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Uncovering hidden and complex 
relations of pandemic dynamics 
using an AI driven system
Umit Demirbaga 1,2,3, Navneet Kaur 4 & Gagangeet Singh Aujla 5*

The COVID-19 pandemic continues to challenge healthcare systems globally, necessitating advanced 
tools for clinical decision support. Amidst the complexity of COVID-19 symptomatology and disease 
severity prediction, there is a critical need for robust decision support systems to aid healthcare 
professionals in timely and informed decision-making. In response to this pressing demand, we 
introduce BayesCovid, a novel decision support system integrating Bayesian network models and 
deep learning techniques. BayesCovid automates data preprocessing and leverages advanced 
computational methods to unravel intricate patterns in COVID-19 symptom dynamics. By combining 
Bayesian networks and Bayesian deep learning models, BayesCovid offers a comprehensive solution 
for uncovering hidden relationships between symptoms and predicting disease severity. Experimental 
validation demonstrates BayesCovid ’s high prediction accuracy (83.52–98.97%). Our work represents 
a significant stride in addressing the urgent need for clinical decision support systems tailored to the 
complexities of managing COVID-19 cases. By providing healthcare professionals with actionable 
insights derived from sophisticated computational analysis, BayesCovid aims to enhance clinical 
decision-making, optimise resource allocation, and improve patient outcomes in the ongoing battle 
against the COVID-19 pandemic.

Recently, the globe has faced a pandemic called COVID-19, stemming from an acute respiratory syndrome first 
identified in late December 2019 in Wuhan. COVID-19 is transmitted between people by respiratory droplets 
and  aerosols1, as well as if someone touches their eyes, nose or mouth after touching surfaces where a sick 
person has recently coughed or sneezed as this virus can survive for several days on a suitable surface at room 
 temperature2. To diagnose COVID-19, healthcare staff collects a sample from the nose (nasopharyngeal swab), 
throat (throat swab), or saliva from patients with distinct symptoms. Similarly, people can diagnose themselves 
if they are positive for COVID-19 at home through the test kits authorized by the Food and Drug Administra-
tion (FDA) (https:// www. fda. gov/).

Artificial intelligence (AI) technologies (i.e., machine learning (ML) and data mining) and probabilistic mod-
els are crucial in predicting and analysing COVID-19 trends in many areas. Various ML algorithms and statistical 
methods are used in future predictions from COVID-19 big datasets, and they are actively used in academia and 
industry to reveal unknown facts. Here are some areas where AI technologies and tools are implemented in the 
COVID-19 crisis, such as understanding the virus and revealing its hidden aspects, detecting and diagnosing 
the virus, assisting doctors in planning the treatment of patients with COVID-19, predicting the spread and 
evolution of the virus, and following the COVID-19 infection and developing early warning systems to this  end3. 
One of healthcare organisations’ biggest challenges is accurately diagnosing patients and implementing effective 
treatments at affordable  costs4. The ability to analyse the millions of patients’ health records empowered by AI and 
statistical methods can solve fundamental and critical problems regarding patient treatment and hospital costs.

King’s College London-led researchers have discovered, through analysis of COVID-19 data, that there are six 
different “categories” of COVID-19, each of which can be identified by a specific cluster of  symptoms5. This study 
aimed to help healthcare staff predict the patients at risk and who should be hospitalised. Findings from this study 
show that in addition to persistent cough, fever, and loss of smell, which are shown as the three main symptoms 
of Covid-19, it can be seen in various symptoms such as headaches, shortness of breath, runny nose, sore throat, 
diarrhea, hemoptysis, etc. Moreover, in this study, a ML algorithm was applied to the dataset of approximately 
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1600 patients with COVID-19 from the USA to find out which symptoms tended to appear together. The research 
identified six specific ’types’ of COVID-19 or particular groupings of symptoms that manifest at distinctive stages 
throughout the illness. After that, a second independent dataset of 1,000 COVID-19 patients from the UK, US, 
and Sweden who had recorded their symptoms was used to evaluate the algorithm. Table 1 shows six clusters 
identified by the researchers. The most important question, however, here is: “How can we turn this information 
into meaningful insight?”. Uncovering the relationship between these symptoms in all COVID-19 patients world-
wide may open the door to new research. However, the large size and highly heterogeneous nature of healthcare 
data, often missing, render it relatively challenging to reveal relationships between features. Therefore, manual 
time and human expertise are required to preprocess the data and uncover hidden relationships.

Given the concerns above, we study the following two primary research questions (RQ):

• (RQ1): How can user-friendly interfaces and visualisation techniques be integrated into clinical decision 
support systems to facilitate user interaction and interpret COVID-19 symptom data?

• (RQ2): How can we model uncertain and complex inter-dependencies between Covid-19 symptoms?
• (RQ3): How can we validate the prediction of the severity of COVID-19 and its determinants probabilisti-

cally?

To our knowledge, no previous study has adequately addressed the multifaceted challenges of COVID-19 man-
agement through comprehensive clinical decision support systems. Existing research often lacks a focus on 
integrating user-friendly interfaces and visualization techniques to facilitate user interaction and interpretation 
of COVID-19 symptom data. Given all of these details, the following are the key contributions of this study to 
answering the research questions:

• To address RQ1, we develop intuitive user interfaces and visualisation tools within BayesCovid, which enable 
healthcare professionals to interact with and interpret COVID-19 symptom data effectively to enhance user 
engagement and facilitate informed decision-making in clinical settings.

• To address RQ2, we propose an entirely automated and data-driven system, BayesCovid, that integrates 
both traditional Bayesian network learning models-such as Naïve Bayesian Network, Tree-Augmented Naïve 
Bayesian Network, and Complex Bayesian Network-and Bayesian deep learning models. This unified approach 
automates all operations, including data preprocessing, and models uncertain and complex dependencies 
between COVID-19 symptoms. By deploying Bayesian deep learning models within BayesCovid, we leverage 
their capabilities to overcome traditional Bayesian network limitations by enhancing the learning of feature 
representations.

• To address RQ3, we validate our probabilistic computational method powered by predefined functions to 
predict the COVID-19 severity and its determinants. Our experimental results show that BayesCovid can be 
used to uncover the hidden and complex patterns of the COVID-19 pandemic with accuracy rates of between 
83.52 and 87.35%.

Background
Coronavirus pandemic (COVID-19) in the world
Person-to-person transmission of SARS-CoV2 became a global problem in 2020, with those infected with mild 
to moderate respiratory illnesses. Due to the alarming spread of the COVID-19 epidemic in the World, the World 
Health Organization (WHO) declared COVID-19 a pandemic in March 2020 and made standard recommenda-
tions, such as regular hand washing, covering the mouth and nose when coughing and sneezing, coughing and 
avoiding close contact with people who show signs of respiratory illness such as  sneezing6. Figure 1 shows the 
most common symptoms of 55.924 laboratory-confirmed cases of COVID-19, reported by China in February 
 20207. According to the report published on October 21,  20228, approximately 632,055,653 confirmed cases, 
610,853,327 recovered cases, and 6,579,814 deaths occurred worldwide until October 21, 2022.

Table 1.  COVID-19 severity  levels5. HA Headache, SL loss of smell, AL loss of appetite, CO cough, FE fever, 
HO hoarseness, ST sore throat, CP chest pain, FA fatigue, CN confusion, MP muscle pain, SB shortness of 
breath, DI diarrhea, AA abdominal pain.

Level Severity definition HA SL AL CO FE HO ST CP FA CN MP SB DI AA

1 ‘Flu-like’ with no fever � � – � – – � � – – � – – –

2 ‘Flu-like’ with fever � � � � � – � – � – – – – –

3 Gastrointestinal � � � – – – � � – – – – – –

4 Severe level one; fatigue � � – � � – � � � – – – – –

5 Severe level two; confusion � � � � � � � - � � � – – –

6 Severe level three;
Abdominal and respiratory � � � � � � � � � � � � � �
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Bayesian network for knowledge discovery
Bayesian networks, called probabilistic networks, are well-known and adaptable models that simulate compli-
cated interaction systems at the nexus of statistics and  ML9. Using a network topology in which the measured 
characteristics are the nodes and the directed edges indicate the interactions between those nodes, BNs directly 
explain multivariate  interdependencies10. Due to their interpretable structure, they differ from “black-box” 
notions used in other machine-learning techniques. Contrary to logistic regression, statistical dependency and 
independence in Bayesian networks are directly expressed rather than being obscured by approximate weights 
as they are in logistic regression.

A conditional probability is the likelihood of a conclusion, η , given a piece of information or an observation, 
γ , where η and γ are interdependent. The symbol for this probability is Pr(η | γ ), where:

Bayes’ theorem is a technique for determining the conditional’s opposite probability. This conditional relationship 
reveals probability information about η or γ with the known outcome of the other as seen in Eq. (2):

The joint probability distribution is a fundamental concept underlying the inference process in Bayesian net-
works. The joint probability distribution encapsulates the simultaneous likelihood of all system variables, which 
reflects their interdependencies as modelled by the directed acyclic graph (DAG), quantifying the probability 
of observing a particular combination of states for all variables in the network. By leveraging the conditional 
independence relationships encoded in the Bayesian network structure, the joint probability distribution can 
be factorised into a product of conditional probabilities that facilitate efficient and coherent reasoning about 
the system.

Bayesian network models
We implemented three well-known Bayesian network models, namely Naïve Bayesian Network, Tree-Augmented 
Naïve Bayesian Network, and Complex Bayesian Network. Moreover, we combine these algorithms with deep 
learning for further investigation. We implemented these algorithms in Python programming language (version 
3.11.5) (https:// www. python. org/ downl oads/ relea se/ python- 3115/) using pgmpy (https:// github. com/ pgmpy/ 
pgmpy) library, a Bayesian Networks implementation used to work with probabilistic graphic models.

Naïve Bayesian network
This algorithm is a Naïve structure learning technique exclusively categorised as a structure learning algorithm 
since it directly constructs a Bayesian network from data, including its structure and parameters.

Tree-augmented Naïve Bayesian network
Tree Augmented Naive Bayesian is yet another structure learning algorithm that is similar to Naive Bayes, where 
the class variable is the parent of all remaining features (nodes), but the others are also interconnected, which 
aims to uncover possible dependence between the feature variables. These interconnections between the features 
are built dependent on the class variable.

(1)Pr(γ |η) =
(Pr(η|γ )).Pr(γ )

Pr(η)

(2)Pr(η|γ ) =
(Pr(γ |η)).Pr(η)

Pr(γ )
=

(Pr(γ ), η)

Pr(γ )

Figure 1.  Percentage of people with COVID-19 symptoms (Source of Icons: https:// www. pngwi ng. com/).

https://www.python.org/downloads/release/python-3115/
https://github.com/pgmpy/pgmpy
https://github.com/pgmpy/pgmpy
https://www.pngwing.com/
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Complex Bayesian network
Unlike other algorithms, the class variable can be a parent and child variable With the Complex Bayesian net-
work. The features can be affected by the class variable and also can affect it.

Bayesian deep learning: enhancing feature representations and uncertainty estimation
Representations and Uncertainty Estimation Bayesian Deep Learning (BDL) uniquely combines the benefits of 
deep neural networks and Bayesian inference as a paradigm-shifting approach. BDL outperforms traditional deep 
learning approaches that offer deterministic predictions by explicitly incorporating and quantifying uncertainty 
inside its predictions. This capacity comes in handy while making decisions because it helps to grasp the degree 
of uncertainty. Traditional Bayesian network algorithms, such as Naïve Bayes, Tree-Augmented Naïve Bayesian, 
and Complex Bayesian, also grapple with uncertainty but often exhibit limitations in modelling complex, high-
dimensional data. In comparison, BDL surpasses traditional deep learning methods in uncertainty estimation 
and enhances feature representations. BDL offers a advantage in learning and representing intricate relationships 
within data by incorporating Bayesian principles at the core of neural network weight modelling.

Advantages of Bayesian network
Bayesian networks provide an intuitive and systematic approach for integrating preexisting knowledge with 
observed data within a well-established decision theory framework, as highlighted in a previous study by Ste-
phenson et al.11. Bayesian networks offer accurate beliefs conditional on the facts without relying on asymptotic 
approximation. Without utilising the “plug-in” approach, Bayesian analysis can also directly estimate any param-
eters’ functions. The probability principle is followed: If two different sample strategies provide proportionate 
likelihood functions for θ , both approaches should yield the same conclusions regarding θ12. The probability 
principle is generally ignored by classical reasoning. Furthermore, Bayesian networks offer a suitable environ-
ment for various models, including hierarchical models and issues with missing data.

Proposed method: BayesCovid
The proposed system is depicted in Fig. 2. The collected dataset is sent to the preprocessing module to prepare 
it for implementing Bayesian network algorithms. The predefined functions define the severity of COVID-19 
based on the criterias identified by Sudre et al.5. Afterwards, different Bayesian network algorithms, namely 
Naïve Bayesian Network, Tree-Augmented Naïve Bayesian Network, Complex Bayesian Network and Bayesian 
deep learning algorithms are applied to the dataset to uncover the interdependencies between the features with 
probabilities. Before sharing and storing the results, the hidden patterns are displayed.

Distinctive features and integration capabilities of BayesCovid
BayesCovid distinguishes itself from existing Bayesian network structures and parameter learning packages 
through several unique features that make it a valuable resource for the clinical community. First and foremost, 
BayesCovid ’s seamless integration with big data systems, such as Apache Hadoop and Apache Spark, ensures its 
scalability to handle millions of patient records and petabytes of data, which makes it well-suited for large-scale 
epidemiological studies and hospital systems. Additionally, BayesCovid offers flexibility with the capability to run 
in local mode, allowing for diverse deployment environments. The system’s automated data preprocessing and 
COVID-19 severity identification streamline clinical workflows by reducing the need for manual intervention, 
thus saving valuable time for healthcare professionals. Moreover, the combination of Bayesian networks and deep 
learning techniques within BayesCovid enhances its predictive accuracy and ability to uncover complex symptom 

cough

fever

shortness
of breath

diarrhea

fatigue

headache

loss of
smell
loss of
taste

runny
nose

muscle
sore

sore
throat

Symptom Check

PCR Test

Data Storage

Follow doctor's instructions

NEGATIVE

POSITIVE

Bayesian Network Modelling

Data Preprocessing

Displaying Hidden PatternsStakeholders

Define severity
1 2 3 4 5 6

Use mask

Figure 2.  The high-level architecture of BayesCovid (Source of Icons: https:// www. pngwi ng. com/.
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relationships, providing actionable insights that can significantly improve clinical decision-making and patient 
outcomes. To further facilitate adoption and usability, we share the source code of BayesCovid, well-explained 
documentation, and a demonstration video (see “Tool availability” section) to enable easy implementation and 
a comprehensive understanding of the tool’s functionalities and benefits. These features collectively position 
BayesCovid as an advanced, scalable, and practical tool for addressing the dynamic challenges of the COVID-19 
pandemic in various clinical settings.

Data preprocessing
Data integration
This study utilised a comprehensive dataset (https:// github. com/ mdcol lab/ covid clini calda ta) from the Corona-
virus Disease 2019 (COVID-19) Clinical Data Repository, a valuable compilation of clinical characteristics from 
individuals who underwent COVID-19 testing. The dataset contains information such as epidemiologic factors, 
comorbidities, vitals, clinician-assessed, and patient-reported symptoms. Additionally, the dataset incorporates 
radiological and laboratory findings while ensuring compliance with the HIPAA Privacy Rule’s De-Identification 
Standard to safeguard patient privacy. The data is a joint effort of Carbon Health, which provides clinical char-
acteristics and laboratory findings, and Braid Health, contributing chest X-rays, findings, labels, and clinician 
impressions. The dataset is provided in CSV format, consisting of 29 files. This step combines the data in different 
files with the same data structure into a single file by executing preprocessing.

Data imputation
This step is applied to manage missing values. After data integration/combination, we acquired a total of 93,995 
COVID-19 data with the symptoms, each of which had a missing ratio of around 0.1%, except fever which the 
missing value is about 24%. To this end, we removed rows with missing values to ensure high accuracy and 
consistency. Finally, our dataset consists of 18,538 COVID-19 case data.

Encoding the categorical data
We implemented label encoding to digitalize the text-based information values (true/false) in the dataset, which 
converts the data into integer values (0/1).

Feature extraction
Using the information in Table 1, we obtain the COVID-19 severity for each case ranging from 1 to 6.

Data discretization
Data discretization assigns a particular data value to each interval after converting attribute values from continu-
ous data into a constrained collection of  intervals13. We discretized the data to maximize the mutual information 
between parent and child nodes. Therefore, we specified the optimal discretization threshold for each variable 
in our dataset over two values, 0 and 1.

Evaluation and results analysis
This section presents the experimental results and comprehensive evaluations of BayesCovid. We will explicitly 
discuss the results of the algorithms applied to the clinical datasets to uncover the hidden patterns of COVID-
19 symptoms.

Experimental setup
Environments
We set up a Spark on Hadoop Yarn cluster consisting of 4 EC2 machines, 1 master and 3 workers in AWS to 
deploy BayesCovid. We chose Ubuntu Server 20.04 LTS as the operating system for all the machines and installed 
Hadoop version 3.3.2 and Spark 3.3.1. All the nodes have 4 cores and 16 GB of memory.

Dataset
The dataset, prepared by Carbon Health and Braid  Health14, was obtained through RT-PCR tests from 11,169 
individuals, approximately 3% of patients living in the United States who had COVID-positive, and 97% had 
COVID-negative tests. This dataset, which began to be collected by Carbon Health in early April 2020, was col-
lected under the anonymity standard of the Health Insurance Portability and Accountability Act (HIPAA) privacy 
rule. This dataset covers multiple physiognomies, including Epidemiological (Epi) Factors, comorbidity, vital 
signs, healthcare worker-identified, patient-reported, and COVID-19 symptoms. In addition, information about 
patients, such as heart rate, temperature, diabetes, cancer, asthma, smoking and age, is also available. The Carbon 
Health team gathered the Braid Health team datasets, which collected radiological information, including CXR 
information. This dataset includes data from patients with one or more symptoms and no symptoms, and we 
only used the COVID-19 symptom information indicated in Fig. 1. Radiological information was not included 
in the analysis. Table 2 shows the statistical information of the COVID-19 dataset. We have 18,538 test results 
of 11 different COVID-19 symptoms and COVID severity values, belonging to 11,169 individuals. Moreover, 
Table 3 demonstrates the number of false (negative) and true (positive) values for each symptom.

Cross validation
Cross-validation is an important step in assessing the predictive power of models while mitigating the risk of 
 overfitting15. To rigorously evaluate our models, we implemented ten-fold cross-validation by dividing the dataset 

https://github.com/mdcollab/covidclinicaldata
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into ten equal parts. During each iteration, one part was the validation/test set, while the remaining nine were 
used for model training. This process was repeated ten times, and the resulting accuracies were averaged across 
all folds to assess each model’s performance comprehensively. Importantly, using ten-fold cross-validation ensures 
that every instance in the dataset is precisely used once as a testing and training sample, which minimises the 
risk of  overfitting16.

Implemented Bayesian network algorithms
This subsection explains three distinct Bayesian networks: Naïve Bayesian, Tree-Augmented Naïve Bayesian, 
and Complex Bayesian models. These models have unveiled intricate and concealed patterns within COVID-19, 
offering valuable insights into the complex dynamics and relationships underlying the disease.

Naïve Bayesian algorithm
Figure 3a depicts the dependencies for the Naïve Bayesian algorithm where the class variable, COVID severity, 
is the only parent associated with each symptom, and there is no link between symptoms. Figure 4 and 5 show 
the probability percentages of the symptoms for their positive and negative values. For example, in Fig. 4, while 
the probability of diarrhea is around 3% for COVID severity level 1, the probability of this symptom for level 3 
is about 95%. Moreover, the probabilities of shortness of breath for levels 1, 2, 3, and 4 are very low, about 5%, 
and the likelihood of having this symptom is very high for levels 5 and 6. In short, the distribution of symptoms 
differs according to the severity levels of COVID-19, and the probability of some increases as the COVID-19 
severity level rises. When we compare Figs. 4 and 5, it is seen that there is an inverse relationship between the 
incidence and absence of symptoms.

Table 2.  Statistics related to symptom values presented in the dataset.

Symptoms Mean Std. dev. Min. Max. Count

Cough 0.121 0.326 0 1 18538

Fever 0.048 0.214 0 1 18538

Shortness of breath 0.058 0.235 0 1 18538

Diarrhea 0.033 0.181 0 1 18538

Fatigue 0.116 0.321 0 1 18538

Headache 0.100 0.301 0 1 18538

Loss of smell 0.011 0.107 0 1 18538

Loss of taste 0.013 0.115 0 1 18538

Runny nose 0.063 0.243 0 1 18538

Muscle sore 0.066 0.249 0 1 18538

Sore throat 0.117 0.321 0 1 18538

COVID severity 0.041 0.359 0 6 18538

Table 3.  Data counts representation using hierarchical discretization for symptoms.

Value Cough Fever Shortness of breath Diarrhea Fatigue Headache Loss of smell Loss of taste Runny nose Muscle sore Sore throat

False 16288 17641 17445 17908 16374 16666 18321 18289 17364 17303 16369

True 2250 897 1093 630 2164 1872 217 249 1174 1235 2169

(a) Naïve Bayes (b) Tree-Augmented Naïve Bayesian (c) Complex Bayesian

Figure 3.  Dependency networks.
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Tree-augmented Naïve Bayesian algorithm
The dependency network built using the Tree-augmented Naïve Bayesian network is depicted in Fig. 3b. COVID 
severity is the class variable similar to Naïve Bayesian network, but the connections between the symptoms 
(features) are also available. As seen from the figure, for example, cough has an effect on both headache and fever 
while muscle sore is affected by headache and affects fatigue. For the probabilities, Tables 4 and 5 show some 
results of the Conditional Probability Table (CPT). In Table 4, when shortness of breath and fever are negative 

Figure 4.  Conditional probability of symptoms with COVID-19 severity if symptoms are positive for Naïve 
Bayes.

Figure 5.  Conditional probability of symptoms with COVID-19 severity if symptoms are negative for Naïve 
Bayes.

Table 4.  CPT between three different symptoms and COVID severity using Tree-augmented Naïve Bayesian 
algorithm. c_sev COVID severity, sob shortness of breath, F false, T true.

c_sev c_sev (1) c_sev (1) c_sev (2) c_sev (2) c_sev (3) c_sev (3) c_sev (4) c_sev (4) c_sev (5) c_sev (5) c_sev (6) c_sev (6)

Fever Fever (F) Fever (T) Fever (F) Fever (T) Fever (F) Fever (T) Fever (F) Fever (T) Fever (F) Fever (T) Fever (F) Fever (T)

sob (F) 92.95% 6.09% 50.0% 99.39% 50.0% 96.75% 50.0% 98.92% 50.0% 8.62% 1.55% 1.44%

sob (T) 2.04% 93.90% 50.0% 0.60% 50.0% 3.24% 50.0% 1.07% 50.0% 91.37% 98.44% 98.55%

Table 5.  CPT between three different symptoms and COVID severity using Tree-augmented Naïve Bayesian 
algorithm. c_sev COVID severity, sob shortness of breath, F false, T true.

Cough Cough (F) Cough (F) Cough (F) Cough (F) Cough (F) Cough (F) Cough (T) Cough (T) Cough (T) Cough (T) Cough (T) Cough (T)

c_sev c_sev (1) c_sev (2) c_sev (3) c_sev (4) c_sev (5) c_sev (6) c_sev (1) c_sev (2) c_sev (3) c_sev (4) c_sev (5) c_sev (6)

h_ache (F) 91.14% 93.77% 50.0% 34.07% 50.0% 50.0% 57.29% 72.70% 34.41% 30.80% 8.62% 52.57%

h_ache (T) 8.88% 6.22% 50.0% 65.92% 50.0% 50.0% 42.70% 27.29% 65.58% 69.2% 91.37% 47.42%
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(F), the probability of COVID severity level 1 is 92.95%. In contrast, when shortness of breath is positive (T), and 
fever is negative, then the probability of COVID severity level 1 is 2.04%. When headache is positive, but cough 
is negative, then the probability of COVID severity level 4 is 65.92% (see Table 5).

Complex Bayesian algorithm
Figure 3c shows the dependencies between all the symptoms (features) and COVID severity (class variable). 
Cough is most affected by different symptoms and does not affect any features. While the class variable, COVID 
severity, has impacts on shortness of breath, fever, fatigue, and sore throat, interestingly, it is affected by diarrhea. 
Another interesting pattern different from the Tree-augmented Naïve Bayesian network is that fever affects 
muscle sore. While Table 6 shows the CPT for three variables, namely COVID severity, shortness of breath, and 
fever, Table 7 displays the probabilities for four variables, namely diarrhea, fatigue, muscle sore, and headache. 
When shortness of breath is negative, and fever is positive, the probability of COVID severity level 4 is 98.92%. 
In contrast, when shortness of breath is positive, but fever is negative, the probability of COVID severity level 6 
is 48.18% (see Table 6). For the probabilities based on the situation of four symptoms (see Table 6), for instance, 
when all three symptoms, diarrhea, fatigue, and muscle sore, are positive, the probability of having headache 
symptom is 73.18%. Another remarkable finding in Table 7 is that if an individual has fatigue, muscle sore, and 
headache, the probability of not having diarrhea is 58.43%.

Implemented Bayesian deep learning algorithms
In this study, we have also investigated and implemented three distinct Bayesian models, each representing 
a unique intersection of deep learning and Bayesian inference. The first model, Deep Learning-based Naïve 
Bayes (DL-NB), is a deep learning-based Naïve Bayes structure that capitalises on the capacity of deep neural 
networks to refine the traditional Naïve Bayes model for enhanced feature learning and dependency represen-
tation. Additionally, we extended our exploration to traditional Bayesian network structures by implementing 
Deep Learning-based Tree-Augmented Naïve Bayes (DL-TAN), where deep learning principles are integrated 
to augment the classic Tree-Augmented Naïve Bayes algorithm, providing richer feature representations. Fur-
thermore, our investigation includes Deep Learning-based Complex Bayesian (DL-CB), a model designed to 
overcome the limitations of traditional Complex Bayesian structures in modelling intricate relationships within 
high-dimensional data. This comprehensive analysis and implementation of DL-NB, DL-TAN, and DL-CB con-
tribute to the broader understanding of the synergies between deep learning and Bayesian techniques in vari-
ous Bayesian network architectures. Figure 6 demonstrates the network dependencies of deep learning-based 
Bayesian network algorithms which uncover the complex and hidden relationships between COVID symptoms. 
As illustrated in Fig. 6a–c, our Bayesian deep learning models, namely DL-NB, DL-TAN, and DL-CB, reveal 
a richer web of relationships among features compared to their traditional counterparts. The Bayesian Deep 
Learning models exhibit a higher density of connections, which indicates a more nuanced understanding of 
inter-feature dependencies. This heightened connectivity means the enhanced capacity of Bayesian Deep Learn-
ing to capture complex relationships within the data that provide a comprehensive and informative modelling 
of the underlying dynamics.

Evaluation of the accuracy of Bayesian network algorithms
Figure 7 demonstrates the accuracy’s for the three different algorithms proposed in our system, namely Naïve 
Bayesian Network, Tree-Augmented Naïve Bayesian Network, and Complex Bayesian Network. Although the 
general accuracy of the algorithms is close to each other, there are apparent differences in the accuracy of the 
symptoms. The algorithms perform between 60% and 68% poorly for cough symptoms, while they show high 

Table 6.  CPT between three different symptoms and COVID severity using Complex Bayesian algorithm. 
c_sev COVID severity, sob shortness of breath, F false, T true.

c_sev c_sev (1) c_sev (1) c_sev (2) c_sev (2) c_sev (3) c_sev (3) c_sev (4) c_sev (4) c_sev (5) c_sev (5) c_sev (6) c_sev (6)

sob sob (F) sob (T) sob (F) sob (T) sob (F) sob (T) sob (F) sob (T) sob (F) sob (T) sob (F) sob (T)

Fever (F) 99.91% 61.88% 0.60% 50.0% 3.24% 50.0% 1.07% 50.0% 50.0% 8.62% 50.0% 48.17%

Fever (T) 0.08% 38.11% 99.39% 50.0% 96.75% 50.0% 98.92% 50.0% 50.0% 91.37% 50.0% 51.82%

Table 7.  CPT between four different symptoms and COVID severity using Complex Bayesian algorithm. 
m_sore muscle sore, h_ache headache, F false, T true.

Diarrhea Diarrhea (F) Diarrhea (F) Diarrhea (F) Diarrhea (F) Diarrhea (T) Diarrhea (T) Diarrhea (T) Diarrhea (T)

Fatigue Fatigue (F) Fatigue (F) Fatigue (T) Fatigue (T) Fatigue (F) Fatigue (F) Fatigue (T) Fatigue (T)

m_sore m_sore (F) m_sore (T) m_sore (F) m_sore (T) m_sore (F) m_sore (T) m_sore (F) m_sore (T)

h_ache (F) 89.43% 52.11% 48.19% 41.56% 50.0% 23.33% 28.37% 26.81%

h_ache (T) 10.56% 47.88% 51.80% 58.43% 50.0% 76.66% 71.62% 73.18%
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accuracy’s for COVID severity ranging from 94% to 97%. The overall accuracy’s of these three algorithms are 
83.52%, 87.35%, and 85.15%, respectively.

Evaluation of the accuracy of Deep learning-based Bayesian network algorithms
In the evaluation of the accuracy of deep learning-based Bayesian network algorithms, the results, as depicted in 
Fig. 8, showcase the performance of three distinct models: DL-NB, DL-TAN, and DL-CB. The overall accuracies 
reveal nuanced differences among the algorithms. DL-TAN emerges with the highest cumulative accuracy of 
95.21%, which indicates its superior predictive capabilities across a spectrum of symptoms. DL-NB and DL-CB 
follow closely, exhibiting overall accuracies of 91.04% and 92.81%, respectively. These results underscore the 
efficacy of deep learning-based Bayesian approaches in capturing complex relationships within the dataset.

(a) DL-NB (b) DL-TAN (c) DL-CB

Figure 6.  Bayesian deep learning dependency networks.

Figure 7.  Total accuracy’s of the algorithms.

Figure 8.  Total accuracy’s of the deep learning-based Bayesian algorithms.
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The comparative analysis of Bayesian deep learning algorithms against traditional Bayesian network algo-
rithms elucidates a discernible advantage favouring the former. Notably, the Bayesian deep learning models, such 
as DL-NB, DL-TAN, and DL-CB, exhibit superior predictive performance across various symptoms.

Web interface
We have developed a web interface for BayesCovid decision support system that can be used by any clinical prac-
titioner or other users. It utilises Python libraries, concerning probabilistic graphical models, data manipulation, 
network analysis, and data visualization. Additionally, tkinter is adopted for the graphical user interface, and 
PyMuPDF (fitz) is leveraged for PDF file handling. All the source code and accompanying documentation for 
BayesCovid decision support system are available as open-source on GitHub (https:// github. com/ umitd emirb 
aga/ Bayes Covid). A demonstration is also available online on YouTube (https:// youtu. be/ 7j36H uC9Zto). The 
designed user interface provides dual functionality highlighted below.

• Dependency analysis: This component of application ensures efficient and accurate relationship analysis 
between the symptoms and severity assessment, enhancing the decision-making process in clinical settings. 
Figure 9a depicts the user-friendly interface where a data file can be uploaded using “Select CSV” button. 
After the data file is uploaded, six radio buttons are provided for users to select one of the following Bayesian 
models: (a) Naïve Bayesian Network, (b) Tree-Augmented Naïve Bayesian Network, (c) Complex Bayesian 
Network, (d) Naïve Bayes Deep Learning, (e) Tree-Augmented Bayes Deep Learning, and (e) Complex Bayes 
Deep Learning. An “Analyse” button that starts the processing of the selected model with the selected CSV 
file. A progress bar populates to show the processing status. After the model is processed, the dependency 
network plot is generated (see Fig. 9b) and the CPT output is saved as a file.

• Severity analysis: This component of the application assists clinical staff in calculating the severity of COVID-
19. This feature assists in selecting the detected symptoms that the patient exhibits and subsequently deter-
mines the severity of COVID-19. As depicted in Fig. 9c a clinician or user can select the visible symptoms 
and calculate severity. This will output the COVID-19 severity level based on the input symptoms as shown 
Fig. 9c.

Related work
Predictive models for COVID-19 diagnosis
With the emergence of the COVID-19 pandemic, predictive models have commonly been applied to ease the 
burden on health systems and to enable more accurate analysis. These models have been widely used to diagnose 
COVID-19 disease and predict injection risk and spread. For example, Batista et al.17 implement different ML 
algorithms (neural networks, random forests, gradient boosting trees, logistic regression, and SVM) over emer-
gency care admission data from 235 adult patients to predict the risk of positive COVID-19 diagnosis. Similarly, 
the authors  of18–20 use AI techniques in chest imaging data to predict COVID-19 infection. ML techniques have 
been implemented to discover the risk variables linked to the death of coronavirus-infected people  in21,22. Jiang 
et al.23 propose an AI-based framework with predictive analytics that analyzes clinical risk factors to predict 
mortality due to COVID-19. Wu et al.24 propose an ML-based critical risk assessment system to predict the 
COVID-19 severity risk for patients at hospital admission. The authors  of25 use Multivariate Cox regression to 
elucidate high-risk indicators for coronavirus disease 2019 (COVID-19) and create a prediction model of illness 
development to assist doctors in making more informed treatment decisions. Soltan et al. develop a model for the 
triage of COVID-19 patients awaiting RT-PCR screening by applying ML models such as random forest, logistic 
regression, and hyper-sloped trees to data from hospitalized patients with severe COVID-19 symptoms. Menni 
et al.26 propose a framework using logistic regression statistical model to predict COVID-19 infection based on 
potential COVID-19 symptoms, such as anosmia, diarrhea, shortness of breath, cough, skipped meals, hoarse 
voice, abdominal pain, fever, chest pain, diarrhea, delirium. Unfortunately, this data, collected with a mobile 
application, is insufficient to discover symptoms based on empirical evidence, as it only works based on these 
symptoms. However, these predictive models do not consider modelling the relationship between COVID-19 sto-
chastic symptoms in a probabilistic manner, most of which have concentrated on prognostic factors for survival.

Figure 9.  User interface visuals.

https://github.com/umitdemirbaga/BayesCovid
https://github.com/umitdemirbaga/BayesCovid
https://youtu.be/7j36HuC9Zto
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Bayesian networks for knowledge discovery
Leveraging Bayesian probabilistic reasoning, Bayesian networks support clinical decision-making on patients’ 
health status, considering  uncertainties27. Gaglione et al.28 develop an estimation and forecasting model based 
on the Bayesian decision theory approach, called Bayesian sequential estimation, to estimate the current situa-
tion and underlying causes of the COVID-19 epidemic along with the evolution of the epidemiological curve. 
In this  study29, the authors predict the evolution of the COVID-19 pandemic in Spain by combining deep learn-
ing techniques with the Bayesian Poisson-Gamma model. While DL describes SARS-CoV-2 sequencing, the 
Poisson-Gamma model reveals the posterior predictive distribution of counts. Thus, the variation of sequences 
in the entire region is predicted and predicts the outcomes of possible scenarios.  Saqib30 estimates the COVID-
19 dependent variable using a mathematical model that combines the Bayesian Ridge Regression model with 
an n-order Polynomial. The author estimates the possible causes for the upcoming days, using data from differ-
ent countries to validate the model. The authors  in31 propose a system that integrates Bayesian networks with 
supervised ML algorithms to reveal what factors affect mental health during the COVID-19 pandemic. This 
study demonstrated the effects of symptoms, comorbidities, and changing economic factors on mental health. 
In addition, they estimate people’s susceptibility to anxiety attacks under these effects. Shen et al.32 propose a 
decision-making and risk assessment system that determines the risk of COVID-19 patients spreading the virus 
using Bayesian networks to assist physicians in decision-making and risk assessment during the Covid-19 pan-
demic. They used parameter learning and structure learning to design the bayesian networks model and tested 
the viability of this model using actual sample data. They compared the model with Random Forest, k-Nearest 
Neighbor, and Support Vector Machine algorithms based on accuracy, sensitivity, specificity and F − 1 score 
indicators. Using Bayesian networks, the authors  in33 propose a Clinical Decision Support System for diagnosing 
respiratory diseases, including those caused by COVID-19. They created this system by using the prevalence of 
diseases, symptoms and laboratory results and tested it with the help of specialist physicians by exposing them 
to real clinical consultation cases.

Conclusion and future work
Bayesian networks offer a probability distribution to reveal the relationship between variables and the impact 
of variables on the final result. In this work, we proposed a novel data-driven and automated decision support 
system, BayesCovid, built on Bayesian networks and deep learning to determine COVID-19 severity while iden-
tifying complex and hidden relationships between COVID-19 symptoms based on test results. Our approach 
combines a set of user-defined functions and different Bayesian network algorithms, and deep learning methods. 
Thus, data preprocessing and COVID-19 severity identification are performed automatically while the complexity 
of model interpretation is reduced. Our system, developed and tested with real-world clinical data, demonstrated 
high performance with accuracy ranging from 83.52 to 98.97%.

In future work, we plan to deepen our collaboration with domain experts that will involve implementing 
BayesCovid. This allows us to gain valuable insights into our system’s performance and practical utility in different 
clinical settings. In this way, we aim to conduct a qualitative evaluation by working closely with these experts to 
ensure BayesCovid aligns with real-world clinical needs and provides meaningful contributions to COVID-19 
severity prediction. Our other aim is to expand the scope of BayesCovid by implementing and evaluating the 
system in different populations and regions, which will contribute to a more comprehensive understanding of 
the model’s performance across diverse demographic and geographic contexts.

Data availability
The datasets used/analysed during the current study are publically available in the ‘Coronavirus Disease 2019 
(COVID-19) Clinical Data Repository’ at (https:// github. com/ mdcol lab/ covid clini calda ta). No data was gener-
ated in this research. All the source code and accompanying documentation for this tool are available as open-
source on GitHub (https:// github. com/ umitd emirb aga/ Bayes Covid). A demonstration is also available online 
on YouTube (https:// youtu. be/ 7j36H uC9Zto).
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