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In this review, we assess the status of computational modelling of
pathogens. We focus on three disparate but interlinked research
areas that produce models with very different spatial and tem-
poral scope. First, we examine antimicrobial resistance (AMR).
Many mechanisms of AMR are not well understood. As a result, it
is hard to measure the current incidence of AMR, predict the
future incidence, and design strategies to preserve existing an-
tibiotic effectiveness. Next, we look at how to choose the finite
number of bacterial strains that can be included in a vaccine. To
do this, we need to understand what happens to vaccine and non-
vaccine strains after vaccination programmes. Finally, we look at
within-host modelling of antibody dynamics. The SARS-CoV-2
pandemic produced huge amounts of antibody data, prompt-
ing improvements in this area of modelling. We finish by dis-
cussing the challenges that persist in understanding these
complex biological systems.
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Introduction

Computational infectious disease modelling is the attempt to
approximate the real-world biological processes of pathogen
transmission, control, and evolution using mathematical and/or
simulation-based techniques. In this review, we provide an over-
view of three distinct branches of disease modelling and consider
the methods, approaches, and challenges within them. First, we
explore the difficulties of modelling the problem of antimicrobial
resistance (AMR). Correctly understanding the biological mecha-
nisms driving AMR is highly complex and involves many pathogens
and demographies, which makes accurately predicting changes in
the prevalence of AMR difficult to achieve using models. Never-
theless, the outputs of these AMR prevalence models are fed into
further models that try to predict the long-term health and eco-
nomic impacts of AMR at a global scale.

We next consider the challenges of estimating how vaccines
will alter subsequent pathogen evolution, focusing on the

bacterial colonisers of the upper respiratory tract, Neisseria
meningitidis and Streptococcus pneumoniae. The modelling in
this section predicts the dynamics of competing bacterial strains
that result from vaccinating human populations. Finally, we
consider models of within-host immune response, primarily for
COVID-19. Traditionally, one difficulty in modelling viral or anti-
body kinetics was a lack of high-quality data. However, for COVID-
19, and an increasing number of other pathogens, modellers have
access to more and better data than ever before. New approaches
to modelling antibody kinetics must be developed for modelling
data of a quality and quantity that was previously thought
unobtainable.

These three examples were chosen to give a sufficient variety in
the spatial and temporal scope of the modelling work. We cover
changes in the antibodies levels within one person over a matter of
months, changes in the bacterial strains within a vaccinated
population in the years following a vaccination campaign, right
through to global estimates of the impact of worsening AMR over
the next few decades. Despite their differing scopes and meth-
odologies, we will try to identify broad trends and challenges
shared across these three fields of modelling. Where possible, we
will also link our discussion in each of these examples to the COVID-
19 pandemic, where computational modelling was used extensively
and brought infectious disease modelling to the forefront of sci-
entific and public consciousness.

The original emphasis of modelling was on using mathematical
analysis tools to understand the qualitative behaviour of a “model,”
defined by a system of equations. Knowing how the behaviour of a
model changes over time for certain combinations of parameter
values can lead to useful qualitative insights regarding the real-
world biological system, insights that might not be obvious without
the use of models as an explanatory tool. In contrast, we think that
contemporary modelling places greater emphasis on statistical and
computational machinery, allowing the available data to guide the
form of the equations within the model. The aim is to use the ability
of the model to predict the data as evidence to accept or reject
different model structures, each ideally corresponding to different
hypotheses about the biological system being studied.
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To give an example of the changes in the approach to infectious
disease modelling over time, we will briefly turn to malaria mod-
elling. An early and influential malaria transmission model was the
Ross-MacDonald model that was in development from the 1950s to
the 1970s. The Ross-MacDonald model began with modellers trying
to inscribe their existing theories of the process of malaria
transmission in the structure of mathematical equations. From a
few basic assumptions of how transmission works, an equation was
derived for the reproduction number (R0, the average number of
secondary infections for each new infection). Despite the fact that
this model was not fitted to data on malaria cases, it provided
considerable insights into strategies that might control malaria
transmission.

In the Ross-MacDonald model, R0 turns out to have a linear
relationship to all model parameters, except for the biting rate on
humans which has a quadratic effect, and mosquito survival which
has an approximately cubic effect (Smith et al, 2012). Therefore,
reducing the biting rate and mosquito survival has a larger impact
on reducing R0 than the other parameters. This model-derived
insight supported early malaria eradication efforts through indoor
spraying with the insecticide DDT. It is also the rationale behind
current malaria prevention tools: insecticide treated bed nets that
both kill mosquitoes and provide a physical barrier preventing
them from biting people. Although this result has had a positive
effect on malaria control to date, the concern that motivated a
move towards a more data-led contemporary modelling approach
over time is that this result, derived from the mathematical
structure of the model, is only applicable if the model is a “good
enough” approximation of real-world malaria transmission. A
contemporary example of malaria transmission modelling con-
sidered multiple structural forms for the model equations,
choosing between them based on their ability to best explain the
data from experimental settings and long-term malaria incidence
trends over multiple countries (White et al, 2011).

Returning to speaking of modelling more generally, con-
temporary modelling practice usually involves some form of
data-based model selection from a set of biologically plausible
candidate models. The model fit is evaluated predominantly on the
model’s ability to predict the values of the same data that it is fitted
to, combined with a penalty for model complexity that aims to
prevent “overfitting” the model to finite data. This sort of model
selection only measures predictive power compared to the other
candidate models, the best model of the set may still predict poorly.
Two different modelling approaches emerge here: the “scientific”
approach, which is more concerned with linking model development
and model fitting to answering scientific questions, and the “prag-
matic” approach, which searches for the model with the best ob-
jective predictive accuracy for use in practical decision making
(Navarro, 2019). The two approaches may not always select the same
“best” model. Which approach is followed should depend on what
the model is being developed for and what sort of questions it is
being designed to answer.

Most of infectious disease models split the population into
separate compartments that represent the different states of
disease (susceptible, infected, recovered, etc.). The flow of people
between the compartments can be deterministic, typically repre-
sented by a system of coupled differential (or difference)

equations; or stochastic, represented as a set of rules describing
the probability that individuals move between compartments over
time. Model complexity can vary depending on the detail of
available data and the structure required tomodel a given problem.
Often models further split the population by age, spatial structure,
or behaviour.

Alternatively, individual-based models simulate individuals
following rules describing the probability that they transition be-
tween disease states. Here, each individual’s specific disease state
is tracked rather than the total number of individuals within each
disease state like in compartmental models. This approach can
provide more granular estimates than compartmental modelling,
especially if individual-level data are available to parameterise the
model accurately. Because of the great interest in SARS-CoV-2, and
the resulting colossal data collection, a number of recent studies
modelled the spread of SARS-CoV-2 using detailed individual-level
and/or household-level data. For example, Ferretti et al (2023),
arrived at time-dependent estimates of the probability an indi-
vidual would be infected with SARS-CoV-2 after they were
exposed—a key quantity crucial for parameterising other models of
COVID-19 transmission. We now turn to our case studies, before
discussing the common threads alluded to across the the studies.

Modelling of AMR

AMR refers to the general problem of microbial pathogens which
are able to withstand treatment with antimicrobials. By convention,
AMR is often used to refer to the problems of resistance to anti-
biotics in bacteria, but it should be noted that the term can also be
used to encompass resistance in fungi (antifungal resistance) and
viruses (antiviral resistance). AMRmodelling is more disparate than
for other pathogen threats (e.g., viral epidemics) because it is a
diffuse cross-pathogen threat. For our purposes, we can treat
modelling of AMR as falling into three broad areas: calculating the
levels of AMR, explaining why we observe those levels, and
informing us how to reduce them. Rather than aiming to be
comprehensive, we first introduce the general features of AMR
before giving some clear case studies for each area.

The full complexity of AMR is beyond the scope of this review, but
it is a diverse set of phenomena driven by diverse biological
mechanisms (Darby et al, 2023). Depending on the question,
modelling of AMR pathogen threats may not need to engage with
the genetically determined complexity of AMR. For example, in
November 2016, an outbreak of typhoid fever in the Sindh region of
Pakistan of an extensively drug-resistant (XDR) form of Salmonella
Typhi caused global concern (Klemm et al, 2018). XDR Typhi quickly
became the dominant cause of typhoid fever in Pakistan: from no
cases in 2017 to 50% of cases in 2019 (Nizamuddin et al, 2021). The
presence of XDR Typhi could be determined from its phenotypic
resistance profile and so it could be modelled as a new and
separate pathogen to “regular” Typhi. The underlying biological
causes of the resistance—a combination of new resistance genes
(including on a plasmid) as well as mutations in a chromosomal
gene—did not need to be incorporated into models of its spread. A
modelling analysis assessed the global risk of further outbreaks of
XDR Typhi using air travel data in combination with reported cases,
finding that countries with more passengers arriving from Pakistan
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were far more likely to have cases (Walker et al, 2023). This analysis
highlighted the probable existence of unreported cases in coun-
tries with high air traffic with Pakistan (Saudi Arabia, Turkey, and
Malaysia) as well as countries at high risk of XDR Typhi outbreaks.
Afghanistan was judged at high risk of XDR Typhi outbreaks given its
already high incidence of typhoid cases and high connectivity to
Pakistan.

This analysis had clear public health implications, but a common
reason for developing computational models of AMR is to better
understand the drivers of resistance to help us work out how to
reduce it. The fact that AMR is inherently an ecological problem
makes this more challenging thanmodelling a single pathogen with
an “SIR”-typemodel of transmission. To take an important example:
Escherichia coli is a diverse species, with subtypes including
common gut commensal strains, but also phenotypically quite
different strains that cause opportunistic extraintestinal infections.
Both subtypes may be either sensitive or resistant to a given an-
tibiotic. Resistance genes can be carried and exchanged between
both commensal and pathogenic strains—or even with other
bacterial species—and resistance to one antibiotic may be corre-
lated with resistance to another. The boundaries of what needs to
be included in a model to accurately capture the system are un-
clear. Not only that, but the underlying data quality is often poor
because of a bias towards sequencing resistant isolates, varying
regional surveillance capacity and sometimes a lack of stand-
ardisation between laboratories. This is part of the reason that AMR
modelling is less advanced than for other pathogen threats. As we
argue in what follows, modelling must tackle these data challenges
now rather than waiting for better data.

Calculating the incidence of AMR
How much of a problem is AMR? Answering the question requires
modelling. Well-known statistics about AMR are often the products
of models. For example, the much-cited O’Neill report commis-
sioned by the British government stated that AMR could cause 10
million deaths a year by 2050 (O’Neill, 2016). This alarming statistic
was based on analysis commissioned from two consultancy firms,
KPMG and Rand, which do not go into much methodological detail
(KPMG LLP, 2014). Criticising the “10 million deaths by 2050” figure,
de Kraker et al noted it came from a hypothetical scenario where
infection rates doubled and resistance rates rose by 40 percentage
points then remained stable—strong assumptions without data
supporting them (de Kraker et al, 2016). De Kraker et al argued that
“modeling future scenarios using unreliable contemporary esti-
mates is of questionable utility.”

More recently, a Global Burden of Disease study tried to estimate
the current burden of AMR—or, strictly speaking, the burden of 23
key pathogens and 88 pathogen-drug combinations across 204
countries in 2019 (Ranjbar & Alam, 2023). By considering the
counterfactual scenario where every resistant infection was instead
a sensitive infection, Murray et al (2022) aimed to estimate the
number of deaths that were directly attributable to AMR. After a
complex modelling process involving sub-models for each path-
ogen, their final estimate was 1.27 million deaths, with a 95% un-
certainty interval of 0⋅91 – 1⋅71 million derived by propagating
uncertainty through models and taking quantile ranges from the
posterior distribution of parameters.

It is worth highlighting how much modelling is behind this
headline figure. First, because causes of death are rarely coded
using pathogen or resistance profile but rather by infectious
syndromes with diverse underlying microbial causes, the au-
thors used models to relate syndromes to pathogens. Second,
poor data availability meant that the authors used models to
generate data for the next stage of modelling. Their final esti-
mates are necessarily built up from a succession of models, with
“10 estimation steps that occur within five broad modelling
components” that hierarchically create inputs for the next
models: from models at the level of infectious syndromes, to
case-fatality ratios, pathogen distributions, the fraction of re-
sistance, and finally the relative risk of resistant versus sus-
ceptible infections. Making such a complex set of models across
pathogens is clearly a difficult task and models may miss aspects
known to be important for a particular pathogen. For example,
the model for S. pneumoniae did not account for serotype re-
placement after vaccination.

Murray et al (2022) acknowledged significant limitations, in-
cluding a lack of data from many low- and middle-income coun-
tries. Indeed, 19 countries had no available data at all for any aspect
of the study’s modelling. This lack of data is particularly prob-
lematic given that, where data are available, it suggests that AMR is
much more of a problem in low- and middle-income countries.
Data scarcity—because of systematic global inequalities—has been
highlighted again and again in the context of AMR. However, even
where we have good data, the situation is far from clear because
our ability to explain resistance with simple models is poor.

Explaining observed levels of resistance
In its fundamentals, AMR is an evolutionary process: an effective
antimicrobial exerts a selective pressure for resistance. Put so
starkly, AMR might appear like a trivial problem to model. We know
that increased usage of an antibiotic should lead to more prevalent
resistance. But despite this, predicting population-levels of resis-
tance is surprisingly difficult. To take a simple example, consider a
pathogen with two subpopulations: a sensitive strain and a re-
sistant strain. Assuming the resistant strain is fitter in the presence
of antibiotics, this simple model would predict competitive ex-
clusion: there will be a level of antibiotic prescribing below which
the sensitive strain dominates and above which the resistant strain
dominates. But empirically, we usually observe the persistent co-
existence of sensitive and resistant strains overmany years, such as
for Streptococcus pneumoniae (Lehtinen et al, 2017; Blanquart,
2019).

Many possible model structures can reproduce some form of this
coexistence. One early effort used a Monte Carlo simulation of
10,000 human hosts that could exchange bacteria with the envi-
ronment, in effect producing a “migration-selection balance”where
an influx of sensitive strains balanced the selection of resistant
strains (Levin et al, 1997). Although many other model structures
can also reproduce coexistence patterns, one group of authors
argued that models should have no intrinsic mechanism that
promotes stable coexistence of strains that are otherwise indis-
tinguishable. Otherwise, models can artificially increase the con-
ditions under which coexistence occurs, rather than explaining it
realistically (Lipsitch et al, 2009).
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The same group of authors compared related models, where a
host could be infected by both sensitive and resistant strains at the
same time (represented by two equally sized compartments)
concluding that within-host interactions play amore important role
in coexistence than treatment and contact heterogeneity (Colijn
et al, 2010). A more recent study criticised this model, arguing that
the subcompartment assumptions (amounting to equal abundance
within a host) inhibited coexistence by reducing the scope for
within-host competition (Davies et al, 2019b). Those authors argued
for a “mixed-carriage” model that explicitly tracks within-host
strain frequencies, arguing that this outperformed the previous
model when capturing the relationship between national antibiotic
consumption and resistance prevalence in E. coli and S. pneu-
moniae. However, Davies et al did not use any real within-host data.
Similar models accounting for maintained structure and separation
in the host population, or structure within the pathogen population,
have also been adapted to attempt to explain observed frequencies
of multiple resistance (Lehtinen et al, 2019).

Some modelling efforts do not try to explain in term of mech-
anisms but combine antibiotic prescribing data (from electronic
health records) with resistance data from longitudinal surveys and
look for time–series correlations. These correlations can be
modelled with elastic net regularisation and generalised boosted
regression models. Such models have highlighted that use of one
antibiotic can correlate with resistance to other antibiotics, either
because of shared resistance mechanisms or the genetic linkage of
resistance genes. One analysis of antibiotic use in primary care in
England found that regional levels of resistance to trimethoprim (a
sulfonamide antibiotic) were better explained by prescribing levels
of amoxicillin than by prescriptions of trimethoprim itself (Pouwels
et al, 2018). Amoxicillin prescribing was also correlated with re-
sistance to ciprofloxacin, a different class of antibiotic (Pouwels
et al, 2019).

AMR varies seasonally, and this can be captured using oscillatory
models with a period of 1 yr. A recent study of AMR in the USA
showed that resistance to all antibiotic classes wasmost correlated
with the use of penicillins and macrolides, the most highly pre-
scribed antibiotic classes (Sun et al, 2022a). Usage typically peaks in
winter, suggesting that seasonal selection is dominated by only
some antibiotic classes. There are many further complications of
the use-resistance relationship: for example, high levels of resis-
tance can lead to reduced use of an antibiotic because it is less
likely to be effective. Reducing antibiotic prescribing is one obvious
action to take to reduce AMR, but understanding how effective our
actions will be requires modelling.

Informing appropriate action
As well as helping us to understand the underlying evolutionary
processes that produce patterns of AMR, computational models
would ideally help us to use antibiotics more effectively by fore-
casting what might happen with different scenarios of use.

To take just one example, it might seem reasonable that a new
antibiotic should be held in reserve to prolong its clinically useful
lifespan. A recent study used a model to inform how a hypothetical
new antibiotic for resistant infections would best be deployed to
increase the time taken for resistance to reach a 5% prevalence
threshold (Reichert et al, 2023). The researchers focused on

Neisseria gonorrhoeae infections in men who have sex with men.
They used a compartmental transmission model where men are
stratified into three levels of sexual activity and can all move
between different infection states, both symptomatic and
asymptomatic (Fig 1A).

Reichert et al then investigated the case where default treatment
with antibiotic A could be altered thanks to the availability of a new
antibiotic B. They compared four different strategies: immediate
random allocation (A or B), combination therapy (A and B), a
gradual switch to random allocation, or a reserve strategy where B
was held in reserve and then used in place of A after resistance to A
had reached a 5% prevalence threshold. Modelling showed,
counter-intuitively, that this latter “reserve” strategy speeded up
resistance. The best strategy was to deploy B immediately in
combination therapy (Fig 1B). Others have also argued that com-
bination therapy is the best approach to reduce AMR, including an
elegant in vitro experimental model using well plates to simulate
individuals in a hospital population (Angst et al, 2021). AMR may be
driven more by the wide distribution of use than its intensity
(Olesen et al, 2018), and some have argued that for Neisseria
gonorroeae issuing prescribing guidelines based on local preva-
lence thresholds could reduce cases and prolong the lifespan of
antibiotics (Yaesoubi et al, 2022).

Other control measures such as vaccination can affect AMR.
Modelling of the “bystander effect,” where microbes are exposed to
antibiotics despite not being the target organism, suggests that
vaccination programmes for S. pneumoniae also result in a similar
reduction in total antibiotic exposure for Staphylococcus aureus
and E. coli as for S. pneumoniae (Tedijanto et al, 2018). Vaccination
can also affect competition between strains in a population. One
modelling effort showed that four different models with different
assumptions about the mechanisms of AMR evolution explained
penicillin resistance in S. pneumoniae across Europe equally well,
leaving it unclear whether a hypothetical vaccine program would
increase, decrease, or have no effect on AMR levels (Davies et al,
2021).

AMR is conceptually simple. In practice, the examples in this
section show that making realistic models takes care. In 2019, one
group of scientists wondered “do we know enough?” to effectively
use modelling to inform policy—concluding that, for the most part,
the answer was no (Knight et al, 2019). One indication of these
challenges is that, in contrast to other pathogen threats, there have
been barely any attempts at real-time forecasting applied to AMR,
that is, where current data are used to project forward, rather than a
retrospective analysis (Pei et al, 2023).

In summary, our understanding of AMR as a pathogen threat
remains broad-brush. We have a qualitative understanding that
antibiotic use selects for resistance, but our quantitative under-
standing of that relationship is poor. Furthermore, although anti-
biotics are a fundamental part of modern medicine they are used
very differently in different healthcare settings—for example, in
some countries antibiotics require a prescription, but in others,
they are available without one. A pernicious aspect of data
availability is that modelling is heavily biased towards countries
where there is a lot of data; in these countries, AMR is typically less
of a threat. Models can lead to recommendations for the better use
of antibiotics, but it is worth stressing that in many global settings
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the single most important intervention to reduce the threat of AMR
is improved water sanitation and hygiene to reduce infectious
disease in general.

Modelling of population dynamics to design vaccines
The dynamics of infection and vaccination are non-linear and
difficult to predict even with large amounts of data (Nokes &
Anderson, 1988; Bosse et al, 2022). The use of mathematical
models to predict the health and economic impacts of vaccination
campaigns has a long history, stretching back to the introduction of
the very first vaccine against cowpox in the eighteenth century: the
impact of vaccination was predicted based on the life expectancy of
the population (Bernoulli, 1766). By the 1980s, mathematical models
of infectious disease transmission with complex and more realistic
descriptions of infectious disease dynamics had been developed
for many pathogens (Anderson & May, 1985; Anderson et al, 1992),
offering qualitative insights into vaccination strategy, that is, the
“scientific” approach: what fraction of the population needs to be
immunised; what is the effect of waning immunity; what are the
effects of vaccine escape strains? (Scherer & McLean, 2002).

The advent of cheap and widely available computation starting
in the 1990s precipitated a shift from analytically tractable infec-
tious diseasemodels tomore complex differential equationmodels
and individual-based models which have to be solved numerically
(i.e., by computer simulation) (Ferguson et al, 2003). These more
complex models could promise overall better predictive accuracy
of dynamics including error estimates on model outputs—the
“pragmatic” approach. These advances led to a variety of helpful
outputs including more quantitative assessment of disease burden
after vaccination, estimating the cost efficacy of vaccination, and

testing the predicted success of different vaccination dose strat-
egies (Sonabend et al, 2021; Ryman et al, 2022). Some of the most
recent efforts have been able to combine complex models of 10
vaccines used in 100 countries to estimate their total impact (Li
et al, 2021; Toor et al, 2021). These uses of models to inform vac-
cination require the testing of multiple potential models against
biological knowledge and data, validation of model fit over his-
torical data, the use of forecasting to predict future dynamics, and
the ability to effectively and accurately incorporate vaccination
policy and effect into the model.

These computational advances in modelling coincided with the
development of new vaccination technologies such as conjugation
(Eskola et al, 1990; Kelly et al, 2004; Trotter et al, 2008), followed by
the subsequent licensing of manymore vaccines for use in humans.
Combined with accurate and flexible models which could be fit and
tested at scale, this created a growing appetite for the use of
modelling to design vaccine strategy (Christen & Conteh, 2021).
Consequently, computational modelling approaches are now
routinely used both before, during and after vaccination pro-
grammes to optimise their effectiveness, monitor their ongoing
success, and determine whether modifications and improvements
are possible.

This is only a brief overview of using computational modelling to
design vaccine strategies as this topic has been reviewed in detail
elsewhere (Nokes & Anderson, 1993; Scherer & McLean, 2002; Reid
et al, 2019; Bershteyn et al, 2022; Wagner et al, 2022). For this review,
we choose to focus on an emerging computational modelling
technique expected to be used in the design of a number of up-
coming vaccines: the development of population genomic models
for multi-strain pathogens.

Figure 1. A model of N. gonorrhoeae infection in
men who have sex with men can be used to
compare different strategies for the
introduction of a new antibiotic.
(A) Schematic of the transmission model,
adapted from Reichert et al (2023). Men can be
either susceptible (S), asymptomatically infected
(Y), or symptomatically infected (Z). Infected
men can carry a strain that is resistant to either
none, one, or both antibiotics A and B (subscripts).
Each compartment contains three
subcompartments for men with different levels of
sexual activity. The flow between compartments is
illustrated by arrows. (B) Illustrative comparison
of predictions arising from the model for two
possible treatment strategies: keeping B in reserve
until resistance levels to A reach a 5%
prevalence threshold then switching to B or using
A and B in combination from the start. The model
predicts a substantial delay in the onset of
resistance with the combination strategy,
resulting in increased lifespan for both antibiotics.
Data taken from Table 2 of original paper. For
full details, see the original paper.
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Multivalent vaccination against pathogen subtypes Pathogens
are under strong evolutionary pressure to diversify the array of
antigens they present to the host. As previously infected hosts
develop immunity against antigens they have encountered before,
a biochemically different antigen which partially or totally evades
this immunity provides a significant transmission advantage in an
exposed population. Most pathogens have variable surface anti-
gens, and consequently multiple strains. Well-known examples of
subtypes of a pathogen include hemagglutinin (H) and neur-
aminidase (N) antigens of influenza viruses, and the Omicron
variants of SARS-CoV-21

It is practical to design vaccines which immunise against many
subtypes at once, known as multivalent vaccines. The immediate
questions are: which variants should be included in the vaccine;
should these change over time or for different regions; in what
proportion should each variant be present in the dose; how should
protection against targeted variants be evaluated? Given the non-
linear nature of transmission dynamics and the increased com-
plexity of these systems, computational modelling of transmission
is once again a powerful tool to address vaccine design.

For some pathogens, these decisions are straightforward.
Dengue virus vaccines must immunise against all four subtypes, or
else, the risk of severe disease from an unimmunised subtype
increases (Thomas, 2023; Kallás et al, 2024).Haemophilus influenzae
vaccines need only immunise against serotype b (Hib), which is the
one serotype which causes severe disease (Kelly et al, 2004) (Fig 2A).
Bivalent COVID-19 vaccines contained a 50:50 ratio of the ancestral
(Wuhan) spike protein sequence and the subsequently dominant
Omicron (BA.1) variant spike protein, which evades much of the
prior immunity from infection or immunisation from the ancestral
protein (Chalkias et al, 2022). However, the rapid transmission of
COVID-19 compared with vaccination development cycle and the
presence of one dominant antigen in the population make reactive
design of multi-valent COVID-19 vaccines challenging.

What type of pathogen is a good candidate for using compu-
tational modelling to optimise design of a multivalent vaccine?
There would need to be many subtypes against which the vaccine
could bemade. The vaccine must be effective against each targeted
subtype. To be economically practical, vaccination would have to be
expensive so that optimisation benefits outweigh the costs of
changing vaccine formulation, and rates of variant spread must be
slower than vaccine roll-out.

One such candidate is the bacterium N. meningitidis, a com-
mensal organism of the upper respiratory tract and occasional
cause of bacterial meningitis. The species has 12 known serogroups,
six of which cause invasive disease (Parikh et al, 2020). Complex
dynamics of these serogroups have been observed. A major cause
of disease was serogroup C, against which an effective conjugate
vaccine was introduced in many high-income countries starting in
1999 (Fig 2B). A subsequent 20-fold reduction in serogroup C cases
was observed over the next 5 yr (Trotter & Ramsay, 2007). However,
starting in 2009, the incidence of a “hypervirulent” serogroup W
increased, driven by a single genetic strain (Knol et al, 2017).
Serogroup Y also increased in prevalence (Ladhani et al, 2012).

Ecologically, the decrease in serogroup C has left a “hole” in the
infected host population which other strains may be able to fill.
Whether the increase in prevalence of W and Y was caused in part
by the vaccination against serogroup C is unknown, but the sub-
sequent emergence and increase in a more virulent strain after an
intervention is an example of a result which is hard to predict
without a formal model. Fortunately for this pathogen, vaccines
against all virulent serogroups are now in national immunisation
programmes, leaving a “hole” that will hopefully be filled by benign
strains or species (Ladhani et al, 2016).

Modelling to improve the design on multi-valent pneumococcal
vaccines Streptococcus pneumoniae has over 100 serotypes, more
than 1,000 strains and an effective but expensive vaccine (Croucher

Figure 2. An illustration of vaccine-induced population dynamics.
In each case, an effective vaccine is rolled out against the dominant strain, in yellow. After vaccination, cases of the dominant strain decrease. However other strains,
having less competition for hosts, are able to fill the “gap” which has been left in the population. (A) In the first example (panel (A)), a benign non-disease strain (green)
fills this gap and therefore total cases of disease in the population are reduced (illustrative of H. influenzae–vaccination against serotype B). (B) In the second example
(panel (B)), a more virulent strain is able to take over, ultimately meaning the vaccine has no effect, or even a detrimental effect on, total disease burden (illustrative of
N. meningitidis–yellow strain serotype C; red strain serotype W). Modelling can be used to try and predict which situation will occur. (C) In the third example (panel (C)),
representing a complex population with many strains (illustrative of Streptococcal pathogens), vaccination against all strains is not feasible. Modelling can be used to
predict which non-vaccine variants will come to dominate, whether newly emerged strains will be successful, and optimise the initial vaccine formulation.

1We use the terms subtype, strain, serotype, and variant interchangeably to refer to pathogens of the same species with different antigens,
although for each species there tends to be one preferred term.
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et al, 2018; Lo et al, 2019). This vaccine is effective at reducing
carriage in children, protecting adults indirectly. The pneumococcal
conjugate vaccine (PCV7) originally contained the seven serotypes
which caused the most invasive disease in children in the USA.
However, a decade after rollout, even with an addition of five
further serotypes in the PCV13 vaccine, non-vaccine serotypes had
increased in prevalence to a degree that the total burden of disease
had returned to pre-vaccine levels in older age groups (Ladhani
et al, 2018) (Fig 2C). A vaccine with 100 serotypes (“PCV100”) will likely
never become a reality (Løchen et al, 2020); the highest valency
currently available is PCV20 (Essink et al, 2022).

Given the expectation of ongoing serotype replacement even-
tually restoring the total number of infections, how should the
serotypes in the vaccine then be chosen? A good criterion would be
long-term reduction in burden of disease, potentially when ac-
counting for age. Minimising rates of AMR may also be desirable, so
when disease does occur, it can be effectively treated. To do this, we
need multi-strain computational models which can accurately
forecast population dynamics after vaccination, test the effects of
putative vaccine formulations, and predict at least strain
resolution.

Models of multi-strain pathogens have existed since the 1990s
(Gupta et al, 1996; Andreasen et al, 1997; Gog & Grenfell, 2002). Multi-
strain models typically have more states and parameters than a
single-strain model, presenting computational, biological and
data-base challenges. Some of these early models noted the
problem their predicted complex dynamics would pose for mul-
tivalent vaccines (Gupta et al, 1998).

The first modelling approach used for this task proceeded by
making the simplifying assumptions that both disease rates from
and proportions of the non-vaccine serotypes would remain un-
changed after vaccination (Nurhonen & Auranen, 2014), the authors
were able to derive an analytic expression for the vaccine for-
mulation which minimises invasive disease burden at the current
time.

A subsequent analysis used whole genome datasets from four
populations collected spanning different vaccine introduction
schedules (Corander et al, 2017). This modelled postulated
frequency-dependent selection as a mechanism to maintain gene
prevalence. By adding this genomic component to the model,
superior predictive power of future strain prevalence after vacci-
nation was achieved (Azarian et al, 2020). Subsequent extensions to
this model searched over a space of possible vaccine formulations
to find multi-valent combinations which would minimise burden of
disease and AMR, specifically for a given population with historical
carriage data (Colijn et al, 2020).

As well as these very specific quantitative predictions this
model creates a more qualitative suggestion: adding serotypes
to the vaccine has diminishing returns, and instead vaccinating
adults with serotypes not in childhood vaccines would have
more impact. This is also supported by the shared genetics of
adult and childhood strains (Kremer et al, 2022). This is a simple
design suggestion backed by data, modelling and also sound
economics in a competitive vaccine market with three different
formulations already approved for use. Indeed, a vaccine
designed following these principles has just passed clinical
trials (Platt et al, 2023).

Use in future vaccination programmes Multivalent pneumococcal
vaccines are an established part of the childhood immunisation
schedule and are being optimised post-hoc. Modelling not dis-
similar to this is used to inform the content of seasonal flu vaccines
(Hill et al, 2019). Although the pneumococcal model described
above depended on data generated over the course of multiple
vaccine introductions, future opportunities still exist for diseases
where vaccines have not yet been introduced. A seven-valent
vaccine against UTI-causing Escherechia coli is in clinical trials
(Inoue et al, 2018), and a model of strain-dynamics based on the
one described above tailored to this pathogen has been fitted
already, and showed good results even without datasets spanning
introduction of a vaccine (McNally et al, 2019). Also in clinical trials is
a six-valent vaccine against group B streptococcus (Madhi et al,
2023), which has a similar strain and serotype structure to S.
pneumoniae. Vaccines for group A streptococcus are still not
available (Frost et al, 2023), but similar biology motivates the use of
models and genomics for their design (Davies et al, 2019a).

For computational modelling to successfully enhance control of
these pathogens the following things are needed:

• Availability of, and high-quality fitting to, historical genome
and incidence data (Snape et al, 2012).

• Models which can accurately forecast strain dynamics, with
this having been tested and verified in multiple datasets.

• Comparison of candidate models in terms of biological
plausibility and prediction accuracy.

• Models which reflect the complexity of populations, using
realistic numbers of strains and vaccine formulations, without
becoming computationally intractable.

•Updating of model structures, data and advice over time, as the
real effects of vaccination are observed on the pathogen
population.

Modelling within-host kinetics using individual-level
longitudinal data
The immune system of an individual changes in response to an
exposure event—whether pathogen infection, vaccination, or in-
jection with monoclonal antibodies. Data from relevant clinical
studies and trials can capture this change over time. Typical
measurements include longitudinal observations of: neutralising
antibodies, viral load, or specific immune markers (CD4+ T-cell
counts, IgG and IgM concentrations, viral load, etc.). However, data
are typically sparsely distributed over time and contains mea-
surement error, confounding and bias, making a single time course
or simple averaging unsuitable to make estimates of kinetics.
Combining such datasets with models of underlying post-exposure
kinetics can account for these limitations, allowing accurate in-
ferences from noisy and high-variance data. For example, mod-
elling viral load over time is often performed so by fitting models to
a correlate of pathogenic load: the cycle threshold (Ct) value,
measured as an outcome from reverse transcription polymerase
chain reaction (RT–PCR) tests. The lower the number of PCR cycles
needed before the threshold required for a positive test, the higher
the viral load in the sample being tested, providing a quantitative
proxy of viral load. Viral load kinetic estimates can provide crucial
epidemiological information on say a typical infectious period and
therefore inform public health guidelines on isolation time.
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However, a model is needed to integrate knowledge on mea-
surement error, immune response, and individual variation. We
present the general modelling framework, the technical and
computational advances that were necessary to make such studies
feasible, a number of recent detailed examples, and lastly some of
the biggest outstanding challenges. Whereas our focus is on viral
load and antibody kinetics, the approach can be applied to other
biomarkers with knowledge of the immunological response.

Hierarchical Bayesian model structure Hierarchical Bayesian
structures are typically used to model within-host kinetics because
they generate more accurate inferences by pooling information
between individuals. Furthermore, this model structure allows for
the parameterisation of population-level priors using data from
either individuals or populations. For instance, a study may be one
study which report the incubation period for a pathogen as a
probability distribution which could be used to parameterise a
population-level prior in a hierarchical model. In the same model,
estimates of individual-level variation in incubation period around
this distribution can still be modelled without overly penalising
individual outliers from the measured trends. This feature is useful
in infectious disease modelling, where studies often focus on
population-level or other higher level trends, but data come from

individuals. By parameterising priors at the appropriate level in the
model, existing estimates inform the model estimates by allowing
the information to flow through the hierarchy of parameters in a
statistically robust manner. For example, consider a typical anti-
body kinetics model fit to longitudinal neutralising antibody data
for SARS-CoV-2 stratified by two variants. The model structure
includes individual-level trajectories (Fig 3A) and population-level
kinetics pooled for multiple individuals (Fig 3B), providing more
accurate population estimates.

Technological and computational advances driving kinetics
models Late 20th century technological advances meant that the
type of detailed individual-level datasets required for this type of
modelling were more and more routinely collected. We outline the
three most relevant advances to the examples presented:

The development of quantitative molecular techniques includes
the RT–PCR test. RT–PCR allows for the rapid and highly sensitive
and specific detection of viral RNA, which is essential for diagnosing
infectious diseases like influenza and COVID-19. The speed and low
cost at which RT–PCR tests can be performed and analysed means
that large datasets of longitudinal RT–PCR test results are now
often available, an advance significantly accelerated by and used
during the COVID-19 pandemic.

Figure 3. Schematic of a typical antibody
kinetics model, fit to longitudinal neutralising
antibody data for SARS-CoV-2 stratified by two
variants in a hierarchical framework.
(A) A single individuals’ neutralising antibody
data (left) and resulting model fits (right),
stratified by variant neutralised, using a typical six-
parameter model of waning immunity.
(B) Hierarchical structure of the model. Top row:
examples for three individual trajectories, split by
variance. Bottom row: individual-level and
population-level kinetics pooled for three
individuals, giving more accurate population
estimates.
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Advances in laboratory technologies, including ELISA, flow
cytometry, and mass spectrometry have improved the sensitivity
and specificity of immunoassays used to detect antibodies and
other immune markers. High-throughput sequencing technologies
have revolutionised our ability to sequence DNA and RNA quickly
and affordably, meaning that PCR test and immunoassay results
can be stratified by the strain or even specific single-nucleotide
variants of the relevant pathogen, creating more granular datasets
(Wall et al, 2021a, 2021b; Pulliam et al, 2022; Wu et al, 2022; Cohen
et al, 2024).

Using these advances has the potential to generate datasets that
provide comprehensive views of variations in infectiousness itself
or aspects of infectiousness (He et al, 2020) stratified by strains of
infecting pathogen, type of vaccine administered, and other sets of
covariates alongside longer term immune response data (Kucharski
et al, 2018; Salje et al, 2018; Sun et al, 2022b; Wu et al, 2022; Russell
et al, 2024).

Because of large datasets, potentially complex underlying dy-
namics, and high total numbers of parameters, these models are
often computationally expensive to fit. Recent methodological
advances have significantly improved computational efficiency for
models with a high dimensional parameter space. The main ad-
vance relevant to the examples discussed here is the Markov Chain
Monte Carlo sampling algorithm Hamiltonian Monte Carlo (HMC)
(Betancourt, 2017). HMC uses the gradient of the parameter space to
direct the trajectory to areas of high posterior density. As such, the
parameter space is required to be differentiable and continuous,
meaning discrete-valued parameters cannot be sampled from.
Implementations of HMC samplers in a number of domain-specific
languages such as stan means that the user no longer needs to
write their own implementation of complex numerical methods or
perform multidimensional calculus to fit such models.

Recent examples of antibody kinetics models A recent prominent
example of modelling individual-level neutralising antibody ki-
netics reconstructed individual-level antibody kinetics after indi-
viduals have been exposed to one of four serotypes of Dengue fever
(Salje et al, 2018). The study authors assume a standard antibody
kinetics model structure including three phases: an initial rise in
overall neutralising antibodies after infection, a waning phase, and
a constant set-point dynamic corresponding to long-lasting im-
munity against the same serotype. They combine the kinetics model
with a component able to estimate the probability that an infection
event was missed. The individual-level kinetics are combined with
the total numbers of infections to arrive at overall “protection over
time” curves. These curves represent the populationmean values of
the protection against a specific serotype of Dengue fever, a crucial
quantity for planning vaccination campaigns and public health
interventions. Overall, if titres had been averaged and trajectories
fit to the averaged data, the estimates would be far less accurate as
to be useless—unmodelled noise between individuals would wash
out all signals. Conversely, if individual-level trajectories had been
fit without the hierarchical structure in place to share information,
the model would say nothing about the level of immunity in the
whole population.

New viral variants with either a higher measured peak of viral
load or a longer duration of shedding correspond with higher viral

transmission. Therefore, a number of key studies during the COVID-
19 pandemic that measured changes in viral load as the pathogen
evolved were key to assessing whether to expect an increase in
transmission (Kissler et al, 2021, 2023; Challenger et al, 2022;
Singanayagam et al, 2022). The specific question in each study
varied following what was particularly crucial from a public health
perspective at the time. However, the underlying model structures
and datasets analysed were similar across all of these studies. All
contained a viral kinetic model, fit to individual-level viral load or
cycle threshold data; the statistical structure was hierarchical in
each case, incorporating existing estimates of viral kinetics within
the population-level priors; the kinetics model was either stratified
by covariates included within themodel structure, or themodel was
just fit separately to the dataset split up by individuals corre-
sponding to the covariates of interest. Given the abundance of PCR
and viral load data, relative to longitudinal neutralising antibody
data, at this point, there are notably more viral kinetic studies at
present.

However, traditional, pooled approaches also provided signifi-
cant insights. For instance, Khoury et al (2021), demonstrated the
utility of pooled data in identifying correlates of protection against
COVID-19, whereas SARS-CoV-2 antibody landscape studies (Rössler
et al, 2023; Wilks et al, 2023) highlighted the complexity of antibody
interactions with different viral variants, offering valuable guidance
for vaccine design. These examples underscore the complementary
strengths of both individual-level and pooled data approaches in
infectious disease modelling.

Ongoing challenges in antibody kinetic modelling An outstanding
yet common challenge is how to deal with undetected infections. It
is rare for a study tracking biomarkers longitudinally to detect every
infection, especially given thatmany pathogens have asymptomatic
infections, cause infections with varying levels of shedding, or
cause some level of presymptomatic transmission (Fraser et al,
2004). Estimates of protection afforded by neutralising antibodies
or some other immunological biomarker—often referred to as a
correlate of protection—rely on accurate estimates of the number
of total infections.

As such, estimating correlates of protection for a number of
diseases presents an ongoing challenge (Krammer, 2021; Plotkin,
2023). Many studies have developed bespoke frameworks in which
this is possible and attempts have been made to produce software
tools to standardise approaches to this problem (Salje et al, 2018;
Hay et al, 2020). However, no model yet exists which both incor-
porates missed infections and is also able to be fitted with a
modern and efficient MCMC method, such as HMC. These more
realistic models cannot be routinely and automatically fitted and
require bespoke expert efforts for every new application.

Discussion

What should a computational model of an infectious disease aim to
do? Modelling can be used both to attempt to adequately represent
complex biological systems or for the production of counterfactual
scenarios designed to inform or even motivate policy. To put it

Three case studies of computational modelling of pathogens Lees et al. https://doi.org/10.26508/lsa.202402666 vol 7 | no 9 | e202402666 9 of 14

https://doi.org/10.26508/lsa.202402666


crudely, scientists are interested in revealing the biological
mechanisms behind noisy observations whereas policy-makers
care less about these details and more about accurate forecast-
ing. The tension is unavoidable: using models to weigh up evidence
for different hypotheses can, and often does, end up prioritising
different models compared with searching for models with the best
predictive performance.

As modelling has been incorporated into campaigns to control
pathogen threats, it has seen the introduction of financial and
logistical concerns beyond its traditional remit. Infectious disease
modellers now model biology alongside economists, geographers,
and logisticians. The long-term dynamics, now spanning years, of
the system theymodel are often counted in the billions of dollars or
millions of deaths. This is the kind of output required to prompt
WHO or UN fact-finding inquiries into pathogens to gauge the level
of threat they pose to humankind (Ranjbar & Alam, 2023; World
Health Organization, 2023).

As this review has highlighted, the results presented in such
reports are almost always the output of a process that passes
output from models into further models. A model predicts the
prevalence of AMR, a further model then uses this output to
model the impact on human health, and then a further model
then uses this output to model the economic cost. How do we
propagate uncertainty through these chains of models? This is
especially pressing when the output of the model is on a global
scale, involving high mortality estimates that can be hard to
contextualise. Propagating as much uncertainty as possible
through chains of multiple models can lead to very wide pre-
diction intervals in the final output. These intervals likely reflect
the genuine uncertainty about what will happen in the future,
but in our experience they are also unlikely to be popular with
policy makers who have to use the output. The ideal solution
might be to produce one large model going straight from the
original data to the final output, but this might be both com-
putationally challenging or difficult because of incompatible
modelling approaches between disciplines.

Producing a single large and comprehensive model of a pathogen
threat can lead to problems if there is genuine scientific disagree-
ment on how certain aspects of a pathogen should bemodelled. The
structure of the singlemodel should not rely entirely on the scientific
predilections of whoever made it. We can link these issues clearly to
the SARS-CoV-2 pandemic in the UK: the UK government advisory
committee SAGE tackled this problem for medium-term pandemic
trajectory predictions by asking for input from multiple modelling
groups, reflecting a range of modelling approaches and scientific
opinions. Should forecasting or scenario modelling hubs that syn-
thesise modelling output be adopted for all types of pathogen
threats? The output from these modelling hubs might involve
weighting model predictions as a function of previous predictive
performance. In our opinion, this would certainly involve a more
rigorous attitude to model evaluation and forecast scoring than is
usual for the field (Reich et al, 2022; Bosse et al, 2023).

The models that are the best at forecasting may not have a
mechanistic structure that allows them to answer counterfactual
questions (such as “by how much will mask mandates reduce
transmission?”). This is an important type of question for policy-
makers, so we must make mechanistic models for pathogens. How

good at forecasting mechanistic models should be is unclear. If we
continue to consider SARS-CoV-2 (Knock et al, 2021; Barnard et al,
2022; Keeling et al, 2022), it is not immediately clear whether a
mechanistic model being good at forecasting 2 wk into the future
tells us anything about its accuracy when predicting the effect of
counterfactual scenarios regarding, e. g., lockdowns. If the model
produces a predicted pandemic trajectory for a counterfactual
scenario where the imagined conditions of this scenario are very
similar to what in fact occurred, then it seems reasonable to ret-
rospectively treat the trajectory as a forecast and compare the
output to what was observed in reality. Alternatively the same
model could retrospectively produce a forecast by re-running using
what did actually occur in terms of policy, population movement,
vaccine coverage, and so on, as input and predicting the pandemic
trajectory. Knowing how feasible these routes of model evaluation
are is important for the next pandemic.

As the COVID-19 pandemic recedes, we must also learn from our
collective experiences of computational modelling during this
crisis: the question now is to figure out what we learned about
modelling as a discipline during this emergency period, where the
practice of modelling was temporarily transformed. Are forecasting
hubs the best approach to collaboratively modelling AMR or vac-
cine impact? Have new standards of data quality and quantity been
set by COVID-19 that can be replicated for other pathogens?

Considering the challenges highlighted both by COVID-19 and the
models above, we think the next stages in research must take into
account the following issues. Models must be freely shared, in
common formats, so that they are reproducible and reusable by
other researchers. More attention must be paid to modelling as a
discipline in its own right, as opposed to treating modelling as a
tool to be discretely applied to multiple scientific problems. This
will help standardise the framework for comparing model quality,
and bring together people working on similar modelling solutions
to different applications. Finally, if models are to be used to shape
public policy, especially during emergencies, then modellers must
be permanently embedded in institutions making these recom-
mendations. It is not sustainable to rely on academic modelling
transforming itself every time there is an emergency situation.
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