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Introduction

Seabirds are evidently important members of pelagic eco-
systems (Barret et al. 2006, Cury et al. 2011). However, in 
many cases, their functional roles, such as top-down control 
and nutrient redistribution (Hunt Jr and McKinnell 2006; 
Browning et al. 2023), and the limiting effects of the envi-
ronment on their distributions, remain unclear (Grémillet 
and Boulinier 2009; Young et al. 2015). This is partly due 
to a lack of basic information on what they consume (Lewi-
son et al. 2012). In particular, because of sampling difficul-
ties, there are very few data on the diets of non-breeding 
life-history stages, areas far from land, and smaller species 
(Barrett et al. 2007; Karnovsky et al. 2012; Rodríguez et al. 
2019). Also, the marine environment is undergoing unprec-
edented changes, including global circulation patterns and 
physico-chemical properties of the water, pollution, and 
overexploitation (Greene and Pershing 2007; Herbert-Read 
et al. 2022). Consequently, it is important to be able to 
resolve trophic relationships and detect shifts in the marine 
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Abstract
In order to understand the drivers of the distribution and abundance of pelagic seabirds it is necessary to know what they 
eat, yet there remains little detailed, geo-referenced information on the diets of pelagic seabird. In particular, due to sam-
pling difficulties, information is lacking for non-breeding stages, smaller species, such as storm-petrels, and remote oce-
anic areas, which may include important diversity hotspots. In this study, we aimed to characterize the trophic ecology of 
Leach’s storm-petrels foraging in the vicinity of the North Atlantic Current and Evlanov Seamount Marine Protected Area 
using a combination of survey methods. On a cruise undertaken in June 2017 to characterize the distribution and ecology 
of seabirds in the region, nineteen Leach’s storm-petrels were caught, sampled and released unharmed. Regurgitations and 
faecal samples were collected, as well as blood and feather tissues for stable isotope analyses. Of the 12 males, 6 females 
and 1 unsexed bird, 84% were in active flight feather moult, suggesting they were non-breeders. Prey species, assayed via 
molecular metabarcoding, were dominated by mesopelagic fish, principally lanternfishes (Myctophidae) and hatchetfishes 
(Sternoptychidae), but also included cephalopods and crustaceans. Additionally, almost half of the birds had microplastics 
in their regurgitates. Stable isotopic ratios did not differ significantly between sexes. Our results, combined with those 
of previous studies, suggest that within the oceanic North Atlantic, Leach’s storm-petrels feed at a similar trophic level 
to much larger seabirds, targeting mesopelagic fishes that are a key component of the North Atlantic pelagic food web.
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community dynamics and structure of food webs. To do so 
requires collection of baseline information on the distri-
bution and ecological significance of predators and prey. 
In this regard, major oceanic fronts and other hotspots of 
marine productivity should be surveyed in detail due to their 
role in supporting complex trophic webs (Mangolte et al. 
2023), and thus potential to affect numerous taxa including 
many high-level predators (Ramírez et al. 2017).

Storm-petrels (family Hydrobatidae and Oceanitidae) are 
among the most abundant seabirds, but they are particularly 
challenging to study due to their small size, cavity-nesting, 
tendency to return to their colonies at night, and wide for-
aging areas (Warham 1990; Rodriguez et al. 2019). Most 
direct dietary data come from breeding adults sampled at 
their colonies (Carreiro et al. 2020; Pollet et al. 2021; Alho 
et al. 2022). There remains a lack of knowledge of the prey 
targeted by non-breeding individuals, including immatures, 
because it is very difficult to sample these stages or even to 
discriminate them from breeding adults at sea. Non-breeding 
stages occupy a large proportion of life histories of petrels, 
so this lack of information hampers assessment of their 
population responses to changes in the marine environment.

Approximately 6.7–8.3 million pairs of Leach’s storm-
petrels (Hydrobates leucorhous) breed in colonies in the 
North Pacific and North Atlantic, with > 90% of the latter 
population breeding in colonies bordering the NW Atlantic 
(Brooke 2004; Pollet et al. 2021). Despite this abundance, 
they are currently categorised as vulnerable by the IUCN 
due to a decline of > 30% over the past four decades (Bird-
Life International 2023). The main causes for these declines, 
which have principally been noted in the North Atlantic 
(Newson et al. 2008; Pollet and Shutler 2018; Wilhelm et 
al. 2019; Deakin et al. 2021), are still debated. Trophic ecol-
ogy could play a role, however there is a paucity of base-
line information on diet, especially during non-breeding 
periods. Spatial shifts in prey are suspected to contribute 
to ongoing declines as well, highlighting the need to bet-
ter understand their diet (Pollet et al. 2023). During breed-
ing, Leach’s storm-petrels from colonies in eastern Canada 
forage mostly in deep, pelagic waters to the E-SE of the 
colonies (Pollet et al. 2014; Hedd et al. 2018), whereas after 
breeding, birds from these populations also make stopovers 
SE of the Grand Banks before undertaking trans-equatorial 
migrations to wintering quarters in the South Atlantic (Pol-
let et al. 2019). Observations of oceanic foraging are con-
sistent with results of traditional diet studies based on the 
identification of undigested prey items, which indicate that 
breeding Leach’s storm-petrels tend to feed on mesopelagic 
lantern fish (Family Myctophidae) and crustaceans (Steele 
and Montevecchi 1994; Hedd and Montevecchi 2006; Hedd 
et al. 2009; Frith et al. 2020). In the W Pacific, however, 
breeding Leach’s storm-petrels shift from taking squid early 

in the season to fish during chick-rearing, towards the end of 
summer (Watanuki 1985).

Molecular techniques that rely on the extraction and 
identification of DNA from digested items in diet samples 
have improved our ability to detect and identify seabird 
prey enormously, frequently with high taxonomic detail 
(Medeiros-Mirra 2010; Waap et al. 2017; Alonso et al. 
2018; Carreiro et al. 2020; Alho et al. 2022). As such, they 
are improving the characterization of trophic interactions in 
marine communities (Deagle et al. 2009). So far, molecular 
diet studies on storm-petrels have revealed that these spe-
cies subsist mostly on mesopelagic fish, but also frequently 
consume deep-water cephalopods and crustaceans (Wapp 
2015, Alho et al. 2020, Carreiro et al. 2020). This is surpris-
ing considering that storm-petrels feed by taking prey at or 
very near the surface of the ocean as they hover and patter 
on the sea surface (Warham 1990). Although there are no 
records of diving behaviour in Leach’s storm-petrels (Pollet 
et al. 2021), dive depths in closely related H. castro tend not 
to exceed 1 m (Bried 2005). Indeed, it has been suggested 
that this foraging behaviour explains why storm-petrels 
ingest small plastic particles relatively frequently (Bond 
and Lavers 2013). Inferences about the diet of these birds, 
such as the trophic position and spatial origin of prey, dur-
ing not only the breeding but also non-breeding periods, can 
be made by analysing stable isotope ratios in tissues, such 
as feathers and blood, which are synthesized during differ-
ent time periods (Hedd and Montevecchi 2006; Pollet et al. 
2014; Fairhurst et al. 2015; Halpin et al. 2018). The ratio 
of the stable isotopes 13C:12C (hereafter δ13C) can be used 
to infer the oceanic regime from which prey originate (e.g. 
neritic vs. oceanic), and those of 15N:14N (hereafter δ15N) 
can be used to infer trophic position (Cherel et al. 2005; 
Bond and Jones 2009). We expect that these ratios in grow-
ing rectrices and in whole blood to reflect diet over the past 
few days to few weeks, respectively (Hobson 2008).

Here, we aim to use at-sea sampling, stable isotopes 
and molecular analyses to characterize the diet of Leach’s 
storm-petrels foraging in the summer in the vicinity of the 
North Atlantic Current and Evlanov Seamount Marine Pro-
tected Area (NACES MPA; Fig. 1). Sampled birds were all 
thought to be non-breeders, so our study provides the first 
detailed dietary information in an otherwise very data defi-
cient species, life history stage, and geographical area.

Materials and methods

Study area

The sampling area was centred on the Sub-Polar Fron-
tal Zone of the oceanic (i.e., off-continental shelf) North 
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Atlantic, in the vicinity of the Charlie Gibbs Fracture Zone 
of the Mid-Atlantic Ridge (Wakefield 2018; Wakefield et 
al. 2021) (Fig. 1). The area is characterized by a complex 
physical oceanography influenced by the convergence of 
the main NW Atlantic currents (Wakefield et al. 2021). Over 
recent years, tracking data (Egevang et al. 2010; Hedd et 
al. 2012; Dias et al. 2013) have revealed that millions of 
seabirds from disparate breeding populations aggregate in 
the region. To protect this assemblage, the NACES MPA 
(Fig. 1) was recently established (Davies et al. 2021). A sys-
tematic ship-based survey suggested that seabird distribu-
tion in the region was driven ultimately by the effects of 
physical forcing, mediated via fronts and eddies, on primary 
and presumably secondary production (Browning et al. 
2020, Wakefield et al. 2021).

Field data collection

Storm-petrels were caught onboard the RSS Discovery, 
cruise DY080, between the 14th and 28th of June 2017 
(Wakefield 2018). Analysis of data collected during this 
cruise showed that, in this area, most Leach’s storm-petrels 
occurred south of the Sub-polar Front, in relatively warm 
waters (Wakefield et al. 2021). All individuals were caught 
at night, most (68%) opportunistically after they stranded 
accidentally at the aft of the ship, presumably having been 
attracted to or disorientated by the ship´s lights (Miles et 
al. 2010) (exact location of where the birds were caught 
provided in the Online Resource 1). The remainder were 
attracted to the ship by playing calls over a loudspeaker at 
the bow and were caught either in a mist-net or by hand after 

landing near the loudspeaker. Upon capture, individuals 
were ringed and right flight feathers were scored for moult 
following Alonso et al. (2008) (complete record of birds 
captured provided in the Online Resource 1). A small blood 
sample (∼500 µl) was taken for further analysis. Four drops 
were stored at -80ºC for molecular sexing and the remainder 
was air dried at 60ºC for subsequent stable isotope analy-
sis (SIA). A distal section of a feather tissue clipped from a 
growing or new rectrix, when available, was also taken for 
SIA. Regurgitate samples to study diet were taken by two 
gastric lavages (Wilson 1984; Neves et al. 2006) and fae-
cal samples were also collected from the same birds, when 
available. These samples were kept in 100% ethanol and 
stored at -80ºC until laboratory analyses. After data collec-
tion, birds were released immediately or, if fog was present, 
early the following morning to minimise the risk of the birds 
colliding with the ship.

Sex determination

Sex was determined using molecular methods adapted 
from Fridolfsson and Ellegren (1999). In brief, DNA was 
extracted from the blood samples using a DNeasy Blood 
and Tissue kit (Qiagen, Manchester, UK). PCR reactions 
were performed in 10 µl volumes on a MJ research PTC-
200 machine, using GoTaq G2 Flexi DNA polymerase 
(Promega, Madison, WI, USA). Final reaction concentra-
tions were 200 µM dNTP’s, 2 mM MgCl2, 0.4 U GoTaq 
and 80 ng of the following primers: 2550F (5’ GTT ACT 
GAT TCG TCT ACG AGA 3’); 2718R (5’ ATT GAA ATG 
ATC CAG TGC TTG 3’) (Fridolfsson and Ellegren 1999). 

Fig. 1  The study area is shown 
by the black rectangle. The blue 
polygon delineates the North 
Atlantic Current and Evlanov 
Seamount Marine Protected Area. 
Individuals were caught between 
45º − 50ºN and 30º − 41º W 
(exact locations provided in the 
Online Resource 1)

 

1 3

Page 3 of 12    148 



Marine Biology

GACGAGAAGACCCTAWTGAGCT 3’)/ Ceph_16S_R 
(5’ ​A​A​A​T​T​A​C​G​C​T​G​T​T​A​T​C​C​C​T) (Deagle et al. 2009); 
and Crust_16S_F1 (5’ GACGATARGACCCTATAA 3’)/ 
Crust_16S_R1 (5’ TCTGTTATCCCTARAG 3’) developed 
specifically for crustaceans (Waap 2015). Amplifications 
with fish and cephalopod primers were performed in multi-
plex, in the same reaction. DNA was amplified with a 2-step 
PCR approach, as in Alho et al. (2022). Details are included 
in Online Resources. Negative controls were used in every 
PCR reaction. A blocking primer to prevent host DNA 
amplification was designed by AllGenetics based on 16 S 
sequences from GenBank of Pelagodroma marina, Hydro-
bates leucorhous and Puffinus lherminieri using Geneious 
11.1.5 and following Vestheim and Jarman (2008): 5’ 
CCTGTGGAACTTAAAAATYARCGRCCAC 3’. Librar-
ies were purified with Mag-Bind RXNPure Plus magnetic 
beads (Omega Biotek), pooled in equimolar amounts, and 
sequenced in two separate runs: the chordata-cephalopod in 
1 GB of NovaSeq PE250 (Illumina), and the Crustacea pool 
was sequenced in 0.6 GB of an Illumina MiSeq PE300 run. 
The read output of the two sequencing runs is provided in 
the Online Resource 2.

Sequence analysis and taxonomic assignment

FASTQ data were processed with the Qiime2-2021.4 
pipeline (Bolyen et al. 2019) with the DADA2 plu-
gin (Callahan et al. 2016) to denoise and dereplicate 
paired-end sequences. Trimming thresholds were set to 
cut the primers at the 5’ end and low- quality bases at 
the 3’ end. Reads were truncated at the first base with a 
Phred quality score ≤ 20. A minimum overlap of 50 bases 
was set for pairing reads. Sequences were then classi-
fied with Qiime2 classify-consensus-vsearch (Bokulich 
et al. 2018; Rognes et al. 2016) using the 16  S Midori 
UNIQ-NUC_GB244 database as a reference (Machida el 
al. 2017), setting 0.8 as the minimum identity and 0.7 
as the minimum cover (full list of commands available 
from BioStudies). Taxa assignment by vsearch were con-
firmed with online NCBI blastN (https://blast.ncbi.nlm.
nih.gov/Blast.cgi). A species was assigned if the Ampli-
con Sequence Variants (ASVs) had a 98–100% match to 
the best hit in blastN, otherwise the assignments were 
adjusted to the least common ancestor when other taxa 
were assigned with similar identity or if the taxon had no 
documented occurrence in the North Atlantic. Taxonomic 
classification of sequence variants was also tested with 
Qiime classify-consensus-blast as in Waap (2015), which 
did not outperform the vsearch classification. For both 
libraries, the resulting sequence variants were collapsed 
per sample according to taxonomy to construct a table of 
frequency of occurrence.

The thermal profile comprised an initial denaturing step of 
94 °C for 2 min, followed by 30 cycles of 48 °C for 60 s, 
72 °C for 60 s and 94 °C for 45 s, followed by 48 °C for 60 s 
and a final extension at 72 °C for 5 min. PCR products were 
separated in 2% agarose gels in 1X TBE, and visualised via 
Sybersafe (Invitrogen, Carlsbad, CA, USA) staining.

Microplastics

On the return to the laboratory, regurgitate samples were 
examined under a stereo microscope (total amplification 
20X) for the presence of plastic particles larger than 1 mm. 
Floating microplastics, all in the form of small pellets, were 
isolated from the sample with metal tweezers, washed and 
dried at room temperature, counted and measured by a 
single observer with a scaled eye piece calibrated with a 
micrometre slide, and the colour (scored by eye) recorded.

Diet based on regurgitate and faecal samples

DNA isolation

DNA was isolated from regurgitate and faecal samples with 
a Norgen Stool DNA isolation kit (Norgen Biotek, Canada) 
following the manufacturer’s protocol. Specifically, the 
tubes were centrifuged for 1 min at 13,000 rpm and etha-
nol was removed by aspiration with a micropipette before 
transferring the solid phase into the bead tubes. Samples 
were incubated in lysis buffer with gentle vortex for 1–2 h at 
room temperature before horizontal bead beating in a vortex 
at full speed. DNA was eluted in 65 µL of pre-heated (70ºC) 
elution buffer with 30 min of incubation at room tempera-
ture. The quality of DNA was assessed by A260/230 and 
A260/280 ratios measured with a NanoDrop Spectropho-
tometer. DNA concentration was measured with a Qubit 
2.0 dsDNA HS Assay kit (Thermo Fisher Scientific Inc.). 
DNA samples with low concentrations were concentrated 
by sample evaporation with a SpeedVac to a final volume of 
20 µl. Samples with DNA concentration < 1ng/µl were not 
processed further.

DNA metabarcoding

DNA metabarcoding library preparation and sequenc-
ing were carried out by AllGenetics & Biology SL (www.
allgenetics.eu). Libraries were prepared to target the 
main expected prey groups (fish, cephalopods and crus-
taceans) with primers previously used to study the diet of 
other North Atlantic pelagic seabirds (Waap 2015; Waap 
et al. 2017): For fish, Chord_16S_F (5’ GATCGAGA-
AGACCCTRTGGAGCT 3’)/Chord_16S_R (5’ ​G​G​A​T​T​G​C​
G​C​T​G​T​T​A​T​C​C​C​T 3’); for cephalopods, Ceph_16S_F (5’ 
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Microplastic ingestion

Of the sixteen birds from which regurgitate samples were 
obtained, 50% contained small plastic pellets (diameter 
1–3 mm). The mean number of pellets per individual was 
2.3 (± 3.7), range 0–13. Lighter colours were prevalent with 
seven individuals regurgitating at least one white particle, 
and three also regurgitating yellow or grey particles. Of the 
total 35 plastic particles found, only 5 were dark coloured, 
these being dark blue, red and orange. There was no differ-
ence in plastic occurrence between sexes (Chi-square test, 
χ2 (1,16) = 0.285, P > 0.05).

Diet

Denoising of the Fish/Cephalopod library retrieved 33 
different sequence variants, which were classified as fish 
(n = 24 sequences) and cephalopods (n = 4). Non-prey 
(n = 4) or unclassified sequences (n = 1) were discarded 
from further analyses. Denoising of the Crustacean library 
retrieved 26 sequence variants, all subsequently classified 
as the target group in four of the six samples that originally 
amplified with the crustacean primers (Online Resource 2).

Prey species were successfully detected in 11 regurgitates 
and 4 faecal samples (no ASVs were retained for two fae-
cal samples after denoising). Two faecal and five regurgitate 
samples were initially discarded because they did not have 
sufficient starting material for DNA extraction. Fish, cepha-
lopods and crustacean species were all detected in regur-
gitates whereas only fish species were detected in faecal 
samples (Table 1). The average number of species per regur-
gitate was 3.1, varying between one (n = 1, containing one 
cephalopod) and five (n = 2, both containing fish and crusta-
ceans). The number of species varied between one and three 
in faecal samples. Only once was a prey species detected in 
the faecal sample but not in the regurgitate sample from the 
same individual. Almost all regurgitate samples contained 
fish (frequency of occurrence (FO) = 91%, Table 1) whereas 

Stable isotope analysis

The feather tissues were washed in an ultrasonic bath with 
deionized water, air dried them for 24 h at 60 °C, rinsed 
them in 2:1 chloroform: methanol, then air dried them 
again (Paritte and Kelly 2009). Feathers were then cut into 
small pieces with scissors. We homogenized whole dried 
blood in a pestle and mortar. We then weighed 0.7 mg of 
the respective samples into tin combustion cups and mea-
sured stable isotope ratios by continuous flow mass spec-
trometry using an Elementar (Hanau, Germany) Pyrocube 
elemental analyser and Thermo (Bremen, Germany) Delta 
XP mass spectrometer at the NERC National Environmen-
tal Isotope Facility (formerly Life Sciences Mass Spec-
trometry Facility), East Kilbride, U.K. The δ15NAir values 
are represented in parts per thousand in relation to atmo-
spheric Air, and δ13CVPDB values are in relation to Vienna 
Pee Dee Belemnite. Differences between sexes on stable 
isotopic profiles in blood and feather samples were anal-
ysed with ANOVA. A Pearson correlation was used to test 
for a relationship between δ13C and δ15N with latitude and 
longitude.

Results

Nineteen storm-petrels were captured in the second half of 
June 2017 - six females, twelve males and one bird whose 
sex could not be determined. Sixteen individuals were in 
active tail feather moult which was progressing descen-
dantly (R6 to R1) (Online Resource 1, Fig. 2). In three indi-
viduals none of the tail feathers had been moulted (score 
0), and six individuals already had new outer tail feathers 
(score 5). In contrast, while eleven birds had initiated pri-
mary moult, most were just in beginning as they were miss-
ing only P1 (Online Resource 1, Fig. 2). As most individuals 
were moulting, all sampled individuals were considered 
non-breeders (see Discussion).

Fig. 2  Frequency of occurrence 
(%) of prey families in the diet of 
Leach’s storm-petrels revealed by 
DNA metabarcoding. Bar colours 
represent the main oceanic depth 
zones where the different families 
occur according to FishBase 
(www.fishbase.org). M and F 
indicate whether the family was 
found in the diet of males or 
females, respectively
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mesopelagic zone and perform diel vertical migrations, 
approaching the surface at night (Table 1; Fig. 2).

Tissue stable isotopes

In storm-petrel whole blood samples, values of δ15N varied 
between 11.4 and 12.8 ‰, and between − 19.3 and − 19.8 
‰ for δ13C. In feathers, isotopic values varied slightly more, 
ranging between 10.0 and 13.3 ‰ for δ15N and − 18.7 and 
− 19.4 ‰ for δ13C (Fig. 3). Stable isotopes ratio values did 
not differ significantly between sexes, for either whole blood: 
δ15N (F1,16 = 2.15, P > 0.05) or δ13C (F1,16=3.05, P > 0.05), or 
feathers: δ15N (F1,15 = 0.38, P > 0.05) or δ13C (F1,15=0.08, 
P > 0.05), suggesting no large differences in resource use 
between males and females. In blood, there was a positive 
correlation between δ13C and latitude (r = 0.59, P = 0.012, 
n = 17) but no correlation between δ15N and latitude.

cephalopods were much rarer (FO = 18%). Myctophidae 
(lanternfishes) and Sternoptychidae (hatchetfishes) were the 
most frequently occurring families (FO = 73%), the former 
represented by four species and the latter by three (Table 1; 
Fig. 2). The most frequently occurring species (FO = 73%) 
was the Glacier lantern fish (Benthosema glaciale). Only 
two cephalopods species (Gonatus fabricii and Histioteuthis 
reversa) from two families were identified. In nine of the 
15 samples, amplification with the crustacean primers failed 
but it was unclear if this was due to an absence of crusta-
ceans or technical failure of the reaction. Of the six samples 
successfully assayed with the crustacean primers, only four 
(67%) were considered to contain crustaceans. These were 
from four families of two orders, including Oplophoridae 
represented by Acantephyra sp. (slightly higher homology 
with A. pelagica) which was the most frequently detected 
family. All taxa identified to the species level occur in the 

Table 1  Frequency of occurrence (FO %) of prey in the diet of Leach´s storm-petrels captured at the sub-polar frontal zone of the NW Atlantic 
obtained through DNA metabarcoding in regurgitate and faecal samples
Order Family Taxon Depth Zone* FO (%)

Regurgitate 
samples
(n = 11)

Faecal 
sam-
ples
(n = 4)

FISH 90.9 100
  Aulopiformes Alepisauridae Alepisaurus ferox Epi- to Mesopelagic 18.2 0
  Beloniformes Belonidae Epipelagic 9.1 0
  Lampriformes Regalecidae Regalecus glesne Larvae epipelagic, adults 

mesopelagic
9.1 25.0

  Myctophiformes Myctophidae Benthosema glaciale Mesopelagic, DM 72.7 75.0
Electrona sp. (likely risso) Mesopelagic, DM 9.1 25.0
Hygophum benoiti Mesopelagic, DM 9.1 0
Lobianchia gemellarii Mesopelagic, DM 9.1 0

  Stomiiformes Gonostomatidae Bonapartia pedaliota Mesopelagic 9.1 0
Phosichthydae Ichthyococcus sp. (likely 

ovatus)
Meso- to Bathypelagic 9.1 25.0

Sternoptychidae Argyropelecus sp 18.2 25.0
Maurolicus sp 45.5 50.0
Sternoptyx diaphana Meso- to Bathypelagic 9.1 0

  Trachichthyiformes Anoplogasteridae Anoplogaster cornuta Meso- to Bathypelagic 9.1 0
CEPHALOPODS 18.2 0
  Teuthida Gonatidae Gonatus fabricii Epi- to Mesopelagic 9.1 0

Histioteuthidae Histioteuthis reversa Mesopelagic 9.1 0
CRUSTACEANS 66.7 --
  Decapoda Decapoda Oplophoridae Acanthephyra sp Meso- to Bathypelagic, DM 33.3 --

Pasiphaeidae Parapasiphae sulcatifrons Meso to Bathypelagic 16.7 --
Sergestidae Robustosergia robusta Meso to Bathypelagic 16.7 --

Euphausiacea Euphausiidae Thysanoessa gregaria Epi to Mesopelagic 16.7 --
Thysanoessa longicaudata Epi to Mesopelagic 16.7 --

*Fishbase; SEalifeBase; World Register of Marine Species (WoRMS); DM refers to known diel vertical migration pattern
(--) indicates no amplification due either to taxon absence or methodological failure; crustacean primers amplified 6 out of 15 samples success-
fully
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This is supported by tracking, which shows that the core 
area used by breeding adults from the nearest colonies (in 
Newfoundland), extends eastwards to around 42° W (Hedd 
et al. 2018). In contrast, the birds in our study were caught 
between 30.2 and 40.6ºW, with the majority being caught 
east of 36.5ºW. Tracking also shows that post-breeding 
adults from North America colonies stopover in the latter 
area (Pollet et al. 2019). Presumably, non- and post-breed-
ing Leach’s petrels and other seabirds are attracted to this 
area by its abundant and diverse mesopelagic community 
(Cook et al. 2013; Sutton et al. 2013, 2017).

In accordance with the oceanic regime in which they 
were captured, Leach’s storm-petrels fed mainly on meso-
pelagic species, particularly fishes of the Orders Myc-
tophiformes and Stomiiformes, which are among the most 
abundant mesopelagic fishes of the North Atlantic (Sutton 
et al. 2013; Carmo et al. 2015). These results are consistent 
with other studies showing that Leach’s and other storm-
petrels, despite feeding by seizing prey from the surface of 
the ocean, mostly consume deep water prey, particularly 
fish (Hedd and Montevecchi 2006, 2009, Carreiro et al. 
2020; Alho et al. 2022). The frequent capture of mesope-
lagic and bathypelagic species in epipelagic waters (above 
200 m) along the Mid-Atlantic Ridge during trawling sur-
veys suggests that many taxa in the area undertake diel ver-
tical migrations (Cook et al. 2013). This is a key feature of 
pelagic ecosystems for top predators that do not dive or are 
shallow divers, such as most petrels, because prey species, 
including fish, cephalopods and crustaceans, become avail-
able when they ascend to shallower depths at night (Cook 
et al. 2013).

Lanternfishes (family Myctophidae) are among the most 
abundant fishes from the mesopelagic zone  (Catul et al. 

Discussion

This study is the first to characterize the diet of one of the 
most commonly occurring seabirds in the highly productive 
sub-polar frontal zone of the North Atlantic (Boertmann et 
al. 2011, Wakefield et al. 2021), an area recently accorded 
international protection due to its importance to seabirds 
and other higher predators (Davies et al. 2021). Despite its 
relevance, there is almost no direct information regarding 
the diet of seabirds in the region. Although based on a small 
sample taken over a short period, our results suggest that 
within this area, Leach’s storm-petrels, and possibly other 
species, may subsist largely on mesopelagic fish, highlight-
ing the importance of this group in the pelagic food web 
of the North Atlantic. Moreover, our results, along those of 
previous diet, tracking, and at-sea studies (Watanuki 1985; 
Vermeer and Devito 1988; Steele and Montevecchi 1994; 
Hedd and Montevecchi 2006; Hedd 2009, Pollet et al. 2014; 
Hedd et al. 2018) suggest that Leach’s storm-petrels are spe-
cialists of the shelf-break to oceanic zones.

Flight feather moult is energy demanding and so most 
small Procellariiformes tend to not moult large flight feath-
ers during the breeding season to avoid competing energy 
requirements (Bridge 2006). Sampling in our study occurred 
during the second half of June, a time when breeders in the 
Atlantic colonies are incubating eggs (Money et al. 2008; 
Pollet et al. 2021). Successful breeders from these popula-
tions start flight feather moult in October, with most feathers 
being replaced in the non-breeding areas (Cramp and Sim-
mons 1977; Warham 1990; Pollet et al. 2021). Most storm-
petrels sampled in this study were in active flight feather 
moult, hence they were most likely immature or failed 
breeders (Boertmann et al. 2011, Wakefield et al. 2021). 

Fig. 3  Ratios of nitrogen (δ15N) and carbon (δ13C) stable isotopes (mean ± SD) in tissues of Leach’s storm-petrels sampled south of the Sub-polar 
frontal zone of the NW Atlantic. Black data points refer to female data, red data points refer to male data
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are among the most nocturnal seabirds, at least during the 
non-breeding period (Bonnet-Lebrun et al. 2021). Together, 
these lines of evidence indicate a reliance on vertically 
migrating mesopelagic prey, captured at night or during the 
crepuscular periods.

Although not common, we also detected cephalopods 
in the diet of the storm-petrels, including Histioteuthis 
reversa, a deep-water species frequently recorded in 
western North Atlantic surveys (Vecchoine and Pohle 
2002). Crustaceans have been found to be an important 
prey group of breeding Leach’s (Hedd et al. 2009), Brit-
ish (Medeiros-Mirra et al. 2010) and Madeiran storm-
petrels (Waap 2015), but we amplified crustaceans in 
only 27% of the samples (see also Alho et al. 2022). It is 
unclear whether this is representative of the true diet of 
non-breeding Leach’s storm-petrels or whether it was due 
to a methodological failure in, for example, DNA isola-
tion and/or amplification. The fact that one of the samples 
that did not amplify contained a macroscopic, unidenti-
fied mysid suggests a problem with the optimization of 
the primers used to build the crustacean library (Waap 
2015). However, the blood and feather δ15N values 
observed in birds in our study, which are consistent with 
those reported for Leach’s storm-petrels in other North 
Atlantic studies (Hedd and Montevecchi 2006; Pollet et 
al. 2014; Fairhurst et al. 2015), indicate a diet dominated 
by relatively high trophic-level prey (e.g., fish), rather 
than crustaceans (wintering birds in the Pacific have 
more variable δ15N values (Halpin et al. 2018), possi-
bly reflecting a wider dietary trophic range). Moreover, 
blood stable isotope profiles are comparable to those of 
other petrels feeding mostly on mesopelagic fish and 
squid south of the mid-Atlantic sub-polar frontal system 
(Fig. 4), suggesting that, despite their size, storm-petrels 
feed at similar trophic levels to much larger pelagic sea-
birds in the oceanic North Atlantic. Hence, as in other 
storm-petrels, mesopelagic fish, which are secondary to 
tertiary consumers in pelagic ecosystems (Cherel et al. 
2010), are a key component of storm-petrel diet.

It remains unclear the extent to which current declines 
in Leach’s storm petrels relate to diet. Potential hypoth-
eses for declines mediated by diet include the effect of 
anthropogenic contaminants and shifts in prey abundance 
or distribution (Pollet et al. 2021). In either case, our data 
point to the prey taxa that should be considered to inves-
tigate these hypotheses further.

Another potential threat which our results have a bear-
ing on is plastics. Plastic ingestion by Leach’s storm-
petrels has been recorded in the Atlantic and Pacific 
oceans since the 1970s (Bond and Lavers 2013). These 
studies found variable frequencies of occurrence, ranging 
between 6.5% (Watanuki 1985) and 59% (Furness 1985), 

2011; Irigoien et al. 2014) and play a key role in marine 
pelagic food webs by transferring energy from zooplank-
ton to higher trophic levels (Cherel et al. 2010; Watanuki 
and Thiebot 2018). Benthosema glaciale, which is wide-
spread in the North Atlantic and Mediterranean (Knutsen 
et al. 2023), was not only the myctophid most frequently 
found in the diet of non-breeding Leach’s storm-petrels, but 
also in the diets of breeding adults and their offspring from 
Baccalieu Island, Newfoundland (Hedd and Montevecchi 
2006). Although it may not be the most abundant (numeri-
cally or in biomass) deep-water fish species recorded in the 
North Atlantic upper water column, it has a clear pattern 
of diel vertical migration (Cook et al. 2013; Sutton et al. 
2013), possibly making it the most abundant species avail-
able to surface-feeding storm-petrels. This supports the pre-
vious suggestion that storm-petrels feed on the most locally 
abundant prey (Medeiros-Mirra 2010; Carreiro et al. 2020). 
Hatchetfishes (genus Maurolicus) which also occurred 
frequently in the diet of the birds in our study, also under-
take vertical migration (Cook et al. 2013; Christiansen et 
al. 2019). It is known from analysis of stomach contents 
of freshly dead birds (Spear and Ainley 2007) that Leach’s 
storm-petrels mostly feed nocturnally, perhaps during twi-
light hours. Indeed, combined activity and light-level geo-
location loggers have shown that Leach’s storm-petrels 

Fig. 4  Stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) 
(mean ± SD) in blood of pelagic seabirds feeding south of the Sub-
polar frontal zone of the North Atlantic during the boreal summer. Bul-
wer’s petrels (Bulweria bulwerii, n = 15 from Desertas Is.), Madeiran 
Storm-petrels (Hydrobates castro, n = 16 from Desertas Is.) (Online 
Resource 1), Zino’s Petrels (Pterodroma madeira, n = 17) and Deser-
tas Petrels (Pterodroma deserta, n = 17) (Ventura et al. 2024) were all 
sampled between June and September 2019. Cory’s Shearwater (Calo-
nectris borealis) from Ceia et al. (2018)
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