
Affirmative Action with Multidimensional Identities
Jean-Paul Carvalho* Bary Pradelski† Cole Williams‡

Studying the design of affirmative action policies when identities are multidimensional, we provide a formal

demonstration of the importance of intersectionality. Prevailing affirmative action policies are based only

on one identity dimension (e.g., race, gender, socioeconomic class). We find that any such nonintersectional

policy can almost never achieve a representative outcome. In fact, nonintersectional policies often increase the

underrepresentation of underrepresented groups in a manner undetected by standard measures. Examples

based on race and gender reveal significant hidden inequality arising from nonintersectional policies. We

show how to construct intersectional policies that achieve proportional representation.
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1. Introduction

Affirmative action policies are widely employed in college admissions, hiring, lending, government

contracting, and selection of electoral candidates by political parties. This has been the subject of

considerable controversy. For example, the Supreme Court of the United States has recently ruled

that race-based college admission policies are unlawful, even for affirmative action, thus reversing

the landmark Grutter vs. Bollinger decision from 2003 (Supreme Court of the United States 2023).

Our concern in this paper is not whether affirmative action should or should not be practiced.

Instead, we are concerned with the proper design of affirmative action policies in practice, whether

current policies can meet stated objectives, and how they might be adapted to do so. Affirmative

action policies today aim to reduce underrepresentation along a number of identity dimensions (e.g.,

race, gender, caste, socioeconomic class). Prevailing policies, however, are formulated independently

for each identity dimension. Studying a decision maker who must select a subset of applicants

from an applicant pool, we demonstrate the impossibility of achieving proportional representation

using nonintersectional policies (i.e., dimension-by-dimension adjustments). We also show how to

construct intersectional policies that achieve proportional representation. Thus, we provide a formal
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characterization of the importance of intersectionality in the design of affirmative action policies

and contribute to an active and important debate in academia and policy circles.

Existing approaches to inequality go beyond aggregate measures of income and wealth inequal-

ity, accounting for structural inequality based on various identity characteristics. Policies aimed

at reducing the underrepresentation of disadvantaged groups have been employed in numerous

countries, including caste-based quotas (reservation) in India, race and gender representation

requirements in hiring, promotion, and procurement in South Africa, and reduced university entry

requirements for ethnic minorities (youhui zhengce) in China. In the United States, affirmative

action emerged from the Civil Rights movement and originally targeted racial discrimination. Title

VII legislation expanded the set of protected categories, banning discrimination on the basis of

race, skin color, religion, gender, and national origin. Protection for women was strengthened with

Executive Order 11375 in 1967 and the Equal Employment Act of 1972. Today, the representation

of groups defined by race, gender, and other identity characteristics is a major factor in college

admissions, private and public sector hiring, government contracts, lending, and many other areas

(Bowen and Bok 1998, Holzer and Neumark 2000, Fryer and Loury 2005). The incorporation of

these characteristics into the decision-making process is meant to reduce bias in evaluating candi-

dates, as well as adjust for socioeconomic disadvantages faced by groups (Chetty et al. 2014) and

various forms of feedback through which underrepresentation reproduces itself (Loury 1977, Borjas

1992, Coate and Loury 1993, Athey et al. 2000, Bordalo et al. 2016, Coffman et al. 2021).

Affirmative action policies have done much to reduce the underrepresentation of women and

minorities in universities and the professions (e.g., Leonard 1984, Bagde et al. 2016). We show,

however, that affirmative action policies that are formulated separately for each identity dimension

(e.g., race and gender) suffer from a design flaw. Such nonintersectional policies are standard. They

can be found, for example, where monitoring and regulation of representation along each identity

dimension is the responsibility of different committees or organizations. An extreme case is where

only one dimension is considered. Describing the European Union’s gender policies, Skjeie (2015)

states: “The dominant equality notion is mainly one-dimensional. What have recently been termed

‘gender+’ equality policies – i.e., policies which address gender inequalities in relation to other

inequalities – are rather few and far between” [p. 79]. This failure to properly account for the multi-

dimensionality of identity is not limited to policy. The economics literature on structural inequality

focuses almost exclusively on unidimensional notions of identity (see reviews by Croson and Gneezy

2009, Altonji and Blank 1999, Fang and Moro 2011). Conventions for collecting and reporting data

are likewise reductive. Even where data are disaggregated based on identity categories such as

race and gender, there is seldom information on the economic performance of the intersectional
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groups (e.g., black women). This is at odds with the structural inequality approach which disag-

gregates income and wealth inequality to examine differences between sociodemographic groups.

When identity is multidimensional, the basic unit of analysis is the intersectional group. Hence,

the structural inequality approach would suggest going further than the identity dimensions and

examining representation among the intersectional groups.

The obvious reason for the reductive approach to assessing/addressing underrepresentation is

simplicity. It is common, and often necessary, to reduce a complex problem to several parts. Prob-

lems arise, however, when the connections between the parts are neglected (Saari 2015, 2018), as

when affirmative action policies fail to account for connections between different dimensions of

identity. This point has been long understood by scholars outside of economics; it is the central

theme of the literature on intersectionality (e.g., Crenshaw 1989). However, the multidimensional-

ity of identity is largely unexplored by economists. As multiple dimensions of identity are bundled

in each person, there are connections between identity dimensions that cannot be neglected with-

out producing analytical and policy errors. This paper examines the nature and severity of these

errors.

In our model, a decision maker must select a subset of applicants from an applicant pool. Each

applicant has a score (e.g., test score) and a multidimensional identity. Score distributions can

vary across intersectional groups due to socioeconomic disadvantages, bias, and other factors. We

conceptualize an affirmative action policy as follows. The decision maker adjusts each applicant’s

score as a function of their identity and then accepts every applicant with an adjusted score above

some threshold level. A nonintersectional policy is one in which scores are adjusted independently

along each identity dimension (e.g., race, gender). This is the conventional way of formulating

affirmative action policies by admissions committees, employers, lenders, and other decision makers

facing such selection problems. In contrast, an intersectional policy applies a potentially different

adjustment for each intersectional group.

We ask the following fundamental question: Can a nonintersectional policy achieve a represen-

tative outcome in which each intersectional group is represented according to its population share?

We find that, generically, nonintersectional policies cannot do so, whereas intersectional policies

can (Section 3.1). Nonintersectional policies can only achieve a representative outcome in special

environments, where inequality/bias has a nonintersectional structure, i.e., is independent across

identity dimensions (Section 3.2). Moreover, the failure of nonintersectional policies to achieve a

representative outcome can be significant. In some cases, negative spillovers across identity dimen-

sions provide that any nonintersectional policy that changes the representation of all intersectional
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groups must reduce the representativeness of some groups (Section 3.3). Nonintersectional policies

can, however, achieve a reductive representative outcome in which there is proportional representa-

tion along every identity dimension (Section 3.4). If data are gathered in this reductive manner, it

could thus give the false impression that structural inequality has been eliminated, whereas some

intersectional groups continue to be underrepresented. In simple theoretical examples based on

race and gender, we show how nonintersectional policies can exacerbate and hide underrepresenta-

tion at the intersectional level. Finally, we show how score distributions can be made endogenous

by extending an important paper on the design of affirmative action policies by Fryer and Loury

(2013) to multidimensional identities (Section 3.5).

There are a number of practical implications of these results for organizations and policymakers.

Organizations meet periodically to evaluate diversity outcomes. Within firms, hiring committees

and diversity, equity and inclusion (DEI) officers evaluate hiring and promotion decisions. Uni-

versity admissions committees evaluate the composition of incoming classes of undergraduate and

graduate students and track the educational outcomes (grades and dropout rates) of various groups.

Though we are unaware of systematic evidence on this issue, it appears that these evaluations are

typically made based on tables reporting outcomes for each identity dimension (e.g., race, gender).

The data for each intersectional group is typically not compiled, let alone reported, and thus not

used in the evaluation process. According to our results, affirmative action policies can worsen

the underrepresentation of some underrepresented groups. In addition, the negative consequences

of such policies may go undetected by organizations, given the way they typically compile and

report data. Thus, if organizations want to reduce the underrepresentation of certain groups, our

analysis suggests that data on representation within the organization should be compiled for each

intersectional group.

Another practical implication of our results is for reservation policies. For example, India reserves

seats for certain districts in state legislatures for disadvantaged (scheduled) castes and tribes;

legislative seats in other districts are reserved for women. What our analysis shows is that unless

the reservations are defined based on the intersectional groups (not in a undimensional way),

proportional representation of groups defined by gender and caste cannot generically be achieved.

For example, men from disadvantaged castes could be made worse off by the reservation system. In

fact, Celis et al. (2014) find that separate quotas for women and ethnic minorities in the selection

of candidates for political office in Belgium and the Netherlands led to ethnic minority women

being represented in larger numbers than ethnic minority men. The authors attribute this to the

strategic choices of party leaders aiming to satisfy both quotas independently.
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1.1. Related Literature

There are two related (and overlapping) strands of literature in economics. The first deals with

the causes of intergroup inequality, including the socioeconomic environment (Chetty et al. 2014),

taste-based discrimination (Becker 1957, Chen and Li 2009), statistical discrimination (Phelps

1972, Arrow 1973, Chambers and Echenique 2021), intergenerational transfers of human capital

(Becker and Tomes 1979, Loury 1977, 1981, Borjas 1992), norms (Akerlof and Kranton 2000, Young

2015, Bertrand et al. 2015, Eguia 2017), learning (Chung 2000, Fernández 2013), peer effects, and

local complementarities in education (Borjas 1992, Benabou 1993, Chaudhuri and Sethi 2008). The

second deals with affirmative action policies for reducing intergroup inequality (e.g., Coate and

Loury 1993, Loury 2009, Goldin and Rouse 2000, Fershtman and Pavan 2021). Coate and Loury

(1993) analyze the effects of affirmative action under statistical discrimination, famously showing

that a ‘patronizing equilibrium’ can arise in which groups have proportional representation but

one (disadvantaged) group has lower levels of skill formation. Fryer and Loury (2013) analyze

the conditions under which it is efficient to grant disadvantaged minorities preferential access to

positions rather than subsidize skill development. When affirmative action policies can be written

based on identity (sighted), preferential access is more efficient. We extend Fryer and Loury’s model,

showing how to construct such policies when individuals have multidimensional identities. There is

also an emerging interdisciplinary literature on algorithmic fairness which deals with reducing bias

in machine learning and algorithmic decision-making (e.g., Kleinberg et al. 2017, Kleinberg and

Raghavan 2018, Kleinberg et al. 2018, Chouldechova and Roth 2018, Rambachan and Roth 2020,

Raji et al. 2020). In particular, Kleinberg et al. (2017) provide an impossibility result in which

three fairness conditions for algorithmic classification of individuals cannot be jointly achieved.

Much has been learned from this body of work. However, these analyses treat identity as uni-

dimensional, whereas human identity is a higher-dimensional object describing one’s race, gender,

class, and many other characteristics. Notable exceptions are described below. The simple exten-

sion of affirmative action policies derived through unidimensional analysis to a multidimensional

setting is to independently formulate an intervention along each identity dimension and then check

for proportional representation along each dimension (e.g., race, gender). This is often the case

in practice. But this approach does not properly account for the multidimensionality of identity,

because it ignores interactions between identity dimensions and neglects the basic unit of analysis

when identity is multidimensional: the intersectional group.

In a recent article, Small and Pager (2020) encourage economists studying discrimination to

draw on approaches from sociology and other disciplines, especially the notion of institutional dis-

crimination. This paper draws on the concept of intersectionality introduced by Crenshaw (1989)
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in a critique of the unidimensional notions of identity that dominated legal doctrine and politics

around anti-discrimination. Based on the unique experiences of black women, Crenshaw (1989)

argued that an individual’s experience is not the sum of their race and gender. Intersectionality

has been an influential approach to studying discrimination and structural inequality outside of

economics (see Cooper 2016, Collins and Bilge 2020). Collins and Bilge (2020) define the approach

as follows: “As an analytical tool, intersectionality views categories of race, class, gender, genderu-

ality, nation, ability, ethnicity, and age—among others—as interrelated and mutually shaping one

another” [p. 1].

Through our analysis of affirmative action with multidimensional identities, we arrive at a math-

ematical characterization of the problems with unidimensional notions of identity and the gains

from switching to the intersectional group as the unit of analysis. In economics, there are few

examples of work on multidimensional identity. These include Sen (2006) on how drawing from

multidimensional identities can reduce conflict, Meyer and Strulovici (2012) on comparing eco-

nomic outcomes when inequality is multidimensional, Sgroi et al. (2021) and Hong et al. (2022) on

ingroup bias and redistributive preferences with multidimensional identities, and Shayo (2009) and

Akerlof (2017) on how individuals choose to value different dimensions of their identity. Carvalho

and Pradelski (2022) introduce the concept of intersectionality to economic theory. They study a

specific inequality-generating mechanism, where individuals care about the representation of their

group. In this context, they show that subsidies along one identity dimension will alter representa-

tion along other identity dimensions. They also characterize systems of intersectional self-financing

subsidies and role-model policies that achieve representative outcomes. Recent work by Aygun and

Bó (2021), Pathak et al. (2021), and Sönmez and Yenmez (2022) identifies the specific challenges

of combining distinct reservation systems when there are multidimensional identities. Because the

affirmative action policies we study are far more flexible than reservation systems, our results high-

light the design challenges that come from multidimensional identity per se. In computer science,

Flanigan et al. (2021) develop an algorithm for selecting citizens’ assemblies when identities are

multidimensional. Agents do not have scores; instead, the focus is on the tradeoff between giving

each member of the population an equal likelihood of being assigned to a panel and satisfying

quotas defined in terms of the identity dimensions. Finally, Mehrotra et al. (2022) study a model

of selection for a specific inequality-generating mechanism (multiplicative bias) and show that a

particular policy, i.e., nonintersectional minimal quotas, cannot achieve efficiency.

Our paper reveals that the interaction across identity dimensions poses a far more general

problem than prior analysis suggests for specific inequality-generating mechanisms (cf. Carvalho

and Pradelski 2022, Mehrotra et al. 2022). We demonstrate that all nonintersectional policies
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fail to achieve a representative outcome for an arbitrary number of identity dimensions and for

generic inequality-generating mechanisms. We also show how to construct intersectional policies

that achieve a representative outcome in this more general environment. Going beyond the specific

examples in the existing literature is not a simple matter of generalization. It requires significant

technical and conceptual advances including a general definition of the space of intersectional and

non-intersectional policies and appropriate topological arguments. Moreover, through the general

framework we introduce we are able to derive a number of results not seen in the literature to date.

These results have important implications for the design of real-world affirmative action policies,

including policies based on race and gender in the United States. Not only do we demonstrate

the generic impossibility of non-intersectional policies achieving a representative outcome, we also

show how badly non-intersectional policies fail, and the (non-generic) conditions under which they

perform well. For example, the setting of Mehrotra et al. (2022) falls into one of our non-generic

classes, so that a (different) non-intersectional policy can be designed to achieve a representative

state. While the examples we study throughout the paper are based on race and gender, the anal-

ysis is far more general, applying to other identity dimensions such as caste, socioeconomic class,

and geographic origin.

2. The Model

Consider a decision maker (e.g., college, employer) who must select a subset of applicants from an

applicant pool. The applicant pool has unit mass and the decision maker accepts a share α∈ (0,1)

of the applicants and rejects the rest. Each applicant has a score x belonging to an interval X ⊂R

and a multidimensional identity described by a vector of group characteristics g ∈ G = {0,1}n,

with n≥ 2.1 While an individual’s full identity is an n-dimensional object g = (g1, ..., gn), we can

also express an individual’s identity in a reductive manner in terms of one identity dimension: all

individuals with entry gi = 1 belong to category i (e.g., all women). The joint distribution over

characteristics and scores, p, is assumed to belong to the subspace P ⊂∆(X ×G) for which the

conditional score distributions Fg(·)≡ p(·|g) are continuous and have full support on X. We denote

the marginal probability of belonging to group g, p(X ×{g}), simply by p(g).2

With the goal of achieving a more representative accepted class (e.g., student body, employee

pool), the decision maker sets a policy q = (qg)g∈G such that qg :X →X maps the score x of an

applicant from group g to an adjusted score qg(x). We impose structure on the space of policies

1Examples in this paper involve binary characteristics for illustration only. Our coding can accommodate more
realistic non-binary characteristics by interpreting each entry as an indicator variable for a characteristic.

2We endow R with the usual topology, ∆(X ×G) with the weak∗ topology, and both X ⊂R and P ⊂∆(X ×G)
with their respective relative topologies (for definitions see Chapters 2 and 15 of Aliprantis and Border 2006).
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by supposing that there is a family of increasing bijections Q⊂XX such that q ∈Q|G|. First, we

require the set of functions to be rich, that is, policies are powerful in the sense that they can

transform any score to any other score. Formally, for all x, y ∈ X there exists a function q ∈ Q
satisfying q(x) = y. Second, we require that the set of functions is commutative, formally, q, q′ ∈Q
implies q ◦ q′ = q′ ◦ q. As we shall see this assumption ensures that each individual is assigned a

unique score, even when policies are applied independently across identity dimensions.

Two exemplar policy spaces are described by the following.

• Additive. For each q ∈Q there exists δ ∈R such that q(x) = x+ δ for all x∈X =R.

• Multiplicative. For each q ∈Q there exists θ ∈R>0 such that q(x) = θ ·x for all x∈X =R>0.

Given the policy, the decision maker sets an acceptance threshold x∗ ∈ X whereby applicants

whose adjusted scores exceed the threshold qg(x)≥ x∗ are accepted and all others qg(x)< x∗ are

rejected, subject to the capacity constraint
∑

g∈GPr(qg(x)≥ x∗|g)p(g) = α.3

Definition 1. A policy is nonintersectional if g = g′ + g′′ implies qg = qg′ ◦ qg′′. Otherwise, a

policy is intersectional.

A nonintersectional policy treats each identity dimension as independent: applying qg to the

scores for members of group g is the same as iteratively applying qei for each category i to which

they belong, where ei denotes the ith standard basis vector. Commutativity ensures that each

individual receives a unique score, independently of the order in which the policies are applied. For

example, if the policy is additive then δg =
∑n

i=1 gi ·δei and if it is multiplicative then θg =
∏n

i=1 θ
gi
ei

.

Observe that a nonintersectional policy normalizes q0(x) = x for all x ∈X since g = g + 0 implies

qg = qg ◦ q0. Appendix A offers a more general definition of nonintersectionality and proves that

this normalization comes without loss in generality.

Example 1. Consider a simple theoretical example of multidimensional identity: male g = (0, ·),
female g = (1, ·), white g = (·,0), black g = (·,1). Suppose the policy is additive, boosting the scores

for women by a and that of black individuals by b:

δ(0,0) = 0, δ(1,0) = a,

δ(0,1) = b, δ(1,1) = a+ b.

3In our construction, an individual’s score x is adjusted based on their identity and then a (uniform) acceptance
rule is applied to each adjusted score qg(x). Equivalently, a different monotone acceptance rule could be applied to
unadjusted scores for each group g.
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This policy is nonintersectional. If instead the policy additionally lifts the scores of black women

by c 6= 0 so that δ(1,1) = a+ b+ c, then the policy is intersectional.

For a given policy and decision rule, let p̂(g) denote the probability that an individual belongs

to intersectional group g given that they have been accepted, i.e., p̂(g) =
Pr(qg(x)≥x∗|g)p(g)∑

g′∈G Pr(qg′ (x)≥x∗|g′)p(g′)
.

Definition 2. An outcome is representative if the representation of each intersectional group is

equal to its population share: p̂(g) = p(g) for all g ∈G.

3. Results

Our analysis answers the following questions: Can proportional representation of identity groups be

achieved with nonintersectional policies (as is current practice)?4 If not generally, under what con-

ditions? Can nonintersectional measures of inequality disguise or even worsen underrepresentation

of some intersectional groups?

3.1. Nonintersectional policies do not eliminate underrepresentation

We demonstrate that the inherent constraints on nonintersectional policies prevent their achieving

a representative state. We employ the topological notion of genericity whereby a property is generic

of a set if it holds on a dense open subset.5

Theorem 1. For generic distributions p∈ P :

(a) There does not exist a nonintersectional policy that yields a representative outcome.

(b) There exists an intersectional policy that yields a representative outcome.

We relegate the technical details to Lemmas 1 and 2 in Appendix B. The rest of the proof,

including the construction of intersectional policies, is presented here.

4While prior work focuses on the tradeoff between selecting applicants with the highest scores and achieving
proportional representation (e.g. Chan and Eyster 2003), we ask the more primitive question of whether proportional
representation is even achievable using standard nonintersectional policies.

5Recall that a subset A ⊂ S is dense in a set S if its closure equals the set: Ā = S (see Aliprantis and Border
2006).
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Proof. We begin with part (a). The ensuing outcome is representative if

(p(qg(x)≥ x∗|g)−α)p(g) = 0 for all g ∈G. (1)

Suppose p(g) > 0 for all g ∈ G. Recall that Fg(x) is the CDF of a type g’s score and define

βg ≡ F−1g (1−α) to be the (1−α)th score quantile. Condition (1) becomes

qg(βg) = x∗ for all g ∈G. (2)

Let 0 and 1 be the vector of zeros and ones respectively. For a representative nonintersectional

policy, condition (2) requires q0(β0) = β0 = x∗ which pins down the admissions rule. The condition

further requires qei(βei) = β0 for all 1≤ i≤ n. When policies are rich and commutative, this uniquely

determines each qei (see Lemma 1). Condition (2) also requires q1(β1) = (qe1
◦ · · · ◦ qen)(β1) = β0

or equivalently β1 = (q−1en
◦ · · · ◦ q−1e1

)(β0). For n≥ 2, the set of distributions for which this equality

fails to hold and p(g)> 0 for all g ∈G is open and dense in P (see Lemma 2). This proves part

(a).

Turning to part (b), for a given x∗ the richness assumption provides the existence of a pol-

icy satisfying (2) for every p ∈ P . Such a policy evidently satisfies the capacity constraint since

Pr(qg(x)≥ x∗|g) = α for all g ∈G and thus
∑

g∈GPr(qg(x)≥ x∗|g)p(g) = α. From the conclusion

of part (a), such a policy must be intersectional on an open dense subset of P . �

This demonstrates that generically proportional representation cannot be achieved by a nonin-

tersectional policy based reductively on the identity dimensions such as race, gender, and socioe-

conomic class. Note that the space of permissible nonintersectional policies is large and far more

general than the additive and multiplicative policies used as examples above. For example, if

h :X→ (0,1) is any continuous and strictly increasing function (e.g., a continuous CDF), then the

functions h−1(h(x)a) with a> 0 form a rich and commutative family and can be used to construct

a policy on X. There are many other nonintersectional policies that follow a simple functional

form, as well as ones taking even more complicated forms that would be difficult to describe. What

Theorem 1 says is that, regardless of the family of functions used to construct the policies Q,

as long as the policy can be sensibly applied nonintersectionally (independently across identity

dimensions), then generically the outcome will not be representative.

However, an affirmative action policy can achieve a representative outcome when designed on the

basis of the intersectional groups. Condition (2) shows precisely how to construct an intersectional

policy that eliminates underrepresentation: the scores of each intersectional group must be adjusted

so that they are equal at the (1−α)th quantile. This can be done simply by choosing the αp(g)
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applicants with the highest scores from each intersectional group. That the solution is so simple

weighs in favor of intersectional policies, since it means that they are not necessarily more complex

than nonintersectional policies. Note, however, that the number of intersectional groups grows

exponentially in the number of group characteristics. For example, with binary characteristics the

number of intersectional groups is 2n. Therefore, computational complexity of even this simple

operation can explode as the number of identity dimensions grows.

In fact, using the arguments underpinning Theorem 1, the results readily generalize in various

ways. Firstly, while Theorem 1 considers proportional representation to be the target, it readily

extends to any feasible target.

Definition 3. Given a feasible target representation, that is, w = (wg)g∈G ∈ (0, 1
α

] such that∑
g∈Gwgp(g) = 1, an outcome is w-representative if the representation of each intersectional group

is equal to its w-weighted population share: p̂(g) =wgp(g) for all g ∈G.

From this definition, if for each group we substitute β̃g ≡ F−1g (1−wgα) in place of βg within the

proof of Theorem 1, we obtain the following corollary.

Corollary 1. For generic distributions p∈ P :

(a) There does not exist a nonintersectional policy that yields a w-representative outcome.

(b) There exists an intersectional policy that yields a w-representative outcome.

While our results so far illustrate the limitations of nonintersectional policies, the result we

have proved is actually even stronger. Even if a policy is almost intersectional, it cannot achieve

proportional representation.

Definition 4. A policy is imperfectly intersectional if there are distinct groups g,g′,g′′ ∈ G

satisfying g = g′+ g′′ and for which qg = qg′ ◦ qg′′.

Corollary 2. For generic distributions p ∈ P , there does not exist an imperfectly intersectional

policy that yields a representative outcome.
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That is, even if the policymaker can fashion the affirmative action policy to treat nearly all

intersectional groups separately, if there is even one group whose treatment is nonintersectional,

then the outcome is typically not representative. While the proof of Theorem 1 implies the desired

conclusion for g = 1, the conclusion equally holds for all other groups g. Adapting the argument

from Theorem 1 provides that, for distinct groups g′ ≤ g, the set of distributions A(g,g′)⊂ P for

which qg(βg) = qg−g′(βg−g′) = x∗ implies qg′ ◦ qg−g′(βg) 6= x∗ is open and dense in P , implying that⋃
g∈G

⋃
g′≤gA(g,g′) is open and dense in P .

We can also show that there does not exist a sequence of nonintersectional policies that comes

arbitrarily close to a representative outcome. The representativeness induced by a policy can be

described by the vector ρ = (ρg)g∈G ≡ (|p̂(g)− p(g)|)g∈G, so that ρ ∈ [0,1]n. A representative out-

come is thus given by ρ= 0. Letting ‖ · ‖ denote the Euclidean norm, the following result proceeds

from Theorem 1:

Corollary 3. Generically, for each distribution p, there exists a number c > 0 such that ‖ρ‖> c

whenever the policy is nonintersectional.

The proof is relegated to Appendix B. Hence, generically, the outcome of every nonintersectional

policy is bounded away from a representative outcome.

3.2. When do nonintersectional policies perform well?

A deeper point revealed in the proof of Theorem 1 is that a nonintersectional policy can only achieve

a representative outcome if the score distributions themselves have a specific “nonintersectional”

relationship. This can be formalized as follows. Recall that βg ≡ F−1g (1−α) is the (1−α)th score

quantile.

Definition 5. The environment exhibits independence across identity dimensions if the function

q ∈Q mapping q(βg) = βg′ also maps q(βg−g′) = β0 for all groups g′ ≤ g.6

To interpret this condition, consider the case of gender and race as coded in Example 1. The

condition in Definition 5 means that differences in scores based on race are independent of gender.

That is, the same adjustment required to equalize the scores of black women and white women

at the (1− α)th quantile is required to equalize the scores of black men and white men at the

(1−α)th quantile: q(β(1,1)) = β(1,0) implies q(β(0,1)) = β(0,0).

6As usual, for two vectors a,b∈Rn, a≤ b if and only if ai ≤ bi for each dimension i= 1, ..., n.
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Proposition 1. A nonintersectional policy can achieve a representative outcome if and only if the

environment exhibits independence across identity dimensions.

Proof. First, assume condition (2) holds so that qg(βg) = qg′(βg′) for any two groups. If addi-

tionally g′ ≤ g, then qg = qg′ ◦ qg−g′ , implying qg−g′(βg) = βg′ . From (2) and the normalization of

q0, qg−g′(βg−g′) = q0(β0) = β0. Because the function q ∈Q mapping q(βg) = βg′ is unique (Lemma

1), it is equal to qg−g′ and the desired conclusion holds.

Now, assume q(βg) = βg′ implies q(βg−g′) = β0 for all groups g′ ≤ g. Then defining the functions

qg(βg) = β0 for all g ∈G, we want to show that these functions collectively define a nonintersectional

policy. To prove this, take any two groups with g′ ≤ g and observe that because qg(βg) = qg′(βg′)

we have q−1g′ ◦ qg(βg) = βg′ . By assumption, q−1g′ ◦ qg(βg−g′) = β0 and by definition qg−g′(βg−g′) = β0.

As the function q ∈Q mapping q(βg−g′) = β0 is unique (Lemma 1) we have q−1g′ ◦ qg = qg−g′ and

thus qg = qg′ ◦ qg−g′ , implying that the policy q defined by qg(x) for all x ∈ X and g ∈ G is

nonintersectional. �

The following theoretical example illustrates:

Example 2 (Human Capital and Bias). Suppose that each individual’s human capital x̂ is drawn

independently from a normal distribution with mean µ̂. The decision maker interprets scores in

a biased manner on the basis of an individual’s group affiliation. Specifically, an individual with

human capital x̂ is ascribed a biased score x= x̂− b, where the bias b is drawn independently for a

member of group g from a normal distribution with mean µg and a variance that is common to all

groups. Thus, the biased scores for members of group g are normally distributed with mean µ̂−µg

and variance σ2. Letting Φ denote the standard normal distribution, then the (1− α)th quantile

for each biased score distribution is defined as the number βg satisfying Φ
(
βg−µ̂+µg

σ

)
= 1 − α.

Simplifying this equation, we obtain βg = Φ−1 (1−α)σ+ µ̂−µg.

Supposing the decision maker uses an additive policy, each q ∈Q can be expressed as q(x) = x+δ

for some real number δ. From this and Theorem 1, if a policy q achieves a representative outcome,

then qg(βg) = βg + δg is constant across groups, which is equivalent to requiring δg−µg = δg′ −µg′

for all g,g′ ∈ G. Moreover, if the policy is nonintersectional, then for any g′ ≤ g we have δg =

δg′ + δg−g′. Taken together, these conditions provide the following equalities

µg−µg′ = δg− δg′ = δg−g′ = µg−g′ −µ0.

Thus, the bias to which groups are subject must itself take a specific additive, nonintersectional

form. This is summarized by the following result.
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Corollary 4. For Example 2, a nonintersectional policy achieves a representative outcome if and

only if g = g′+ g′′ implies µg +µ0 = µg′ +µg′′ for all groups.

3.3. Monotone Improvements

We know that nonintersectional policies generically cannot achieve a representative outcome. We

now weaken the requirement and ask whether there are nonintersectional policies that can at least

improve representativeness for all intersectional groups. Let x∗0 be the acceptance threshold and

p̂0(g) =
(1−Fg(x∗0))p(g)∑

g′∈G(1−Fg′ (x∗0))p(g′)
be the representation of group g in the absence of any policy. A group

is overrepresented without a policy if p̂0(g)> p(g) and underrepresented if p̂0(g)< p(g). We can

then define an improvement in representativeness as follows:

Definition 6. A monotone improvement occurs if |p̂(g)− p(g)|< |p̂0(g)− p(g)| for all g ∈G.

Hence, a monotone improvement in representativeness is one that brings all intersectional groups

closer to proportional representation. We find that a nonintersectional policy can only yield a mono-

tone improvement in representativeness if underrepresentation/overrepresentation among intersec-

tional groups follows a certain ordering, as implied by the following proposition.

Proposition 2. Suppose groups 0 and g are overrepresented and there is a group g′ ≤ g such that g′

and g−g′ are underrepresented. Then no nonintersectional policy yields a monotone improvement.

Proof. Toward a contradiction, suppose q is nonintersectional and delivers a monotone improve-

ment, groups 0 and g are overrepresented, and groups g′ and g′′ = g− g′ are underrepresented.

Before introducing a policy, the acceptance rule admits a student if and only if their score x exceeds

the value x∗0 equating
∑

g∈G p(g)(1 − Fg(x∗0)) = α. After introducing the policy, the admissions

cutoff shifts to x∗ equating
∑

g∈G p(g)(1− Fg(q−1g (x∗))) = α. A monotone improvement requires

qg̃(x∗0) < x∗ for any overrepresented group and qg̃(x∗0) > x∗ for any underrepresented group. The

new cutoff must exceed the initial one x∗ > x∗0 as group zero is overrepresented and q0(x∗0) = x∗0.

Thus we have

qg′(x
∗
0)>x

∗ >x∗0

which, because qg′′ is increasing implies

qg′′(qg′(x
∗
0))> qg′′(x

∗)> qg′′(x
∗
0).
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Because qg = qg′ ◦qg′′ and g′′ is underrepresented the preceding inequalities imply qg(x∗0)> qg′′(x
∗
0)>

x∗. But then the policy cannot generate a monotone improvement since g is overrepresented, a

contradiction. �

To make the above condition concrete, return to Example 2 with two-dimensional identities,

n= 2. Suppose groups 0 and 1 are overrepresented at the expense of groups (1,0) and (0,1) who

are underrepresented, for instance when µ(1,0) = µ(0,1) <µ0 = µ1. Then there is no nonintersectional

policy that reduces underrepresentation of group (0,1) without increasing underrepresentation of

group (1,0), and vice versa. The reason is that nonintersectional policies fail to account for negative

spillovers across identity dimensions which can rule out monotone improvements.

There are plausible conditions under which the ordering of representation in Proposition 2 holds.

For example, in the Dutch parliament in 2013 white men and minority women were overrepre-

sented, while white women and minority men were underrepresented (Celis et al. 2014). While in

many cases minority women face a double disadvantage, one reason why the ordering in Propo-

sition 2 (and the Dutch parliament) can arise is because of prior affirmative action policies. If

the measurement of representation is reductive, that is, based on the identity dimensions and not

the intersectional groups, the selection of a minority woman increases representativeness along

two dimensions (race/ethnicity and gender) and is thus a double improvement (see Muegge and

Erzeel 2016). However, this still leaves underrepresentation at the intersectional level. We turn our

attention to this issue in the following subsection.

3.4. Reductive Representation and Hidden Inequality

Structural inequality is an important concept because inequality structured by race, gender, and

other identity characteristics often goes unnoticed when focusing on aggregate measures of income

and wealth inequality. When identities are multidimensional, the basic unit of analysis is the inter-

sectional group. Accordingly, we have defined a representative outcome as proportional represen-

tation across intersectional groups. However, this is not the standard measure in current practice.

Admissions and hiring committees tend to reduce the dimensionality of the problem and pursue the

following (nonintersectional) objective of proportional representation across identity dimensions:

Definition 7. A reductive representative outcome is one in which p̂(gi) = p(gi) for each identity

dimension i= 1, . . . , n.

We now ask whether a nonintersectional policy can at least achieve this reductive objective.
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Proposition 3. For a nonempty open subset of distributions in P , there exists a nonintersectional

policy that achieves a reductive representative outcome.

The proof is relegated to Appendix D. While Proposition 3 may lend some support to nonintersec-

tional policies, it raises the problem of hidden inequality, that is, inequality between intersectional

groups that goes unnoticed. Suppose an admissions/hiring committee designs a nonintersectional

policy to achieve a reductive representative outcome, while gathering data on underrepresentation

along each identity dimension. It is conventional to gather and analyze data in such a nonin-

tersectional manner. On this basis, the committee might conclude that underrepresentation has

been eliminated. But this will only be true for each identity dimension. According to Theorem 1,

generically, at least one intersectional group will remain underrepresentated. Thus, the reductive

approach to structural inequality only goes part of the way and can create a false impression of

having eliminated structural inequality. In fact, the problem could be even worse. A reductive rep-

resentative policy could actually increase the underrepresentation of an underrepresented group.

The following example illustrates.

Example 3. Building on Examples 1 and 2, consider a population in which ten percent of indi-

viduals are black, the remainder are white, and each racial group is evenly split between men and

women. Suppose the biased scores for each group are normally distributed with a mean of zero

for black and white women, a mean of 0.25 for black men, a mean of one for white men, and a

variance of one for all groups. Assume that the decision maker has the capacity to admit half of

the applicants.

Without an affirmative action policy, the decision maker would admit roughly a third of both

black and white women, about 42 percent of black men, and about 71 percent of white men. Now

consider a nonintersectional policy that lifts the scores of women by 0.925 and the scores of black

individuals by 0.375, so that a reductive representative outcome is achieved. While the policy brings

the acceptance rate for white women and white men roughly in line with the capacity, i.e, 50 percent,

the acceptance rate for black men falls from 42 to 37 percent, counterbalanced by an increase for

black women from 32 to 63 percent. See Figure 1.

While the reductive representative outcome has the desirable effect of increasing the representa-

tion for women and black individuals, only attending to these two dimensions (for examples, in

reviews of admissions and hiring practices that only report representation by race and gender) hides

the fact that the policy reduces the representation of black men. This is due to the rivalry inherent

in representation. Even though black men are recipients of affirmative action, the increased accep-

tance of women leads the score admission threshold to increase by an even larger amount, crowding
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Figure 1 Group acceptance rates without an affirmative action policy (gray, solid) and with a nonintersectional

policy achieving a reductive representative outcome (green, chequered). Black dashed line shows the rate

achieving a representative outcome.

out the benefit to black men. Figure 2 further illustrates how the nonintersectional policy achieves

proportional representation along the dimension of race (10—90) and gender (50—50), but reduces

the representation of black men from 4.2 percent to 3.7 percent. This reduction in representation is

due to the resulting overrepresentation of black women, with an increase from 3.2 to 6.3 percent.

Of course, this is one example, and we can construct others in which minority women face a double

disadvantage.

Finally, note that our example does not fulfil the conditions of Proposition 2, so these conditions

are not necessary for there to be no nonintersectional policy that yields monotone improvements

in representation among the intersectional groups. Of course, even if there exist nonintersectional

policies that yield reductive representative outcomes and do not increase underrepresentation of

any underrepresented intersectional group, we know by Theorem 1 that they cannot achieve a

representative outcome.

3.5. Endogenous Score Distributions

We will now show how the score distributions in our model can be made endogenous by adopting

the approach of Fryer and Loury (2013), who study the design of affirmative action policies in a

two-stage environment described below. Their central finding is that restricting affirmative action

policies to be race-blind is inefficient and also fundamentally changes the structure of the optimal

policy. We extend their analysis to multidimensional identities and apply our results. In doing so,

we alter their notation to clarify the connection to our work.

Sometimes making key features of a model endogenous produces non-generic outcomes. Here,

non-generic score distributions could be produced and given these score distributions it could be
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Figure 2 A nonintersectional affirmative action policy that achieves proportional representation along the

dimensions of race and gender, but reduces the representation of black men.

that nonintersectional policies can achieve proportional representation. We find that not to be the

case. Using our results, we show that when score distributions are endogenous and even when

affirmative action policies are permitted to be “sighted” and conditioned on race, nonintersectional

policies will fail to achieve diversity objectives.

In stage 1 of the Fryer-Loury model, individuals decide whether or not to invest in skills, s ∈

{0,1}. An individual’s cost of acquiring skills is a draw from a distribution which depends on

their social identity g ∈G= {A,B}. Let Hg(c) and hg(c) be the cost distribution and density for

members of identity group g ∈ G taking full support on the same interval for all groups. Group

B is disadvantaged in the sense that hB(c)/hA(c) is strictly increasing in c. In stage 2, each

individual’s productivity x is realized. Given skill s, the distribution of productivity is given by

the distribution Fs(x) with support R. We assume F1 to have first order stochastic dominance over

F0. That is, the likelihood of a high productivity draw is higher for those who invested in skills

at stage 1. To simplify the exposition, further assume the support of the cost distributions Hg

contains the interval [0,E(x|s = 1)−E(x|s = 0)]. After observing their productivity, individuals

can purchase one of a fixed number of production opportunities (slots) at the market-clearing price

x∗. Under laissez-faire, all individuals with x≥ x∗ will purchase a slot and produce. Because group

B is disadvantaged in skill acquisition at stage 1, it will be underrepresented among those with

production opportunities at stage 2. Fryer and Loury (2013) show that when sighted affirmative

action policies are permitted, the most efficient policy that achieves a representative outcome is

one which subsidizes the purchase of slots by members of the disadvantaged group at stage 2.7

7When policies are constrained to be blind (cannot be written on the basis of identity), then the most efficient
policy that achieves a representative outcome is one which subsidizes skill acquisition at stage 1.
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Our model has the same deep structure as the Fryer-Loury model. Rather than individuals

purchasing slots if their productivity satisfies x≥ x∗, with the productivity distributions varying

between groups, a decision maker accepts applicants whose scores satisfy x ≥ x∗, with the score

distributions varying among groups. The subsidies to groups in their model are the same as the score

adjustments in ours. Hence we can extend the Fryer-Loury model to multidimensional identities,

g ∈G= {0,1}n, and apply our results. Following the original formulation, let the affirmative action

policy be additive. If a member of group g buys a slot, they receive a payment equal to their

productivity, minus the cost x∗, net of the subsidy/tax δg, i.e., x+δg−x∗. Normalizing the outside

option to zero, such an individual purchases a slot if and only if x+ δg−x∗ ≥ 0.

• An individual in group g with skill s buys a slot with probability Pr(x ≥ x∗ − δg|s) = 1 −
Fs(x

∗− δg).

• The expected payoff to acquiring skills, s= 1, is
∫∞
x∗−δg

(x+ δg−x∗)dF1(x)− c.

• The expected payoff to not acquiring skills, s= 0, is
∫∞
x∗−δg

(x+ δg−x∗)dF0(x).

To simplify notation, let tg = x∗ − δg denote the threshold that the productivity of members of

group g must exceed to buy a slot. As in Fryer and Loury (2013), we can write the benefit to skill

formation as

B(tg) =

∫ ∞
tg

(x− tg)dF1(x)−
∫ ∞
tg

(x− tg)dF0(x)

=

∫ ∞
tg

(1−F1(x))dx−
∫ ∞
tg

(1−F0(x))dx

=

∫ ∞
tg

(F0(x)−F1(x))dx.

Note ∂
∂tg
B(tg) =−(F0(tg)−F1(tg))< 0.

Given cost c, a group g member invests in skills if and only if B(tg)≥ c. The probability that

they invest in skills is therefore Hg(B(tg)). The acceptance rate of group g members, i.e., the share

of group g members who purchase a slot, is therefore:

Rg(tg) =Hg(B(tg))(1−F1(tg)) + (1−Hg(B(tg)))(1−F0(tg))

=Hg(B(tg))(F0(tg)−F1(tg)) + 1−F0(tg).

Computing the change in acceptance as a result of changing tg, we obtain

∂Rg

∂tg
=−hg(B(tg))(F0(tg)−F1(tg))2 +Hg(B(tg))(f0(tg)− f1(tg))− f0(tg)

=−hg(B(tg))(F0(tg)−F1(tg))2− (1−Hg(B(tg)))f0(tg)−Hg(B(tg))f1(tg)< 0.
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Noting that limtg→−∞Fs(tg) = 0 and limtg→∞Fs(tg) = 1, we can also see that limtg→−∞Rg(tg) = 1

and limtg→∞Rg(tg) = 0. Thus, there exists a unique t∗g satisfying Rg(t∗g) = α for each g ∈ G. To

achieve a representative outcome, consider the policy with δ0 = 0, the threshold x∗ equal to t∗0 ≡

R−10 (α), and with δg =R−10 (α)−R−1g (α) for all g. With such a policy, a member of group g buys

a slot with probability α for each group g ∈G and thus the capacity constraint is also satisfied.

Now consider nonintersectional policies which require δg = δg′ + δg′′ for all groups g, g′, and g′′

satisfying g = g′+ g′′. Recall that such a policy normalizes δ0 = 0 so that the cutoff x∗ must equal

t∗0. A nonintersectional policy achieves a representative outcome if and only if g = g′+ g′′ implies

t∗g = x∗− δg = x∗− δg′ − δg′′ = t∗g′ + t∗g′′ − t∗0.

By the same reasoning as Proposition 1, this equality generically does not hold.

Formally, to connect with Proposition 1, we treat the distributions Fs as fixed and let P be

the set of joint distributions over group identity and investment costs such that p(·|g) ∼ Hg is

continuous. Then the conclusion of Proposition 1 holds. In particular, if subsidies are calculated

independently for each identity dimension, this will generically leave one or more intersectional

groups underrepresented. To eliminate all underrepresentation, the subsidies will have to be inter-

sectional, i.e., computed separately for each intersectional group. Precisely how to compute the

intersectional subsidies is given by condition (2) in the proof of Theorem 1 and in this specific case

by the system derived above: δg = R−10 (α)−R−1g (α) for all g ∈G. Thus, our analysis shows how

existing work can be extended to incorporate the effects of multidimensional identities.

4. Conclusion

The economics literature on intergroup inequality and affirmative action is largely focused on the

case of unidimensional identities. This paper has shown that when identities are multidimensional,

structural inequality generically cannot be eliminated using conventional nonintersectional poli-

cies, even approximately. For an open set of conditions, a reductive representative outcome can

be achieved in which underrepresentation is eliminated along each identity dimension. However,

underrepresentation at the intersectional level will persist. Of course, the simplicity argument for

nonintersectional policies remains, as the number of intersectional groups grows rapidly in the

number of identity dimensions. Our framework is flexible and can be extended in a number of direc-

tions, including new ways of making the score distributions endogenous. Our work also points to an

empirical research program on how multidimensional identities shape the evolution of intergroup

inequality and the effectiveness of affirmative action policies.
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In addition to the problems with non-intersectional policies set out in this paper, there are other

fundamental challenges in designing affirmative action policies when identities are multidimen-

sional. These include whether affirmative action policies strengthen existing identities and forms of

division, how to define the set of relevant identities, and how to account for the manipulability of

identity, either through some form of “passing” or misrepresentation.8 For example, if the precise

identity dimensions we care about and the values along each dimension are determined by a polit-

ical process, it is not clear that this process will ever settle on a reasonable number of identities.

It could be that there is an endless demand for introducing new identity dimensions, so that the

design problem blows up. These issues are covered in some detail in Carvalho and Pradelski (2022,

Section 5). One potentially fruitful way to proceed both theoretically and empirically is to examine

how to design affirmative action policies that are robust to identity manipulation.

Appendix A: Generalizing

In this appendix, we show that our definition of nonintersectional policies does not rely on the particular labels

used for the groups. We generalize by defining a policy q to be nonintersectional∗ if qg ◦qg′ = qg∨g′ ◦qg∧g′ .9

First, we show how applying a normalization produces the simpler definition used in the text.

Proposition 4 (Normalize). Let g∗ ∈G be a group. If q is a nonintersectional∗ policy, then so is the policy

r defined by rg ≡ q−1
g∗ ◦ qg for all g ∈G.

Proof. We have:

rg ◦ rg′ = q−1
g∗ ◦ q−1

g∗ ◦ qg ◦ qg′ = q−1
g∗ ◦ q−1

g∗ ◦ qg∨g′ ◦ qg∧g′

= rg∨g′ ◦ rg∧g′ .

Notice that for group g∗, rg∗(x) = (q−1
g∗ ◦qg∗)(x) = x for all x∈X. Thus, if g∗ = 0 then for g′ ≤ g, rg−g′ ◦rg′ =

rg ◦ r0 = rg. �

Next, we show that if a policy is nonintersectional∗, then it remains so if we relabel the groups.

Proposition 5 (Relabel). Suppose the policy q is nonintersectional∗. Let g∗ be a group and relabel all groups

according to the mapping h(g) = |g− g∗|. Then the policy r defined by rh(g) = qg for all g ∈ G is likewise

nonintersectional∗.

Proof. First observe that from the definition of a nonintersectional∗ policy: qg−giei ◦ qgiei = qg ◦ q0 for

1≤ i≤ n. Repeated application of this observation yields

qg = q0 ◦ (q−1
0 ◦ qg1e1) ◦ · · · ◦ (q−1

0 ◦ qgnen). (3)

8See for example Cassan (2015) on the manipulation of caste identity to benefit from land redistribution. Note
that the definition of identity groupings and the competition for policy attention is the theme of a vast literature in
sociology, e.g., Brekhus et al. (2010), Schroer (2019).

9Equivalently, g = g′+g′′ implies qg ◦ q0 = qg′ ◦ qg′′
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It is enough to prove that the claim is true for g∗ = ei for 1≤ i≤ n. For simplicity of notation but without

loss of generality, consider g∗ = e1. As h(0) = e1 and h(e1) = 0, we have re1 = q0 and r0 = qe1 . For i > 1,

h(e1 + ei) = ei and so

rei = qe1+ei = q0 ◦ (q−1
0 ◦ qe1) ◦ (q−1

0 ◦ qei) = q−1
0 ◦ qe1 ◦ qei

= q−1
0 ◦ r0 ◦ qei

and so q−1
0 ◦ qei = r−1

0 ◦ rei . Denoting h(g) = (h1, . . . , hn), for i > 1, hi = gi and h1 = 1− g1. Furthermore,

qg1e1 = rh1e1 . Combining these observations, (3) can be written

rh(g) = qg = q0 ◦ (q−1
0 ◦ rh1e1) ◦ (r−1

0 ◦ rh2e2) ◦ · · · ◦ (r−1
0 ◦ rhnen)

= r0 ◦ (r−1
0 ◦ rh1e1) ◦ (r−1

0 ◦ rh2e2) ◦ · · · ◦ (r−1
0 ◦ rhnen). (4)

Since h :G→G is a bijection, for all groups h′ ∈G there is a group g ∈G such that h′ = h(g); hence, rh′

can be formulated as in (4). Using this formulation, it follows immediately that r is nonintersectional∗. �

Appendix B: Technical details for Theorem 1 and Corollary 3

Throughout, Q⊂XX is maintained to be a rich and commutative family of increasing bijections. Recall that

Q is rich if for each pair x, y ∈X there is a function q ∈Q satisfying q(x) = y and commutative if q, q′ ∈Q

implies q ◦ q′ = q′ ◦ q.

The first lemma characterizes several useful properties of the set Q.

Lemma 1. The family of functions Q holds the following properties.

(a) Each q ∈Q is continuous.

(b) The function mapping x to y is unique for each x, y ∈X.

(c) Q contains the identity function.

(d) Q is closed under composition: q, q′ ∈Q implies q ◦ q′ ∈Q.

(e) Q contains its inverses: q ∈Q implies q−1 ∈Q.

Proof. (a) Each q ∈Q is continuous because it is an increasing bijection.

(b) Suppose there are two functions q and q′ in Q satisfying q(x0) = q′(x0) for some x0 ∈X. For any x∈X,

richness provides the existence of a function q′′ in Q satisfying q′′(x0) = x. Thus q′′(q(x0)) = q′′(q′(x0)) and

commutativity implies q(q′′(x0)) = q′(q′′(x0)) and so q(x) = q′(x) for all x∈X.

(c) To prove that Q contains an identity function, for a given x0 ∈X there is a function q ∈Q satisfying

q(x0) = x0. For an arbitrary x∈X and a function q′ ∈Q satisfying q′(x0) = x

x= q′(x0) = q′(q(x0)) = q(q′(x0)) = q(x)

and thus q(x) = x for all x∈X.

(d) To verify that Q has the closure property, for any q, q′ ∈ Q and x0 ∈X, there is a function q′′ ∈ Q

for which q(q′(x0)) = q′′(x0). For any x ∈X and q′′′ ∈Q for which q′′′(x) = x0 the commutativity property



Carvalho, Pradelski, and Williams: Affirmative Action with Multidimensional Identities
23

provides that q′′′(q(q′(x)) = q′′′(q′′(x)) and thus q(q′(x)) = q′′(x) for all x ∈X. Therefore, for every q, q′ ∈Q

there exists q′′ ∈Q such that q ◦ q′ = q′′.

(e) To show that Q contains its inverses, for a function q ∈Q and a point x0 ∈X, there is another function

q′ ∈Q satisfying q′(q(x0)) = x0. The closure property (d) implies q ◦ q′ ∈Q which must mean that q ◦ q′ is the

identity function as (b) and (c) provide that it is the unique function in Q admitting a fixed point. Thus,

q′ = q−1. �

Observe that by taking together properties (c)-(e), the commutativity assumption, and the associativity

of functional composition, (Q,◦) takes the form of an abelian group. Two additional conclusions follow

immediately from this lemma. From (a) and (b), the functions in Q are ordered in the sense that q(x)> q′(x)

for some x ∈X implies q(x′)> q′(x′) for all x′ ∈X. Since Q contains the identity function, this conclusion

further implies that each function either increases scores, decreases scores, or leaves them constant, i.e., for

all q ∈Q the sign of q(x)−x is constant.

Lemma 2. Assume Q to be rich and commutative. The subset of p for which β1 6= (q−1
en
◦ · · · ◦ q−1

e1
)(β0) (with

qei(βei) = β0 for 1≤ i≤ n) and p(g)> 0 for all g ∈G is open and dense in P .

Proof. First, let us show that the subset A=
{
p∈ P : β1 = (q−1

en
◦ · · · ◦ q−1

e1
)(β0)

}
is closed. Toward a con-

tradiction, let {pγ}γ∈Γ be a net in A converging to p ∈ Ac. Let (βg)g∈G be defined with respect to p and

(βγg )g∈G be defined with respect to pγ for each γ ∈ Γ. By the definition of weak∗ convergence, for any ε > 0,

F γ
g (βg− ε)→ Fg(βg− ε)< 1−α, F γ

g (βg + ε)→ Fg(βg + ε)> 1−α.

Hence, βγg converges to βg for all g ∈ G. Thus, there exists γ0 such that γ ≥ γ0 implies βγ1 6=∑n

i=1 β
γ
ei
− (n − 1)βγ0 contradicting the assumption that {pγ}γ∈Γ is a net in A. Furthermore, B =

{p∈ P : p(g) = 0 for some g ∈G} is closed and thus (A∪B)c is open.

Finally, to show (A ∪B)c is dense in P , let p ∈ A ∪B and let {pγ}γ∈(0,1) be a net with F γ
g = Fg for all

γ ∈ (0,1) and g 6= 1, pγ(g) = p(g)γ+ p′(g)(1− γ) where p′(g)> 0 for all g ∈G, F γ
1 = F1γ+F ′1(1− γ) where

F1(β1) 6= F ′1(β1).10 As {pγ}γ∈(0,1) is a net in (A∪B)c that converges to p, it follows that p is in the closure

of (A∪B)c. As the choice of p∈A∪B was arbitrary, (A∪B)c is dense in P . �

Proof of Corollary 3. Toward a contradiction, suppose there is a distribution p for which no noninter-

sectional policy achieves a representative outcome, but there is a sequence of nonintersectional policies

{qm} with corresponding score thresholds {xm} such that, for all ε > 0 there is an index mε satisfying

‖ρ(qm, xm)‖< ε if m≥mε. Continue to denote the 1−αth score quantile by βg = F−1
g (1−α) for each group

g ∈G. It must be that xm→ x∗ ≡ β0 or else ρ0 is bounded away from zero. Similarly, denoting qm = (qmg )g∈G,

it must also be that qmei(βei)→ x∗ for each i = 1, ..., n or else some ρei is bounded away from zero. But

then, letting q be the unique nonintersectional policy satisfying qei(βei) = x∗ for all i= 1, ..., n, we have that

supx∈X ‖qm(x)−q(x)‖→ 0 and xm→ x∗, and thus the nonintersectional policy q achieves a representative

outcome with score threshold x∗, a contradiction. �

10Notice that P includes the family of normal distributions {N (µ,1)}µ∈R for the conditional distributions Fg and
so we can find such an F ′1.
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Appendix C: Proof of Proposition 3

To prove Proposition 3, we (i) restate the problem in simpler terms, (ii) provide a sufficient condition on a

distribution p̄ guaranteeing that each p in a neighborhood of p̄ has a nonintersectional policy that achieves

a reductive representative outcome, and (iii) give a simple example of one such distribution p̄ satisfying the

condition.

There are settings in which the nonintersectional policy achieving a reductive representative outcome is

easily computed. Building on Example 1, suppose scores are normally distributed with mean µg, variance

one, and the policy adds a to the scores of women and b to the scores of black individuals. Letting Ri denote

the acceptance rate for i= 1 women and i= 2 black individuals, the total acceptance rate can be written

simply as

S =
1

4
(1−Φ(x∗−µ0)) +

1

2
R1 +

1

2
R2 +

1

4
(1−Φ(x∗−µ1− a− b))

A reductive representative outcome requires R1 = R2 = S = α. Rearranging the above expression, these

equalities imply Φ(x∗ − µ0) = Φ(x∗ − µ1 − a− b) and thus µ0 = µ1 + a+ b. Writing out the expressions for

R1 and R2, one also finds that µ(1,0) +a= µ(0,1) + b. Thus the unique nonintersectional policy that achieves

a reductive representative outcome is characterized by

a=
µ0−µ(1,0) +µ(0,1)−µ(1,1)

2
and b=

µ0 +µ(1,0)−µ(0,1)−µ(1,1)

2
.

Inputting these values for a and b guarantees R1 = R2 = S for all threshold values and thus a straight-

forward application of the intermediate value theorem provides that a unique threshold x∗ equates each of

these functions with α. �

Appendix D: Proof of Proposition 3

It is useful to parameterize the functions in Q. To do this, fix some x0 ∈X and let r(·|θ) be the function

q ∈Q for which q(x0) = θ. Using Lemma 1, it is straightforward to prove that r(x|θ) is continuous in θ for all

x, θ ∈X. Notice that the mapping q 7→ θ represents an isomorphism: For each q ∈Q there is a unique θ ∈Θ

satisfying q(·) = r(·|θ) and for each θ ∈X there is a unique q ∈Q satisfying r(·|θ) = q(·).

If a policy is nonintersectional, then it is determined by the score adjustments qei for i= 1, ..., n. Using

our parameterization, a nonintersectional policy q can be characterized by the vector θ ∈ Xn satisfying

qei = r(·|θi) for all i= 1, ..., n. For a given group g, we can write the function adjusting its scores in terms

of the parameterization explicitly as rg(·|θ) = r(·|θ1 · g1 + (1− g1) · x0) ◦ · · · ◦ r(·|θn · gn + (1− gn) · x0). We

can therefore write the acceptance rate for individuals belonging to dimension i = 1, . . . , n when the score

threshold is x∗ as

Ri(θ, x
∗) =

∑
g∈G

(1−Fg(r−1
g (x∗|θ)))p(g|gi = 1).

The total acceptance rate is

S(θ, x∗) =
∑
g∈G

(1−Fg(r−1
g (x∗|θ)))p(g).
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The goal is to find a vector (θ, x∗)∈Xn+1 satisfying Ri(θ, x
∗) = α for i= 1, ..., n and S(θ, x∗) = α.

Let t(θ) be the unique threshold satisfying S(θ, t(θ)) = α. Suppose that for a distribution p̄∈ P there are

two vectors a,b∈Xn satisfying

Ri(ai,θ−i, t(ai,θ−i))<α<Ri(bi,θ−i, t(bi,θ−i)) for all θ−i ∈×j 6=i[aj , bj ]. (5)

For example, the following are two natural conditions that guarantee (5) is satisfied.

1. There exist a,b∈Xn for which Ri(a, t(a))<α<Ri(b, t(b)) for all i= 1, . . . , n.

2. Ri(θ, t(θ)) is decreasing in θ−i for all θ ∈ [a,b].

When (5) holds, the Poincaré-Miranda Theorem provides that there exists a vector θ∗ ∈ [a,b] satisfying

Ri(θ
∗, t(θ∗)) = α for all i= 1, . . . , n. Thus, the nonintersectional policy with qei(·) = r(·|θ∗i ) for all i= 1, . . . , n

and the threshold x∗ = t(θ∗) achieves a reductive representative outcome.11

To complete the proof, we show that for any distribution p̄ satisfying (5), each p in a neighborhood of a p̄

likewise satisfies (5) and then demonstrate the existence of a p̄ satisfying (5).

Lemma 3. Suppose that for p̄ ∈ P there exist a,b ∈Xn such that (5) is satisfied. Then (5) is satisfied by

all p in a neighborhood of p̄.

Proof. Let us explicitly include the distribution p as an argument in the functions so that t(θ, p) satisfies

S(θ, p, t(θ, p)) = α when the distribution is p.

We can first verify that t(θ, p) is continuous in p∈ P for all θ ∈Xn by noting that

arg max
x∗[0,1]


−α2 if x∗ = 0

− (S(θ, p, x∗)−α)
2

if 0<x∗ < 1

−α2 if x∗ = 1

is a singleton and applying the Berge Maximum Theorem (see Aliprantis and Border 2006, Theorem 17.31).

Next, since A−i =×j 6=i[ai, bi] is compact, by a second application of the Berge Maximum Theorem

mi(θi, p) = max
θ−i∈A−i

Ri (θ, p, t(θ, p))

is continuous in θi and p. Because mi(ai, p̄)<α<mi(bi, p̄) there is a neighborhood Ui of p̄ such that, if p is

in this neighborhood, then mi(ai, p)<α<mi(bi, p). Thus, for all p∈∩ni=1Ui, (5) is satisfied. �

Lemma 4. There exists a distribution p̄∈ P satisfying (5).

Proof. Consider a distribution p̄ for which p̄(g ∈ {ei}ni=1) + p̄(g = 0) = 1, p̄(g = 0) ∈ (0,1), and the score

distributions are the same for all groups Fg = F for all g ∈G. The acceptance rates simplify to Ri(θ, t(θ)) =

1− F (r−1
ei

(t(θ)|θ)). Given a threshold, let R0(t)≡ 1− F (t(θ)) denote the acceptance rate of group 0. The

total acceptance rate likewise simplifies to

S(θ, t(θ)) =

n∑
i=1

Ri(θ, t(θ))p(ei) +R0(t(θ))p(0).

11For a simple statement of the Poincaré-Miranda Theorem, see Fonda and Gidoni (2016, Theorem 1).
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An increase in the adjusted scores θ≤ θ′ implies an increase in the score threshold t(θ)≤ t(θ′). Because the

score distributions are the same for all groups, for any a = (a, . . . , a) and b = (b, . . . , b) with a < x0 < b we

have Ri(a, t(a))<R0(a, t(a))<Ri(b, t(b)) and thus Ri(a, t(a))<α<Ri(b, t(b)) for all i= 1, . . . , n. Finally,

because θ−i only enters Ri through the threshold t, it follows that Ri(θ, t(θ)) is decreasing in θ−i for all

i= 1, . . . , n and θ ∈Xn. �

Acknowledgments

to fill

References

Akerlof GA, Kranton RE (2000) Economics and identity. Quarterly Journal of Economics 115(3):715–753.

Akerlof R (2017) Value formation: The role of esteem. Games and Economic Behavior 102:1–19.

Aliprantis CD, Border KC (2006) Infinite Dimensional Analysis: A Hitchhiker’s Guide (Springer Science &

Business Media).

Altonji JG, Blank RM (1999) Race and gender in the labor market. Handbook of Labor Economics 3:3143–

3259.

Arrow KJ (1973) The theory of discrimination. Ashenfelter O, Rees A, eds., Discrimination in Labor Markets,

3–33 (Princeton, NJ: Princeton University Press).

Athey S, Avery C, Zemsky P (2000) Mentoring and diversity. American Economic Review 90(4):765–786.
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