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Abstract
Factor models are widely used for dimension reduction in the analysis of multivariate data. This is achieved through decom-
position of a p × p covariance matrix into the sum of two components. Through a latent factor representation, they can be
interpreted as a diagonal matrix of idiosyncratic variances and a shared variation matrix, that is, the product of a p × k factor
loadings matrix and its transpose. If k � p, this defines a parsimonious factorisation of the covariance matrix. Historically,
little attention has been paid to incorporating prior information in Bayesian analyses using factor models where, at best, the
prior for the factor loadings is order invariant. In this work, a class of structured priors is developed that can encode ideas of
dependence structure about the shared variation matrix. The construction allows data-informed shrinkage towards sensible
parametric structures while also facilitating inference over the number of factors. Using an unconstrained reparameterisation
of stationary vector autoregressions, the methodology is extended to stationary dynamic factor models. For computational
inference, parameter-expanded Markov chain Monte Carlo samplers are proposed, including an efficient adaptive Gibbs
sampler. Two substantive applications showcase the scope of the methodology and its inferential benefits.

Keywords Covariance matrix · Dimension reduction · Intraday gas demand · Latent factor models · Stationary dynamic
factor models · Structured prior distributions
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1 Introduction

Factor models are widely used as a tool for dimension reduc-
tion in explaining the covariance structure of multivariate
data. Let yi = (yi1, . . . , yip)T be a p-dimensional random
vector with mean μ and covariance matrix � for observa-
tion unit i = 1, . . . , n. The classic factor model posits that
the covariances between the p components of yi can be
explained by their mutual dependence on a smaller number
k of unknown common factors ηi = (ηi1, . . . , ηik)

T. Specifi-
cally, the model expresses yi as a noisy affine transformation
of ηi ,
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yi = μ + �ηi + εi , (1)

in which the p × k matrix � is called the factor loadings
matrix. The components of the error term εi are often called
the specific factors (or “uniquenesses”) and their variances
are often termed the idiosyncratic variances. In (1), we take
the specific and common factors, εi and ηi , to be uncorre-
lated, zero-mean multivariate normal random variables, with

εi ∼ Np(0,�) and ηi ∼ Nk(0, Ik). (2)

In general, the common factors are assumed to explain all
the shared variation between the components of yi and so �

is constrained to be a diagonal matrix with positive diagonal
elements, � = diag(σ 2

1 , . . . , σ 2
p). It then follows from (1)

that the marginal covariance matrix � can be expressed as

� = ��T + � (3)

in which the product � = (δi j ) = ��T will henceforth be
termed the shared variationmatrix. If k � p, the right-hand-
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side of (3) constitutes a parsimonious factorisation of the full
covariance matrix.

Factormodels originally foundwidespreaduse in psychol-
ogy and other social sciences (e.g. Goldberg 1990), where
a primary motivation was the prospect of domain insight
through interpretation of the latent factors. Since their intro-
duction, factor models have been extended in a variety of
directions, for example, by allowing sparsity in the matrix of
factor loadings for high-dimensional problems (Conti et al.
2014) or by modelling the temporal evolution of variances
in stochastic volatility models (Lopes and Carvalho 2007)
or the latent factors in dynamic factor models (Sáfadi and
Peña 2008). Accordingly, the use of factor models and their
extensions has spread into a diverse array of other fields, such
as finance (Aguilar and West 2000) and genetics (Carvalho
et al. 2008).

In many of these application areas, the modeller is likely
to hold prior beliefs about the nature of the dependence
between variables. For example, when the observation vector
represents repeated measures data, or observations at a col-
lection of spatial locations, it would be reasonable to expect
stronger associations between measurements that are closer
together in time or space. Indeed, such ideas underpin the
class of functional factor models which are tailored to vari-
ables that might be better represented as functions over a
continuous domain, rather than vector-valued random quan-
tities. Some functional factor models, and their dynamic
extensions, have functional factors (e.g. Castellanos et al.
2004; Taylor-Rodriguez et al. 2019) while others have func-
tional factor loadings. In the latter case, if we regard the p
observations on unit i as measurements on a function over a
continuous domain, say τ ∈ R, then we replace (1) with

yi (τ j ) = μ(τ j ) + fi (τ j ) + εi (τ j )

= μ(τ j ) +
k∑

m=1

λm(τ j )ηim + εi (τ j )

for j = 1, . . . , p. The key idea is then to treat the factor load-
ing curvesλm(τ ) as smooth unknown functions of τ . This can
be achieved by regarding fi (τ j ) = ∑

λm(τ j )ηim as a linear
combination of (orthogonal) basis functions, often modelled
using splines, which then implies a particular covariance
function for fi (τ ). Although some of the research in this
direction uses a Bayesian approach to inference (Kowal et al.
2017; Kowal and Canale 2022), the frequentist treatment
of the problem is more common, particularly in financial
applications to forecasting yield curves (Hays et al. 2012;
Jungbacker et al. 2014). An alternative approach in models
with functional factor loadings is to assume each λm(τ ) to be
a realisation of a stochastic process, for instance, a Gaussian
process with a chosen covariance function; see, for example,
the dynamic spatial model of Lopes et al. (2008).

Beyond analyses of functional data, most of the work in
the Bayesian literature on prior specification for factor mod-
els has focused on the problem of developing priors that are
exchangeable with respect to the order of the variables in
the observation vector (e.g. Leung and Drton 2016; Chan
et al. 2018) with more recent work focusing additionally on
allowing sparsity in the factor loadings matrix (Frühwirth-
Schnatter et al. 2023). There has been very little work on
constructing non-exchangeable prior specifications in a gen-
eral setting. A notable exception is the structured increasing
shrinkage process prior of Schiavon et al. (2022) under
which each factor loading in an infinite factorisationmodel is
assigned a spike-and-slab priorwhere variable-specificmeta-
covariates are incorporated in the spike probabilities. Other
related work appears in the context of vector error correc-
tion models, which are another class of reduced rankmodels,
where Koop et al. (2009) develop an informative prior for the
matrix of cointegration vectors based on economic theory
about the likely cointegration relationships between vari-
ables.

In this paper, we treat the factor model as a tool for pro-
viding a dimension-reduced parameterisation of a covariance
matrix. Based on the insight that the shared variation matrix
� = ��T in (3) is more amenable to the specification of
prior beliefs than the factor loadings matrix �, our main
contribution is a framework for incorporating initial beliefs
about� in the prior for� by exploiting the algebraic relation-
ship between the two quantities. By switching the focus from
properties of the prior for� to properties of the prior for�we
obtain a methodology that is more flexible than alternatives
described in the literature. The prior for the shared variation
matrix� is induced through a structured prior distribution for
the factor loadingsmatrix�which can encode ideas of order-
invariance as well as non-exchangeable structure, modelled
through dependence on covariance kernels, meta-covariates,
pairwise distance metrics and more, within a single prin-
cipled framework. In particular, the mean of the prior for
� can be any positive definite matrix of relevance. For
example, it could be a phylogenetic distance matrix whose
entries encode distances between nodes on a tree, or even
the Gram matrix arising from a Gaussian process covariance
function. The interpretability of this prior expectation facil-
itates straightforward incorporation of meaningful domain
expertise. Moreover, the flexible class of priors allows data-
informed shrinkage towards a region around the mean within
a framework that facilitates inference on the number of fac-
tors and hence the extent to which dimension-reduction can
be achieved. New theoretical results outline the nature of this
shrinkage in the rank-reduced space over which � has sup-
port while shedding light on some of the identifiability issues
that can hamper computational inference for factor models.

Based on ideas from the literature on infinite factorisation
models and parameter-expansion algorithms, we propose an
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efficient scheme for computational inference where a single
Markov chain Monte Carlo (MCMC) run yields informa-
tion about both the continuous model parameters and the
number of factors. Using an unconstrained reparameterisa-
tion of stationary vector autoregressions, the methodology is
also extended to a class of stationary dynamic factor models
for which the shared variation matrix remains meaningfully
defined. To the best of our knowledge, this is the first prior,
with associated inferential scheme, for a general class of
dynamic factor models that constrains inference to the sta-
tionary region without imposing further restrictions. This
constitutes an important contribution to the Bayesian time-
series literature.

The remainder of this paper is organised as follows. After
introducing our parameterisation of Bayesian factor models
in Sect. 2, Sect. 3 presents the general class of structured pri-
ors and its components. In Sect. 4, we extend these ideas
to a class of stationary dynamic factor models. Posterior
computation is discussed in Sect. 5, then Sect. 6 presents a
simulation experiment and two substantive applications that
illustrate the scope of the methodology and its inferential
benefits.

2 Parameterisation of the Bayesian factor
model

It is well known that the parameters � and � in the marginal
covariance matrix � = ��T + � of a factor model are not
identifiable from the likelihood without imposition of con-
straints. Indeed, even with the scale of the factors fixed at
Var(ηi ) = Ik in (2), there remains a rotational invariance.
Consider any k×k orthogonalmatrix Q.We can pre-multiply
the factors in (1) by Q and post-multiply the factor loadings
matrix by QT and this gives the transformed factors in (2) the
same distribution as the original factors and so the marginal
variance in (3) remains unchanged. The factor loadings
matrix can therefore only be identified up to an orthogonal
transformation. This means there are pk − k(k − 1)/2 + p
degrees of freedom determining the marginal variance �.
In an unconstrained model for yi , the number of degrees of
freedom would be p(p + 1)/2 and so the reduction in the
number of parameters is p(p+1)/2−{pk−k(k−1)/2+ p}
which is positive if k < ϕ(p) where

ϕ(p) = 2p + 1 − √
8p + 1

2
(4)

is called the Ledermann bound. Notwithstanding rotational
invariance, the first identification issue is therefore whether
� can be identified uniquely from �. Fortunately, Bekker
and ten Berge (1997) proved that if k < ϕ(p) then �, and
therefore � = ��T, is almost surely globally identifiable.

Given identification of�, solving the rotation problemwould
then guarantee unique identification of the factor loadings
matrix �.

In theBayesian literature, themost common solution to the
rotation problem uses the positive diagonal, lower triangular
(PLT) constraint; denoting the constrained matrix by �̃ and
corresponding factors by η̃1, . . . , η̃n , this demands λ̃i j = 0
for j > i and λ̃i i > 0 for i = 1, . . . , k. Although histor-
ically this approach has been widely used in the Bayesian
literature (e.g. Geweke and Zhou 1996; Lopes and West
2004), we choose not to address the rotational invariance
and instead parameterise the model using the unidentified
and unconstrained factor loadings matrix �. There are two
main motivations.

First, recent work provides theoretical and empirical evi-
dence that imposition of the PLT constraint can adversely

affect computational inference. Writing �̃
(k)

to denote the
lower triangular matrix comprising the first k rows and

columns of �̃, problems arise when �̃
(k)

is near singular,
which can occur when variables in yi are highly correlated.

When the j th diagonal element of �̃
(k)

is close to zero, the
signs of (λ̃ j+1, j , . . . , λ̃pj ) are only very weakly identified,
producing multiple modes in the posterior corresponding to
the different sign flips (e.g. Aßmann et al. 2016; Man and
Culpepper 2022). This can cause poor mixing in MCMC
samplers and poor approximation of the posterior for the
number of factors (Chan et al. 2018). These problems have
been addressed successfully by parameter-expansion tech-
niques, which target a posterior over an expanded space with
fewer pathological features (e.g. Ghosh and Dunson 2009;
Chan et al. 2018). Parameterising the model and framing the
problem of computational inference in terms of the unidenti-
fied factor loadings matrix � falls into this class of methods.

Second, parameterisation in terms of the unconstrained
and unidentified factor loadings matrix � delivers an addi-
tional benefit in terms of prior specification. Direct elicitation
of a prior for the identified factor loadings in �̃ is difficult as
they quantify relationships with latent factors whose inter-
pretation is generally unclear a priori. In contrast, beliefs
about the shared variation � in linear Gaussian models can
be related directly to beliefs about observable quantities. As
a result, � is generally a more intuitive parameter for the
quantification of covariation. For example, in a spatial prob-
lem where the elements of yi correspond to observations
at different locations, a modeller might reasonably structure
their beliefs through a covariance matrix for which covari-
ance decays as a function of distance. Fortunately, subject to
k < ϕ(p), identifiability of � is not necessary for identifica-
tion of�. Further, under various standard distributions for an
unconstrained random matrix �, the first and second order
moments of the shared variation matrix � = �̃�̃

T = ��T

can be calculated in closed form. Through careful specifi-
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cation of the prior for �, a modeller can therefore capture
their beliefs about the moments in the prior for the shared
variation matrix.

3 Structured prior distributions

3.1 Significance of prior expectation

The prior expectation of the shared variation matrix � =
��T is defined by E(�) = {E(δi j )} = E(��T). As we
detail in Sect. 3.4, E(�)will be chosen to reflect beliefs about
the covariation amongst the p elements of yi . In general, it
will be a rank p matrix.

For k < p, denote by S+
p,k the set of rank k, p × p sym-

metric, positive semi-definite matrices and write S+
p for the

space of p × p symmetric, positive definite matrices. The
factor loadings matrix � is rank k < ϕ(p) < p and so the
prior distribution for the shared variation matrix � = ��T

only offers non-zero support to S+
p,k . Because S+

p,k is not a
convex set, it need not contain the prior expectation of �.
Indeed, as stated previously, E(�) will generally be rank
p. Therefore, although E(�) represents the centre of prior
mass, in general there will be zero density at this point. The
significance of E(�) is thus not completely clear. We will
elucidate its meaning via an alternative, constrained expec-
tation, as follows.

The Frobenius norm of a matrix is simply the Euclidean
norm of its vectorised form. Define the (squared) Frobenius
distance between twomatrices A and B as the squaredFrobe-
nius norm of their difference:

d(A, B)2 = ‖A − B‖2F = tr
{
(A − B)T(A − B)

}
.

By analogy with the classic Euclidean expectation, we
now define the constrained expectation of � as EF (�) =
L0LT

0 ∈ S+
p,k where

L0 = min
L∈Rp×k

E	

{
d(��T, LLT)2

}
.

Theorem 1 below asserts that if the kth and (k + 1)th eigen-
values of E(�) are distinct, the constrained expectation of�
is the point in S+

p,k that minimises the Frobenius distance to
E(�). However, before proving Theorem 1, we need Propo-
sition 1.

Proposition 1 Let the spectral decomposition of a matrix
D ∈ S+

p be UMUT, where M = diag(m1, . . . ,mp) is
a diagonal matrix of ordered eigenvalues, m1 ≥ m2 ≥
· · · ≥ mp > 0, and U is an orthogonal matrix whose
columns comprise the corresponding eigenvectors. Assume
that mk �= mk+1. Then, for � ∈ R

p×k , the matrix prod-
uct ��T which minimises the Frobenius distance to D is

��T = D1/2U (k)U (k) TD1/2 where U (k) is the sub-matrix
comprising the first k columns of U . Moreover, the minimum
squared Frobenius distance is equal to the sum of the squares
of the last p − k eigenvalues of D.

The proof of Proposition 1 is provided in the Supplemen-
tary Materials.

Theorem 1 If UMUT denotes the spectral decomposition of
E(�) ∈ S+

p and mk �= mk+1, then the constrained expec-

tation of �, EF (�) ∈ S+
p,k , is equal to the matrix product

which minimises the Frobenius distance to E(�). That is,
EF (�) = E(�)1/2U (k)U (k) TE(�)1/2.

The proof of Theorem 1 is given in the Supplementary
Materials. Its significance lies in the suggestion that the prior
for � encourages shrinkage towards the closest matrix in
S+
p,k to the rank p prior expectation E(�), hence for a given

structure for E(�), approximating it as closely as possi-
ble in rank-reduced form. The Supplementary Materials also
consider the case mk = mk+1 and the implications for com-
putational inference.

3.2 Amatrix normal prior

A random matrix � has a matrix normal distribution with
location matrix M ∈ R

p×k , among-row scale matrix � ∈
S+
p and among-column scale matrix 	 ∈ S+

k , written
� ∼ Np,k(M,�,	), if vec(�) is multivariate normal

and such that vec(�) ∼ Npk

(
vec(M),	 ⊗ �

)
. Since

(α	) ⊗ (α−1�) = 	 ⊗ � for any scalar α > 0, the overall
scale of either� or	 can be fixed without loss of generality.

Suppose that we take � ∼ Np,k(0,�,	) as a prior for
the unconstrained factor loadings matrix and fix the scale
of the among-row scale matrix by taking tr(�) = p or
tr(�−1) = p. As remarked in Sect. 2, the shared variation
matrix � = (δi j ) = ��T is a quantity which is amenable to
the specification of prior beliefs, and so our goal is to derive
its moments. Using standard theory for the matrix normal
distribution (e.g. Gupta and Nagar 2000, Chapter 2), it can
be shown that the expectation of � is given by

E(�) = tr(	)�, (5)

while the covariance between δi j and δk� is Cov(δi j , δk�) =
tr(	2)(φikφ j� + φi�φ jk). In the special case where i = k
and j = �, the variance of δi j is then

Var(δi j ) = tr(	2)(φi iφ j j + φ2
i j ). (6)

The derivations of the moments above are provided in the
Supplementary Materials.

The result in (5) is significant because of the interpre-
tation it bestows on the among-row scale matrix � as a
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standardised version of our prior expectation for the shared
variation matrix �. Parametric forms are convenient models
for covariance matrices because they provide a parsimonious
representation of dependence and a way to model the rela-
tionships with as-yet unobserved variables. We can therefore
model the among-row scale matrix � using a parametric
form. This encourages shrinkage of the shared variation
matrix � towards an area around that parametric form but
without enforcing the structure as a model constraint.

Suppose that � = R(ϑ) in which ϑ is a low-dimensional
vector of hyperparameters onwhich the parametric form R(·)
depends.We complete our prior for the factor loadingsmatrix
by taking 	 = diag(ψ1, . . . , ψk) and assigning a prior to ϑ

and the ψi . Parametric forms R(·) and the prior for the ψi

are discussed in Sects. 3.4 and 3.5, respectively.

3.3 Amatrix-t prior

The expressions for the means and variances in (5) and (6)
under the matrix normal prior reveal a lack of flexibility;
recalling that the scale of � is fixed, once the mean E(�)

has been chosen, it is clearly not possible to scale up or
down all the variances by scaling 	. As such, we cannot
assess independently the overall scale of themean and uncer-
tainty around that mean. Amatrix-t prior for� remedies this
problem through the introduction of a degree of freedom
parameter.

Let S ∼ Wp(ς + p − 1,�−1) and X ∼ Np,k(0, I p,	)

be independent random matrices, where Wn(q,U) denotes
the n-dimensional Wishart distribution with q > 0 degrees
of freedom and scale matrix U ∈ S+

n . If we define

� = (S−1/2)TX + M (7)

where S1/2(S1/2)T = S and M ∈ R
p×k , then the ran-

dom matrix � has a matrix-t distribution, written � ∼
tp,k(ς, M,�,	). Again, one can fix the scale of either the
among-row scale matrix� ∈ S+

p or the among-column scale

matrix 	 ∈ S+
k without loss of generality.

Suppose that we adopt � ∼ tp,k(ς, 0, �̆,	) as a prior
for the factor loadings matrix. Expressions for the means,
variances and covariances of � = ��T are derived in
the Supplementary Materials. In particular, we show that
E(�) = tr(	)� for ς > 2 where � = �̆/(ς − 2), which
is identical to the expression derived under the matrix nor-
mal prior. We also show that for a fixed value of E(�), the
variance,

Var(δi j ) =
{
tr(	)2 + (ς − 2)tr(	2)

} {
ςφ2

i j + (ς − 2)φi iφ j j

}

(ς − 1)(ς − 4)
forς > 4,

can be increased or decreased by decreasing or increas-
ing ς , respectively. Therefore, by treating ς > 4 as an

unknown and assigning it a prior, we can allow the data
to influence the degree of shrinkage of the shared varia-
tion matrix towards the closest rank k matrix to its mean.
Writing ς̌ = 1/(ς − 4) ∈ R

+, a matrix normal distribu-
tion for � is recovered as ς̌ → 0. We can therefore allow
controlled relaxation of the fixed shrinkage of the matrix
normal prior by specifying a prior for ς̌ with its mode at
zero. To this end, we recommend an exponential distribu-
tion ς̌ ∼ Exp(a0). In the special case when � = I p
and 	 = ψ Ik , we have Var(δi j ) = sk(ς̌)E(δi j ) where
sk(ς̌) = (1 + 2ς̌ )

{
1 + (2 + k)ς̌

}
/(1 + 3ς̌ ) is an increas-

ing function in ς̌ which takes its minimum value of 1 when
ς̌ = 0. By trial and improvement, we can therefore use the
quantiles of the Exp(a0) distribution to choose a value for
a0 which is consistent with our prior beliefs about a cho-
sen quantile in the distribution for the scale factor sk(ς̌) for
various k. This is illustrated in the application in Sect. 6.2.

3.4 Model and prior for8

3.4.1 General form

Under either a matrix normal or matrix-t prior for �,
E(�|�,	) = tr(	)�. As explained in Sect. 3.2, since we
choose to fix tr(�) = p or tr(�−1) = p, we can therefore
interpret � as a standardised version of the prior expecta-
tion of �. For most of the parametric forms described in this
section, it will be possible to factorise � or � = �−1 as
� = R(ϑ) or � = R(ϑ), respectively, where R(·) yields a
positive definite matrix with 1 s on the diagonal. The vector
ϑ typically contains a small number of unknown hyperpa-
rameters to which we assign a prior.

3.4.2 Specific examples

The simplest structure for � would take � = I p giving
E(�|�,	) = tr(	)I p. In the matrix normal case when,
additionally, 	 = ψ Ik , we obtain the order-invariant prior
presented in Leung and Drton (2016) for the identified factor
loadings matrix in which λ̃i j ∼ N(0, ψ) for i �= j and λ̃2i i ∼
Gam{(k − i + 1)/2, 1/(2ψ)} for i = 1, . . . , k. Although
taking � = I p will give an order-invariant prior for �, a
more general distribution that is exchangeable with respect
to the order of the variables in yi arises by taking � to be
a two-parameter exchangeable matrix. Since we constrain
tr(�) = p this yields� = (1−ϑ)I p+ϑ J p, where−1/(p−
1) < ϑ < 1, J p = 1p1T

p and 1p is a p-vector of 1 s. This
is the most general form for a p × p symmetric, positive
definite matrix with tr(�) = p which is invariant under a
common permutation of the rows and columns. If a modeller
has nothing in their prior beliefs to distinguish among the
p elements of yi , the advantage of this specification over
the order-invariant prior of Leung and Drton (2016) is that it
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allows shrinkage of the p(p−1)/2 off-diagonal elements of
the shared variation matrix � towards non-zero values. This
can be particularly helpful when the number of observations
is small relative to the dimension of yi .

In confirmatory factor analysis, structural zeros are often
introduced in the factor loadingsmatrix based on prior beliefs
about the relationships between the k factors and the variables
in yi . For example, in the prototypical two-factor model, the
first p1 variables load only on factor 1 whilst the remaining
p− p1 variables load only on factor 2. Thiswould correspond
to a block diagonal shared variation matrix �. Rather than
imposing these beliefs about independent group structure as
a model constraint, one could instead encourage shrinkage
towards the corresponding structure through the prior. With
appropriate ordering of the variables, this could be achieved
by taking � = blockdiag(�1, . . . ,�k) in which each �i

block is a two-parameter exchangeable matrix, as described
above.

Beyond these simple examples, there are many fields of
statistics in which parametric forms are adopted for correla-
tion matrices or their inverses. Typically, they are intended
to capture the idea that observations from variables that are
closer together, often in time or space, tend to be more
strongly (positively) correlated. For instance, the precision
matrix for a vector of longitudinal measurements might be
assumed to be that of a stationary autoregressive process of
order one. We could centre the prior for � on a matrix of
this form by taking � = (ξi j ) to be a tridiagonal matrix with
ξi,i+1 = ξi+1,i = −ϑ for i = 1, . . . , p−1, ξi i = 1+ϑ2 for
i = 2, . . . , p − 1 and ξ11 = ξpp = 1 where ϑ ∈ (−1, 1).

In spatial statistics, it is very common to use a spatial
correlation function, such as one from the Matérn class. A
conventional spatial correlation function will depend only
on the distance, and possibly direction, between sites. How-
ever, Schmidt et al. (2011) introduced the idea of recording
distances in a space of dimension greater than two, by intro-
ducing covariates into the correlation function. A special
case, termed the projection model, measures the distance
between sites j and k in this augmented space using the
Mahalanobis metric with respect to an (unknown) c×c sym-
metric, positive definite matrix �, that is,

dC, jk = √{(x j − xk)T�(x j − xk)}. (8)

Here x j is a vector of coordinates for site j , comprising
its two spatial coordinates and the values of c − 2 meta-
covariates. This is then combined with an exponential spatial
correlation function to give φ jk = exp(−dC, jk). Omitting
the spatial coordinates, these ideas can be extended to non-
spatial settings if there are meta-covariates associated with
the p variables that are thought to influence the relationships
between deviations from the mean (yi j −μ j ) and (yik −μk)

in any vector measurement. Indeed, any Gaussian process

correlation matrix could be used for�which has huge scope
for the incorporation of meaningful domain expertise.

More generally, if the distances between variables can be
measured by somemetric, say d jk , this could be used to struc-
ture the prior through the specification φ jk = exp(−d jk/ϑ).
An ecological example is provided in Sect. 6.2 which uses
phylogenetic distances between species in a joint model for
species occurrence.

3.5 Model and prior for	

Except in confirmatory factor analysis, an appropriate num-
ber of factors is not usually known a priori. Various methods
have been proposed in the literature to address this source
of uncertainty. This includes techniques to approximate the
marginal likelihood of models with different numbers of fac-
tors, including path sampling (Dutta and Ghosh 2013) and
Chib’s method (Chib et al. 2006). However, these meth-
ods are very computationally expensive, requiring separate
Monte Carlo simulations for models with k = 1, . . . , H
factors, where H is the maximum number of factors that
a modeller is prepared to entertain. Lopes and West (2004)
propose a reversible jump MCMC algorithm but the pro-
posals for transdimensional moves require pilot MCMC
runs for models with k = 1, . . . , H factors which rapidly
becomes untenable for high-dimensional problems. Other
methods that attempt to allow simultaneous inference of the
number of factors and the model parameters rely on iden-
tification of individual zeros in the factor loadings matrix
(Frühwirth-Schnatter and Lopes 2010; Conti et al. 2014;
Frühwirth-Schnatter et al. 2023). The approach taken here
in similar in spirit, relying on the removal of columns whose
contribution to � is negligible.

Due to the challenges in approximating the posterior for
k, a recent approach that has become popular relies con-
ceptually on an overfitted factor model (Bhattacharya and
Dunson 2011; Legramanti et al. 2020; Schiavon et al. 2022).
In theory, infinitely many factors are permitted but cumula-
tive shrinkage priors are used to increasingly shrink columns
of the factor loadingsmatrix towards zero as the column index
increases. This allows the infinite factor loadings matrix to
be approximated with a finite matrix by omitting columns
that have been shrunk close enough to zero. The posterior
for the number of non-discarded columns k∗ is then used as
a proxy for the posterior for k. As such, a single MCMC
sample yields information about both the model parameters
and the number of latent factors.

A popular increasing shrinkage prior is the multiplicative
gamma process (MGP) (Bhattacharya and Dunson 2011).
Conditional on a set of hyperparameters, the factor loadings
within each column are assumed to be independent nor-
mal random variables with zero mean and a column-specific
precision parameter. The precisions are a cumulative prod-
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uct of gamma random variables and their prior expectation
increases with the column index. A factor is deemed inac-
tive a posteriori if the contribution of its loadings to � is
negligible under a chosen truncation criterion. In order to
apply these ideas to our structured prior for the shared vari-
ation matrix, we take the among-column scale matrix 	 to
be diagonal and assign the reciprocals of its elements a MGP
prior

ψ−1
h =

h∏

�=1

��,

�1 ∼ Gam(a1, 1), �� ∼ Gam(a2, 1), � ≥ 2 (9)

in which the �� are independent. To ensure identifiability of
the shared variation matrix � = ��T and the idiosyncratic
variances� in the likelihood, we choose to truncate the prior
at H ≤ 
ϕ(p)�−1whereϕ(p)was defined in (4). Guidelines
on the choice of a1 and a2 to ensure the 1/ψh are stochas-
tically increasing in a reasonable neighbourhood of zero are
provided in Durante (2017).

4 Stationary dynamic factor models

4.1 Bayesian dynamic factor models

In the classic vector autoregressive (VAR) model, the num-
ber of parameters grows quadratically with the dimension of
the observation vector. In contrast, the number of parame-
ters in a dynamic factor model only grows quadratically with
the dimension of the latent factors. This makes them a valu-
able tool for dimension-reduction in multivariate time series
analysis. A dynamic factor model has the same observation
equation as a static model,

yt = μ + �ηt + εt , εt ∼ Np(0,�). (10)

However, the factors in a dynamic model evolve over time
according to an order m vector autoregression (VAR(m)).
This yields the state equation as

ηt = 
1ηt−1 + · · · + 
mηt−m + ζ t , ζ t ∼ Nk(0,�), (11)

for t = 1, 2, . . . in which the observation and factor inno-
vations εt and ζ t are serially and mutually uncorrelated.
As in the static case, it is generally assumed that the com-
mon factors explain all of the shared variation and so �

is taken to be diagonal. Various extensions of this model
have been presented, for example, Peña and Poncela (2006)
incorporate a moving average component in state equation,
Aßmann et al. (2016) introduce lagged factors in (10) and
Kaufmann and Schumacher (2019) allow the components

of the idiosyncratic innovations to evolve independently as
univariate stationary autoregressions.

4.2 A stationary dynamic factor model

The methodology described in this paper relies on the use of
a structured prior distribution for the shared variation com-
ponent of the marginal variance. The marginal variance of
a dynamic factor model is only meaningfully defined when
the factors evolve according to a stationary process; here-
after we focus only on situations where this is a reasonable
assumption. The manner by which stationarity is enforced is
discussed in Sect. 4.3.

In order to identify the scale of the loadings matrix in a
dynamic factor model, the scale of the factors is normally
constrained by fixing � = Var(ζ t ) = Ik . However, to retain
the interpretation of � = ��T as a shared variation matrix,
we instead constrain the stationary covariance matrix so that
G0 = Var(ηt ) = Ik and hence the marginal variance of yt
remains as� = ��T +�. We can therefore assign a prior to
the unconstrained factor loadings matrix � using precisely
the ideas discussed in Sect. 3 for the static model.

To complete specification of the stationary dynamic factor
model, the state equation (11) must be initialised at its sta-
tionary distribution. To this end, we augment the parameter
space with m auxiliary factors at times t = 1 − m, . . . , 0.
Generalising the definition of the stationary variance G0

above, we define Gi = Cov(ηt , ηt+i ) as the i th autocovari-
ance of ηt . The initial distribution can then be expressed as
(ηT

1−m, . . . , ηT
0)

T ∼ Nkm(0, G) where G is a positive defi-
nite block Toeplitz matrix with G j−i as the block in rows
{k(i − 1) + 1} to ki and columns {k( j − 1) + 1} to k j
(i, j = 1, . . . ,m) and G−� = GT

� (� = 1, . . . ,m − 1).

4.3 Enforcing the stationarity constraint

Denote by B the backshift operator, Bηt = ηt−1. The VAR
model governing evolution of the factors can then be written
as ζ t = (Ik −
1B−· · ·−
mBm)ηt = 
(B)ηt where 
i ∈
R
k×k for i = 1, . . . ,m and 
(u) = Ik −
1u−· · ·−
mum ,

u ∈ C, is termed the characteristic polynomial. The process is
stable if and only if all the roots of det{
(u)} = 0 lie outside
the unit circle. Because all stable processes are stationary and
unstable stationary processes are not generally of interest,
this subset of the Cartesian product space in which the 
i lie
is often referred to as the stationary region, Cm,k . Even for the
simplest vector case of an order-1 bivariate autoregression,
it has a highly complex geometry.

Various authors have considered Bayesian inference for
stationary dynamic factor models (e.g. Sáfadi and Peña
2008; Lopes et al. 2008). However, due to the difficulties
of designing efficient MCMC samplers with state space
constrained to Cm,k , the autoregressive coefficient matrices

123



143 Page 8 of 18 Statistics and Computing (2024) 34 :143

are often assumed to be diagonal, which simplifies the sta-
tionarity condition to that of a univariate autoregression.
Fortunately, recent work by Heaps (2023) presents a prior
for the autoregressive coefficient matrices that is constrained
to Cm,k and facilitates routine computational inference. This
is based on an unconstrained reparameterisation of the
model through twobijective transformations. First, themodel
parameters {(
1, . . . ,
m),�} undergo a recursive mapping
which yields a new parameter set {(P1, . . . , Pm),�}. Here
P i+1 is the (i + 1)th partial autocorrelation matrix, that is,
a standardised version of the conditional cross-covariance
between ηt+1 and ηt−i given the i intervening variables
(ηt , . . . , ηt−i+1). Each partial autocorrelation matrix lies in
the space of k × k square matrices with singular values
less than one. By mapping the singular values of P i from
[0, 1) to the positive real line, a second mapping then con-
structs an unconstrained k × k square matrix Ai through
Ai = (Ik − P i PT

i )
−1/2P i , i = 1, . . . ,m, in which X−1/2

denotes the inverse of the symmetric matrix square root of
X . Specification of a prior for the Ai , discussed in Sect. 4.4,
and computational inference is now routine owing to the
Euclidean geometry of the parameter space.

The inverse mapping from the intermediate reparam-
eterisation {(P1, . . . , Pm),�} to the original parameters
{(
1, . . . ,
m),�} involves two recursions. The first outputs
the stationary covariancematrixG0 from {(P1, . . . , Pm),�}
and the second outputs (
1, . . . ,
m) (and recovers �)
from (P1, . . . , Pm) and G0. It is therefore trivial to mod-
ify the reparameterisation to accommodate the constraint that
G0 = Ik ; one simply omits the first recursion, and calculates
{(
1, . . . ,
m),�} from (P1, . . . , Pm) and G0 = Ik in the
second recursion. We note that the autocovariance matrices
G1, . . . , Gm−1 needed to characterise the initial distribution
of η(1−m):0 are also by-products of this second recursion.

When ηt follows a VAR(1) process, there is a closed form
expression for the original model parameters in terms of P1

or, equivalently, A1. Dropping the 1-subscript for brevity, we
canwrite
 = P = (Ik+AAT)−1/2A and� = Ik−P PT =
(Ik + AAT)−1.

4.4 Prior for the transformed partial autocorrelation
matrices

The stationary dynamic factor model described in the
previous sections is invariant under rotations of the fac-
tors when compensatory transformations are applied to
the factor loadings and parameters of the state equa-
tion. In particular, marginalising over the common fac-
tors, it can readily be shown that the likelihood evaluated
at (μ,�,�, A1, . . . , Am) is the same as the likelihood
evaluated at (μ,�QT,�, QA1QT, . . . , QAm QT) for any
orthogonal matrix Q ∈ O(k). In the absence of any mean-
ingful information to distinguish Ai from QAi QT a priori,

we assign a prior which is rotatable, that is Ai and QAi QT

have the same distribution for any orthogonal matrix Q.
To this end, we take the Ai to be independent with Ai ∼
Nk,k(0, Ik, Ik), i = 1, . . . ,m.

5 Posterior computation

5.1 Samplers with fixed truncation level

Consider first the static factor model. For computational
inference, we use MCMC to sample from the posterior asso-
ciated with our unconstrained parameterisation of the model.
When the truncation level in the factor loadings matrix is
fixed at H , we propose a straightforward Gibbs sampler. The
full conditional distributions for most unknowns have stan-
dard forms and can be sampled directly. However, depending
on the structure chosen for the among-row scale matrix
� = R(ϑ), a semi-conjugate prior for the correlation param-
eter(s) in ϑ is not generally available and so we update ϑ

in a Metropolis-Hastings step. Computational inference is
slightly complicated if a matrix-t , rather than matrix normal,
prior is adopted for � because it is not conjugate to the like-
lihood. However, sampling becomes straightforward if we
make use of the representation of a matrix-t random vari-
able in (7) and augment the state space of the sampler with
the matrix S. The full conditional distribution for � is then
matrix-normal while the full conditional distribution for S is
Wishart. The only other additional unknown is the degree of
freedomparameter ς . If ς is assigned the prior fromSect. 3.3,
its full conditional distribution is non-standard. Rather than
updating the transformed degree of freedom parameter ς̌

through its own Metropolis-Hastings step, mixing can be
greatly improved by performing a joint update of S and ς̌ .
The proposal density takes the form q(S∗, ς̌∗|S, ς̌ , . . .) =
q1(ς̌∗|ς̌ )q2(S∗|ς̌∗, . . .) in which q1(·) is a randomwalk pro-
posal on the log-scale and q2(·) is the full conditional density
for S.

Extension of theGibbs sampler to handle the dynamic fac-
tor model is straightforward. The latent factors η1−m, . . . , ηn
can be sampled efficiently from their full conditional distribu-
tion in a single block using a variety of sampling approaches
(Wilkinson and Yeung 2002, 2004). In the example in
Sect. 6.3 we used the forward-filtering backward-sampling
algorithm (e.g. Frühwirth-Schnatter 1994) but other methods
that rely on banded or sparse matrix algorithms will be more
efficient in higher-dimensional applications; see, for exam-
ple, Chan and Jeliazkov (2009). The full conditional distri-
butions for the transformed partial autocorrelation matrices
A1, . . . , Am are non-standard. Given a truncation level of
H , each Ai contains H2 parameters and so it is not generally
feasible to update the whole matrix in a single Metropolis-
Hastings step.We therefore propose dividing the elements of
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each Ai into blocks of length b and updating the blocks one-
at-a-time. In the application in Sect. 6.3, we found mixing to
be greatly improved by using Metropolis-adjusted Langevin
(MALA) steps rather than Gaussian random walks.

Given a large enough fixed truncation level H ≤ 
ϕ(p)�−
1, the MGP prior increasingly shrinks the factor loadings
in columns with higher indices if the data suggest their
likelihood contribution is negligible. At least conceptually,
these columns can be discarded. If there are m[i] discardable
columns on iteration i of the MCMC sampler, the effec-
tive number of factors is defined as k∗ [i] = H − m[i].
The posterior for the effective number of factors can then
be used as a proxy for the posterior for k. There are vari-
ous truncation criteria for deciding which columns can be
omitted. Bhattacharya and Dunson (2011) consider as inac-
tive any factor whose loadings are all within ε of zero for
some chosen threshold, say ε = 10−4. Schiavon and Canale
(2020) suggest a more interpretable criterion which, unlike
the choice of threshold ε, is unaffected by the scale of the
data and its dimension. Denote by �k∗ the factor loadings
matrix obtained by discarding the columns of � from k∗ + 1
onwards. The basic idea is that if �k∗ = �k∗�T

k∗ + � can
explain 100T% of the total variability of the data for some
T ∈ (0, 1), then one decides there are k∗ active factors. The
choice of proportion T then replaces the choice of threshold
ε. This is the truncation criterion we adopt in the applications
in Sect. 6.

When the truncation level H is fixed, an alternative to
Gibbs sampling is to implement off-the-shelf computational
inference using standard probabilistic programming soft-
ware. Code for the applications in Sect. 6, written in Stan
(Carpenter et al. 2017), is given in the Supplementary Mate-
rials. Stan uses Hamiltonian Monte Carlo to perform joint
updates of all unknowns and so tends to converge faster and
mix better than aGibbs sampler. The caveat is the necessity to
fix H ; although this can be addressed in a bespoke implemen-
tation of Gibbs sampling (see Sect. 5.2 below), Stan cannot
be customised in this way.

5.2 Adaptive Gibbs sampler

Especially in applications where p is large, the number of
effective factors is often considerably less than the Leder-
mann bound ϕ(p). Therefore fixing a truncation level H
which is less than, but in the vicinity of, ϕ(p) can be com-
putationally inefficient. In the literature on infinite factor
models, a common pragmatic solution is to use an adap-
tive Gibbs sampler which tunes the truncation level H as it
proceeds. Adaptation occurs at iteration i with probability
p(i) = exp(α0 + α1i) where α0 ≤ 0 and α1 < 0 such that
the probability of adaptation decreases over the course of
the simulation. This is necessary to satisfy the diminishing
adaptation condition of Roberts and Rosenthal (2007).

During an adaptation step, k∗ [i] is compared to the current
value of H . The basic idea is to delete any inactive factors or
to add an extra factor if all H factors are active. In the static
model, implementation is straightforward. If k∗ [i] < H , H
is reduced to k∗ [i] and any inactive factors are deleted along
with the corresponding columns of � and components of �

and	. If k∗ [i] = H and H < 
ϕ(p)�−1, H is increased by
1 then an extra factor, column of factor loadings, and com-
ponent of � are sampled from their priors. In the dynamic
model, the adaptation step is slightly more involved because
of the additional complexity in the distribution of the latent
factors. Full details of the adaptive Gibbs samplers for both
static and dynamic models are given in the Supplementary
Materials, along with R code for the applications in Sect. 6.
We also provide details on how the posterior output can be
post-processed to obtain samples under a parameterisation
in which the factor loadings matrix is identified by the PLT
constraint. This is incredibly valuable for parameter interpre-
tation and the assessment of MCMC diagnostics.

6 Applications

6.1 Simulation experiment

6.1.1 Simulation settings

In order to investigate posterior sensitivity to the prior specifi-
cation in the idealised setting inwhichwe know the datawere
generated from a factor model with known shared variation
matrix �, we carried out a series of simulation experiments.
In the simplified setting in which � = σ 2 I p, denote by β

the proportion of the total variation in � = � + � that is
explained by the common factors, that is, β = tr(�)/tr(�).
Then for given β and �, the corresponding value of σ 2 can
be computed as σ 2 = (1 − β)tr(�)/(kβ). Three different
combinations of p and k, representing different degrees of
dimension reduction, were considered: (p = 24, k = 6),
(p = 48, k = 9) and (p = 72, k = 9) so that k/p was
equal to 25, 18.75 and 12.5%, respectively. For each combi-
nation of p and k, we also considered three values for β, β ∈
{0.9, 0.95, 0.99}, giving nine sets of values for {(p, k), β} in
total. We refer to these as simulation settings. Note that we
only set � = σ 2 I p for the purposes of simulating the data;
for inference, we still allow � = diag(σ 2

1 , . . . , σ 2
p).

Under each simulation setting, we simulated 24 data sets
of size n = 50 based on an exponential correlation matrix
for �, taking � to be the closest rank-k matrix to � (see
Proposition 1). In the simulation of each data set, in order
to fix the value of �, we simulated p pairs of coordinates
x j = (x j1, x j2)T, j = 1, . . . , p, by sampling uniformly
at random from the unit square, and then set the expected
shared variation matrix equal to�with ( j, k) element φ jk =
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exp(−‖x j − xk‖2/ϑ) where the length-scale parameter was
equal to

ϑ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1/ log(0.05), for data sets 1, . . . , 6;
−1/ log(0.10), for data sets 7, . . . , 12;
−1/ log(0.15), for data sets 13, . . . , 18;
−1/ log(0.20), for data sets 19, . . . , 24.

For a distance of 1 in the unit square, the correlations there-
fore ranged from 0.05 to 0.20.

6.1.2 Prior distributions

Each data set generated under each simulation setting was
used to update five prior distributions for �. Three are struc-
tured matrix normal priors, with different assumptions about
�, and two are widely used priors in factor analysis which
allow inference on the number of factors:

SN (expcov.) A structuredmatrix normal prior in which�

was taken to have the same form as that used
to simulate the data, that is, an exponential
correlation matrix. The length-scale param-
eter was taken to be unknown and assigned
the distribution log(ϑ) ∼ N(0, 1).

SN (fixed) A structuredmatrix normal prior in which�

was taken to have the same form as that used
to simulate the data, that is, an exponential
correlation matrix. The length-scale param-
eter was fixed at the value used to simulate
the data.

SN (exch.) A structured matrix normal prior in which
� was taken to have a different form to that
used to simulate the data, specifically we
took � = (1 − ϑ)I p + ϑ J p, −1/(p −
1) < ϑ < 1, representing a two-parameter
exchangeable matrix with trace fixed at
p. The correlation parameter was taken to
be unknown and assigned the distribution
logit(ϑ̌) ∼ N(0, 1) where ϑ̌ = {1 + (p −
1)ϑ}/p.

MGP The original (exchangeable) multiplicative
gamma process prior described in Bhat-
tacharya and Dunson (2011), which is a
global–local prior. We took a1 = 1 and
a2 = 2 in the multiplicative gamma pro-
cess for the global precision parameters and
ν = 3 in the distribution for the local preci-
sion parameters.

CUSP Acumulative shrinkageprocess prior (Legra-
manti et al. 2020), which is a slab-and-spike
prior. We took aθ = bθ = 2 in the distribu-

tion for the slab, θ∞ = 0.05 for the position
of the spike and α = 5 in the cumulative
stick-breaking construction controlling the
probability assigned to the spike.

For the three structured matrix normal priors, we chose
a1 = 1 and a2 = 2 in the multiplicative gamma process
for the diagonal elements of 	. In all cases, the idiosyn-
cratic variances were assigned the prior 1/σ 2

j ∼ γ (1, 0.3)
independently for j = 1, . . . , p.

6.1.3 Analysis and results

All analyses were run using an adaptive Gibbs sampler,
allowing adaptation after 500 iterations and setting the
parameters in the diminishing adaptation condition at α0 =
−1 and α1 = −5×10−4. The chains were run for 10K itera-
tions, following a burn-in of 10K, and thinned to retain every
fifth sample to reduce computational overheads. For the three
structured matrix normal priors and the original MGP prior,
we applied the truncation criterion of Schiavon and Canale
(2020), retaining as active enough factors to explain at least
T = 0.95 of the total variation in the data.

The (squared) geodesic distance between two symmetric
positive definite matrices A ∈ S+

p and B ∈ S+
p is defined as

dG(A, B)2 =
[ p∑

i=1

log
{
λi

(
A−1B

)}2
]

in which λi (X) denotes the i th eigenvalue of X (Lim and
Sepulchre 2019). For simulation experiments in which β =
0.99, Table 1 reports the median and interquartile range
across the 24 data sets of the posterior mean of dG(�,�0)

where �0 denotes the value used to simulate the data. Cor-
responding Tables for the simulations where β = 0.95 and
β = 0.9 are presented in the Supplementary Materials. We
chose the distance metric dG(·, ·) because, by construction,
� is close to singular and so the geodesic distance will be
better suited than a metric, such as the Frobenius distance,
which ignores the geometry of the space. In particular, it will
give large values whenever � and �0 do not approximately
span the same subspace of Rp, that is when their null spaces
are not approximately the same. We also report the median
and interquartile range for the posterior mean of the effective
number of factors k∗.

Focusing first on the posterior mean of the geodesic dis-
tance dG(�,�0), it is immediately clear from Table 1 and
the corresponding tables in the SupplementaryMaterials that
both the medians and interquartile ranges across data sets are
typically smallest when we use a prior in which � is based
on an exponential correlation matrix. As we would expect,
this is especially true when the length-scale parameter in the
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Table 1 Summaries of the simulation experiment when β = 0.99

Prior (p, k) E{dG(�,�0)| y} E(k∗| y)
Median IQR Median IQR

SN (expcov.) (24, 6) 15.88 0.38 6.34 0.56

SN (fixed) (24, 6) 15.78 0.39 6.30 0.89

SN (exch.) (24, 6) 15.93 0.39 6.63 0.69

MGP (24, 6) 16.02 0.45 6.27 0.86

CUSP (24, 6) 16.25 0.36 3.13 0.57

SN (expcov.) (48, 9) 21.25 0.58 7.54 1.95

SN (fixed) (48, 9) 21.18 0.65 7.32 1.47

SN (exch.) (48, 9) 22.20 1.04 5.96 2.02

MGP (48, 9) 22.15 0.64 6.41 2.32

CUSP (48, 9) 22.86 0.84 3.00 0.23

SN (expcov.) (72, 9) 23.89 1.03 7.76 1.38

SN (fixed) (72, 9) 23.69 1.37 7.85 1.55

SN (exch.) (72, 9) 25.81 1.87 6.15 0.92

MGP (72, 9) 24.99 0.94 7.21 1.81

CUSP (72, 9) 27.89 1.07 3.00 0.00

prior is fixed at the value used in simulating the data. Never-
theless, the modest differences between posterior inferences
under SN (expcov.) and SN (fixed) are reassuring; in the
analysis of a real data set, though we may have strong prior
beliefs about a suitable structure for E(�), we are likely to
be more uncertain about the values of the hyperparameters
in that structure. We also observe that the gains from assum-
ing the correct form for � in this simulation experiment are
greatest when the total variation in � makes up a larger pro-
portion of the total variation in � (that is, when β = 0.99
and β = 0.95) and when the degree of dimension reduction
is larger. This is as expected because in both cases, the prior
for �, and therefore �, is likely to impart more influence
on the posterior for �. It is interesting to observe that when
we adopt a structured matrix normal prior but assume an
incorrect structure for �, the posterior mean for dG(�,�0)

still tends to be smaller than under the MGP or CUSP pri-
ors. This is likely to be because we simulated all data sets
based on exponential correlation matrices for � which have
strictly positive diagonal elements. Under SN (exch.), we are
shrinking� towards a rank-reduced approximation to a two-
parameter exchangeable matrix with a common (potentially
positive) off-diagonal element whereas the prior expectation
for � under the MGP and CUSP priors is diagonal.

A discussion of the results concerning the posterior mean
of the effective number of factors k∗ can be found in the
Supplementary Materials.

6.2 Co-occurrence of Finnish birds

6.2.1 Model and prior

As discussed in Sect. 1, most of the literature on prior
specification for factor models focuses on constructing a dis-
tribution for the factor loadings matrix that is exchangeable
with respect to the order of the components in the observation
vector. An exception is the structured increasing shrinkage
(SIS) process (Schiavon et al. 2022). This prior allows meta-
covariates to inform the within-column sparsity structure of
the factor loadings matrix in an infinite factorisation model.
In this section, we re-examine the Finnish birds data set anal-
ysed in Schiavon et al. (2022) to illustrate the extra flexibility
afforded by our approach.

The Finnish bird data comprise information on the co-
occurrence of the 50 most common bird species in Finland
from 137 sampling areas in 2014 (Lindström et al. 2015).
The occurrences are arranged into a n × p binary matrix
Y = (yi j ) where yi j = 1 if bird species j was observed
in area i and yi j = 0 otherwise. Information available to
explain the variation in the mean μi at each sampling area
include a n × c matrix of environmental covariates W con-
taining measurements on spring temperature and its square
and a five-level habitat type (broadleaved forests, conifer-
ous forests, open habitats, urban habitats, wetlands) so that
c = 7. Information available to structure the prior for the
marginal variance � include a phylogenetic tree, indicat-
ing the evolutionary relationships amongst the 50 species,
and a p × q matrix of meta-covariates X consisting of two
species traits: logarithm of typical body mass and a three-
level migratory strategy (short-distance migrant, resident
species, long-distance migrant). Following Schiavon et al.
(2022), we model species presence or absence using a multi-
variate probit regression model where yi j = I(zi j > 0) and
we assume the latent variables zi = (zi1, . . . , zip)T are such
that zi = BTwi + �ηi + εi for i = 1, . . . , n. Here wT

i is
the i th row of W , B = (βi j ) is a c × p matrix of regression
coefficients, and the idiosyncratic variances on the diagonal
of Var(εi ) = � are set equal to 1 to prevent compensatory
rescaling of B and � = ��T + �. Our prior for the coeffi-
cients in B is identical to that of Schiavon et al. (2022) and
described in the Supplementary Materials.

The SIS process prior for � is built on a series of assump-
tions of conditional independence. As a consequence, the
expectation of the shared variation matrix � is diagonal,
irrespective of the priors assigned to its hyperparameters.
Moreover, every factor loading λi j has a spike-and-slab dis-
tribution in which the meta-covariates only enter through the
logit of the spike probability. As such, there is no mecha-
nism for incorporating the rich information on evolutionary
relationships that is expressed through the phylogenetic tree.
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In contrast, using the approach outlined in Sect. 3.4 we
can structure the prior for the shared variation so that it
incorporates the information from the phylogenetic tree in
addition to the two meta-covariates. The former can be
encoded as a matrix of phylogenetic distances between the
50 species, whose (i, j)th entry, say dP,i j , is the sum of
the branch lengths along the path between the leaves for
species i and j . This distance function is a metric over
the set of leaves (Steel 2016, Chapter 6). Another mea-
sure of the dissimilarity between species can be obtained
using the generalised distance function from the projection
model in (8). As we only have binary response data, which
is unlikely to be as informative as continuous data, we sim-
plify (8) by taking the matrix � to be diagonal. This yields

dC,i j =
{∑4

k=1(xik − x jk)2/ϑ2
k

}1/2
as a metric for the dis-

tance between the meta-covariates for species i and j , where
xi1, xi2 and xi3 are indicators for whether species i is a
short-distance migrant, resident or long-distance migrant,
respectively, while xi4 is the logarithm of typical body mass
for species i . Since dP,i j and dC,i j are metrics over a set
comprising the species and their associated traits, the sum is
also a metric. We can therefore take as a generalised measure
of distance between species i and j , di j = dC,i j + dP,i j/ϑ5,
in which ϑi > 0 for i = 1, . . . , 5. So that all the length-
scale parameters ϑi operate on a comparable scale, the
meta-covariates and branch lengths are standardised prior
to calculating dC,i j and dP,i j . Finally, we relate the gener-
alised distance di j to the among-row scale matrix� by using
the exponential correlation function, φi j = exp(−di j ). We
assume the length-scale parameters to be independent in the
prior and assign distributions logϑi ∼ N(0, 10).

Based on available phylogenetic and ecological informa-
tion, this prior encourages shrinkage towards a rank-reduced
approximation of an expected shared variation matrix E(�)

with higher correlations between types of bird that are more
closely related in terms of their evolutionary history and
species traits. Since we allow the length-scale parameters
ϑi to be unknown we are also able to learn which vari-
ables are more important in explaining relationships between
species. However, the structure for the expected shared vari-
ation matrix represented through � is conjectural and so we
elect to use the matrix-t prior whose extra degree of free-
dom parameter ς allows the data to influence the degree of
shrinkage. As discussed in Sect. 3.3, we induce a prior for
ς > 4 by specifying a distribution for ς̌ = 1/(ς − 4) ∈ R

+.
Specifically, we take ς̌ ∼ Exp(1) which implies that when
the number of factors k is 5, 10 and 15, the probability of
the scale factor sk(ς̌) lying between 1 and x is 0.75 for
x = 7.8, x = 12.9 and x = 18.0, respectively. For the
diagonal elements in 	, we assign a MGP prior (9) with
a1 = 2, a2 = 6 and a maximum truncation point H that
satisfies H ≤ 
ϕ(50)� − 1 = 40.

6.2.2 Analysis and results

We ran two chains, initialised at different starting points,
using the adaptive Gibbs sampler discussed in Sect. 5.2 and
another two chains using Stan’s implementation of the (non-
adaptive) Hamiltonian Monte Carlo sampler with a fixed
truncation level of H = 10. In the Gibbs sampler, adapta-
tionwas allowed after 500 iterations and, following Schiavon
et al. (2022), the parameters in the diminishing adaptation
condition were set at α0 = −1 and α1 = −5 × 10−4. After
a burn-in of 20K iterations, each chain was run for a further
20K iterations, thinning to store every fifth draw in order to
reduce computational overheads. Using the truncation cri-
terion of Schiavon and Canale (2020), we retain as active
enough factors to explain at least T = 0.999 of the total
variation in the data. The posterior mode (and median) for
the number of effective factors in each case was 5 with 95%
credible interval (3, 6). Comparing the output of identified
parameters across the chains from both samplers using the
usual graphical diagnostic checks gave no evidence of any
lack of convergence.

To gauge performance against another non-exchangeable
prior, the model was also fitted under the SIS process prior
using an adaptiveGibbs sampler,with the hyperparameters in
the prior and tuning parameters in the sampler set in line with
the specification from Section 5 of Schiavon et al. (2022). In
this case, more or less all the posterior mass for the number
of effective factors was stacked at 4.

The marginal prior and posterior densities for the log-
arithms of the length-scale parameters ϑ1, . . . , ϑ5 and the
transformed degree of freedom parameter ς̌ = 1/(ς − 4)
under the structured matrix-t prior are displayed in Fig. 1.
Absence of a relationship between a component of the gen-
eralised distance metric and the expected shared variation
between species would be indicated by an infinite value for
the corresponding length-scale parameter. Therefore the con-
centration of all posterior densities in Fig. 1a over a finite
interval near the origin highlights the role played by the gen-
eralised distance metric in explaining the structure of the
shared variation matrix. It is also clear that the phyloge-
netic distances, whose length-scale parameter is ϑ5, have the
greatest influence. For the transformed degree of freedom
parameter ς̌ in Fig. 1b, the similarity between the prior and
posterior indicate that the information learned from the data
is modest. Nevertheless, the shift in the position of the mode
from 0 in the prior to around 0.1 in the posterior suggests that
the data support less shrinkage towards the expected shared
variation matrix than would be implied by a matrix normal
prior for which ς̌ = 0.

Further qualitative evidence of the importance of the
phylogenetic information on the structure of the marginal
covariance matrix� = (ωi j ) is demonstrated in Fig. 2 which
shows the mean of the posterior for the marginal correlation
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Fig. 1 Marginal posterior
density for a the logarithms of
the length scale parameters ϑ1
( ), ϑ2 ( ), ϑ3 ( ), ϑ4 ( ),
ϑ5 ( ) and b the transformed
degree of freedom parameter ς̌ .
Also shown are the priors ( ).
(color figure online)

0.0

0.2

0.4

0.6

0.8

−5 0 5 10
value

de
ns

ity
(a)

0.0

0.3

0.6

0.9

0.0 2.5 5.0 7.5 10.0
value

de
ns

ity

(b)

matrix S−1
� �S−1

� , where S� = diag(
√

ω11, . . . ,
√

ωpp).
The order of the 50 bird species is based on their phylo-
genetic tree, which is shown in the margins of the plot. There
is clear structure in the matrix with several groups of species
that share a recent common ancestor displaying strong pos-
itive correlations. This includes the species in the first ten
rows, which correspond to birds from the Corvoidea super-
family and the Sylviidae family; the species in rows 19 to
30, which correspond largely to birds from theMusicapoidea
superfamily; and the species in rows 42 to 47, which corre-
spond mostly to birds from the Scolopacidae superfamily.
It is also clear that most of the rows and columns predomi-
nated by near-zero correlations correspond to basal species,
like Columba palumbus and Grus grus. Nevertheless, the
structure of the matrix is clearly not dictated by evolutionary
proximity alone. Interestingly, the corresponding plot from
the analysis under the SIS process prior appears to be very
sparse; see the SupplementaryMaterials. At least in part, this
can be attributed to shrinkage of � towards its prior mean,
which is a diagonal matrix.

In order to provide a more formal comparison between
the two model-prior combinations, we consider measures of
goodness-of-fit and predictive performance. In the former
case, we follow Schiavon et al. (2022) by computing the
pseudo marginal likelihood (PML), defined as the product
of conditional predictive ordinates (Gelfand and Dey 1994).
In terms of predictive performance, we consider the Brier
score, which is a widely used proper scoring rule for cate-
gorical variables, calculated using a 4-fold cross-validation
approach (e.g. Gneiting and Raftery 2007). In our case, the
score is positively oriented so that large values indicate better
performance. The results are shown in Table 2 from which
we can conclude that the combination of the factor model
and structured matrix-t prior gives the best-fit to the data
and, more markedly, the best predictive performance. Fur-
ther details on the calculation of the PML and Brier score
can be found in the Supplementary Materials.

6.3 Hourly demand for natural gas

6.3.1 Model and prior

To illustrate the use of our methodology in the context
of a dynamic model, we consider an application to mod-
elling the hourly demand for natural gas. In the UK, gas in
the national transmission system is transported to individ-
ual customers through eight regional distribution networks
which are responsible for maintaining a reliable gas supply
to customers at all times. This requires accurate short-term
forecasts of the hourly demand for gas at individual points
in the network called offtakes, where gas is taken off to sup-
ply locally. We consider data from a single offtake site in a
regional distribution network in theNorth ofEngland.Hourly
gas demand data are available for the period fromMay 2012
to June 2015 along with the average daily temperature at
the offtake site. In addition to the weather, the other main
factors that are known to influence the mean level of residen-
tial demand for gas are seasonal and calendar effects (Soldo
2012). We therefore additionally incorporate covariates that
represent the day of the year, day of the week and whether
or not a day is a public holiday.

The measurement of the demand for gas at an hourly res-
olution makes construction of a model challenging because
the underlying dynamics of the process are likely to vary over
a much longer time scale. For example, consider a dynamic
linear model for hourly gas demand that allows for calendar
and weather effects and incorporates a time-varying local
level. Suppose that this local level is modelled as evolving
according to a random walk or autoregression. Deviations
from behaviour that would be considered typical given the
calendar and weather effects would likely persist over days,
rather than hours, and so hourly evolution of the local level
would demand a near-zero innovation variance. Similarly, if
calendar effects such as the day of theweek, were regarded as
dynamic, hourly evolution would demand vanishingly small
innovation variances.
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Fig. 2 Mean of the posterior for the marginal correlation matrix under the structured matrix-t prior. The species are ordered according to their
phylogenetic tree which is visualised in the margins

Table 2 Goodness-of-fit and predictive performance of the two model-
prior combinations

Structured matrix-t SIS process

Log PML −2831.6 −2936.5

Brier score −0.29120 −0.85396

Bold indicates the score of the model-prior combination that performs
better against that metric. Both metrics are positively oriented so that
the larger values indicate better performance

Motivated by these concerns, we define a gas-day-
vector as a longitudinal series of measurements of the
log-transformed demand for gas over 24h, starting at 07:00,
which is the beginning of a gas-day. Denote by yt =
(yt1, . . . , yt,24)T the gas-day-vector on day t so that yt,h
denotes the log-transformed demand for gas at hour h of gas-
day t .We elect tomodel the gas-day-vectors using a dynamic
factor model with observation equation yt = μt +�ηt + εt ,
where εt ∼ Np(0,�), t = 1, . . . , n. For simplicity in this
illustrative application, we model evolution of the factors
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using a first order vector autoregression, ηt = 
ηt−1 + ζ t ,
where ζ t ∼ Nk(0,�). Due to the stability of the demand for
gas over the timeperiod in question, it is reasonable to assume
that the departures from the time-varyingmean yt−μt follow
a stationary process. We therefore constrain the stationary
variance of theηt to be Ik and take the initial distribution to be
η0 ∼ Nk(0, Ik). Reparameterising the model for the factors
in terms of the transformed partial autocorrelation matrices
yields a single unconstrained square matrix A = (αi j ) with

 = (Ik + AAT)−1/2A and � = (Ik + AAT)−1. As dis-
cussed in Sect. 4.4, we assign a rotatable prior to A = (αi j ),
and therefore 
, by taking αi j ∼ N(0, 1).

The variances of the specific factors εt are assigned the
prior 1/σ 2

j ∼ γ (3.1, 2.1) independently for j = 1, . . . , p
which ensures that the distributions have finite variance.
The time-varying mean μt is modelled as μt = BTwt in
which wT

t = (wt1, . . . , wtc) is row t of an n × c matrix of
daily covariates W . The columns of W allow for an inter-
cept, a non-linear effect of deviations from seasonal average
temperature and fixed effects for the day-of-the-week, the
occurrence of a public holiday, and the day-of-the-year,
which is represented as a truncated Fourier series with six
harmonics. Full details of the model for μt are given in
the Supplementary Materials along with a description of the
associated priors.

In order to reflect both the persistence of above or below
average demand for gas and the longitudinal but circular
nature of a gas-day-vector, a sensible model for the inverse
of the expected shared variation matrix � = �−1 would
be the precision matrix of a stationary circular autoregres-
sive process of order one (Held and Rue 2010). We therefore
take � = (ξi j ) to be a tridiagonal Toeplitz matrix with cor-
ners; that is, ξi,i+1 = ξi+1,i = −ϑ/2 for i = 1, . . . , p − 1,
ξ1p = ξp1 = −ϑ/2 and ξi i = 1 for i = 1, . . . , p where we
assume ϑ ∈ [0, 1) and take logit(ϑ) ∼ N(0, 2). Exploratory
analysis using data from another offtake site suggest that this
structure is sensible based on the inverse of the sample covari-
ance matrix. Given that the existing model is already rather
complex,we chose to adopt amatrix normal prior for� in this
example. The diagonal elements in the among-column scale
matrix 	 are given a MGP prior (9), with a1 = 2, a2 = 3
and a maximum truncation point of H = 
ϕ(24)�− 1 = 17.

6.3.2 Analysis and results

We ran two chains, initialised at different starting points,
using the adaptive Gibbs sampler discussed in Sect. 5.2 and
another two chains using the (non-adaptive) Hamiltonian
Monte Carlo sampler with a fixed truncation level of H =

ϕ(24)� − 1 = 17. After a burn-in of 50K iterations, each
Gibbs chain was run for a further 200K iterations, thinning
to retain every 100th draw in order to reduce computational
overheads. Adaptation was allowed after 5K iterations and

the parameters in the diminishing adaptation condition were
set atα0 = −1 andα1 = −5×10−5. TheHamiltonianMonte
Carlo samplerwas run for 20K iterations after a burn-in of the
same length, thinning the output to retain every 10th draw.
As in the Finnish birds example, we retain as active enough
factors to explain at least T = 0.999 of the total variation in
the data. The posterior mode (and median) for the number
of effective factors in each case was 10 with 95% credible
interval (9, 12). Comparing the output of identified param-
eters across the chains for the two samplers using the usual
graphical diagnostic checks gave no evidence of any lack of
convergence.

Let ϒ = �−1 = (υi j ) denote the marginal precision
matrix of the process and let Sϒ = diag(

√
υ11, . . . ,

√
υpp).

Figure3 shows the posterior mean for the standardised pre-
cision matrix S−1

ϒ ϒS−1
ϒ . It is clear that its structure is

reasonably consistent with the tridiagonal Toeplitz matrix
with corners on which the prior for �−1 is centered. How-
ever, there are some deviations, most notably another one or
two bands of non-zero elements below the subdiagonal and
above the supradiagonal. There is also some evidence of at
least a partial band in the vicinity ofυi,i+12 for i = 1, . . . , 12.
This may be due to people switching their heating on twice
per day, at around 7:00 in the morning and around 19:00
in the evening. This picture is reinforced by the posterior
for the identified factor loadings matrix �̃, shown in the
Supplementary Materials, many of whose columns display a
double-hump shapewith smaller loadings towards themiddle
of the gas-day. As remarked in Sect. 4.3, in order to simplify
the geometry of the stationary region for stationary dynamic
factor models, the autoregressive coefficient matrices in the
state equation are often assumed to be diagonal. However,
this example provides considerable evidence in favour of
our fully flexible approach, with the posterior probabilities
Pr(γ̃i, jk > 0| y1:n) for many off-diagonal elements being
close to zero or one.

In order to assess the forecasting performance of the
model, the number of factors was fixed at k = 10 and the
model was refitted, holding back the last 25%of observations
as test data. In keepingwith the short-termhorizon of interest,
we considered forecasting h = 24h ahead and, for compara-
tive purposes, h = 1 hour ahead. Application of the standard
forward filtering and forecasting recursions for (multivari-
ate) dynamic linear models are not appropriate here as they
do not allow within-day updates or forecasts. We therefore
modify the standard forward filter so that the time-step is
hours, rather than days, and at hours 2, . . . , 24 within each
gas-day, we perform a partial update, comprising an observa-
tion step but no prediction step. The forecasting algorithm is
similarly modified to allow forecasts to be issued hourly. The
full algorithms are given in the Supplementary Materials. By
using the draws from the posterior obtained from the fit to
the training data and sampling one-for-one from the h-step
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Fig. 3 Mean of the posterior for the marginal standardised precision matrix. The labels indicate hour of the day in a 24-h clock

ahead predictive distributions, we obtain samples from the h-
step ahead posterior predictive distributions. For h = 1 and
h = 24, these are visualised in Fig. 4 for the first 5% of times
in the hold-out period, along with the test data. An analogous
figure in the Supplementary Materials shows the last 5% of
times. From these plots it is clear that the posterior predictive
distributions are both accurate and precise over the forecast
horizons of interest.

7 Discussion

We have proposed a class of structured priors for the load-
ings matrix of a Bayesian factor model with accompanying
inferential algorithms. The novelty lies in the insight that the
shared variation matrix � = ��T is much more amenable
to the specification of prior beliefs than the factor loadings
matrix �. The prior is based on a matrix normal or matrix-
t distribution for �. Two important features are the choice
of parametric structure for the among-row scale matrix �

and the increasing shrinkage prior for the diagonal among-
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Fig. 4 For the first 5% of times in the hold-out period, means ( ) and
95% equi-tailed credible intervals ( ) for the one-step ahead and 24-
step ahead posterior predictive distributions. The observed data are also
shown ( ). (color figure online)

column scale matrix 	. The matrix � characterises the
conditional prior expectation of �. Parametric forms are
widely adopted as models for covariance matrices in lon-
gitudinal studies, spatial statistics, Gaussian processes, and a
host of other areas. By adopting a parametric form, informed
by domain expertise, as a model for the expectation of�, we
benefit from shrinkage towards a rank-reduced matrix that is
close to that structure. In general, the number of factors in a
factor model is not known a priori. This is addressed through
the increasing shrinkage process prior for ψ1, . . . , ψk which
allows columns of loadings whose likelihood contribution is
negligible to be shrunk towards zero and discarded. A prior
that encourages no more factors than are needed is helpful,
particularly for prediction, because of the reduction in epis-
temic uncertainty that is afforded. At the cost of slightlymore
involved computational inference, thematrix-t version of the
structured prior also offers a degree of freedom parameter ς

which allows the data to influence the degree of shrinkage of
� towards a rank-reduced matrix that is close to its mean.

Supplementary information

Supplementary information includes: (i) a document contain-
ing proofs and derivations of the results used in the paper,
complete descriptions of the adaptive Gibbs samplers, fur-
ther background and results on the simulation experiment
and two applications; (ii) Stan programmes for non-adaptive
Hamiltonian Monte Carlo sampling and R code implement-
ing adaptive Gibbs sampling for the two applications.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10454-
0.
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