
Latency-aware RDMSim: Enabling the Investigation of Latency in
Self-Adaptation for the Case of Remote Data Mirroring

Sebastian Götz
Technische Universität Dresden

Germany
sebastian.goetz1@tu-dresden.de

Nelly Bencomo
Durham University
United Kingdom
nelly@acm.org

Huma Samin
Durham University
United Kingdom

huma.samin@durham.ac.uk

ABSTRACT
Self-adaptive systems are able to adapt themselves according to
changing contextual conditions to ensure a set of predefined objec-
tives (e.g., certain non-functional requirements like reliability) is
reached. For this, they perform adaptation actions which have an
effect on the objectives. But, this effect is not reached immediately.
Instead, there is a latency between performing an adaptation action
and the effect on the objective. In this paper, we present an exem-
plar which allows to investigate this latency of adaptation actions
for a remote data mirroring system (RDMs) based on a previous
exemplar, which wasn’t latency-aware. The purpose of an RDM is
to replicate a data package among multiple locations (called mir-
rors) to protect against data loss and unavailability. We present
a simulation framework for RDM systems, which offers various
adaptation actions: changing the number of mirrors, changing the
number of links per mirror and changing the topology of the net-
work. The framework is able to predict the effect on three selected
non-functional requirements (cost, performance and reliability) and
how long a reconfiguration will take, i.e., the latency. We show how
to use this information to construct a simple, exemplary optimiser.

CCS CONCEPTS
• Software and its engineering → Abstraction, modeling and
modularity; Model-driven software engineering; Data flow
architectures.

KEYWORDS
latency-awareness, self-adaptation, models@run.time

ACM Reference Format:
Sebastian Götz, Nelly Bencomo, and Huma Samin. 2024. Latency-aware
RDMSim: Enabling the Investigation of Latency in Self-Adaptation for the
Case of Remote Data Mirroring. In 19th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS ’24), April 15–
16, 2024, Lisbon, AA, Portugal. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3643915.3644106

1 INTRODUCTION
Modern software needs to be self-adaptive [13] as it does not run
on a single stationary computer anymore. Instead, applications are

SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0585-4/24/04.
https://doi.org/10.1145/3643915.3644106

distributed amongst many machines in the cloud and programmed
according to paradigms like server-less computing [10]. A basic
ingredient for all of the above systems is, thus, a feedback loop.
That is applications continuously monitor themselves and their
environment, analyse whether they still do what they are supposed
to do, plan how to counter deviations from this plan, and finally
execute this plan. This basic principle is well known as MAPE-K [8],
an acronym for monitor, analyse, plan, execute, and knowledge.
The knowledge in MAPE-K is a runtime model of the current and, if
necessary, past states of the system. The introduction of such a run-
time model, which is causally connected to the system it represents,
is the principle idea of the research field models@run.time [1]. The
causal connection [9] defines how a change in the runtime model
is reflected in the running system and vice versa.

An interesting and still open question for the causal connection
is how to assess the time required for a change on one side to be
visible on the other, i.e., the latency. Knowing how long a change
takes in the runtime model to be reflected in the underlying system
and vice versa allows to specify latency-aware adaptation logic.

Latency-aware self-adaptation introduces a new dimension for
optimisation in self-adaptive systems. Besides optimising the ob-
jectives of such a system, latency-awareness allows to optimise
these objectives over time. If the planner can choose between mul-
tiple adaptation actions to improve the objectives of the system,
the knowledge about the latency of these actions enables the plan-
ner to choose, e.g., the fastest action. In consequence, the planner
can now optimise how long a system deviates from its optimum.
This includes the possibility to incorporate real-time deadlines for
available adaptation actions.

Approaches for latency-aware self-adaptation already exist. For
example, the works by Camara et al. and Moreno et al. [2, 3, 11, 12]
that use latency information for proactive adaptation. Also, more
recently, Keller and Mann provided a literature study on adaptation
latency in the context of service-oriented systems [7].

In this paper, we present a simulator framework which can be
used to experiment with and investigate the latency of adaptations
in the context of remote data mirroring [5, 6]. The framework is
based on an existing non-latency-aware exemplar [14] and extends
it by an object net of mirrors, links and data packages to enable
the investigation of how long adaptation actions require to be
completely realised. The framework, the exemplary optimiser, and
a test-suite demonstrating various scenarios are provided in an
open source repository1.

The exemplar allows to investigate the latency of several adap-
tation actions: changing the number of mirrors in the network,
switching between three provided topologies and changing the

1https://github.com/sebastiangoetz/LRDMSimulator

This work licensed under Creative Commons Attribution International 4.0 License.

182

2024 IEEE/ACM 19th Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS)



SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Götz, Bencomo and Samin

number of outgoing links per mirror. As in the original exemplar,
three general objectives are provided: the number of active links
representing the reliability of the network, the current bandwidth
used by the network representing the cost and the time to write
(the data to all mirrors) as performance objective.

To the best of our knowledge no other exemplar exists, yet, which
can be used to evaluate latency-aware self-adaptation approaches.

The remainder of this paper is structured as follows. In the next
section we summarise remote data mirroring and the previous ex-
emplar, and will introduce our new exemplar. In section 3, we show
how the exemplar provides metadata of adaptation actions to the
user, i.e., how each adaptation action effects the three objectives and
how to derive their latency. Then we show an exemplary optimiser
to showcase how to make use of this metadata and conclude.

2 REMOTE DATA MIRRORING SIMULATOR
In the following, we introduce remote data mirroring, the previous
simulation framework and our new simulation framework.

2.1 Remote Data Mirroring
Data plays a very important role in our current world. Its availability
is, thus, equally important. A particular approach to increase the
availability of data is to replicate it, i.e., the same data is hosted
on multiple distributed machines. Or, in other words, the data is
mirrored on remote servers. This approach is known under the
term remote data mirroring [5, 6]. In this context, servers are called
mirrors. Mirrors are connected via links. Once the link between
two mirrors is established and the receiving mirror is ready, the
source mirror can send the data to the target mirror.

A multitude of strategies to distribute the data amongst a set of
servers exist. For example, different topologies of the mirrors lead to
different characteristics of the overall system. If the mirrors form a
fully connected graph, the data can be distributed within the system
very fast, leading to a very high used bandwidth for the overall
system. In contrast, if the mirrors form a balanced tree where each
mirror has two child mirrors, it will take longer to distribute the
data amongst all mirrors, but also require less bandwidth. The time
required to distribute the data can be seen as a desired quality to the
user, while the used bandwidth can be considered as cost. Current
providers charge either directly by the bandwidth used or offer
usage packages with defined upper limits of available bandwidth.

Thus, depending on the topology used and the parameters of the
respective topologies (e.g., number of children), cost and quality
of the system change. As the user’s demand for a certain ratio
between quality and cost might change, too, it is natural to add
self-adaptation capabilities to such a system.

The adaptation manager has multiple configuration options:
choosing a topology and its parameters as well as changing the
number of mirrors. The manager monitors the used bandwidth,
the number of active links, and the time required to distribute
the data among all mirrors. The bandwidth metric represents the
operational cost, the number of active links the reliability, and the
time to write metric the performance of the network. Based on the
user’s current preferences, the analyser can determine whether the
current configuration satisfies them, and, if not, the planner can

Figure 1: Top-level Architecture of the TimedRDMSimulator

derive the actions required to reconfigure the system so it does
fulfil the user’s demands.

2.2 The Previous Simulation Framework
To enable the investigation of how well self-adaptation approaches
can optimise a remote data mirror system, Samin et al. [14] devel-
oped a simulator framework which offered probes and effectors to
the developers of self-adaptation logic. Probes allow to inspect the
current state of the system. Effectors allow to perform reconfigura-
tion actions to the running system.

The system is simulated in time steps where for each step a set
of metrics of the systems is computed: the number of active links,
the currently used bandwidth and the time required to write data to
mirrors. Notably, these metrics are computed based on predefined
functions taking an abstract system state as input. That is, in this
simulator, the mirrors, links and data packages are not represented
as actual runtime objects. Instead, the system state is represented
as an abstract description of them.

But, this abstract description of the system state does not allow
to perform custom investigations of the simulated system. In partic-
ular, it does not allow to inspect how long it takes for an adaptation
action to be actually fully realised in the simulator. For example, if
new mirrors are added to the system, these mirrors need some time
to boot and to establish the links according to the currently used
topology. Using the previous exemplar, it is impossible to measure
the time required for this change to be realised.

In consequence, we developed a new simulator, which simulates
the remote data mirroring network as an actual object network.

2.3 The Latency-aware Simulation Framework
The architecture of our framework is depicted in Figure 1. A user of
the framework creates an instance of the Simulator and retrieves
Probes and an Effector. The probes provide insights into the cur-
rent state of the framework. The effector allows to add adaptation
actions at defined time steps of the simulation. The user can then ei-
ther run the complete simulation or perform a step-wise simulation
to perform additional actions in between the time steps.

183



Latency-aware RDMSim: Enabling the Investigation of Latency in Self-Adaptation for the Case of Remote Data Mirroring SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

Figure 2: Domain Model of the Simulator

2.3.1 The Domain Model of the Simulator. Internally, the simula-
tor uses an object network of mirrors, links and data packages as
depicted in Figure 2. Mirrors hold a list of all links they are part of,
while each link refers to exactly one source mirror and one target
mirror. Mirrors additionally reference their data package.

A mirror has multiple states. Initially, the mirror is in downmode
and immediately switches to starting (i.e., booting). When it is
up it starts to activate all its links. When the first link becomes
active, the mirror becomes ready to receive data which it does until
it received the complete data package. Finally, it is in state hasdata.
When the mirror is shut down, the mirror switches to stopping
mode and, once the shutdown is completed, to stopped mode. The
switch between the states is timed. It takes starting_time time
steps for a mirror to switch from down to starting mode and
ready_time time steps to switch to up mode. The time of the shut-
down sequence is determined by stop_time. Each of these times is
randomly generated within boundaries specified in a configuration
file by the user of the simulator. The time required until the mirror
becomes ready depends on the time required for its links to get
active. The time required until a mirror reaches the hasdatamode
is to be observed during simulation as in each time step a certain
fraction of the data can be received if the mirror is ready and has
an active link to another mirror which is in hasdata mode.

Links can be either inactive, active or closed. Initially, they
are inactive and take activation_time time steps until they are
in active mode. But, links need to be activated by mirrors in up
mode (or later modes). Thus, for a link to become active both
source and target mirror first need to reach at least up mode and
then the activation_time starts. Links are closed immediately.

Both links andmirrors have a unique id and an init_time, which
is the simulation time at which the link or mirror was added to the
network. Links in closed mode and mirrors in stopped mode are
removed from the network in the next time step of the simulation.
Data packages don’t have an id, but a (configurable) fileSize and
an attribute to store how much data has already been received.

To simulate more realistic scenarios, the simulator offers another
parameter: fault_probability. A fault probability of 1% leads to

TimedRDMSim Network

VisualizationStrategy

void init(Network network)
void updateGraph(Network network, long timeStep)

TopologyStrategy

Set<Link> initNetwork(Network,Properties)
void handleAddNewMirrors(Network,newMirrors,Properties)
void handleRemoveMirrors(Network,removeMirrors,Properties)
int getNumTargetLinks(Network)

Probe

void update(int t)
void print(int t)

* *

Figure 3: Variation and Extension Points of the Framework

crashes of mirrors and their associated links with a 1% chance for
each mirror in each timestep.

2.3.2 Variability Points and Visualisation of the Framework. The
framework offers interfaces for extensions and variations. In par-
ticular, the visualisation of the simulator can be varied, additional
topologies can be added and the framework can be extended with
further probe types. For visualisations and topologies, the frame-
work uses the Strategy design pattern. For probes the Observer
design pattern is used. Figure 3 depicts these three variation points.

To add a new visualisation strategy, the developer has to imple-
ment the init method, which is called to create the initial visual-
isation at the beginning of the simulation, and the updateGraph
method, which is called after each time step.

To add a new topology strategy, the developer has to implement
four methods. One used to initialise a new network, one to handle
newly added mirrors, one to handle removed mirrors and a method
returning the number of target links for the network using this
topology. For example, the fully connected strategy returns the
number of links of a fully connected graph (i.e., (𝑚 · (𝑚 − 1))/2
where 𝑚 is the number of mirrors). The framework offers three
predefined topologies: fully connected (FC), n-connected (NC) and
balanced tree (BT). In FC every mirror is linked with every other
mirror. In NC every mirror has n outgoing links to other mirrors.
In BT the mirrors are arranged as a B-Tree [4].

Finally, to add a new probe type, the developer needs to imple-
ment two methods. The first, update, is meant to collect data from
the network. The second, print, is meant to print this information.

As standard visualisation, the framework offers a colour-coded
graph representation using Graphstream2. As shown in Figure 4,
the current network is visualised as a graph at the top and three line
charts below it whereof the first shows the bandwidth, the second
the relative active links and the last the time to write metric.

In the graph representation mirrors are depicted yellow, if they
are starting or up, red, if they are stopping or stopped, green, if
they are ready and purple, if they are in hasdata state. Links are
depicted yellow when inactive, green when active and red when
closed.

2https://graphstream-project.org/

184



SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Götz, Bencomo and Samin

Figure 4: Graphical visualisation of the Simulation

3 LATENCY-AWARE SELF-ADAPTATION
In the following, we first explain how to derive the metadata for
adaptation actions, i.e., how to assess their effect on the three met-
rics as well as on latency. We also show how this information
is made available to the user of the simulation framework, i.e., a
developer of a latency-aware self-adaptation approach. Next, we
illustrate a simple optimiser making use of this knowledge. In this
section, we show initial results on how to quantify the effects on
the relative active links metric as well as on the associated latency
and provide general insights on the bandwidth and time to write
metric.

Figure 5: Latency-aware Adaptation Actions as Exposed by
the Framework

Δ𝐴𝐿 FC NC BT
𝑚1 →𝑚2 0 2 𝑙𝑝𝑚 (𝑚2−𝑚1 )

(𝑚1−1) (𝑚2−1) 2 (𝑚2−𝑚1 )
𝑚1𝑚2

𝑙𝑝𝑚1 → 𝑙𝑝𝑚2 0 2 𝑙𝑝𝑚1−𝑙𝑝𝑚2
𝑚−1 0

Switch to FC 0 2𝑙𝑝𝑚
𝑚−1 1 − 2

𝑚

Switch to NC 2𝑙𝑝𝑚
𝑚−1 − 1 - 2𝑚 (1−𝑙𝑝𝑚)−1

𝑚2−𝑚
Switch to BT 2

𝑚 − 1 2𝑚 (𝑙𝑝𝑚−1)+1
𝑚2−𝑚 0

Table 1: Effect of Adaptations on Relative Active Links

3.1 Metadata of Adaptations
As mentioned in the last section, the simulator offers an Effector
to enable users to queue adaptation actions to be performed at
specific points in time of the simulation. These methods return an
Action object referencing an Effect object. Actions have an id
and a time and can be removed from the Effector, if their effect is
unwanted. As each adaptation action has different metadata, there’s
a subclass for each type of action.

The Effect class summarises all 4 metrics of interest to the
optimiser: the effect on each of the three objects and the latency,
i.e., required timesteps.

3.1.1 Relative Active Links. The relative active links metric (AL)
can be derived from the current network. For example, when the
network currently has the Balanced Tree topology, the current
number of mirrors can be used to compute the relative active links
metric. The reference or maximum for each of the metrics is the
fully connected topology. That is 𝐴𝐿 = 1 if there are 𝑚∗(𝑚−1)

2
links (fully connected graph). The maximum number of links (TL)
for the balanced tree topology is 𝑇𝐿𝐵𝑇 (𝑚) = 𝑚 − 1 (each mirror
has one incoming link except for the root). We can, thus, compute
𝐴𝐿𝐵𝑇 (𝑚) = (𝑚−1)/𝑚∗(𝑚−1)

2 = 2
𝑚 . Moreover, we can compute the

change on the relative active links from𝑚1 mirrors to𝑚2 mirrors
as Δ𝐴𝐿𝐵𝑇 (𝑚1,𝑚2) = 𝐴𝐿𝐵𝑇 (𝑚1) −𝐴𝐿𝐵𝑇 (𝑚2) = 2(𝑚2−𝑚1 )

𝑚1𝑚2
.

For the n-connected topology with 𝑙𝑝𝑚 links per mirror the
maximum number of links 𝑇𝐿𝑁𝐶 (𝑚, 𝑙𝑝𝑚) is defined as follows:

185



Latency-aware RDMSim: Enabling the Investigation of Latency in Self-Adaptation for the Case of Remote Data Mirroring SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

𝑇𝐿𝑁𝐶 (𝑚, 𝑙𝑝𝑚) =
{
𝑚 · 𝑙𝑝𝑚 𝑚 > 2 · 𝑙𝑝𝑚
𝑚 · (𝑚−1)

2 𝑒𝑙𝑠𝑒
(1)

That is if there are enough mirrors (𝑚 > 2 · 𝑙𝑝𝑚) each mirror
will have 𝑙𝑝𝑚 outgoing links. Else we have a fully connected graph.

The relative active links can be computed as follows:

𝐴𝐿𝑁𝐶 (𝑚, 𝑙𝑝𝑚) =
{ 2·𝑙𝑝𝑚

𝑚−1 𝑚 > 2 · 𝑙𝑝𝑚
1 𝑒𝑙𝑠𝑒

(2)

The effect of changing the number of mirrors in the n-connected
topology is computed as:

Δ𝐴𝐿𝑁𝐶 (𝑚1,𝑚2, 𝑙𝑝𝑚) = 2 · 𝑙𝑝𝑚 · (𝑚2 −𝑚1)
(𝑚1 − 1) (𝑚2 − 1) (3)

For the fully connected topology changes on the number of
mirrors or links per mirror does not change the relative active links
as it is itself the reference and, thus, 𝐴𝐿𝐹𝐶 (𝑚, 𝑙𝑝𝑚) = 1 for every
number of mirrors and links per mirror.

3.1.2 Relative Bandwidth. The bandwidth metric is more complex
to assess as it changes over time. Without any adaptation actions
the bandwidth at a certain point in time is the result of the number
of readymirrors with an active link between them. If bothmirrors at
the end of each active link already have the data, the bandwidth for
this link is 0. If onemirror does not have the data, the bandwidth can
be derived from the simulator parameters: the (min/max) bandwidth
per link (𝑏𝑝𝑙 ) and the number of sending links (𝑙𝑠𝑒𝑛𝑑 ). The number
of sending links can be retrieved by traversing the current network.
The current bandwidth of the network is then simply 𝑇𝐵𝑊 =

𝑏𝑝𝑙 ∗ 𝑙𝑠𝑒𝑛𝑑 . As a metric for optimisation the simulator offers the
relative bandwidth metric (BW) as the ratio between the maximum
possible bandwidth in a fully connected network where all links
are sending and the current network’s bandwidth:

𝐵𝑊 (𝑚, 𝑙𝑠𝑒𝑛𝑑 ) =
𝑏𝑝𝑙 · 𝑙𝑠𝑒𝑛𝑑

𝑏𝑝𝑙 · (𝑚 · (𝑚−1)
2 )

= 2
𝑙𝑠𝑒𝑛𝑑

𝑚 · (𝑚 − 1) (4)

Thus, to effect this metric either the number of mirrors needs to
be changed or the number of sending links. The number of sending
links is a subset of the number of active links and changes over
time even without any adaptation actions. As depicted in Figure 6,
as soon as a mirror received the whole data package the link is not
sending anymore.

The most effective way to increase the bandwidth of the net
is, thus, to add new mirrors which don’t have the data package.
Increasing the number of links can increase the bandwidth, too, but
only if there are enough mirrors left which still need to receive the
data. Moreover, by just increasing the number of links the band-
width logically will be increased for a shorter period compared
to the scenario where more mirrors are added. To decrease the
bandwidth, both reducing the number of links as well as reducing
the number of mirrors is helpful. Comparing both options, the re-
duction of mirrors will lead to zero bandwidth faster than reducing
the number of links.

Δ𝑡
Increase Mirrors 𝑡𝑠𝑡𝑎𝑟𝑡𝑢𝑝 + 𝑡𝑟𝑒𝑎𝑑𝑦 + 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

Decrease Mirrors 0
Change Links per Mirror 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

Switch Topology 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

Table 2: Latency of Adaptations

3.1.3 Relative Time To Write. The same complexity is present for
the time to write metric. To derive it, first the time to write per
package (TPP) is computed using the average bandwidth of the links
and the filesize of the data package from the simulator parameters
(𝑇𝑃𝑃 = 𝑓 𝑖𝑙𝑒𝑠𝑖𝑧𝑒/∅𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ).

The time towrite the package to thewhole network then depends
on the topology. For the fully connected case, the time to write
is the shortest, as the data package can be sent simultaneously
from the first to all other mirrors, i.e., 𝑇𝑇𝑊 𝐹𝐶 = 𝑇𝑃𝑃 . For the
balanced tree topology, the time to write can be computed via the
depth of the tree. Using the worst-case depth for B-Trees [4], we
can compute 𝑇𝑇𝑊 𝐵𝑇 (𝑚, 𝑙𝑝𝑚) = 𝑇𝑃𝑃 · ⌊𝑙𝑜𝑔𝑙𝑝𝑚𝑚+1

2 ⌋. For the n-
connected topology, we can examine the two extremes. Either we
have 𝑙𝑝𝑚 = 1 or we have 𝑙𝑝𝑚 > 2𝑚. The second case leads to
the fully connected topology and thus has an equal time to write.
The first case represents a chain as each mirror has exactly one
outgoing link. The last mirror will be connected to the first mirror
as the restriction is only on outgoing links (not on incoming links).
Notably, for data transmission, the direction of the links is not
considered, i.e., links can transfer data in both directions. Thus,
the number of hops for the data to perform in parallel is half of
the number of links (which equals the number of mirrors). We can
compute 𝑇𝑇𝑊 1𝐶 (𝑚) = 𝑇𝑇𝑃 · 𝑚2 . For 1 < 𝑙𝑝𝑚 < 2𝑚, the TTW
is between these two extremes. For the relative time to write, we
consequently use 𝑇𝑇𝑊 𝐹𝐶 as best case (=1) and 𝑇𝑇𝑊 1𝐶 (=0) as
worst case and scale the current time to write within these limits.

Again, depending on the current topology, changing the number
of mirrors and changing the number of links per mirror has a certain
effect on the metric. For brevity, we refer the interested reader to
the artefact for the concrete specifications.

3.1.4 Latency. The latency to change the number of mirrors is
bounded by the simulator parameters. Removing links and metrics
happens immediately. Thus, the latency of removing mirrors on all
three metrics is 0.

The latency of adding mirrors on the metrics is more complex.
The actual questions are: if 𝑛 mirrors are added, how long does it
take to establish all links and how long does it take to distribute the
data package to them? As outlined in section 2.3.1, mirrors move
through different states until the links are established and the data
is distributed. To determine the latency on active links, bandwidth
and time to write, we need to inspect the protocol more closely.
Figure 6 depicts an activity diagram showing the state changes of
two mirrors and the link between them.

To assess the latency of adaptation actions, we need to know
when the links become active. This time can be derived from the sim-
ulation parameters as follows. Each mirror requires startup_time
(min/max) timesteps to boot and ready_time (min/max) timesteps

186



SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal Götz, Bencomo and Samin

Figure 6: States of Mirrors and Links

to be ready to initiate a connection to other mirrors. Each link
requires link_activation_time (min/max) timesteps to become
active. Thus, the latency on relative active links is defined as:

Δ𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡𝑢𝑝 + 𝑡𝑟𝑒𝑎𝑑𝑦 + 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (5)
This way we can derive a minimum, maximum and average

latency. Changing the number of links per mirror as well as chang-
ing the topology leads to a re-initialisation of all links accord-
ing to the new topology or links per mirror. The mirrors are as-
sumed to be ready. In consequence, the latency of such actions is
Δ𝑡 = 𝑡𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 .

More complex specifications considering the time required to
transfer data are possible, but left for future work. The purpose of
this exemplar is to enable researchers to investigate it.

3.2 An Exemplary Latency-aware Optimiser
In the following we outline how to build a latency-aware optimiser
on top of our framework. Our intent is not to introduce a novel
optimisation technique, but to show how our framework enables
their development and investigation.

Thus, we present a simple optimiser with hard-coded rules. For
clarity, the optimiser only aims to enforce the objective to keep the
active links metric above 35%. For the N-connected topology, we
know that we can increase this metric either by removing mirrors
from the network or by increasing the number of links per mirror.

Thus, at each timestep of the simulation we check if the active links
metric fell below 35%. Additionally, we wait until at least 75% of
all links got active, so the active links metric gets a chance to get
close to its final value. If then the metric is still below 35%, two
adaptation actions are created. One to remove a mirror and another
to increase the links per mirror by 1. We then use our framework
to derive the latency for these actions and choose the fastest one.
The resulting simulation is depicted in Figure 4 and can be found
in the artefact as ExampleOptimizer.java.

Listing 1: Example Optimiser Using Latency Information
1 LinkProbe lp = ...;

2 for(int t = 1; t < sim.getSimTime(); t++) {

3 sim.runStep(t);

4 if(lp.getLinkRatio() > 0.75) {

5 if (lp.getActiveLinkMetric(t) < 35) {

6 mirrors--;

7 lpm++;

8 Action removeMirror =

9 sim.getEffector().setMirrors(mirrors, t + 1);

10 Action increaseLPM =

11 sim.getEffector().setLPM(lpm, t + 1);

12 if(removeMirror.getEffect().getLatency()

13 > increaseLPM.getEffect().getLatency()) {

14 sim.getEffector().removeAction(removeMirror);

15 mirror++;

16 } else {

17 sim.getEffector().removeAction(increaseLPM);

18 lpm--;

19 } } } }

To evaluate novel latency-aware self-adaptation approaches a
baseline is required. We suggest this baseline to be the case where
all adaptations have the same latency. To show the benefit of taking
adaptation latency into account the mean squared differences for
a selected objective (e.g., reliability) can be used. For the example
above, this would be the mean of differences for each timestep
of the simulation between the actual relative active links and the
desired 35%. More sophisticated measures are left for future work.

4 CONCLUSION
In this paper we have introduced a novel exemplar to investigate
latency-aware self-adaptation in the context of remote data mirror-
ing. The example is based on an existing exemplar and extends it by
providing metadata on the offered adaptation actions. The system
can be adapted by changing the number of mirrors, changing the
number of links per mirror and changing the topology. The simula-
tor reveals the effect of these adaptations on three metrics: the used
bandwidth representing the cost, the time to write representing
performance and the number of active links representing reliability.

Whilst the original exemplar generated random numbers for
the three metrics between configurable boundaries, this exemplar
performs an actual simulation of the mirrors, links and data pack-
ages constituting the network. This enables users of the simulator
to investigate the effects and latency of adaptation actions in this
context much more realistically.

187



Latency-aware RDMSim: Enabling the Investigation of Latency in Self-Adaptation for the Case of Remote Data Mirroring SEAMS ’24, April 15–16, 2024, Lisbon, AA, Portugal

REFERENCES
[1] Nelly Bencomo, Sebastian Götz, and Hui Song. 2019. Models@ run. time: a guided

tour of the state of the art and research challenges. Software & Systems Modeling
18 (2019), 3049–3082.

[2] Javier Cámara, Gabriel A. Moreno, and David Garlan. 2014. Stochastic Game
Analysis and Latency Awareness for Proactive Self-Adaptation. In Proceedings
of the 9th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (Hyderabad, India) (SEAMS 2014). Association for Com-
putingMachinery, New York, NY, USA, 155–164. https://doi.org/10.1145/2593929.
2593933

[3] Javier Cámara, Gabriel A. Moreno, David Garlan, and Bradley Schmerl. 2016.
Analyzing Latency-Aware Self-Adaptation Using Stochastic Games and Simu-
lations. ACM Trans. Auton. Adapt. Syst. 10, 4, Article 23 (jan 2016), 28 pages.
https://doi.org/10.1145/2774222

[4] Douglas Comer. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (jun 1979),
121–137. https://doi.org/10.1145/356770.356776

[5] Minwen Ji, Alistair C Veitch, John Wilkes, et al. 2003. Seneca: remote mirroring
done write.. In USENIX Annual Technical Conference, General Track. 253–268.

[6] Kimberly Keeton, Cipriano A Santos, Dirk Beyer, Jeffrey S Chase, John Wilkes,
et al. 2004. Designing for Disasters.. In FAST, Vol. 4. 59–62.

[7] Claas Keller and Zoltán Ádám Mann. 2020. Towards Understanding Adaptation
Latency in Self-adaptive Systems. In Service-Oriented Computing – ICSOC 2019
Workshops, Sami Yangui, Athman Bouguettaya, Xiao Xue, Noura Faci, Walid
Gaaloul, Qi Yu, Zhangbing Zhou, Nathalie Hernandez, and Elisa Y. Nakagawa

(Eds.). Springer International Publishing, Cham, 42–53.
[8] Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic computing.

Computer 36, 1 (2003), 41–50.
[9] Pattie Maes. 1987. Concepts and experiments in computational reflection. ACM

Sigplan Notices 22, 12 (1987), 147–155.
[10] Garrett McGrath and Paul R Brenner. 2017. Serverless computing: Design, im-

plementation, and performance. In 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW). IEEE, 405–410.

[11] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2015.
Proactive Self-Adaptation under Uncertainty: A Probabilistic Model Checking
Approach. In Proceedings of the 2015 10th Joint Meeting on Foundations of Soft-
ware Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/2786805.2786853

[12] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley Schmerl. 2018. Flex-
ible and Efficient Decision-Making for Proactive Latency-Aware Self-Adaptation.
ACM Trans. Auton. Adapt. Syst. 13, 1, Article 3 (apr 2018), 36 pages. https:
//doi.org/10.1145/3149180

[13] Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape
and research challenges. ACM transactions on autonomous and adaptive systems
(TAAS) 4, 2 (2009), 1–42.

[14] Huma Samin, Luis H Garcia Paucar, Nelly Bencomo, Cesar M Carranza Hurtado,
and Erik M Fredericks. 2021. RDMSim: an exemplar for evaluation and com-
parison of decision-making techniques for self-adaptation. In 2021 International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, 238–244.

188


