M k(X) − ck

Dk

)4
)

(15)  

where, X represents variable input parameters, M k(X) represents k-th 
predictor function defined in Eq. (12), ck = uk+ℓk

2 indicates distribution 
centre, Dk = uk − ℓk denotes the size of the “flat region”, and uk ℓk stand 
for upper and lower bound values of the k-th free variable. This function, 

Fig. 27. 2D slices through the parameter domain: a) MAC indexes; b) frequencies.  

B. Pantò et al.                                                                                                                                                                                                                                   



Construction and Building Materials 438 (2024) 137131

20

which is represented with a green dashed line in Fig. 28, can result in 
non-optimal solutions due to the near zero gradient outside of the 
acceptable bounds. This can be addressed by considering an additional 
quadratic function H q

k given by Eq. 16 (magenta curve in Fig. 28) that 
provides additional scaling to the objective function values away from 
the optimal range. The constant 0.004 in Eq. (16) is chosen so that the 
additional quadratic term contribution does not affect the solution 
within the optimal range. The resultant objective function (H k)is 
described as a sum of the exponential 

(
H e

k
)

and quadratic 
(

H
q
k
)

terms 
and it is shown by the continuous black line in Fig. 28. 

ck =
ub

k + ℓb
k

2
(16) 

Finally, the optimisation problem is formulated as the minimisation 
of the functions H k in Eq. (17) with k = 1,2,.,6 associated with the MAC 
indexes and the frequency errors, where Xℓ =

[
xℓ

1, xℓ
2,…, xℓ

8
]

and Xu =
[
xu

1, xu
2,…, xu

8
]

are the feasibility constraints in the parameter space X =
[x1,x2,…,x8]. 

min(H 1(X),H 2(X),…,H 6(X))
s.t. : xℓ

i ≤ xi ≤ xu
i (i = 1,2,…,8)

(17) 

The problem in Eq. (17) is solved by evaluating the full 6-dimension 
Pareto front and selecting for comparison the solution that is closest to 
the origin of the Pareto front space. Some projections of the Pareto front 
in the 2D or 3D space are shown in Fig. 29. A variant of the elitist genetic 
algorithm NSGA-II [53], as implemented in MATLAB [52], is employed 
to evaluate the Pareto front. Over 24,000 individual calls (120 genera-
tion with population of 200) to the numerical model M (X) were required 
to evaluate the Pareto front, which is associated with low efficiency. 

An improved optimisation strategy has been introduced to further 
improve the computational performance. Considering that all objectives 
are error based, it is possible to implement linear scalarisation of the 
problem without substantial loss in accuracy [54,55]. A new objective 
function F(X, P) can be established as below: 

F (X,P) =

∑m

k=1
(H k(X)⋅pk)

∑m

k=1
(pk)

(18)  

where, P = [p1, p2,…, p6] is a set of scalar parameters modifying the 
relative weight of each individual objective. The simplest scenario is the 
assumption that all pk are equal, meaning that all objectives are of equal 
importance. Alternatively, specific values can attribute preference for 
some objectives to be satisfied first (e.g. selecting improved MAC values 
over mode frequencies or vice versa). The new optimisation problem 
with the corresponding constraints can be established as follows: 

min(F (X,P))
s.t. : xℓ

i ≤ xi ≤ xu
i (i = 1,2,…,8)

1 ≤ pk ≤ 100(k = 1, 2,…,6)
(19)  

where, the pk values are bounded from 1 to 100 to ensure that no 
objective can be removed from the analysis. 

Fig. 28. Objective function.  

Fig. 29. Six-dimensional normalised Pareto front projections on a three-dimensional space.  
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The problem in Eq. (19) has been solved assuming the components of 
the objective ranking vector (P) both as constant set a priori (a) and as 
additional variables (b). Two separate strategies were used: a gradient 
based optimisation employing the MATLAB inbuilt function fmincon 
[52] and a Bayesian optimisation with the Expected Improvement Crite-
rion [56,57]. Gradient optimisation performed well by using the results 
obtained in the simplified calibration in Section 5 as the starting points. 
Due to the lack of analytical expressions for the optimised function de-
rivatives, gradient optimisation required a relatively large number of 
calls to the surrogate model to achieve convergence: 1016 calls and 126 
iterations for option (a) and 3024 calls with 215 iterations for option (b). 
Bayesian optimisation, which combines space exploration and exploi-
tation in search of the optimal solution [58], was conducted using the 
Kriging metamodel introduced in Section 6.1. In this context exploita-
tion refers to iterative sampling in the vicinity of prior data points to find 
the exact location of local minimum, while exploration refers to the 
samples being taken in the underexplored parts of the design domain. In 
the first stage of optimisation process, a random sample of 10 points was 
introduced to create a rough approximation of the response space. At 
each optimisation step, this approximation was improved including a 
new point from the previous iteration. It was obtained by maximising 
the improvement (I) of the function M given by Eq. (20), after adding an 
additional sample point X∗to the model. 

I = max(min(M ) − M (X∗), 0) (20) 

According to [59] that the expectation of improvement takes the 
following form: 

E[I(X∗)] = (M min − M̂ (X∗))⋅Ψ
(

M min − M̂ (X∗)

φ

)

+φ⋅Φ
(

M min − M̂ (X∗)

φ

)

(21)  

where Ψ(⋅) and Φ(⋅) denote the cumulative distribution function and the 
probability density function of the normal distribution, M̂ (X∗) repre-
sents a predicted value at an unsampled point X∗ =

[
x∗

1, x∗
2,…x∗

8
]T and φ 

denotes the Kriging surrogate model parameter associated with the 
confidence level behind the predicted response at the unsampled loca-
tion: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(
X∗

{1×8}
)
= σ2

G⋅
(

1 + uT⋅
(
FT⋅ℛ− 1⋅F

)− 1⋅u − rT⋅ℛ− 1⋅r
)

u = FT⋅ℛ− 1⋅r − f
F = G p

(
X̂{N×8}

)

f = G p
(
X∗

{1×8}
)

ℛ = corr
(
X̂{N×8}, X̂{N×8}

)

r = corr
(
X∗

{1×8}, X̂{N×8}
)

(22) 

Bayesian optimisation required 300 iterations to converge to the 
optimal solution showing higher efficiency for cases (a) and (b) 
compared to gradient optimisation. It is worth noting that although 
Bayesian optimization required fewer steps and iterations than gradient 
optimisation, the optimisation was more computational demanding as 
the calculations in (20− 21) required the solution of a further internal 
optimisation problem at each iteration to locate the best starting point 

for the subsequent iteration. Though, if in the optimisation procedure 
the actual numerical viaduct model were used instead of its surrogate 
approximation, the greater complexity of the Bayesian algorithm would 
be offset by the computational cost associated with the multiple solu-
tions of the large 3D FE model. 

The results obtained using the alternative optimisation strategies are 
presented in Table 13, in terms of the evaluated set of material param-
eters, and in Table 14, in terms of MAC indexes and associated objec-
tives. It is shown that no optimisation algorithm yields a single solution 
in the parameter space, while all of the objectives are in the required 
vicinity with only minor discrepancies. This fact can be attributed to the 
overall complexity of multi-objective functions when aggregated, even if 
each objective is smooth (Figs. 27 and 28). 

Comparing the presented results with results from the simplified 
calibration reported in Table 10 and Fig. 23, very little changes in the 
prediction of the mode shapes can be observed, as indicated by the near 
identical MAC values for all the calibration scenarios. On the other hand, 
a substantial improvement, compared to the simplified calibration, has 
been found for the determination of modal frequencies, reducing 
maximal error from 0 (results within the allowable range) to 4 %. The 
relative errors for all the considered calibration strategies are presented 
in Table 15. 

The provided results indicate that the structure mode shapes are 
mostly dependent on structural geometry and are only weekly corre-
lated with material properties. Mode frequencies, on the other hand, 
seem to be strongly correlated with material parameters of the structure, 
as indicated by the results from the refined optimisation procedure and 
the sensitivity study presented in Figs. 24–27 (Section 5.4). 

7. Conclusions 

This paper exploits multiple in-situ non-destructive testing tech-
niques for evaluating the mechanical properties of the components of a 
historic masonry bridge. The results of the tests have been employed to 
calibrate the elastic properties of an anisotropic continuum macroscale 
model for masonry and a continuum isotropic model for backfill and 
inner fill materials by adopting two alternative calibration strategies, 
characterised by different levels of complexity and accuracy. The first 
strategy directly considers the NDTs results within a straightforward 

Table 13 
Optimisation results - variables.  

Optimised parameters Masonry Pier Infill Backfill/Backing 

Enz (GPa) Enx/Enz (-) Exz/Enz (-) Epr (GPa) νpr (-) Ebk (GPa) Ebf (GPa) νbf=νbk (-) 

Pareto front  16.17  0.64  1.15  33.14  0.34  22.21  4.91  0.29 
Gradient (a)  20.00  0.63  1.50  17.66  0.15  25.26  3.77  0.15 
Gradient (b)  17.38  0.61  1.47  22.84  0.18  25.12  2.69  0.22 
Bayesian (a)  15.00  1.48  0.93  27.71  0.20  25.62  3.38  0.24 
Bayesian (b)  14.80  0.98  1.13  31.34  0.26  19.31  3.31  0.19  

Table 14 
Optimisation results - objectives.  

Optimised 
results 

MAC 
1 

MAC 
2 

MAC 
3 

Mode 1 
frequency 

Mode 2 
frequency 

Mode 3 
frequency 

(Hz) (Hz) (Hz) 

Pareto 
front  

0.908  0.901  0.951  1.752  2.702  3.998 

Gradient 
(a)  

0.896  0.901  0.953  1.672  2.699  4.099 

Gradient 
(b)  

0.897  0.901  0.953  1.665  2.691  3.972 

Bayesian 
(a)  

0.895  0.903  0.955  1.673  2.708  4.172 

Bayesian 
(b)  

0.897  0.902  0.954  1.700  2.695  3.991  

B. Pantò et al.                                                                                                                                                                                                                                   



Construction and Building Materials 438 (2024) 137131

22

masonry homogenisation procedure. The second, more sophisticated, 
strategy determines the model parameters by solving a multi-objective 
optimisation problem, adopting genetic and statistic inference algo-
rithms. The accuracy of the calibrated model has been evaluated by 
comparing the numeric mode shapes and frequencies with those ob-
tained experimentally considering the environmental vibrations of the 
bridge. The model, calibrated by following the simplified strategy, 
predicted the dynamic properties of the bridge with a satisfactory level 
of approximation, showing MAC indexes close to 0.9 and an error on the 
first frequency less than 4 % but errors up to 15 % for the higher order 
frequencies. On the other hand, the calibration strategy utilising 
Bayesian optimisation algorithms has almost zeroed the frequency er-
rors for all considered modes, which confirms the accuracy and potential 
of the proposed strategy for enhanced calibration of existing structures. 
Finally, the proposed identification methodology can be extended by 
applying forced vibrations generated by high-speed vehicles, exciting 
the bridge’s higher modes. 
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[10] B. Pantò, C. Chisari, L. Macorini, B.A. Izzuddin, A hybrid macro-modelling strategy 
with multi-objective calibration for accurate simulation of multi-ring masonry 
arches and bridges, Comp. Struct. 265 (2022) 106769. 
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Table 15 
Relative errors for all calibration strategies.   

Frequency error (%) 

Mode 1 Mode 2 Mode 3 

Simplified calibration (Section 5)  3.76  13.21  13.93 
Pareto front  3.09  0.00  0.08 
Gradient (a)  0.00  0.00  2.60 
Gradient (b)  0.00  0.11  0.00 
Bayesian (a)  0.00  0.00  4.42 
Bayesian (b)  0.03  0.00  0.00  
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