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Abstract: We propose a two-level extension of a previously introduced multi-
variate latent variable model, which allows incorporating covariates on both lev-
els. The presented model accounts for correlations among the response variables
through univariate random effects which are modelled using a mixture distri-
bution. We estimate the model parameters via an EM algorithm and provide
simulation results and a real data application.
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1 Introduction

The use of multivariate response models is not very widespread in statis-
tical practice. This may be related to the circumstance that ready-to-use
implementations are either only accessible via specialized software (such as
SAS), or are equivalent to fitting separate univariate response models (such
as R function lm). However, accounting for the multivariate response char-
acter has several inferential benefits including potentially increased powers.
Zhang and Einbeck (2022) introduced a versatile latent variable model for
dimension reduction and simultaneous clustering of multivariate data. How-
ever, their model did not allow for the inclusion of covariates and could not
deal with repeated measures. This paper aims to provide such extensions.
We consider a scenario where multivariate data xij ∈ Rm has a two-level
structure, with the upper level indexed by i = 1, 2, ..., r and the lower level
by j = 1, 2, ..., ni. The proposed two-level model takes the form

xij = α+ βzi + Γvij + εij , (1)
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where α, β ∈ Rm, zi ∈ R, vij ∈ Rp is the vector of covariates (which may
include upper-level variates not depending on j), Γ ∈ Rm×p is a matrix of
coefficients, and εij are independent Gaussian errors (if there is only one
covariate, vij ∈ R, we write Γ = γ ∈ Rm). Under such a model, the data
grouping process is carried out on the upper level, while the lower level
units within the same upper level unit share a common random effect zi.
Model (1) does not require the normality of random effects so no concerns
to check the random-effects distribution (e.g., Drikvandi et al 2017).
Figure 1 illustrates a data scenario corresponding to this concept. The data
used here is simulated from model (1) in the case that the latent variable
obeys a three-point mixture distribution. The grey straight line represents
the one-dimensional latent space α+βz, and the black triangles positioned
along the straight line the mixture centres of each component. The coloured
thinner lines are for illustration only and show the trend of lower-level units
within each each upper level (which is to some extent a result of the random
error and to some part driven by the covariate). The orange triangles are

the fitted values: x∗
ij = α̂ + β̂z∗i + γ̂vij , where z∗i =

∑K
k=1 wikẑk ∈ R are

obtained as the posterior random effects using posterior probabilities of
component membership wik (Aitkin, 1996).

FIGURE 1. Simulated data with 40 upper level units, each with 5 lower level
units, with α = (20, 10), β = (1, 3), πk = (0.2, 0.3, 0.5), zk = (1.73, 0.29,−0.87),
γ = (0.5, 1). Observations are generated with component-specific diagonal vari-
ance matrices Σk. (We avoid the use of the term ‘cluster’ since this has a different
connotation in the context of repeated measures.)
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2 Methodology

We conduct the parameter estimation using maximum likelihood method.
Since the component membership of each upper unit is unknown, we con-
sider this as an ‘incomplete data’ problem, and apply the EM algorithm.
The required complete data likelihood takes the shape

Lc =

r∏
i=1

K∏
k=1

(

ni∏
j=1

fijk)πk

Gik

,

where Gik is an indicator variable taking the value 1 if upper unit i be-
longs to component k. We specify a multivariate Gaussian model for the
component-specific densities fik in model (1) as

fijk =
1

(2π)m/2

1

|Σk|1/2
exp

(
−1

2
(xij − α− βzk − Γvij)

TΣ−1
k (xij − α− βzk − Γvij)

)
.

The expected complete log-likelihood is then given by

l =

r∑
i=1

ni∑
j=1

K∑
k=1

wik log(πk) +

r∑
i=1

ni∑
j=1

K∑
k=1

−1

2
wik log(|Σk|) +

r∑
i=1

ni∑
j=1

K∑
k=1

−m

2
log(2π)wik

+

r∑
i=1

ni∑
j=1

K∑
k=1

−1

2
wik(xij − α− βzk − Γvij)

TΣ−1
k (xij − α− βzk − Γvij),

where Σk is a component-specific diagonal variance matrix, and wik =
πkfik∑
l πlfil

is the probability of upper unit i belonging to component k. The

computation of wik is via the E-step. The parameters α, β, zk, Σk, and Γ
will be estimated through the M-step. The key parameter estimates are:

ẑk =

∑r
i=1 wik

∑ni

j=1 β̂
T Σ̂−1

k (xij − α̂− Γ̂vij)∑r
i=1 niwikβ̂T Σ̂−1

k β̂
,

and

Γ̂ =

 r∑
i=1

ni∑
j=1

K∑
k=1

wik(xij − α̂− β̂ẑk)v
T
ij

 r∑
i=1

ni∑
j=1

vijv
T
ij

−1

.

3 Real data application

The real data used here is obtained from the International Adult Literacy
Survey (IALS), collected in 13 countries on Prose, Document, and Quanti-
tative scales between 1994 and 1995. The data are reported as the percent-
age of individuals who could not reach a basic level of literacy in each coun-
try. Based on the Prose scale only, Sofroniou et al (2008) used these data
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TABLE 1. Posterior probabilities and intercepts for the IALS data. In the column
‘mass points’, the first two rows give estimated π̂k and ẑk.

Mass points
0.2308 0.5391 0.1532 0.0769

Country posterior intercept -1.1576 -0.0819 0.5904 2.8703

Sweden -1.15760 1.0000 0.0000 0.0000 0.0000
Germany -1.15756 1.0000 0.0000 0.0000 0.0000
Netherlands -1.15754 0.9999 0.0001 0.0000 0.0000
Canada -0.08188 0.0000 1.0000 0.0000 0.0000
Australia -0.08188 0.0000 1.0000 0.0000 0.0000
Switzerland(French) -0.08188 0.0000 1.0000 0.0000 0.0000
New Zealand -0.08173 0.0000 0.9998 0.0002 0.0000
Belgium(Flanders) -0.08163 0.0000 0.9996 0.0004 0.0000
Switzerland(German) -0.08114 0.0000 0.9989 0.0011 0.0000
United States -0.08036 0.0000 0.9977 0.0023 0.0000
Ireland 0.58386 0.0000 0.0098 0.9902 0.0000
United Kingdom 0.58912 0.0000 0.0019 0.9981 0.0000
Poland 2.87028 0.0000 0.0000 0.0000 1.0000

to rank countries according to their posterior intercepts z∗i =
∑K

k=1 ẑkwik.
We analyze the data considering the 3-variate response Prose, Document,
and Quantitative, additionally including the lower-level covariate gender in
the model; i.e. m = 3, p = 1 and Γ = γ ∈ R3.
The country-specific random effect zi accounts for the correlation among
the observations within upper-level units and the correlation among the
three response dimensions of the model. We fit the model with k = 4 mass
points and component-specific diagonal variances Σk, leading to an AIC
value of 235.5 which does not drop significantly when increasing k further
or with other variance parametrizations. Table 1 presents the joint ranking
via the posterior random effect and classification of the countries. The table
shows that Sweden, Germany, and the Netherlands are assigned to mass
point 1 with the smallest number of people being illiterate. Poland is the
only country that is assigned to the high illiteracy mass point 4. The US
and Ireland have posterior probabilities that spread across two mass points
but are assigned to different components. Using all three measurements as
a multivariate response, the component allocation of each country is more
decisive compared to the results using just Prose (Sofroniou et al, 2008).

4 Simulation study

We conduct a simulation study to examine the performance of our method.
Another objective of this simulation is to investigate whether an increase in
the number of upper- or lower-level units will effectively reduce the variance
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in the parameter estimates. We first consider a scenario with r = 50 upper
level units and ni = 5 lower level units, for i = 1, 2, . . . , r. This will be
the baseline experiment. Then we keep r = 50 unchanged and increase
the number of lower-level units to be ni = 10, for i = 1, 2, . . . , r. We
consider another sample size with lower-level units ni = 5 for i = 1, 2, . . . , r
unchanged but increase the upper-level units to be r = 100. We generate
200 replicates from the model (1) with one lower level covariate in all three
scenarios, with the covariate generated from a normal distribution with a
mean of 0.3 and a standard deviation of 0.2. The results indicate that when
we increase the upper-level units, the parameters’ RMSE decreases stronger
than when increasing the lower-level units. Then we further increase the
upper level units to be r = 200 and keep the lower level units ni = 5 for
i = 1, 2, . . . , r. The key results are shown in Figure 2, Table 2 and Table 3.

FIGURE 2. Estimates of key parameter γ with different number of upper-level
and lower-level units.

5 Conclusion

This paper provides an extended random effect model that applies to two-
level multivariate response data with latent structures. An EM algorithm
is used for parameter estimation. In particular, a nonparametric maximum
likelihood method (Aitkin 1999) is used for estimation of the random ef-
fect where the mass points zk and their weights πk, k = 1, 2, . . . ,K are
treated as unknown parameters to be estimated in the EM algorithm. An
application of constructing a league table using the IALS data is provided.
Another application is to fit multivariate response models. Note: A typo
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TABLE 2. Estimates of key parameters γ, zk and α with different upper-level
and lower-level units.

Average estimates
True r = 50, ni = 5 r = 50, ni = 10 r = 100, ni = 5 r = 200, ni = 5

γ1 1.000 0.989 0.993 0.991 0.995
γ2 3.000 3.036 2.972 3.009 2.998

z1 -0.816 -0.807 -0.814 -0.820 -0.809
z2 1.225 1.268 1.258 1.234 1.246
α1 2.000 2.037 2.039 2.034 1.991
α2 10.000 10.020 10.007 10.019 10.002

TABLE 3. RMSE for key parameters γ, zk and α with different upper-level and
lower-level units.

RMSE
r = 50, ni = 5 r = 50, ni = 10 r = 100, ni = 5 r = 200, ni = 5

γ1 0.269 0.167 0.166 0.118
γ2 0.474 0.297 0.296 0.194

z1 0.124 0.124 0.084 0.068
z2 0.198 0.207 0.133 0.132

α1 0.464 0.447 0.302 0.232
α2 0.172 0.161 0.120 0.088

in the published proceedings version in the expression for Lc has been fixed
in this version.
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