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We introduce a cops and robbers game with one cop and one robber on a special type 
of time-varying graphs (TVGs), namely edge-periodic graphs. These are TVGs in which, for 
each edge e, a binary string τ (e) is given such that the edge e is present in time step t if 
and only if τ (e) contains a 1 at position t mod |τ (e)|. This periodicity allows for a compact 
representation of infinite TVGs. We prove that even for very simple underlying graphs, i.e., 
directed and undirected cycles, the problem of deciding whether a cop-winning strategy 
exists is NP-hard and W[1]-hard parameterized by the number of vertices. Furthermore, we 
show that this decision problem can be solved on general edge-periodic graphs in PSPACE. 
Finally, we present tight bounds on the minimum length of a directed or undirected cycle 
that guarantees the cycle to be robber-winning.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC license (http://creativecommons .org /licenses /by-nc /4 .0/).

1. Introduction

Pursuit-evasion games are games played between two teams of players, who take turns moving within the confines of 
some abstract arena. Typically, one team – the pursuers – are tasked with catching the members of the other team – the 
evaders – whose task it is to evade capture indefinitely. The study of such games has led to their application in a number 
of real-world scenarios, one widely-studied example of which would be their application to the problem of guiding robots 
through real-world environments [3]. From a theoretical standpoint, other variants of the game have been studied for their 
intrinsic links to important graph parameters; for example, in one particular variant in which each pursuer can, in a single 
turn, move to an arbitrary vertex of the given graph G , it is well known that establishing the number of pursuers it takes 
to catch one evader also establishes the treewidth of G [4].

The variant most closely resembled by the one considered in this paper was first studied separately by Quilliot [5], and 
by Nowakowski and Winkler [6], as the discrete cops and robbers game. In essence, the games these authors considered were 
the same: one cop (pursuer) and one robber (evader) take turns moving across the edges (or remaining at their current 
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vertex) of a given graph G , with the cop aiming to catch the robber, and the robber attempting to avoid capture. (By 
‘catching the robber’ we mean that the cop is able to occupy the same vertex as the robber within G .) Aigner and Fromme 
[7] considered a generalized variant of the game, in which k cops attempt to catch a single robber; their paper introduced 
the notion of the cop-number of a graph, i.e., the minimum number of cops required to guarantee that the robber is caught.

Such games have been studied intensively for static graphs [8]. If the game is played with one robber and k ≥ 1 cops on 
a given graph, the cops first place themselves on vertices of the graph, before the robber chooses his initial vertex (after 
observing where the cops have been placed). Then, in each round, the players alternate turns and the cops move first. Here, 
each cop can move to an adjacent vertex or pass and stay on her vertex. The same holds for the robber. We say that a 
graph is k-cop-winning, if there exists a strategy for the k cops using which they finally catch the robber, i.e., a cop occupies 
the same vertex as the robber. If the context is clear, we call a 1-cop-winning graph a cop-winning graph. If a graph is 
not cop-winning, we call it robber-winning. Special attention has been devoted to the characterization of graphs that are 
k-cop-winning. While for one cop, the cop-winning graphs were understood in 1978 and independently in 1983 [5,6] as 
those featuring a special kind of ordering on the vertex set, called a cop-win or elimination or dismantling order, the case for 
k cops was long open and solved in 2009 by exploiting a linear structure of a certain power of the graph [9].

In this paper, we introduce a variant of the cops and robbers game with an essentially identical set of rules to the one 
considered in [5,6], but broaden the class of viable game arenas to include the edge-periodic graphs [10]. As such, we call 
the game periodic cop and robber. Informally, edge-periodic graphs can be thought of as traditional static graphs equipped 
with an additional function, mapping each edge e to a label τ (e), which is a binary string that dictates in which time steps 
e is present within each consecutive period of |τ (e)| time steps. The class of edge-periodic graphs can also be considered a 
subclass of so-called time-varying graphs or temporal graphs [11].

In general, a time-varying graph (TVG) describes a graph that varies over time. For most applications, this variation 
is limited to the availability or weight of edges, meaning that edges are only present at certain time steps or the time 
needed to cross an edge changes over time. TVGs are of great interest in the area of dynamic networks [10,12–14] such as 
mobile ad hoc networks [15] and vehicular networks modeling traffic load factors on a road network [16]. In those networks, 
the topology naturally changes over time, and TVGs are used to reflect this dynamic behavior. Quite recently, TVGs have 
attracted interest in the context of graph games such as competitive diffusion games and Voronoi games [17]. There are 
plenty of representations for TVGs in the literature, which are not equivalent in general. For instance, in [10] a TVG is 
defined as a tuple G = (V , E, T , ρ, ζ ) where V is a set of vertices, E ⊆ V × V × L is a set of labeled edges (with labels from 
a set L), T ⊆T is the lifetime of the graph, T is the temporal domain and assumed to be N for discrete systems and R+
for continuous systems, ρ : E × T → {0, 1} is the presence function indicating whether an edge e is present in time step t , 
and ζ : E × T → T is the latency function indicating the time needed to cross edge e in time step t . We call the graph 
G = (V , E) the underlying graph of G . As of yet, there is no agreement in the literature on how the functions ρ and ζ are 
given in the input. In the context of computational complexity, this is of significant importance, particularly when ρ exhibits 
periodicity with respect to single edges. As we are concerned with the computational complexity of determining whether an 
edge-periodic graph is cop-winning, we now discuss the issue of input representation for temporal graphs with periodicity 
in more detail. In analogy with class 8 defined in [10], but without requiring the underlying graph G to be connected, we 
say that a TVG belongs to the class of TVGs featuring periodicity of edges if ∀e ∈ E, ∀t ∈ T , ∀k ∈ N, ρ(e, t) = ρ(e, t + kpe)

for some pe ∈T depending on e. For such TVGs with discrete time steps, the function ρ can be represented for each edge 
e ∈ E as a binary string of size pe concatenating the values of ρ(e, t) for 0 ≤ t < pe . Note that the period of the whole 
graph G , also called the global period, is then the least common multiple (lcm for short) of all string lengths pe describing 
edge periods. Therefore, the global period can be exponential in the size of the input, and the underlying graph G of G
can have exponentially many different sub-graphs Gt representing the snapshot of G at time t . This exponential blow-up is 
a huge challenge in determining the precise complexity of problems for TVGs featuring periodicity of edges, as discussed 
in more detail in Section 4 and 6, but it can also lead to more structure that can be exploited algorithmically, as shown 
in [18]. Often, for general TVGs, a representation containing all sub-graphs representing snapshots over the whole lifetime 
of the graph is chosen when the complexity of decision problems over TVGs is considered [19,20]. An approach to unify 
the representation of TVGs is given in [21], also including the existence of vertices being affected over time. This approach 
represents ρ(e, t) by enhancing an edge e = (u, v) with the departure time td at u and the arrival time ta at v , where ta

might be smaller than td in order to model periodicity. For TVGs with periodicity of edges where ρ is represented as a 
binary string for each edge, the periodicity of the TVG G might be exponential in its representation. Therefore, using the 
approach of [21] would cause an exponential blow-up in the representation of G , as a decrement of the time value could 
only be used after a whole period of the graph, rather than after the period of one edge. Another class of TVGs based 
on periodicity was considered in the field of robotics to model motion planning tasks when time dependent obstacles are 
present [22]. There, the availability of the vertices in the graph changes periodically and each edge needs a constant number 
of time steps to be crossed. An edge e = {u, v} is only present if, in the time span needed to cross e, both endpoints u and 
v are continuously present. In [22] the periodic function describing the availability of a vertex and the function describing 
the time needed to cross an edge are represented by an on-line program and can hence handle values exponential in their 
representation. This is crucial in the PSPACE-hardness proof of the reachability problem for graphs in this class presented 
in [22]. There, the hardness is obtained by a reduction from the halting problem for linear space-bounded deterministic 
Turing machines where a configuration of the Turing machine is encoded in the time step. In the reduction, the periodicity 
of a single vertex as well as the time needed to cross an edge is of value exponential in the tape length-bound. Note that 
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this representation of periodicity is exponentially more compact than in our setting and thus the result of [22] does not 
translate to our setting.

We will stick in the following to the model describing TVGs featuring periodicity of edges where the function ρ(e, t) is 
represented as a binary string τ (e). We refer to such TVGs as edge-periodic graphs.

As mentioned earlier, in this paper we introduce and study a cops and robbers game for edge-periodic graphs. After 
the first announcement of an extended abstract of part of the present work that introduced this game and showed that 
one can decide if a graph is cop-winning in exponential time via a reduction to a reachability game [1], Balev et al. [23]
studied the cop and robber game for TVGs with finite lifetime where each snapshot is given explicitly. They showed that 
deciding if a game is cop-winning can be done in polynomial time in this case, via reduction to a reachability game similar 
to the one mentioned above. In their case, contrary to edge-periodic graphs, the reachability game is of polynomial size. 
They also study the number of cops required to catch the robber in an online variant of the game where the cop does not 
know the graph of the next time step, while the robber can determine what the graph in the next time step is, the only 
requirement being that the graph must be connected. Then it was shown by Morawietz, Rehs, and Weller [24] that deciding 
if an instance of the game with a single cop is cop-winning is NP-hard for edge-periodic graphs whose underlying graph has 
a constant-size vertex cover or where only two edges have to be removed to obtain a cycle. Moreover, they showed that the 
problem is W[1]-hard when parameterized by the size of the underlying graph G even in these restricted cases, implying 
that there is presumably no algorithm solving the problem in time f (n + m) · |I|O (1) for any computable function f , where 
|I| is the size of the input and n and m represent the number of vertices and edges, respectively, of G . In other words, 
the exponential growth of the running time of every algorithm solving the problem has to depend on the lengths of the 
binary strings describing ρ(e, t). Subsequently, in the first announcement of an extended abstract of another part of the 
present work [2], it was shown that deciding if an instance of the game is cop-winning is NP-hard (and W[1]-hard when 
parameterized by the size of the underlying graph) already for directed and undirected edge-periodic cycles. In addition, it 
was also shown in [2] that the upper bounds on the length of undirected edge-periodic cycles that guarantee them to be 
robber-winning from [1] are tight.

After the two conference versions of this combined journal version appeared, De Carufel et al. studied the game of cops 
and robbers on periodic temporal graphs where all edge labels have the same length. Note that in their setting, the global 
period is always linear in the size of the input, while in our setting the global period can be exponential. De Carufel et 
al. gave a characterization for cop-winning periodic temporal graphs in their setting in the case of a single cop [25]. They 
also gave an algorithm that decides if a periodic temporal graph with global period p is cop-winning for a single cop with 
running time O (pn2 + nm′) where m′ = ∑|Ei |

0≤t<p is the total number of edge appearances in the first p snapshots. We 
remark that our algorithm of Theorem 5 can be shown to have the same time bound, as we discuss briefly after the proof 
of that theorem. In [26] the same authors relate the cop-number of the periodic temporal graph with the cop-number of 
the underlying graph and of the individual snapshot graphs.

1.1. Our contribution

In this work, we introduce the periodic cop and robber game (Section 2). Then we show that deciding whether a given 
edge-periodic graph is cop-winning is NP-hard even for very simple classes of edge-periodic graphs, namely for directed 
and undirected cycles. Moreover, we show that the problem is W[1]-hard when parameterized by the size of G for these 
restricted instances (Section 3). Then, we present an algorithm with time and space bound O (lcm(LG) · n3) for deciding 
whether an edge-periodic graph is cop-winning, where n is the number of vertices of the graph and lcm(LG) is the least 
common multiple of the edge periods. Furthermore, we show that the problem is contained in PSPACE (Section 4).

Next, we study the question of how long a directed or undirected edge-periodic cycle must be to guarantee that it is 
robber-winning. We first show an auxiliary result for infinite directed edge-periodic paths and then obtain tight bounds on 
the minimum length that guarantees a cycle to be robber-winning, for both directed and undirected edge-periodic cycles 
(Section 5). Let LG be the set of edge periods. Let � = 1 if lcm(LG) is at least two times the longest edge period and 
� = 2, otherwise. Then the minimum length that guarantees a directed edge-periodic cycle to be robber-winning is shown 
to be lcm(LG) + �. For the undirected case, we show the minimum length that guarantees an edge-periodic cycle to be 
robber-winning to be 2 · � · lcm(LG).

We conclude with a discussion on open questions regarding the precise complexity of the problem of deciding whether 
an edge-periodic graph is cop-winning. In particular, we discuss why, at least for the special case of directed edge-periodic 
cycles, standard complexity classes such as NP and PSPACE might not be suitable for precisely characterizing the complexity 
of the problem (Section 6).

This journal paper presents a unified, full version of the results announced in the extended abstracts [1,2] together with 
new results (Section 5.2) on the length of directed edge-periodic cycles that guarantees them to be robber-winning.

1.2. Further related work

In [27–29], the authors develop reductions from the standard game of cops and robbers to a directed game graph and 
specify algorithms that can decide, for a given graph, whether cop or robber wins. In [30], Kehagias and Konstantinidis note 
a connection between the formulations of [27–29] and reachability games. Reachability games are a well-studied class of 
3
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Fig. 1. Edge-periodic cycle G (left) together with snapshots G(t) for 0 ≤ t ≤ 4.

2-player token-pushing games, in which two players push a token along the edges of a directed graph in turn – one with 
the aim to push the token to some vertex belonging to a prespecified subset of the graph’s vertex set, and the other with 
the aim to ensure the token never reaches such a vertex [31]. It is well known that the winner of a reachability game 
played on a given directed graph G can be established in polynomial time [32,31]. For more information regarding cops and 
robbers/pursuit-evasion games, as well as their connection to reachability games, we refer the reader to [31,32,30,33,8,34,3].

2. Preliminaries

Throughout the paper, for a set A of integers, we denote by lcm(A) the least common multiple of the integers in A. For 
a string w = w0 w1 . . . wn with wi ∈ {0, 1}, for 0 ≤ i ≤ n, we denote by w[i] the symbol wi at position i in w . We write the 
concatenation of strings u and v as u · v . For non-negative integers i ≤ j we denote by [i, j] the interval of natural numbers 
n with i ≤ n ≤ j.

An edge-periodic (temporal) graph G = (V , E, τ ) consists of a graph G = (V , E) (called the underlying graph) and a func-
tion τ : E → {0, 1}∗ where τ maps each edge e to a label τ (e) ∈ {0, 1}∗ such that e exists in a time step t ≥ 0 if and only 
if τ (e)[t]◦ = 1, where τ (e)[t]◦ := τ (e)[t mod |τ (e)|]. For an edge e and non-negative integers i ≤ j we inductively define 
τ (e)[[i, j]]◦ = τ (e)[i]◦ · τ (e)[[i + 1, j]]◦ and τ (e)[[ j, j]]◦ = τ (e)[ j]◦ . If τ (e) = 1, we call e a 1-edge. We assume that every 
edge e exists in at least one time step, that is, for each edge e there is some te ∈ [0, |τ (e)| − 1] with τ (e)[te] = 1. We 
might abbreviate i repetitions of the same symbol σ in τ (e) as σ i . We denote by LG = {|τ (e)| | e ∈ E} the set of all edge 
periods of some edge-periodic graph G = (V , E, τ ) and by lcm(LG) the least common multiple of all periods in LG . We call 
an edge-periodic graph G with an underlying graph consisting of a single cycle an edge-periodic cycle. We denote by G(t)
the sub-graph of G present in time step t . We do not make any connectivity assumptions on G or its snapshot graphs, 
but we note that G is trivially robber-winning if it has more temporally connected components than there are cops; note 
that the temporal reachability relation in periodic temporal graphs is symmetric and transitive, and hence the vertex set 
can be partitioned into maximal components that are temporally connected. We will discuss directed and undirected edge-
periodic graphs. If not stated otherwise, we assume an edge-periodic graph to be undirected. We illustrate the notion of 
edge-periodic cycles in Fig. 1, which shows an edge-periodic cycle G together with G(t) for the first five time steps.

2.1. The periodic cop and robber game

We now define the variant of the cops and robbers game with a single cop on edge-periodic graphs. Here, first the cop 
chooses her start vertex in G(0), then the robber chooses his start vertex in G(0). Then, in each time step t ≥ 0, the cop 
and robber move to an adjacent vertex over an edge which is present in G(t) or pass and stay on their vertex. In each time 
step, the cop moves first, followed by the robber. We say that the cop catches the robber if there is some time step in which 
the cop and the robber are on the same vertex after the cop has moved or after the robber has moved. If the cop has a 
strategy to catch the robber regardless of which start vertex the robber chooses, we say that G is cop-winning and call the 
strategy implemented by the cop a cop-winning strategy. If for all cop start vertices there exists a start vertex and strategy 
for the robber to elude the cop indefinitely, we call G robber-winning. The described game is a zero-sum game, i.e., G is 
either cop-winning or robber-winning.

We are interested in the computational complexity of the following problem:

Periodic Cop & Robber

Input: An edge-periodic graph G = (V , E, τ ).
Question: Is G cop-winning?

A generalization with k ≥ 2 cops instead of a single cop can be defined analogously. Initially, each of the k cops chooses 
her start vertex, where it is allowed that several cops choose the same start vertex. In each time step, first each of the k
cops makes her move (i.e., moves to an adjacent vertex or remains where she is), then the robber. The cops catch the robber 
if there is some time step in which at least one of the cops is located on the same vertex as the robber after the cops have 
moved or after the robber has moved. For this generalization, the notions of being k-cop-winning and robber-winning against 
k cops are defined analogously.
4
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Fig. 2. Periodic Cop & Robber instance constructed from a Periodic Character Alignment instance with set of strings X = {x1, . . . , xm} in the proof 
of Lemma 2. For x j ∈ X the edge labels are defined as ξ(x j) := ξ(x j [0]) · ξ(x j [1]) · . . . · ξ(x j [|x j | − 1]), with ξ(c) := 0cm01m for c ∈ {0, 1}. The upper 
chain corresponds to the vertices r j and the lower chain to the vertices � j .

3. It’s hard to run around a table

In this section, we show that the NP-hardness of Periodic Cop & Robber already holds if the input graphs are very 
restricted. More precisely, we show that Periodic Cop & Robber is NP-hard and W[1]-hard when parameterized by the size 
of G , even for directed and undirected edge-periodic cycles G .

Theorem 1. Periodic Cop & Robber on directed or undirected edge-periodic cycles is NP-hard, and W[1]-hard parameterized by the 
size of the underlying graph G.

Both the undirected and directed case of Theorem 1 are shown by a reduction from the Periodic Character Alignment

problem, which was shown to be both NP-hard and W[1]-hard when parameterized by |X | in [24].

Periodic Character Alignment

Input: A finite set X ⊆ {0, 1}∗ of binary strings.
Question: Is there a position i such that x[i]◦ = 1 for all x ∈ X ,
where x[i]◦ := x[i mod |x|]?

We begin with considering the case of undirected edge-periodic cycles and then proceed by adapting the obtained construc-
tion for directed edge-periodic cycles.

Lemma 2. Periodic Cop & Robber on undirected edge-periodic cycles is NP-hard, and W[1]-hard parameterized by the size of the 
underlying graph G.

Proof. We first sketch the idea of the construction. It is helpful to consider Fig. 2 in the following. We represent each string 
in X by an edge label. The constructed cycle will consist of two chains connected by two special edges. In the first chain, the 
elements in X are used in some fixed order to determine an individual edge label each. In the second chain, the same edge 
labels are used in reverse order. This will allow the cop and the robber to occupy antipodal vertices with the same edge 
labels on incident edges. Hence, while the cop is on one chain and the robber on the other chain, the robber can mimic the 
movements of the cop. The two chains are connected by two special edges for which the edge labels are complementary 
in one position of the labels and identical in all other positions. This will allow the cop to switch between the chains in a 
certain time step while the robber is trapped on his chain. In this situation, the cop will be able to catch the robber if and 
only if there is a position i, such that x[i]◦ = 1 for all x ∈ X , in which case all edges of the chains will be present for some 
period.

We now proceed with the formal proof. Let X be an instance of Periodic Character Alignment. We describe how to 
construct in polynomial time an instance G = (V , E, τ ) of Periodic Cop & Robber, where G is an undirected edge-periodic 
cycle, such that X is a yes-instance of Periodic Character Alignment if and only if G is a yes-instance of Periodic Cop & 
Robber.

Let |X | = m and {x1, . . . , xm} be the elements of X . We set V := {� j, r j | 0 ≤ j ≤ m} and E := {{� j−1, � j}, {r j−1, r j} | 1 ≤ j ≤
m} ∪ {{�0, rm}, {�m, r0}}. Next, we set τ ({�0, rm}) := 10m10m and τ ({�m, r0}) := 00m10m . Let ξ(c) := 0cm01m for all c ∈ {0, 1}. 
Finally, we set τ ({� j−1, � j}) := τ ({r j−1, r j}) := ξ(x j[0]) · ξ(x j[1]) · . . . · ξ(x j[|x j| − 1]) for each x j ∈ X . Note that the length 
of each edge label is divisible by 2m + 2. For i ≥ 0, let Ti := [(2m + 2) · i, (2m + 2) · (i + 1) − 1] denote the i-th time block, 
that is, the 2m + 2 consecutive time steps starting from (2m + 2) · i. Note that the j-th edge label limited to the i-th time 
block τ ({� j−1, � j})[Ti]

◦ = τ ({r j−1, r j})[Ti]
◦ is exactly ξ(x j[i]

◦).
Next, we show that X is a yes-instance of Periodic Character Alignment if and only if G is a yes-instance of Periodic 

Cop & Robber.
(⇒) Let i be a position such that x[i]◦ = 1 for all x ∈ X . We describe the winning strategy for the cop. She should choose 

the vertex �0 as her start vertex and should never move until the beginning t of the i-th time block Ti . Since x[i]◦ = 1 for 
all x ∈ X , τ ({� j−1, � j})[Ti]

◦ = τ ({r j−1, r j})[Ti]
◦ = ξ(1) = 01m01m . Consequently, in time step t only the edge {�0, rm} exists 

and in the following m time steps, all edges except {�0, rm} and {�m, r0} exist.
If the robber is currently on some vertex r j , then the cop should move to rm in time step t . Otherwise, the cop should 

stay on �0 in this time step. By the fact that the edge {�m, r0} does not exist in time step t , we obtain that, at the be-
ginning of time step t + 1, both players are either on vertices labeled with r or labeled with �. Since all edges of the two 
5
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Fig. 3. Periodic Cop & Robber instance constructed from a Periodic Character Alignment instance with set of strings X = {x1, . . . , xm} in the proof 
of Lemma 3. For x j ∈ X the edge labels are defined by ξ(x j) := ξ(x j [0]) · ξ(x j [1]) · . . . · ξ(x j [|x j | − 1]), with ξ(c) := cm01m1 for c ∈ {0, 1}.

paths (�0, . . . , �m) and (r0, . . . , rm) exist in the time steps [t + 1, t + m], the cop can catch the robber in at most m time 
steps, since neither {�0, rm} nor {�m, r0} exists in any of the time steps [t + 1, t + m]. Consequently, G is a yes-instance 
of Periodic Cop & Robber.

(⇐) Suppose that X is a no-instance of Periodic Character Alignment. We describe a winning strategy for the robber. 
In the following, we say that the vertex � j is the mirror vertex of r j and vice versa. Moreover, we say that the robber mirrors 
the move of the cop at some time step t , if the cop is on the mirror vertex of the robber at the beginning of time step t and 
the robber moves to the mirror vertex of the vertex the cop ends on in time step t .

The start vertex of the robber should be the mirror vertex of the start vertex of the cop. If it is possible, then the robber 
should always mirror the moves of the cop.

Note that the only move the robber cannot mirror is if the cop traverses the edge {�0, rm} at the beginning of some i-th 
time block.

We show that the robber has a strategy to end on the mirror vertex during the i-th time block and evade the cop until 
then.

Due to symmetry assume that the cop moves from rm to �0 and, thus, the robber is currently on �m . Since X is a 
no-instance of Periodic Character Alignment, there is at least one x j ∈ X with x j[i]

◦ = 0. Hence, τ ({� j−1, � j})[Ti]
◦ =

τ ({r j−1, r j})[Ti]
◦ = ξ(0) = 00m01m . Consequently, the cop cannot catch the robber at �m in the first m + 1 time steps of 

the i-th time block. Hence, the robber should stay on this vertex until the beginning of time step (2m + 2) · i + m + 1.
If the cop moves from �0 to rm in time step (2m + 2) · i + m + 1, the robber is again on the mirror vertex of the cop 

and is able to mirror all of the cop’s moves in the remaining time steps of this time block. Otherwise, the cop is on some 
vertex �p at the end of time step (2m + 2) · i +m + 1. In this case, the robber should move to r0 in that time step. Since the 
edges {�0, rm} and {�m, r0} do not exist in the remaining time steps of this time block, the cop cannot catch the robber in this 
time block. Moreover, since all edges of the path (r0, . . . , rm) exist in all of the last m time steps of the i-th time block, the 
robber can move along the path (r0, . . . , rm) and reach the mirror vertex of the cop in at most m time steps. Consequently, 
we can show via induction that the robber has an infinite evasive strategy and, thus, G is a no-instance of Periodic Cop & 
Robber. Since Periodic Character Alignment is W[1]-hard when parameterized by |X | and |V | = |E| = 2 · |X | +2, we obtain 
that Periodic Cop & Robber is W[1]-hard when parameterized by the size of the underlying graph of G even on undirected 
edge-periodic cycles. �

Next, we adapt the previous construction for directed edge-periodic cycles. It is helpful to consider Fig. 3 in the following. 
In the adaption, we only have one chain with edge labels determined by the elements of X . The end vertex of this chain is 
connected to a new vertex s which is again connected to the start vertex of the chain. The edges incident with s will act as 
the two edges connecting the two chains in the previous construction by delaying the robber, such that the cop can catch 
him if all edges corresponding to X are present in some time period.

Lemma 3. Periodic Cop & Robber on directed edge-periodic cycles is NP-hard, and W[1]-hard parameterized by the size of the 
underlying graph.

Proof. Again, we reduce from Periodic Character Alignment. Let X be an instance of Periodic Character Alignment. 
We describe how to construct an instance G = (V , E, τ ) of Periodic Cop & Robber, where G is a directed edge-periodic 
cycle. Let |X | = m and {x1, . . . , xm} be the elements of X . We set V := {v j | 0 ≤ j ≤ m} ∪ {s} and E := {(v j−1, v j) | 1 ≤ j ≤
m} ∪ {(vm, s), (s, v0)}. Next, we set τ ((vm, s)) := 0m10m0 and τ ((s, v0)) := 0m00m1. Let ξ(c) := cm01m1 for all c ∈ {0, 1}. 
Finally, we set τ ((v j−1, v j)) := ξ(x j[0]) · ξ(x j[1]) · . . . · ξ(x j[|x j| − 1]) for each x j ∈ X .

Note that the length of each edge label is divisible by 2m + 2. For t ≥ 0, let Tt := [(2m + 2) · t, (2m + 2) · (t + 1) − 1]
denote the t-th time block, that is, the 2m + 2 consecutive time steps starting from (2m + 2) · t . Note that the j-th edge label 
limited to the t-th time block τ ((v j−1, v j})[Tt ]◦ is exactly ξ(x j[t]◦). Next, we show that X is a yes-instance of Periodic 
Character Alignment if and only if G is a yes-instance of Periodic Cop & Robber.

(⇒) Let t be a position such that x[t]◦ = 1 for all x ∈ X . We describe the winning strategy for the cop. The cop should 
choose the vertex v0 as her start vertex and should never move until the beginning t∗ := (2m + 2) · t of the t-th time 
block. By construction and the fact that xi[t]◦ = 1 for each xi ∈ X , τ ((vi−1, vi))[Tt ]◦ = ξ(1) = 1m01m1. Hence, the cop can 
move from vertex vi to vertex vi+1 in time step t∗ + i for each i ∈ [0, m − 1] and, thus, reach the vertex vm in time 
step t∗ +m − 1. Moreover, the cop can then move to the vertex s in time step t∗ +m. By construction, τ ((s, v0))[t∗ + j]◦ = 0
for each j ∈ [0, m]. Hence, the cop has a winning strategy since she started at vertex v0 and moved over every vertex of V
while the robber was not able to traverse the edge (s, v0).
6
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(⇐) Suppose that for every position t , there is some x j ∈ X with x j[t]◦ = 0. We show that the robber has a winning 
strategy. For some time step, let wC and w R denote the vertex of the cop and robber, respectively, in this time step. We 
call the vertex v0 safe for all vertices of V \ {v0, s}, we call vm safe for v0 and s, and we call s safe for v0. Let uC be the 
start vertex of the cop, then the robber should choose a vertex which is safe for uC as his start vertex.

Claim 4. Let t∗ = t · (2m + 2) be the beginning of the t-th time block for some t ≥ 0, let uC be the vertex of the cop at time step t∗
and uR be the vertex of the robber at time step t∗ . If uR is safe for uC , then the robber has a strategy such that the cop cannot catch him 
in the t-th time block and the robber ends on a vertex that is safe for the vertex of the cop at the end of the t-th time block.

Proof. Case 1: uC ∈ V \ {s, v0} and uR = v0. The robber should wait on vertex v0 until the beginning of time step t∗ + m. 
Since the edge (s, v0) only exists in the last time step of the t-th time block, the cop cannot catch the robber in any of these 
time steps. If the cop does not traverse the edge (vm, s) in time step t∗ + m, then the robber should stay on vertex v0 until 
the beginning of the next time block. Since the edge (vm, s) only exists in time steps t′ with t′ mod (2m + 2) = m, it follows 
that the cop ends on some vertex of V \ {s, v0} at the end of the t-th time block. Thus, at the beginning of the (t + 1)-th 
time block, the vertex of the robber is safe for the vertex of the cop.

Otherwise, the cop traverses the edge (vm, s) in time step t∗ + m. Then, the robber should traverse the edge (vi−1, vi)

in time step t∗ + m + i for each i ∈ [1, m], while the cop has to wait on s. Hence, the robber reaches vm in time step t∗ +
(2m + 2) − 2. In time step t∗ + (2m + 2) − 1, the cop can either stay on s or move to v0. In both cases the robber should 
stay on vm which is safe for both s and v0.

Case 2: uC = s and uR = vm . Since the edge (s, v0) only exists in the last time step of the t-th time block, the cop has 
to stay on s until the beginning of time step t∗ + (2m + 2) − 1. In time step t∗ + (2m + 2) − 1, the cop can either stay on s
or move to v0. In both cases the robber stays on vm which is safe for both s and v0.

Case 3: uC = v0 and uR ∈ {vm, s}. Let j ∈ [1, m] such that x j[t]◦ = 0, and recall that by definition of τ it follows 
that τ ((v j−1, v j))[Tt ]◦ = 0m01m1. Thus, the cop cannot reach the vertex vm in the first m + 1 time steps of the t-th time 
block. In time step t∗ + m, the robber should stay on s if s is his current vertex or traverse the edge (vm, s), otherwise. 
Since this is the only time step in which this edge exists in the t-th time block, the cop cannot catch the robber in this time 
block. Until the beginning of time step t∗ + (2m + 2) − 1, the robber should stay on s. If the cop ends her turn on vertex v0, 
then the robber should stay on s. Otherwise, the robber should traverse the edge (s, v0) in time step t∗ + (2m + 2) − 1. In 
both cases, the vertex of the robber is safe for the vertex of the cop at the beginning of the (t + 1)-th time block. �

By using Claim 4, one can show via induction that the robber has an infinite evasive strategy and, thus, G is a no-instance 
of Periodic Cop & Robber. �
4. Complexity upper bounds

In this section, we show that Periodic Cop & Robber can be solved for general edge-periodic graphs by translating the 
periodic cop and robber game into a reachability game. First, we show that constructing the reachability game explicitly 
yields an algorithm with time and space bound O (lcm(LG) · n3) for one cop or O (lcm(LG) · k · nk+2) for k cops, where n is 
the number of vertices of G . Within the same time and space bounds, one can also determine a winning strategy for the 
winning player. As lcm(G) can be exponential in the size of the representation of the given periodic cop and robber game, 
these algorithms may require exponential time and space.

Our approach is essentially to convert the given edge-periodic graph into a temporal graph with global period lcm(LG)

and then translate the problem of deciding if that graph is cop-winning into a reachability game. Applying the more recent 
algorithm by De Carufel et al. [25] with running-time O (pn2 + nm′) to that temporal graph with global period p = lcm(LG)

would yield the same worst-case running-time bound of O (lcm(LG) · n3) for one cop, as the total number m′ of edge 
appearances in the first p snapshots can be as large as �(lcm(LG) · n2).

Afterwards, we show that the Periodic Cop & Robber problem can be solved in polynomial space, both for the case of one 
cop and the case of k cops provided that k is bounded by a constant. Note that two-player games may take exponentially 
many turns, and hence containment in PSPACE is not obvious. In our case, already the period of graphs on which the game 
is played is exponential in general. This prohibits a standard incremental PSPACE algorithm approach. We show that, despite 
the potentially exponential period of the sequence of graphs G(t), we can determine whether the cop has a winning strategy 
by sweeping through the configuration space in such a way that we need to consider only polynomially many vertices at 
any time. The fact that we only consider one cop (or a number of cops bounded by a fixed constant) and one robber here 
is crucial for the polynomial bound.

4.1. Solving Periodic Cop & Robber via reachability games

In the following, we establish this theorem:

Theorem 5. Let G be an edge-periodic graph of order n, and let LG = {|τ (e)| : e ∈ E(G)}. Then, Periodic Cop & Robber can be decided 
in O (lcm(LG) · n3) time.
7
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The proof relies primarily on a transformation from a given edge-periodic graph G to a finite directed game graph G ′ . The 
transformation is such that playing an instance of the periodic cop and robber game on G is equivalent to playing a 2-player 
token-pushing game (specifically, a reachability game) on G ′ . To establish this equivalence, we need a way of translating a 
particular state of the cop and robber game played on G to a corresponding state in the reachability game played on G ′ . To 
this end, the following definition properly introduces the notion of a configuration in a cop and robber game played on an 
edge-periodic graph G .

Definition 6 (Configuration in G). The current state of a cop and robber game played on an edge-periodic graph G is de-
termined by four individual pieces of information: (1) the vertex currently occupied by the cop; (2) the vertex currently 
occupied by the robber; (3) the player whose turn it is to move; and (4) the current time step t . We define a configuration 
in G to be a 4-tuple, (uc, ur, s, t), where uc ∈ V (G) is the cop’s current vertex, ur ∈ V (G) is the robber’s current vertex, 
s ∈ {c, r} is the player whose turn it is to move next (where c stands for the cop and r for the robber), and t is the current 
time step.

We call any configuration (uc, ur, s, t) such that uc = ur a terminating configuration, since this indicates that both players 
are situated on the same vertex and hence the cop has won. We now formally introduce the notion of reachability games [31].

Definition 7 (Reachability game G ′). A reachability game is a directed graph G ′ , given as a 3-tuple:

G ′ = (V 0 ∪ V 1, E ′, F ),

where V 0 ∪ V 1 is a partition of the state set V ′; E ′ ⊆ V ′ × V ′ is a set of directed edges; and F ⊆ V ′ is a set of final states.

The game is played by two opposing players, Player 0 and Player 1; V 0 and V 1 are the (disjoint) sets of nodes owned by
Player 0 and Player 1, respectively. One can imagine a token being placed at some initial vertex (call it v0) at the start of 
the game. Depending on whether v0 ∈ V 0 or v0 ∈ V 1, we can then imagine the corresponding player selecting one of the 
outgoing edges of v0, and pushing the token along that edge. When the token arrives at the next vertex, the corresponding 
player then selects an outgoing edge and pushes the token along it. This process then continues – such a sequence of moves 
constitutes a play of the reachability game on G ′ . Formally, a play φ = v0, v1, . . . is a (possibly infinite) sequence of vertices 
in V ′ , such that (vi, vi+1) ∈ E ′ for all i ≥ 0. We say that a play φ is won by Player 0 if there exists some i such that vi ∈ F . 
Otherwise, φ is of infinite length and for no i is vi ∈ F ; in this latter case, we say that φ is won by Player 1.

Reachability games of this type are also sometimes called turn-based reachability games, as opposed to concurrent reach-
ability games [35]. In the case where F contains only a single vertex, the problem of determining whether Player 0 has 
a winning strategy from a given start vertex v0 in a turn-based reachability game is known to be equivalent to the And-

Or Graph Reachability problem, which is PTIME-complete [36]. In our transformation of a cop and robber game into a 
reachability game, the size of the resulting directed graph for the reachability game may be exponential in the size of the 
edge-periodic graph of the cop and robber game.

4.1.1. Transformation
We now detail our transformation from a given edge-periodic graph G to a reachability game β(G): let β be a transfor-

mation function that takes as argument a given edge-periodic graph G , so that the notation β(G) denotes the game graph 
G ′ on which each play of a reachability game corresponds to a sequence of moves performed by the cop and the robber in 
a game of cop and robber on G . Further, let LG = {|τ (e)| : e ∈ E(G)}. We let β(G) := G ′ = (V ′, E ′, F ), and go on to define its 
individual components below:

State set V ′. We define the state set (i.e., vertex set) of our directed game graph β(G) to be a set of 4-tuples, each 
corresponding to a configuration in the game of cop and robber on G , as follows:

V ′ = {(uc, ur, s, t) : uc, ur ∈ V (G), s ∈ {c, r}, and t ∈ [0, lcm(LG) − 1]}.
Keeping in line with Definition 7, we also let V 0 := {(uc, ur, s, t) ∈ V ′ : s = c} and V 1 := {(uc, ur, s, t) ∈ V ′ : s = r} be the sets 
of Player 0 (or cop) owned nodes, and Player 1 (or robber) owned nodes, respectively. We wish to capture with the finite 
directed game graph G ′ all possible configurations P of the cop and robber game on G . Since the lifetime of G is infinite, 
we cannot simply create a state S ∈ V (G ′) corresponding to each possible configuration P , however; the infinite number of 
time steps would result in an infinite game graph G ′ . It is not hard to see that in time step lcm(LG) −1 the presence of each 
edge is determined by the final bit of its label (since |τ (e)| divides lcm(LG) for all e ∈ E(G)). In the next time step, all labels 
will restart, i.e., the presence of each edge is determined by the first bit of its label. As such, we can view the temporal 
structure of our edge set as an infinitely repeating pattern, and by letting t range over the integers in [0, lcm(LG) − 1] we 
are able to properly capture this structure using only a finite number of states.

Edge set E ′. In order to construct the edge set E ′ ⊆ (V 0 × V 1) ∪ (V 1 × V 0), we consider all pairs of states S = (uc, ur, s, t)
and S ′ = (u′

c, u′
r, s′, t′) such that S �= S ′ and S, S ′ ∈ V ′ . We then let E ′ be the set of edges such that (S, S ′) ∈ E ′ if and only 

if the states S and S ′ satisfy all of the conditions below:
8
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(1)
(
s = c ∧ s′ = r

) ∨ (
s = r ∧ s′ = c

)
,

(2) s = c =⇒ (
uc = u′

c ∨ {uc, u′
c} ∈ E(G)

) ∧ (ur = u′
r) ∧ (t′ = t),

(3) s = r =⇒ (
ur = u′

r ∨ {ur, u′
r} ∈ E(G)

) ∧ (
uc = u′

c

) ∧ (
t′ ∈ [0, lcm(LG) − 1] satisfies t′ = (t + 1) mod lcm(LG)

)
,

(4) s = c ∧ uc �= u′
c =⇒ τ ({uc, u′

c})[t]◦ = 1,
(5) s = r ∧ ur �= u′

r =⇒ τ ({ur, u′
r})[t]◦ = 1.

Condition (1) ensures that the moves in any sequence of moves constituting a play in G ′ alternate between cop and 
robber. Condition (2) ensures that any state S ′ , reachable in one move from a cop-owned state S , is such that u′

c is adjacent 
to uc in G (or is in fact uc , indicating that the cop has waited at the current vertex); that the robber’s vertex ur does not 
change; and, that t′ = t , satisfying the rule stating that the cop moves first in any given time step, followed by the robber 
who must also make a move in time step t . On the other hand, Condition (3) ensures that, once the robber pushes the 
token from some robber-owned state S , his new vertex u′

r is adjacent to ur in G (or equal to ur ); that the cop’s vertex 
remains the same, and that the state S ′ to which the token is pushed is a state in which the current time step is advanced 
by one. Conditions (4) and (5) ensure that both players can only make moves across edges that are incident to their current 
vertex if they are present in the current time step; on the other hand, they also ensure that either player always has the 
ability to remain at their current vertex in any time step t if they should choose to do so.

Set of final states F . Let F = {(uc, ur, s, t) ∈ V ′ : uc = ur}, so that the set of final states consists of all those states that 
correspond to a configuration in G such that the cop is positioned on the same vertex as the robber. This models the fact 
that the game terminates only when this condition is met by the current configuration.

4.1.2. Proof of Theorem 5
We first introduce the elements of the theory of reachability games that are required for the proof of Theorem 5, starting 

with the definition of the attractor set:

Definition 8 (Attractor set Attr(F ) [32]). The sequence (Attri(F ))i≥0 is recursively defined as follows:

Attr0(F ) = F

Attri+1(F ) = Attri(F ) ∪ {v ∈ V 0 | ∃(v, u) ∈ E ′ : u ∈ Attri(F )} ∪
{v ∈ V 1 | ∀(v, u) ∈ E ′ : u ∈ Attri(F )}

We can see that the sets Attri(F ), as defined above, are a sequence of subsets of V ′ that are monotone with respect to 
set-inclusion. We then let

Attr(F ) =
⋃

i≥0

Attri(F ).

Since G ′ is finite, we are able to view the set Attr(F ) as the least fixed point of the sequence (Attri(F ))i≥0.

From Definition 8 it follows by induction that, from those states S ∈ Attri(F ) ∩ V 0 such that i ≥ 1 and S /∈ Attr j(F ) for 
any j < i, Player 0 is able to force the sequence of play into some state S F ∈ F within i moves, by selecting for each such 
S a successor state S ′ such that (S, S ′) ∈ E ′ and S ′ ∈ Attri−c for some c ≥ 1. On the other hand we have that, from any 
state S ∈ Attri(F ) ∩ V 1 (again, let i ≥ 1 and S /∈ Attr j(F ) for any j < i), Player 1 cannot avoid forcing the sequence of play 
into a state S ′ ∈ Attri−c (for some c ≥ 1); from the definition of Attri (i ≥ 0), it again follows by induction that the play 
will be forced into some state S F ∈ F in at most i time steps. This brings us to the following well-known result from the 
reachability games literature, which will be useful in proving Theorem 5:

Theorem 9 (Berwanger [32]). In a given reachability game G ′ = (V ′, E ′, F ), Player 0 has a winning strategy from any state S ∈
Attr(F ), and Player 1 has a winning strategy from any state S ∈ (V 0 ∪ V 1) \ Attr(F ).

Recall now that the transformation β produces, from a given edge-periodic graph G , a directed game graph β(G) =
(V ′, E ′, F ) such that there is a correspondence between every possible configuration in the game of cop and robber on G
with some state in V ′ , and vice versa. Using the notation S P to refer to the state in V ′ that corresponds to the configuration 
P in the game of cop and robber on G , we can compute the set Attr(F ) for the game graph β(G) and thus, on invocation 
of Theorem 9, state the following lemma:

Lemma 10. The cop can force a win from a configuration P if and only if the state S P ∈ V (β(G)) satisfies S P ∈ Attr(F ).

Note that one consequence of Lemma 10 is the following: In a game of cop and robber on G starting from a configuration 
P such that S P /∈ Attr(F ), the robber can force the sequence of moves to never reach any state S ∈ F , and, as such, the game 
can be won by the robber.
9
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Lemma 11. An edge-periodic graph G is cop-winning if and only if there exists a vertex v ∈ V (G) such that (v, u, c, 0) ∈ Attr(F ) for 
all u ∈ V (G).

Proof. (⇒) Assume not, so that G is cop-winning but there exists no vertex v ∈ V (G) such that (v, u, c, 0) ∈ Attr(F ) for all 
u ∈ V (G). Then, for every v , there exists at least one vertex uv such that the state (v, uv , c, 0) /∈ Attr(F ). Assume that the 
cop chooses some start vertex v . Then the robber chooses start vertex uv . It follows that the robber can force the equivalent 
reachability game on β(G) to begin from a state S(v,uv ,c,0) /∈ Attr(F ), hence winning the reachability game regardless of the 
cop’s choice of v . Notice that this implies that there exists a winning strategy for the robber in the game of cop and robber 
on G; this is a contradiction since, by assumption, G is cop-winning.

(⇐) Assume the cop chooses v as her start vertex. By doing so, the equivalent reachability game on β(G) starts at a state 
(v, ur, c, 0) ∈ Attr(F ) regardless of the robber’s choice of ur , since (v, ur, c, 0) ∈ Attr(F ) for all ur ∈ V (G). Hence, regardless 
of the robber’s choice of ur , the cop wins the reachability game on β(G) and, as a result, can win the game of cop and 
robber on G by picking start vertex v; the lemma follows. �

The proof of the main theorem will also make use of a further known result from the reachability games literature; for 
the following, let G ′ = (V ′, E ′, F ) be a given directed game graph.

Theorem 12 (Grädel et al. [31]). There exists an algorithm that computes the set Attr(F ) in time O (|V ′| + |E ′|).

Given the above, all is in place for the proof of Theorem 5:

Proof of Theorem 5. Since n = |V (G)|, β produces, given an edge-periodic graph G , a directed game graph β(G) = (V ′, E ′, F )

such that |V ′| ∈ O (lcm(LG) · n2). To see this, observe first that for a configuration P = (uc, ur, s, t) in a game of cop and 
robber on G , there are n ways to choose uc ∈ V (G), n ways to choose ur ∈ V (G), and a further 2 ways to choose s ∈ {c, r}. 
By definition of the transformation function, G ′ has states for time steps t ∈ [0, lcm(LG) − 1] only, and so in total we have 
that |V ′| = 2 · lcm(LG) · n2 = O (lcm(LG) · n2), as claimed. Next, note that each state S P ∈ V ′ has at most n edges leading 
away from it to other states. This is because, in the corresponding configuration P in the game of cop and robber on G , 
the player whose turn it currently is, has at most n choices of moves across edges – at most n − 1 edges leading to other 
vertices plus the choice of remaining at the current vertex. Since there are O (lcm(LG) · n2) states S ∈ V ′ , it follows that 
|E ′| ∈ O (lcm(LG) · n3).

Combining the above with the result of Theorem 12, we can conclude that the attractor set Attr(F ) (that is, the set of 
all states from which Player 0, i.e., the cop, has a winning strategy) of β(G) can be computed in time O (lcm(LG) · n3). By 
Lemma 11, we can then verify whether G is cop-winning by checking if there exists at least one vertex v ∈ V (G) such that 
(v, u, c, 0) ∈ Attr(F ) for all u ∈ V (G); if such a vertex v exists, the algorithm will return YES, otherwise the algorithm will 
return NO. Carrying out this check can clearly take at most O (n2) time, and the theorem follows. �

We remark that the time bound of Theorem 5 can also be stated as O (lcm(LG) · n2 + nm′), where m′ is the total number 
of edge appearances in the first lcm(LG) snapshots of G . This can be shown as follows. For the game graph G ′ = (V ′, E ′), 
we have already bounded |V ′| = O (lcm(LG) ·n2) in the proof of Theorem 5. To bound |E ′|, it suffices to observe that the 2n2

states of the form (u, v, s, t) for fixed t have at most 2n2 +2n|E(G(t))| outgoing edges in total, where G(t) is the snapshot of 
all edges that are present at time t in G . This holds because, for each vertex u ∈ V , there are n states (u, v, c, t) and n states 
(v, u, r, t) in V ′ , and each of these has an outgoing edge for each edge incident with u in G(t) plus one additional outgoing 
edge corresponding to the cop or robber deciding to stay at the current vertex u. The number of edges of the former type 
is 2n|E(G(t))|, and the number of edges of the latter type is 2n2. Adding these bounds over all lcm(LG) time steps, we get 
|E ′| = O (lcm(LG) · n2 + nm′). Thus, we have |V ′| + |E ′| = O (lcm(LG) · n2 + nm′), and by Theorem 12 the running-time of our 
algorithm satisfies the same time bound as the more recent algorithm with running-time O (pn2 +nm′) for temporal graphs 
with global period p by De Carufel et al. [25].

We also note that, as a direct consequence of Theorem 5, as long as lcm(LG) is polynomial in n and max LG , the winner 
of a given graph G can be decided in polynomial time. Furthermore, if the label lengths |τ (e)| are bounded by some constant 
for all e ∈ E(G), then the winner can be decided in O (n3) time.

As well as being able to decide whether a given edge-periodic graph is cop-winning, we would like to be able to compute 
a strategy for the winning player of the game of cop and robber on a given graph G . One common way to view a strategy 
for Player i (i ∈ {0, 1}), in a general infinite game played on a game graph G = (V , E, F ) (where V := V 0 ∪ V 1), is as a partial 
function σ : V ∗ · V i → V . Here, V ∗ · V i can be seen as the set of all prefixes (of any play φ in G) that end in a state S ∈ V i , 
with σ dictating to Player i the appropriate move to play, based on the history of these prefixes.

On the other hand, a memoryless strategy can be viewed more simply – as a partial function σ : V i → V ′ . Such a strategy 
σ can be employed in games where a correct move for a player does not depend on the entire state history of some play 
(or a prefix of) φ, but only on the current state. It is well known that reachability games fall into this category [31]; since 
the cop and robber game reduces to a reachability game, we are thus able to make use of the following result from the 
literature:
10
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Theorem 13 (Berwanger [32]). Given a reachability game G ′ = (V ′, E ′, F ), one can compute in O (|V ′| + |E ′|) time a memoryless 
winning strategy for Player 0 from any state S ∈ Attr(F ), and a memoryless winning-strategy for Player 1 from any state S ∈ (V 0 ∪
V 1) \ Attr(F ).

As such, given a directed game graph β(G) = (V ′, E ′, F ) (with V ′ := V 0 ∪ V 1), Theorem 13 tells us that it suffices to 
compute, for the winning player, a memoryless winning strategy σi : V i → V ′ , with the value of i ∈ {0, 1} depending on 
the winner of the reachability game on β(G). The following theorem shows that it is possible to interpret any such σ as a 
strategy for the winning player in the corresponding game of cop and robber on G:

Theorem 14. Let G be an arbitrary edge-periodic graph and LG = {|τ (e)| : e ∈ E(G)}. Then, depending on whether G is cop-winning 
or not, one can compute in O (lcm(LG) · n3) time either a memoryless winning strategy enabling the cop to capture the robber, or a 
memoryless winning strategy enabling the robber to evade capture indefinitely.

Proof. Let b ∈ {YES, NO} be the return value of the algorithm from Theorem 5 when provided G as input. First, we construct 
a strategy for the winning player of the equivalent reachability game β(G) = (V ′, E ′, F ), and then we go on to show how 
such a strategy can be interpreted as a strategy for the corresponding game of cop and robber on G .

First, consider the case b = YES. Then we know G is cop-winning and, by Lemma 11, we know that there exists some 
vertex v such that (v, u, c, 0) ∈ Attr(F ) for all u ∈ V (G). As such, the initial stage of our strategy for the cop consists of 
computing such a vertex v and setting the cop start vertex in G to v . Now, using Theorem 13, we can compute a memoryless 
winning-strategy σc . The initial stage of identifying some vertex v such that (v, u, c, 0) ∈ Attr(F ) for all u ∈ V (G) takes 
O (n2) time, and the algorithm of Theorem 13 takes time at most O (|V ′| +|E ′|) = O (lcm(LG) ·n3); it follows that the overall 
construction of a cop-strategy for the reachability game β(G) takes O (lcm(LG) · n3) time. Such a strategy for β(G) can then 
be interpreted as strategy for the cop in the game of cop and robber on G by first selecting start vertex v . From then 
onward, whenever it is the cop’s turn, in order to establish the appropriate move to play given a current configuration 
P = (uc, ur, c, t), the cop constructs from it a state S P , and checks the u′

c component of the state σc(S P ) = (u′
c, u′

r, r, t). It is 
guaranteed that u′

c is adjacent to uc (or possibly u′
c = uc) during t , due to the way the transformation from G to β(G) has 

been defined.
In the situation in which b = NO we know that G is robber-win, and thus by Lemma 11 for every v ∈ V (G), there exists 

at least one vertex uv such that the state (v, uv , c, 0) is not in Attr(F ). Thus, the initial stage of our strategy for the robber 
involves the construction of a mapping σ 0

r : V (G) → V (G) from each possible v ∈ V (G) that the cop might choose as its 
start vertex to a vertex uv satisfying the aforementioned non-membership condition. Application of Theorem 13 then allows 
us to construct a memoryless winning strategy, σr , from all states S ∈ (V ′ \ Attr(F )) ∩ V 0. The construction of σ 0

r involves 
checking, for each of n possible start vertices v for the cop, at most n vertices u in order to identify which combination of 
v and u satisfies (v, u, c, 0) /∈ Attr(F ). Hence, this initial phase can take at most O (n2) time. Similar to before, the algorithm 
of Theorem 13 can take at most O (|V ′| + |E ′|) = O (lcm(LG) · n3) time, and hence we have that the overall construction of 
a strategy for the robber can take at most O (lcm(LG) · n3) time, as claimed. Finally, interpreting σr as a strategy for the 
robber in the game of cop and robber on G is the same as for the cop above; the only difference is the way in which the 
start vertex is selected – the robber waits until the cop has selected a start vertex v and then chooses its own start vertex 
as σ 0

r (v). �
Finally, we remark that Theorems 5 and 14 can be generalized to the setting with k cops at the expense of increasing 

the algorithm’s running time (and space usage) to O (lcm(LG) · k · nk+2). We fix an arbitrary ordering of the cops and create 
k + 1 layers of states during every time step t ∈ [0, lcm(LG) − 1]: one for each of the k cops’ moves, followed finally by 
the robber’s move. By allowing in each time step for the players to play their moves in this serialized fashion, the resulting 
game graph requires O (lcm(LG) · k) layers with nk+1 states in each, with at most n edges leading from every state to states 
in the following layer.

4.2. A PSPACE algorithm for Periodic Cop & Robber

The algorithm presented in the previous subsection can use exponential time and space, as lcm(LG) can be exponential 
in the size of the representation of the given periodic cop and robber game. Therefore, Theorem 5 only shows that Periodic 
Cop & Robber is contained in EXPTIME. In the following, we show that it is possible to solve the Periodic Cop & Robber

problem using only polynomial space.

Theorem 15. Periodic Cop & Robber is contained in PSPACE.

For a given edge-periodic graph G = (V , E, τ ), the algorithm in Section 4.1 in some sense ‘unrolls’ G into a directed game 
graph G ′ = β(G) that contains states for all time steps in [0, lcm(LG) − 1]. Storing G ′ in memory may require exponential 
space. Note that this exponential blow-up comes from unrolling the edge-periodic graph into a TVG with global periodicity 
lcm(LG). In a different framework of TVGs that allows only global periodicity, such as the setting in [21,25], the input would 
11
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already consist of lcm(LG) snapshots and thus the algorithm from Section 4.1 (or the more recent algorithm by De Carufel 
et al. [25], with essentially the same running-time) would actually run in polynomial time and space. In our framework, 
however, the periodicity is specified on a per-edge basis, and hence further work is needed to obtain a PSPACE algorithm. 
The idea of our approach is to prove that it is enough to consider n2 · lcm(LG) time steps, to unroll G into a directed game 
graph with states for all time steps in [0, n2 · lcm(LG) − 1], and to show that we can identify the states in the attractor by 
a backward computation that holds in memory only the states for two consecutive time steps.

We begin by giving an upper bound on the maximum number of time steps (or rounds) that may be necessary for the 
cop to catch the robber in an edge-periodic graph G that is cop-winning.

Lemma 16. Let G = (V , E, τ ) be an edge-periodic graph. If G is cop-winning, then the robber can be caught within at most n2 · lcm(LG)

rounds.

Proof. Assume that the cop uses a deterministic winning strategy that minimizes the latest possible time when the robber 
is caught. Consider a play φ in which the robber can evade the cop for as long as possible, and the configurations (u, v, s, t)
(cf. Definition 6) that arise during that play. If the play consists of more than n2 · lcm(LG) rounds, then there must be 
two configurations (u1, v1, c, t1) and (u2, v2, c, t2) with u1 = u2, v1 = v2 and t2 = t1 + � lcm(LG) for some integer � ≥ 1. 
These two configurations are equivalent, and the cop has made no progress towards capturing the robber in between these 
configurations. This means that the configurations in time steps t1, t1 +1, . . . , t2 −1 could be removed from the play, yielding 
a shorter play that ends in a cop-winning configuration, a contradiction. �
Proof of Theorem 15. As in the proof of Theorem 5, we reduce Periodic Cop & Robber to the problem of computing the 
attractor set in a reachability game, but this time we do not build the whole game graph for the reachability game explicitly. 
Let G = (V , E, τ ) be the input edge-periodic graph. By Lemma 16, we know that if G is cop-winning, then it is sufficient to 
consider plays consisting of at most 2n2 · lcm(LG) moves (the factor 2 is due to the alternation of players).

Construct a directed game graph G ′′ = (V ′′, E ′′, F ) as follows: V ′′ consists of all configurations (u, v, s, t) with u, v ∈
V (G), s ∈ {c, r}, t ∈ [0, n2 lcm(LG) − 1]. The set F ⊆ V ′′ of target configurations consists of all states (u, v, s, t) ∈ V ′′ such 
that u = v . The outgoing edges of any state (u, v, s, t) are defined as in Section 4.1.1, except that in condition (3) we remove 
the modulo operation for the time steps, i.e., we replace the condition t′ = (t + 1) mod lcm(LG) by t′ = t + 1. The states 
(u, v, s, t) ∈ V ′′ with s = c form V 0 and the remaining states form V 1. We can view G ′′ as a directed acyclic graph with 
2n2 lcm(LG) levels: For each time step t , the states (u, v, s, t) with s = c form the first level, and the states (u, v, s, t) with 
s = r form the second level of that time step. Each edge is directed from a state (u, v, c, t) to a state (u′, v ′, r, t) or from a 
state (u, v, r, t) to a state (u′, v ′, c, t + 1). Hence, G ′ is a graph with 2n2 lcm(LG) levels, and each edge connects a state in 
one level to a state in the next level. Furthermore, each level contains only n2 states. The number of levels of the graph G ′′
is large enough to contain any path that corresponds to a play of the game with at most n2 · lcm(LG) rounds. By Lemma 16, 
if G is cop-winning then this is sufficient for containing all plays that result from a cop-winning strategy that minimizes 
the number of time steps until the robber is caught.

The Periodic Cop & Robber problem can be solved by checking if there is some vertex uc such that for all vertices 
ur ∈ V , the node (uc, ur, c, 0) ∈ V ′′ is in the attractor set Attr(F ) in G ′′ . Note that the attractor set of G ′′ corresponds to the 
set of configurations from which the cop has a winning strategy. We will now prove that this check can be implemented 
in polynomial space. Note that in G ′′ only states with identical time steps or with consecutive time steps t and t + 1
are connected. Hence, in order to compute which nodes with time step t belong to the attractor set, we need to know 
only which nodes with time step t + 1 belong to the attractor set. Since G ′′ is a directed acyclic graph, we can start the 
computation of the attractor set in the level with t = n2 · lcm(LG) − 1 and s = r:

Attr
n2·lcm(LG )−1
r := {(uc, ur, r,n2 · lcm(LG) − 1) | uc = ur}

Once Attrt
r has been computed for some t ∈ [0, n2 · lcm(LG) − 1], we can compute Attrt

c , and Attrt−1
r if t > 0, as follows:

Attrt
c := {(uc, ur, c, t) | ∃((uc, ur, c, t), (u′

c, ur, r, t)) ∈ E ′′ : (u′
c, ur, r, t) ∈ Attrt

r}
∪ {(uc, ur, c, t) | uc = ur}, for n2 · lcm(LG) − 1 ≥ t ≥ 0,

Attrt−1
r := {(uc, ur, r, t − 1) | ∀((uc, ur, r, t − 1), (uc, u′

r, c, t)) ∈ E ′′ : (uc, u′
r, c, t)

∈ Attrt
c} ∪ {(uc, ur, r, t − 1) | uc = ur}, for n2 · lcm(LG) − 1 ≥ t ≥ 1.

For each time step t , n2 · lcm(LG) −1 ≥ t ≥ 0, we only need to keep the previously handled time step t +1 (if existent)4 of G
in memory in order to compute the corresponding levels of G ′′ and the sets Attrt

c and Attrt
r of nodes (uc, ur, s, t) in G ′′ from 

4 Note that we can easily compute the snapshot G(n2 · lcm(LG)) = G(0) by including all edges with τ (e)[0]◦ = 1; and from G(t) for some time step t , 
the snapshot G(t − 1) by shifting the pointer in each τ (e) one step to the left. Therefore, we can compute from each snapshot G(t + 1) the snapshot G(t)
in polynomial time and space.
12
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which the cop has a winning strategy. In particular, at any time we only need to keep the sets Attrt
c , Attrt

r , Attrt+1
c , Attrt+1

r
in memory for some value of t , yielding a polynomial space algorithm. Note that 

⋃
0≤t≤n2·lcm(LG )−1 Attrt

c ∪ Attrt
r = Attr(F ). In 

order to check if there is some vertex uc such that for all vertices ur ∈ V , the node (uc, ur, c, 0) ∈ V ′′ is in Attr(F ), we only 
need to consider the set Attr0

c . �
We remark that the running-time of the algorithm from Theorem 15 is O (lcm(LG) · n5), as it constructs the graph with 

O (lcm(LG) · n2) levels on-the-fly while only keeping a constant number of levels in memory. Each level contains O (n2)

nodes. Hence, processing the level takes time O (n3) as each vertex in a level has at most n outgoing edges.
Finally, we observe that Theorem 15 can be generalized to the case of k ≥ 2 cops using similar ideas as those discussed 

at the end of Section 4.1. For each time step t , the directed game graph G ′′ now has k + 1 levels, each with nk+1 vertices. 
Furthermore, it is sufficient to build G ′ for nk+1 lcm(LG) time steps, as can be shown by a suitable adaptation of Lemma 16. 
It still suffices to keep in memory only the snapshots of G from two consecutive time steps, and two consecutive levels 
of G ′′ . The running-time of this algorithm is O (lcm(LG) · kn2k+3), as the game graph G ′′ has (k + 1)nk+1 lcm(LG) levels, 
and each level has O (nk+1) nodes with at most n outgoing edges each. The space usage is O (nk+2) as we build the graph 
on-the-fly. If k is bounded by a constant, this yields a PSPACE algorithm for the setting with k cops.

5. What length makes an edge-periodic cycle robber-winning?

In this section, we consider restricted subclasses of edge-periodic graphs, namely directed and undirected edge-periodic 
cycles. For edge-periodic cycles G with n vertices, we study the question of how large n must be at least, in dependence 
on lcm(LG) and max LG , to guarantee that G is robber-winning. Note that lcm(LG) represents the global period of G and 
max LG the longest edge period.

5.1. Infinite edge-periodic paths

First, as an auxiliary result, we show that any edge-periodic infinite path whose edge periods originate from a set of 
integers LG of finite size is robber-winning. In particular, we show that it suffices for the robber to place himself a certain 
number of edges ahead of the cop initially. This auxiliary result will allow us later to also handle the case in which the cop 
chases the robber around a cycle in a fixed direction.

Lemma 17. Let G be an infinite edge-periodic path, LG = {|τ (e)| | e ∈ E(G)}, and assume that |LG | is finite. Then, starting from any 
time step t, there exists a winning strategy for the robber from any vertex with distance at least 2 · lcm(LG) from the cop’s start vertex 
if lcm(LG) = max LG , and from any vertex with distance at least lcm(LG) from the cop’s start vertex otherwise.

Proof. First, notice that since we assume that |LG | is finite, so must be lcm(LG). Let the cop pick its initial vertex ct ∈ V (G). 
Let the robber’s initial vertex be denoted by rt , and assume without loss of generality that rt will be some vertex that lies 
to the right of ct in the underlying graph P = (V , E) of G , which we imagine as a directed path that extends infinitely 
towards the right. As vertices to the left of ct are irrelevant, we will from here onward denote by P the path starting at ct

and extending infinitely to the right.
Consider the set LG and its constituent elements. There are two cases – either (1) there exists x ∈ LG such that max LG

is not a multiple of x – then, lcm(LG) ≥ 2 · max LG , since it cannot be the case that lcm(LG) = j · max LG for any j < 2; or 
(2) for every x ∈ LG , max LG = x · i for some integer i ≥ 1; then, lcm(LG) = max LG . With this in mind, define B = lcm(LG)

if (1) holds and B = 2 · lcm(LG) if (2) holds. Now, let us define the strips Si (i ≥ 1) to be finite subpaths of P , such that for 
all edges e ∈ Si , e can first be traversed by the cop in some time step te ∈ [t + (i − 1)B, t + iB − 1]. Note that B ≥ 2 · max LG
and hence each Si must contain at least two edges. By convention, we call the leftmost and rightmost edges (vertices) of 
any Si its first and last edges (vertices), respectively. Note also that the last vertex of Si and the first vertex of Si+1 are one 
and the same, for all i ≥ 1.

Assume from now on that the cop moves right whenever possible. It is safe to do so since, otherwise, the cop may only 
be positioned at the same vertex or further left than when following this strategy. The strategy for the robber is as follows: 
pick rt to be the first vertex of S2 and move right (i.e., away from the cop) whenever possible.

We now demonstrate that the robber’s strategy is a winning one. Let T F
x (i) and T L

x (i) denote the first time step in 
which player x ∈ {c, r} is able to traverse the first/last edge of Si , respectively. Note that T F

c (i) ≥ t + (i − 1)B and that 
T L

r (i) ≤ t + (i − 1)B − 1. Combining the two gives that T L
r (i) < T F

c (i), which implies that the cop can never catch the robber 
in any time step in which the edge leading to both player’s right belongs to Si .

We next show that the robber cannot be caught when the edge leading to the cop’s right belongs to Si and the edge 
leading to the robber’s right belongs to Si+1. Let M = max LG and recall that T F

c (i) ≥ t + (i − 1)B . Since the strips Si are 
defined to consist of all edges crossed in the period [t + (i − 1)B, t + iB − 1], and since B ≥ 2M , it follows that at time 
T F

r (i + 1) ≤ t + (i − 1)B + M − 1, there is at least one more edge of Si that remains to be crossed by the cop. This gives that 
T L

c (i) > T F
r (i + 1) and yields the claim. Combining this with the earlier observation that T L

r (i) < T F
c (i), it follows that there 

exists a winning strategy for the robber starting from the first vertex of S2.
13
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Finally, recall that when lcm(LG) = max LG , we have that each Si consists of at most 2 · lcm(LG) edges, and otherwise it 
consists of at most lcm(LG) edges. Hence, there exists a winning strategy for the robber starting from some vertex rt ∈ P
with distance at most 2 · lcm(LG) or lcm(LG) from ct , depending on the condition satisfied by lcm(LG). The lemma follows 
by noticing that the above strategy also works when the robber is initially positioned at any vertex further to the right than 
the first vertex of S2. �
5.2. Directed edge-periodic cycles

In the following, assume that we are given a directed edge-periodic cycle G = (V , E, τ ), i.e., an edge-periodic graph 
whose underlying graph is a directed cycle.

Theorem 18. Let G = (V , E, τ ) be a directed edge-periodic cycle with n vertices. Then, G is robber-winning if n > lcm(LG) in case 
max LG < lcm(LG), and, if n > lcm(LG) + 1 in case max LG = lcm(LG). These bounds are best possible.

Note that the case max LG < lcm(LG) is only possible if k = lcm(LG) contains at least two distinct prime factors. There-
fore, the smallest k for which the case can arise is k = 6.

First, we observe that the case where lcm(LG) = 1 is trivial: All edge periods must be equal to 1 in this case, so every 
edge is present in every time step. Then, it is easy to see that the cycle is cop-winning if n ≤ 2 and robber-winning if n ≥ 3. 
This proves Theorem 18 for lcm(LG) = 1. Therefore, we only consider the case where lcm(LG) ≥ 2 in the following.

Theorem 18 then follows from the following four lemmas. The first two lemmas show that directed cycles are robber-
winning if n is large enough. First, we show that any edge-periodic cycle G with n > lcm(LG) + 1 is robber-winning. This 
result holds no matter whether max LG = lcm(LG) or max LG < lcm(LG). After this, in Lemma 21, we will show a slightly 
improved bound for the latter case.

Lemma 19. Let k ≥ 2 and let G = (V , E, τ ) be a directed edge-periodic cycle with lcm(LG) = k and n vertices. The directed edge-
periodic cycle G is robber-winning if n > k + 1.

Proof. Let k ≥ 2 and let G = (V , E, τ ) be a directed edge-periodic cycle with lcm(LG) = k and n > lcm(LG) + 1 vertices. We 
show that G is robber-winning. The robber should choose his starting vertex as the vertex directly behind the cop. Assume 
towards a contradiction that G is cop-winning. Then, there is some strategy for the cop, such that there is a latest time 
step t0, where the robber is on the vertex r0 directly behind the vertex c0 of the cop, that is, where (r0, c0) ∈ E . Hence, the 
cop traverses the unique outgoing edge from c0 in time step t0.

Next, we contradict the cop-winning strategy by using the following claim.

Claim 20. For each i ≥ 0, let ti := t0 + i · lcm(LG), and let ci denote the position of the cop at time step ti . Assume that, at time step ti , 
the position of the robber ri is equal to the position of the cop at time step ti−1 (i.e., ri = ci−1) if i > 0 or that (ri, ci) ∈ E if i = 0. Then 
the robber has a strategy to a) end his turn on vertex ci at the end of time step ti + lcm(LG) − 1 = ti+1 − 1 without getting caught by 
the cop or b) reach the vertex directly behind the cop at some time step between ti and ti+1 .

Proof. We show this statement via induction over i. If the cop does not traverse the outgoing edge from c0 at time step t0, b) 
is satisfied directly. Hence, assume in the following that the cop traverses the outgoing edge from c0 at time step t0.

Recall that n > lcm(LG) + 1. Hence, the cop cannot reach vertex r0 within the next lcm(LG) time steps since she has to 
traverse at least lcm(LG) + 1 edges. Moreover, since we assume that each edge label contains at least one 1 and the label 
of e := (r0, c0) has length at most lcm(LG), there is a time step j ∈ [0, lcm(LG) − 1] such that τ (e)[t0 + j]◦ = 1 and thus the 
robber can reach vertex c0 at the end of time step t0 + j and wait there until the beginning of time step t1, which fulfills a).

Next, we show the inductive step. Let i > 0. We show that, if the robber repeats the moves of the cop from lcm(LG) time 
steps earlier, the robber achieves a) or b). Let P = (x0, . . . , xdi ) denote the unique path from ci−1 = ri to ci , where x0 = ci−1
and xdi = ci . Let di denote the number of edges of P . Note that di equals the number of edges that the cop traversed in the 
preceding lcm(LG) time steps. Since n > lcm(LG) +1, for each j ∈ [0, di], the cop has to traverse at least lcm(LG) +2 −di + j
edges to reach vertex x j starting from time ti . Hence, for each j ∈ [0, di], the earliest time step in which the cop can reach 
vertex x j is time step ti + lcm(LG) − di + j. Since ri = ci−1 and the cop moved from ci−1 to ci between time step ti−1
and ti − 1, the robber can also traverse any edge e j = (x j−1, x j) in time step ti + � if the cop traversed the edge e j in 
time step ti−1 + � = ti + � − lcm(LG), for any j ∈ [1, di] and � ∈ [0, lcm(LG) − 1]. Since the cop was able to reach vertex ci
at the latest at time step ti − 1, the latest possible time step in which the cop traversed the edge (x j−1, x j) was time 
step ti−1 + lcm(LG) − di + j − 1 for each j ∈ [1, di]. Hence, for each j ∈ [1, di], the robber can reach vertex x j at the 
latest at time step ti + lcm(LG) − di + j − 1, while the earliest possible time step the cop can reach vertex x j−1 is time 
step ti + lcm(LG) − di + j − 1 + 1. Thus, with this strategy the robber can reach vertex ci and the cop cannot catch the 
robber in any time step between ti and ti+1 − 1 which fulfills a), except if the robber would run into the cop, that is, if the 
robber would traverse the edge (u, v), where the cop is currently at vertex v . In this case, the robber is directly behind the 
cop, which satisfies b). �
14
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Hence, the robber can reach the vertex behind the cop at time step t∗ > t0 or the robber can evade the cop indefinitely. 
In both cases, this contradicts the existence of the described winning strategy of the cop. Thus, G is robber-winning. �
Lemma 21. Let k ≥ 6 be a number with at least two distinct prime factors. Let G = (V , E, τ ) be a directed edge-periodic cycle with 
max LG < lcm(LG) = k and n vertices. If n > k, then the directed edge-periodic cycle G is robber-winning.

Proof. We describe a winning strategy for the robber. After the cop has placed herself, the robber chooses the vertex 
directly behind the cop’s starting vertex as his starting vertex. In all future time steps, the robber traverses the unique 
outgoing edge from his current vertex whenever the edge exists in that time step, unless this traversal would cause him to 
run into the cop. We show that this strategy is robber-wining.

We call a time step safe if the robber is located on the vertex directly behind the cop at the start of the time step. If, 
during a safe time step t , the cop and the robber both traverse their outgoing edge or both remain at their current vertex, 
then it is clear that time step t + 1 is also safe. A maximal period of consecutive safe time steps is called a safe period. It is 
clear that the cop cannot catch the robber during a safe period.

Now, consider the case that time step t is safe but time step t + 1 is not safe. This happens if the cop can traverse her 
outgoing edge in time step t , but the robber is forced to remain at his vertex because his outgoing edge is absent in time 
step t . In this case we say that a chase period starts in time step t . Note that time step t belongs both to the safe period 
ending at time step t and to the chase period starting at time step t . If there is a time step t′ > t that is safe, then the chase 
period ends at time step t′ − 1 and a new safe period begins at time step t′ .

If a chase period that starts at some time step t does not last forever, there are two possibilities how it could end:

(1) There is a smallest time step t′ > t at the start of which the robber is located at the vertex behind the cop. Then t′ is a 
safe time step, and a new safe period starts at time step t′ .

(2) The cop catches the robber: There is a time step t′ > t in which the cop traverses her outgoing edge and reaches the 
vertex on which the robber is located.

We claim that (2) cannot happen. Let t be the time step in which the chase period begins. Assume that the robber is 
located at vertex rt and the cop at vertex ct in time step t , with (rt , ct) ∈ E . Consider the directed infinite path Pt that is 
obtained by the unique infinite walk in G starting at ct . Intuitively, we unroll the directed cycle G infinitely many times, 
starting at vertex ct . Let c′

t denote the start vertex of Pt and r′
t the first occurrence of rt in Pt . Let Pt be the infinite 

edge-periodic path with underlying graph Pt , with edge labels inherited from G in the obvious way. Throughout the chase 
period, the moves by the cop and the robber in the directed cycle correspond to moves in the infinite edge-periodic path Pt , 
with the cop starting at c′

t and the robber at r′
t . Furthermore, by the definition of the robber strategy, the robber traverses 

his outgoing edge whenever possible throughout the chase period. If the cop were to catch the robber during the chase 
period in G , the cop would also catch the robber in Pt . There are n − 1 ≥ lcm(LG) = lcm(LPt ) edges between the cop’s 
vertex c′

t and the robber’s vertex r′
t at the beginning of time step t . Furthermore, as we have lcm(LG) > max LG , we also 

have lcm(LPt ) > max LPt . Hence, by Lemma 17, the cop cannot catch the robber in Pt . Thus, we have shown that (2) 
cannot happen. This means that the chase period either continues indefinitely without the cop catching the robber, or we 
eventually enter a safe time step t′ .

The argument above applies to any chase period. Hence, it follows that G is robber-winning. �
Lemma 22. For every k ≥ 2, there exists a cop-winning directed edge-periodic cycle G = (V , E, τ ) with max LG = lcm(LG) = k and 
n = lcm(LG) + 1 vertices.

Proof. Let k ≥ 2. We show that the cop has a winning strategy on the directed edge-periodic cycle G = (V , E, τ ) for which 
the underlying graph consists of the directed cycle (v0, . . . , vk), where the edge (vi−1, vi) is labeled with a constant 1 for 
each i ∈ [1, k] and the edge (vk, v0) is labeled with 0k−11. By construction, starting at vertex v0 at time step 0, the cop can 
traverse edge (vi, vi+1) in time step i for each i ∈ [0, k − 1], whereas the first time step in which the edge (vk, v0) can be 
traversed is time step k − 1. Since the cop always moves first in each time step, the cop thus needs at most k − 1 time steps 
to catch the robber. �
Lemma 23. Let k ≥ 6 be a number with at least two distinct prime factors. There exists a cop-winning directed edge-periodic cycle 
G = (V , E, τ ) with max LG < lcm(LG) = k and n = k vertices.

Proof. Let p0, . . . , pr−1 be the prime factorization of k, i.e., for each distinct prime p that divides k there is a unique i such 
that pi = pmp , where pmp is the largest power of p that divides k. For example, if k = 200, then we have r = 2, p0 = 23 = 8
and p1 = 52 = 25. Note that r ≤ k

2 . We set V := {v0, . . . , vk−1} and E := {ei := (vi, vi+1) | i ∈ [0, k −2]} ∪{ek−1 := (vk−1, v0)}. 
Moreover, for each i ∈ [0, k − 1], we set the label xi of the edge ei to be the string of length p(i mod r) containing a single 
1 at position i mod |xi |. Note that for each i ∈ [0, k − 1], xi[i]

◦ = 1. Hence, starting at vertex v0 at any time step t divisible 
by k = lcm(LG), the cop can traverse edge ei in time step t + i for each i ∈ [0, k − 1] and end back on vertex v0 at the 
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Fig. 4. Directed edge-periodic cycle for the case k = 3 · 5 in Lemma 23 with 3 · 5 = 15 vertices and lcm(LG) = 15 with a cop-winning strategy from the start 
vertex 0. For each edge e, its label τ (e) is shown with gray background.

end of time step t + k − 1. In other words, the cop has a strategy in which she can always immediately traverse the unique 
outgoing edge. To show that G is cop-winning, it thus remains to show that starting from any vertex v� distinct from v0 at 
any time step t divisible by k, the robber cannot traverse each edge of the graph in the next k time steps.

Let � ∈ [1, k − 1]. We consider the edge labels y0, . . . , yr−1 of r specific consecutive edges out of the total of k edges 
of the cycle that the robber has to traverse in order to arrive back at vertex v� . We choose the vertices y0, . . . , yr−1 by 
setting yi := xi for all i ∈ [0, r − 1] if � ≥ r and by setting yi := x�+i for all i ∈ [0, r − 1] otherwise. That is, if � ≥ r, we 
consider the edge labels of the unique path with r edges starting in v0 and if � < r, we consider the edge labels of the 
unique path with r edges starting in v� . Note that the set {|yi | | i ∈ [0, r − 1]} of lengths of these edge labels is exactly 
the set of prime factors {pi | i ∈ [0, r − 1]} of k, and each edge label yi contains exactly one 1. Hence, due to the Chinese 
Remainder Theorem and the fact that the length of any pair of distinct edge labels yi and y j are coprime, there is exactly 
one integer t′ ∈ [0, lcm(p0, . . . , pr) − 1] = [0, k − 1] such that for each i ∈ [0, r − 1], yi

[
t′ + i

]◦ = 1. By construction and the 
above argumentation, t′ is the time step in which the cop may traverse this edge by starting at vertex v0 at time step 0 and 
traversing one edge each time step. Consequently, the robber cannot traverse all edges assigned with the labels y0, . . . , yr−1
without waiting at least one time step at some endpoint of the respective edges. As a consequence, the cop has a strategy 
to always reduce the distance to the robber by at least one within k time steps. Hence, after at most k2 time steps, the cop 
can catch the robber, and thus G is cop-winning. Fig. 4 illustrates the construction for the example k = 3 · 5. �
5.3. Undirected edge-periodic cycles

In this section, assume that we are given an edge-periodic cycle G = (V , E, τ ). First, we give an upper bound on the 
length n of G that guarantees that G is robber-winning.

Theorem 24. Let G = (V , E, τ ) be an edge-periodic cycle on n vertices and LG = {|τ (e)| | e ∈ E}. Then, if n ≥ 2 · � · lcm(LG), G is 
robber-win, where � = 1 if lcm(LG) ≥ 2 · max LG , and � = 2 otherwise.

Proof. We let ct and rt denote the vertex at which the cop and the robber are positioned at the start of time step t , 
respectively. Consider now some edge e ∈ E(G) and classify its vertices as a ‘left’ and ‘right’ vertex arbitrarily; let the left 
vertex of each edge be the right vertex of the following edge in the cycle. Furthermore, we say that two vertices u, v ∈ V
are antipodal (in G) if their distance in the cycle (V , E) is maximum, i.e., equal to �n/2�. If n is even, every vertex has 
exactly one antipodal vertex; if n is odd, every vertex has two antipodal vertices. We proceed by specifying a strategy for 
the robber. Initially, let the cop choose c0; the robber chooses r0 to be a vertex antipodal to c0 in G . (If n is odd, the robber 
can select r0 to be either of the two vertices that are antipodal to c0.) We now distinguish between two modes of play, Hide
and Escape, and specify the robber’s strategy in each of them.

Hide mode: The first Hide period begins in time step 0, and a further Hide period begins in every time step t ≥ 2 such 
that ct and rt are antipodal, but ct−1 and rt−1 were not. As such, any game in which the robber follows our strategy begins 
in a Hide period. The Hide period beginning at time step t consists of the time steps in the interval [t, t + x] such that ct′
and rt′ are antipodal for each t′ ∈ [t, t + x] but ct+x+1 and rt+x+1 are not. Any Hide period is followed directly by an escape 
period, which will start in time step t + x + 1.

The robber’s Hide strategy: If the game is in a Hide period during time step t , the robber should observe the cop’s choice 
of ct+1, and always try to move to a vertex antipodal to it. We claim that the robber cannot be caught in any time step 
belonging to a Hide period. To see this, observe that regardless of whether lcm(LG) = max LG or lcm(LG) ≥ 2 · max LG , we 
have that n ≥ 4 · max LG ≥ 4. As a result, antipodal vertices in G are at least distance 2 apart from one another, and the 
claim follows.

Escape mode: An Escape period always begins in a time step t such that time step t − 1 was the last time step of some 
Hide period. As such, an Escape period consists of time steps in the interval [t, t + x] such that for each t′ ∈ [t, t + x] it holds 
that ct′ and rt′ are not antipodal but ct+x+1 and rt+x+1 are. The last time step of the Escape period is then t + x, and the 
first time step of the next Hide period is t + x + 1.

The robber’s Escape strategy: Assume that some Escape period starts in time step t . Then, at the start of time step t − 1, 
ct−1 and rt−1 were antipodal to one another, and during time step t − 1, we had a situation in which the cop was able to 
move towards the robber in some direction, but the edge incident to rt−1 leading in the same direction was not present. 
Now, recall that if � = 2, so that lcm(LG) = max LG , then n ≥ 4 · lcm(LG); and if � = 1 so that lcm(LG) ≥ 2 · max LG , then 
n ≥ 2 · lcm(LG). Therefore, since ct−1 and rt−1 are antipodal in G , if � = 2 holds we have that the distance between them 
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Fig. 5. Cycle with 4 · k − 1 vertices and lcm(LG) = k with a cop-winning strategy from the start vertex C. Edges not drawn (depicted by dots) are 1-edges; 
for all other edges, τ (e) is shown explicitly (with gray background). The clockwise [counterclockwise] distance of each vertex from the start vertex of the 
cop is given as a number preceded by ⟳ [by ⟲].

Table 1
Time steps with corresponding positions of cop and robber in the edge-periodic cycle 
depicted in Fig. 5. All positions are after moving in this time step. The time step s de-
notes the start configuration. Recall that the cop moves first, and that the binary strings 
are indexed starting from 0, so that the cop can cross edge {⟳ 2k − 1, ⟳ 2k} at time 
2k − 1. Icon: Flaticon.com.

time step pos. cop pos. robber

s 0 ⟳ 2k − 1
0 ⟳ 1 ⟳ 2k − 1
k − 1 ⟳ k ⟳ 2k
2k − 3 ⟳ 2k − 2 ⟳ 3k − 2
2k − 2 ⟳ 2k − 1 ⟳ 3k − 2
2k − 1 ⟳ 2k ⟳ 3k − 2
2k ⟳ 2k + 1 ⟳ 3k − 1
3k − 3 ⟳ 3k − 2 ⟳ 4k − 4
3k ⟳ 3k − 1 0
3k + 1 ⟳ 3k 0
4k − 1 ⟳ 4k − 2 0
4k 0

time step pos. cop pos. robber

s 0 ⟲ 2k − 1
k − 1 ⟲ k ⟲ 2k
k ⟲ k + 1 ⟲ 2k + 1
2k − 2 ⟲ 2k − 1 ⟲ 3k − 1
2k − 1 ⟲ 2k ⟲ 3k
3k − 3 ⟲ 3k − 2 ⟲ 4k − 2
3k ⟲ 3k + 1 0
4k − 3 ⟲ 4k − 2 ⟲ k − 3
4k 0 ⟲ k
5k − 1 ⟲ k − 1 ⟲ k
5k ⟲ k

is at least 2 · lcm(LG) and if � = 1 holds, the distance between them is at least lcm(LG). Observe now that we are able to 
view any edge-periodic cycle of finite length as an infinite path whose edge labels repeat infinitely often. Combining these 
two facts, it then follows from Lemma 17 that when the Escape period starts in time step t , there exists a strategy for the 
robber (which started in the previous time step from vertex rt−1) that will enable him to evade the cop until the Escape 
period ends.

Finally, since every time step t belongs to either a Hide period or an Escape period, we have shown that the cop can 
never catch the robber, and the proof is complete. �

Next, we show that the bounds of Theorem 24 are best possible. First, we note that max LG = 1 implies lcm(LG) = 1 and 
hence � = 2. Then every edge is a 1-edge, and it is easy to see that an edge-periodic cycle with n = 3 nodes is cop-winning, 
showing that 2 · � · lcm(LG) = 4 nodes are indeed necessary to guarantee that the cycle is robber-winning. For the case 
max LG = 2, it also follows that lcm(LG) = 2 and hence � = 2. If max LG ≥ 3, we can have � = 1 or � = 2. We now present 
infinite families of cop-winning edge-periodic cycles with n = 2 · � · lcm(LG) − 1 vertices for all values of max LG ≥ 2.

Theorem 25. For k = 2 and � = 2, and for every k ≥ 3 and � ∈ {1, 2}, there exists a cop-winning edge-periodic cycle G = (V , E, τ )

with max LG = k and n = 2 · � · lcm(LG) − 1 vertices, where lcm(LG) ≥ 2k if � = 1 and lcm(LG) = k otherwise.

In order to prove Theorem 25, we give families of edge-periodic cycles for � = 1 and � = 2 separately, beginning with 
� = 2, i.e., the case that lcm(LG) < 2 · max LG and hence lcm(LG) = max LG .

Lemma 26. For every k ≥ 2 there exists an edge-periodic cycle G = (V , E, τ ) with lcm(LG) = k = max LG , and n = 4k − 1 vertices 
that is cop-winning.

Proof. Consider the edge-periodic cycle Gk = (V , E, τ ) depicted in Fig. 5 with |V | = 4k −1. This graph admits a cop-winning 
strategy if the cop picks the highlighted vertex with index 0 as her start vertex. The vertices are indexed by numbers 
preceded with ⟳ indicating their clockwise distance to the start vertex of the cop, and with numbers preceded with ⟲
indicating their counterclockwise distance. Let the cop pick vertex 0. We consider the antipodal vertices ⟳ 2k − 1 and 
⟲ 2k − 1 as potential start vertices of the robber. We show that if the robber picks vertex ⟳ 2k − 1, then the cop has a 
winning strategy by continuously running clockwise, starting in time step zero, and if the robber picks vertex ⟲ 2k − 1, 
the same applies running counterclockwise. Note that these two positions represent extrema, and being able to catch the 
17
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Fig. 6. Cycle with 6 · k − 1 vertices and lcm(LG) = 3k with a cop-winning strategy from the start vertex 0 where k = 2m and m ≥ 2. Edges not drawn 
(depicted by dots) or edges without an explicit label are 1-edges; for all other edges, τ (e) is shown explicitly (with gray background).

robber at these vertices implies being able to catch him at all vertices in the graph. Table 1 shows the positions of the 
cop and robber for these strategies for k ≥ 4. For each time step, the positions after both players have moved are depicted; 
s is the start configuration. We abbreviate consecutive 1-edges and only depict the time steps and positions when one of 
the players reaches a non-trivial edge. For the cases of k = 2 and k = 3 the cop catches the robber earlier than depicted 
in Table 1, namely in time step t = 6 clockwise and t = 8 counterclockwise for k = 2 and in time step t = 6 clockwise and 
t = 9 counterclockwise for k = 3 if the robber chooses the corresponding antipodal start vertices.

Details on the cases k = 2 and k = 3, as well as a detailed illustration of the chase for k = 4, can be found in the 
appendix. �

For the case that � = 1, i.e., when lcm(LG) ≥ 2 · max LG , we slightly adapt the family of graphs depicted in Fig. 5. Note 
that for max LG = 2 there is no edge-periodic cycle G = (V , E, τ ) with lcm(LG) > max LG = 2.

Lemma 27. For every k ≥ 3 with k �= 2m for all m ∈N , there exists an edge-periodic cycle G = (V , E, τ ) with lcm(LG) = 2 ·max LG =
2 · k, and n = 2 · 2k − 1 vertices that is cop-winning.

Proof. Note that we have � = 1. We introduce an artificial edge label in the edge-periodic cycle in Fig. 5, such that lcm(LG)

is exactly 2k. This edge will not affect the run of the cop. Its purpose is to introduce a factor 2 in the number of vertices, 
compensating for the missing factor 2 due to � = 1. Therefore, note that the edge e1,2 connecting vertex ⟳ 1 and ⟳ 2
is taken by the cop only once, in the clockwise run in time step 1 and in the counterclockwise run in time step 4k − 3. 
Hence, the cop only crosses the edge in an odd time step. We can write k as k = 2i · j where j is an odd number with j > 1
since k �= 2m . Then, introducing a string τ (e1,2) = 012i+1−1 of length 2i+1 yields a least common multiple of lcm(LG) =
2i+1 · j = 2 · k. �

In the case of max LG = k = 2m for some m ∈N , it holds that for the smallest possible value of lcm(LG) with lcm(LG) >
max LG , we have lcm(LG) ≥ 3 · max LG . Hence, in these cases we need a separate family of graphs.

Lemma 28. For every k = 2m with m ≥ 2, there exists an edge-periodic cycle G = (V , E, τ ) with lcm(LG) = 3 · max LG = 3 · k, and 
n = 6 · k − 1 vertices that is cop-winning.

Proof. Consider the edge-periodic cycle Gk = (V , E, τ ) depicted in Fig. 6 with |V | = 6k −1. This graph admits a cop-winning 
strategy if the cop picks the vertex with index 0 as her start vertex. The vertices are indexed by numbers indicating their 
clockwise distance from the start vertex of the cop. Let the cop pick vertex 0. We show that if the robber picks vertex 
3k − 1, then the cop has a winning strategy by continuously running clockwise, starting in time step zero. Since for each j, 
starting from vertex 0, the label of the j-th edge clockwise is equal to the label of the j-th edge counterclockwise, the 
same applies running counterclockwise if the robber picks vertex 3k. Note that these two positions represent extrema, and 
being able to catch the robber at these vertices implies being able to catch him at all vertices in the graph. Suppose that 
the robber picks vertex 3k − 1. Since k = 2m for some m ≥ 2, 3

2 · k and 9
2 · k are divisible by 3. Hence for each j ∈ [0, 6k − 3], 

the cop can traverse the edge { j, j + 1} in time step j and, thus, reach the vertex 5k − 1 in time step 5k − 2. We show that, 
starting from vertex 3k − 1 and running clockwise, the robber cannot reach vertex 5k prior to time step 5k − 1. This then 
implies that the cop catches the robber after at most 5k − 2 time steps. Note that the first time the robber can traverse the 
edge {3k − 1, 3k} is at time step k − 1. Hence, the robber cannot reach the vertex 3k + 2 prior to time step k + 1. Since k
is not divisible by 3, the robber cannot traverse the edge {3k + 2, 3k + 3} in time step k + 2. Thus, the robber cannot reach 
the vertex 4k − 1 prior to time step 2k and, consequently, he cannot traverse the edge {4k − 1, 4k} prior to time step 3k − 1. 
Hence, the robber cannot reach the vertex 9

2 k − 1 prior to time step 7
2 k − 2. Since k is not divisible by 3, the robber cannot 

traverse the edge { 9
2 k − 1, 92 k} in time step 7

2 k − 1. Thus, the robber cannot reach the vertex 5k − 1 prior to time step 4k
and, consequently, he cannot traverse the edge {5k − 1, 5k} prior to time step 5k − 1. Hence, the statement holds.

We explicitly give the edge-periodic cycle for k = 4 as an example. The edge-periodic cycle is depicted in Fig. 7 and the 
chase is described in Table 2. �
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Fig. 7. Cycle with 23 = 6k − 1 vertices and lcm(LG) = 12 = 3k with a cop-winning strategy from the start vertex 0 where k = 4. Edges without an explicit 
label are 1-edges.

Table 2
Time steps with corresponding positions of cop and robber in the edge-periodic cycle 
depicted in Fig. 7. All positions are after moving in this time step. The time step s
denotes the start configuration. Recall that the cop moves first. Icon: Flaticon.com.

time step pos. cop pos. robber
s 0 11
0 1 11
1 2 11
2 3 11
3 4 12
4 5 13
5 6 14
6 7 14
7 8 14
8 9 15
9 10 15
10 11 15
11 12 16
12 13 17
13 14 17
14 15 18
15 16 19
16 17 19
17 18 19
18 19

time step pos. cop pos. robber
s 0 12
0 22 12
1 21 12
2 20 12
3 19 11
4 18 10
5 17 9
6 16 9
7 15 9
8 14 8
9 13 8
10 12 8
11 11 7
12 10 6
13 9 6
14 8 5
15 7 4
16 6 4
17 5 4
18 4

6. Discussion

While we have shown that the Periodic Cop & Robber problem is contained in PSPACE and NP-hard even for edge-
periodic cycles, an exact characterization of the complexity of the problem remains elusive. In particular, it would be very 
interesting to determine whether Periodic Cop & Robber is contained in NP. This question remains open even for the special 
case of (directed or undirected) edge-periodic cycles. On the one hand, our representation of edge-periodic graphs is quite 
compact: A natural representation of a cop-winning strategy might be of exponential length in the input size, since the 
periodicity of the whole graph is the least common multiple of the periodicities of all edges. This prevents the use of a 
simple guess & check approach to show membership in NP. On the other hand, the representation is still exponentially 
larger than the representation by on-line programs used in [22] where PSPACE-completeness for the reachability problem 
on a related but different class of periodic TVGs was obtained.

If we consider directed edge-periodic cycles, then determining whether the given cycle is cop-winning boils down to 
deterministically simulating the chase starting from a (guessed) cop vertex and time step, as the optimal strategies for the 
cop and robber are both to keep running whenever possible (without the robber bumping into the cop). For the robber, the 
optimal start vertex is directly behind the cop. Since lcm(LG) can be exponentially large in the size of G , the only known 
upper bound on the number of time steps in the simulation of the chase starting in some time step t is exponential in the 
size of G , while the chase itself does not present any complexity. The simulation could even be performed by a log-space 
Turing-Machine being equipped with a clock that allows for modulo queries of logarithmic size. To better understand the 
precise complexity of Periodic Cop & Robber on directed edge-periodic cycles, the theoretical analysis of potential families of 
cycles with shortest cop-winning strategies of exponential length would be of great interest and might indicate the necessity 
for a new complexity class consisting of simple simulation problems with exponential time duration.

Finally, it would also be interesting to find other classes of edge-periodic graphs that can be shown to be robber-winning 
if the number of vertices is larger than some constant factor times the global period. For example, edge-periodic cycles with 
a small number of chords could be studied from this perspective.

7. Rolf Niedermeier’s influence

Rolf Niedermeier was one of the leading researchers in the study of algorithms for temporal graphs. The work done 
by him and his group at TU Berlin, in particular with respect to the parameterized complexity of problems on temporal 
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Fig. A.8. Edge-periodic cycle for the case k = 2 in Lemma 26 with 4 ·k −1 = 7 vertices and lcm(LG) = 2 with a cop-winning strategy from the start vertex 0. 
Edges without edge label are 1-edges; for all other edges, τ (e) is shown explicitly (with gray background).

Table A.3
Time steps with corresponding positions of cop and robber in the edge-periodic cycle 
depicted in Fig. A.8. All positions are after moving in this time step. The time step s
denotes the start configuration. Recall that the cop moves first. Icon: Flaticon.com.

time step pos. cop pos. robber
s 0 3
0 1 3
1 2 4
2 3 5
3 4 6
4 5 0
5 6 0
6 0

time step pos. cop pos. robber
s 0 4
0 6 4
1 5 3
2 4 2
3 3 1
4 2 0
5 1 6
6 0 5
7 6 5
8 5

graphs, has inspired and influenced our work on this topic. Furthermore, Rolf also had direct or indirect personal impact 
on several of the authors. Thomas Erlebach first met Rolf at TU München in 1993/94, when Rolf was Klaus-Jörn Lange’s 
PhD student and co-supervised Thomas’s Master’s thesis. Rolf’s positive, friendly attitude and enthusiasm for research was 
inspiring. Over the years, Thomas also met Rolf numerous times at workshops and conferences, has visited him in Tübingen 
and Berlin, and considered him a good friend. Nils Morawietz’s PhD supervisor (Christian Komusiewicz) has himself been 
supervised by Rolf. Jakob T. Spooner had his first experience of a Dagstuhl seminar (albeit online due to Covid restrictions) 
when he attended the seminar on Temporal Graphs that was co-organized by Rolf in April 2021. Petra Wolf’s PhD supervisor 
(Henning Fernau) worked together with Rolf when Henning was a post-doc in Tübingen with Klaus-Jörn Lange, who had 
been Rolf’s PhD supervisor and Petra Wolf’s Master’s thesis supervisor.
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Appendix A. Details for small k in the proof of Lemma 26

In this appendix, we provide the details on the cases k = 2 and k = 3 of the construction presented in the proof of 
Lemma 26. We explicitly give the edge-periodic cycles for k = 2, k = 3, and k = 4. For k = 2 and k = 3 the chase of the cop 
will be shorter than described in Table 1 and for k ≥ 4 the chase will be exactly as described in general in Table 1. The 
edge-periodic cycle for k = 2 is depicted in Fig. A.8 and the chase is described in Table A.3. For k = 3 the edge-periodic 
cycle is depicted in Fig. A.9 and the chase is described in Table A.4. Finally, for k = 4, the edge-periodic cycle is depicted 
in Fig. A.10 and the explicit chase is described in Table A.5. Note that Table A.5 is identical to Table 1 if we set k = 4 in 
Table 1.
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Fig. A.9. Edge-periodic cycle for the case k = 3 in Lemma 26 with 4 · k − 1 = 11 vertices and lcm(LG) = 3 with a cop-winning strategy from the start 
vertex 0. Edges without edge label are 1-edges; for all other edges, τ (e) is shown explicitly (with gray background).

Table A.4
Time steps with corresponding positions of cop and robber in the edge-periodic cycle 
depicted in Fig. A.9. All positions are after moving in this time step. The time step s
denotes the start configuration. Recall that the cop moves first. Icon: Flaticon.com.

time step pos. cop pos. robber
s 0 5
0 1 5
1 2 5
2 3 6
3 4 7
4 5 7
5 6 7
6 7

time step pos. cop pos. robber
s 0 6
0 10 6
1 9 6
2 8 5
3 7 4
4 6 3
5 5 2
6 4 1
7 3 1
8 2 1
9 1

Fig. A.10. Edge-periodic cycle for the case k = 4 in Lemma 26 with 4 · k − 1 = 15 vertices and lcm(LG) = 4 with a cop-winning strategy from the start 
vertex 0. Edges without edge label are constant 1-edges; for all other edges, τ (e) is shown explicitly (with gray background).

Table A.5
Time steps with corresponding positions of cop and robber in the edge-periodic cycle 
depicted in Fig. A.10. Note that the positions of the cop and robber are as described 
in Table 1 for the general case of k ≥ 4. All positions are after moving in this time 
step. The time step s denotes the start configuration. Recall that the cop moves first. 
Icon: Flaticon.com.

time step pos. cop pos. robber
s 0 7
0 1 7
1 2 7
2 3 7
3 4 8
4 5 9
5 6 10
6 7 10
7 8 10
8 9 11
9 10 12
10 10 13
11 10 14
12 11 0
13 12 0
14 13 0
15 14 0
16 0

time step pos. cop pos. robber
s 0 8
0 14 8
1 13 8
2 12 8
3 11 7
4 10 6
5 9 5
6 8 4
7 7 3
8 6 2
9 5 1
10 4 1
11 3 1
12 2 0
13 1 14
14 1 13
15 1 12
16 0 11
17 14 11
18 13 11
19 12 11
20 11
21
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