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Abstract—Cameras are essential vision instruments to capture
images for pattern detection and measurement. Human-object
interaction (HOI) detection is one of the most popular pattern
detection approaches for captured human-centric visual scenes.
Recently, Transformer-based models have become the dominant
approach for HOI detection due to their advanced network
architectures and thus promising results. However, most of them
follow the one-stage design of vanilla Transformer, leaving rich
geometric priors under-exploited and leading to compromised
performance especially when occlusion occurs. Given that ge-
ometric features tend to outperform visual ones in occluded
scenarios and offer information that complements visual cues,
we propose a novel end-to-end Transformer-style HOI detection
model, i.e., geometric features enhanced HOI detector (GeoHOI).
One key part of the model is a new unified self-supervised
keypoint learning method named UniPointNet that bridges the
gap of consistent keypoint representation across diverse object
categories, including humans. GeoHOI effectively upgrades a
Transformer-based HOI detector benefiting from the keypoints
similarities measuring the likelihood of human-object interac-
tions as well as local keypoint patches to enhance interaction
query representation, so as to boost HOI predictions. Extensive
experiments show that the proposed method outperforms the
state-of-the-art models on V-COCO and achieves competitive per-
formance on HICO-DET. Case study results on the post-disaster
rescue with vision-based instruments showcase the applicability
of the proposed GeoHOI in real-world applications.

Index Terms—Human-object Interaction, Object Keypoints,
Interactiveness Learning, Graph Convolutional Network, Atten-
tion Mechanism.

I. INTRODUCTION

Cameras, as predominant vision instruments, are extensively
employed in methods that rely on visual measurements [1],
such as human and object pose estimation [2], [3], [4].
Human-object interaction (HOI) detection is one of the most
popular pattern detection approaches for captured human-
centric visual scenes. It involves identifying and localizing
interactive human-object pairs while predicting the specific
interactions between them within an image, yielding HOI
triplets ⟨human, interaction, object⟩. It plays an important
role in numerous applications, such as action recognition [5]
and surveillance event detection [6], [7].
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The existing HOI detection methods generally fall into two-
stage or end-to-end approaches. Two-stage approaches [8], [9],
[10] typically take advantage of off-the-shelf object detectors
like Fast R-CNN [11]. They first detect all instances (i.e.,
humans and objects) in an image, and then the interaction
classification is carried out on every human-object pair. These
methods may lead to sub-optimal HOI detections due to the
independent optimization of two sub-problems [12], i.e., object
detection and interaction classification. In contrast, end-to-end
approaches detect the components of an HOI triplet all at once
[13]. In the earlier end-to-end attempts [14], [15], interaction
points and object proposals are detected simultaneously. The
interactions are then associated with each human-object pair.
However, in still images of complex scenes, such as crowded
areas with interaction points overlapping among different
human-object pairs, these methods could lead to inaccuracies
and misinterpretations [16], [13].

End-to-end Transformer-based models [17], [12], [16] have
been proposed to overcome these limitations, achieving state-
of-the-art performance. Inspired by the Transformer object
detector DETR [18], these approaches frame the HOI detection
as a set prediction problem, using a bipartite matching loss
to align interaction queries with ground-truth HOI triplets.
While successful, rich prior knowledge (e.g., the semantic
features and structure information) is under-exploited due to
the random initialization of parametric interaction queries. To
address this limitation, [13], [19], [20] explored semantics,
spatial features, and structure information. Nevertheless, the
spatial features including instance bounding boxes and human-
object layout employed in these works are too coarse to
capture fine-grained relationships between human body parts
and object parts. The fine-grained geometric features, such as
human pose and object structure have proven to be highly
effective in two-stage methods [8], [10], [21]. However, they
remain under-explored in existing Transformers due to their
one-stage paradigm of HOI detection. In this work, we in-
vestigate how to enrich HOI representations with fine-grained
geometric features in an end-to-end Transformer framework.

To this end, we propose a Geometric features enhanced
Human-Object Interaction detection model (GeoHOI). Given
that geometric features tend to outperform visual features on
datasets with heavy occlusion [22] and offer information that
complements visual cues, our idea is to learn fine-grained geo-
metric features (i.e., keypoints) to facilitate interactiveness pre-
diction of human-object pairs and to enhance interaction query
representation. In detail, GeoHOI improves the Transformer-
based framework of STIP [19] by introducing three novel
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components. First, a keypoints detection module unifies the
keypoint detection across different object categories, including
humans, and is integrated into GeoHOI for end-to-end HOI
detection. It simplifies the appearance distribution of different
object classes by reconstructing object segmentation masks
instead of their RGB images, allowing the network to focus
on learning different shapes and enabling it to learn keypoints
for arbitrary objects. As a result, it generates consistent and
robust keypoint representation across different object cate-
gories. Second, a keypoint-aware interactiveness prediction
module employs a graph convolutional network, capturing the
holistic cues (i.e., cross-instance features) between humans
and objects that complement pairwise features to effectively
predict the interactiveness of human-object pairs. Third, a part
attention module intends to identify informative local cues
since specific interaction types are defined with detailed local
information of human and object parts. This enhances the rep-
resentation of interaction queries in the HOI Transformer for
effectively classifying specific interactions. Thus, we exploit a
self-attention mechanism to produce part-level attention, with
keypoint positions serving as positional encodings. This allows
the HOI classifier to focus on specific local regions that are
informative to each interaction type.

We evaluate our model on two HOI benchmarks V-COCO
[23] and HICO-DET [24]. The proposed GeoHOI achieves
superior results on both datasets. Source codes are available at
https://github.com/zhumanli/GeoHOI. Our contributions are:

• We introduce GeoHOI, a geometric features enhanced
human-object interaction detection approach, facilitating
pattern detection and measurement in images captured by
vision instruments.

• We present a self-supervised keypoints learning method
(UniPointNet) to detect keypoints for different object
categories including humans in a unified manner. To the
best of our knowledge, this is the first attempt that unifies
keypoints detection across different object classes in HOI.

• We design a keypoint-aware interactiveness prediction
module that incorporates holistic relationships between
humans and objects. The geometric keypoint features
are exploited to measure the likelihood of human-object
interactions, boosting the interactiveness prediction of
human-object pairs.

• We propose a part attention module that refines interac-
tion query representation using self-attention, enhancing
specific interaction prediction by identifying informative
human and object parts.

• We demonstrate the effectiveness of our proposed Geo-
HOI by conducting experiments in public HOI detection
benchmark datasets, outperforming state-of-the-art meth-
ods by a large margin of 3.4 mAP on V-COCO and 3.76
mAP on HICO-DET. We further conduct a real-world
application case of post-disaster with UAVs, and GeoHOI
outperforms all the baselines in terms of AP and recall.

II. RELATED WORK

A. Two-stage Methods
1) Multi-stream Approaches: Early HOI detection models

are typically implemented with a two-stage framework. In the

first stage, an object detector such as Fast R-CNN [11] is used
to localize instances. In the second stage, a classifier is trained
to predict human-object interactions. Two-stage methods use
pre-trained object detectors to simplify HOI detection, achiev-
ing a good trade-off between performance and complexity
[10]. Earlier works focus on designing multi-branch HOI clas-
sifiers with convolutional neural networks modelling human
and object appearance features and spatial layout. Gkioxari et
al. [25] extended Fast R-CNN by introducing a human-centric
branch to predict interactions at each target object location.
Chao et al. [24] proposed a three-branch framework to model
pairwise human-object appearance features and their spatial
relations. Hou et al. [26] presented a five-branch framework
with a novel fabricated compositional branch targeting the
issue of long-tailed distributions of HOI interactions. These
methods mainly focus on exploring the pairwise human and
object features, overlooking the holistic features that could
complement the pairwise ones.

Some works have exploited graph convolutional networks
(GCNs) to model the relationships between humans and
objects from a global perspective. Qi et al. [27] proposed
a fully connected graph with humans and objects as nodes,
and the adjacency matrix was inferred by their proposed link
function. Ulutan et al. [9] introduced a visual-spatial-graph
network to model structural connections between instances.
Similar to Qi et al., they model humans and objects as nodes.
Instead of a fully connected graph, they only build connections
between inter-class instances, omitting unnecessary human-
human and object-object pairs. Their adjacency matrix is
predicted by the visual branch. Zhang et al. [28] presented a
spatially conditioned graph with a multi-branch fusion module
computing the adjacency structure and refining graph features.
GCN-based HOI methods have shown that the modelling of
intra-level and inter-level HOI representations can significantly
improve HOI detection performance [29]. The reason is that
GCNs not only capture pairwise features but also infer holistic
cross-instance cues, which are useful for HOI reasoning. We
leverage its advantage by fusing both pairwise features and
cross-instance cues to enhance HOI prediction.

2) Geometric Features Informed Approaches: Geometric
features such as human pose and object structure provide
fine-grained spatial information and have been proved to be
effective in improving HOI detection performance in two-stage
methods. Fang et al. [30] and Wan et al. [8] explored the
semantic cues of human body parts with an attention module
that effectively identifies the most informative body parts for
HOI recognition. Wu et al. [21] proposed to extract cross-
person cues for body parts, which afford useful and supple-
mentary information for the discovery of interactiveness. Park
et al. [31] designed a graph with a pose-conditioned self-loop
structure, allowing the human node embedding to be updated
based on the local features of human joints. As discussed,
the human pose has been well-studied in HOI detection,
while the geometric features of objects such as keypoint
positions are less explored. To overcome this, Zheng et al.
[32] proposed to model the interactions between human joints
and object keypoints using a graph network for capturing fine-
grained spatial relationships in HOI detection. Nevertheless,
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the representation of object keypoints in their work (i.e., two
corner points of the object bounding box) is too simple to
capture object shapes or structures as it considers only the
rectangular spatial scope of an object.

Efforts have been made to improve the representation of
object structure in HOI detection. Zhu et al. [10] proposed a
deterministic method for representing object keypoints which
encapsulate the underlying structure of an object. They ex-
tracted an object skeleton from its segmentation mask using
a morphological skeletonization algorithm and obtained its
keypoints by applying the K-means clustering to the set of key
points on the skeleton. This kind of non-probabilistic method is
less robust in handling various object shapes, particularly when
dealing with non-articulated objects, making it difficult to
accurately detect keypoints across different objects. Bar et al.
[33] exploited transfer learning to estimate animal keypoints
with a pre-trained object keypoints detector and adopted the
interest point detection in geometry with bin girding to obtain
keypoints for artefacts such as beds and computers. Ito [34]
proposed a human and object keypoint-based extension mod-
ule to improve conventional HOI detection models such as [9].
However, the different representations of human and object
keypoints presented in these frameworks are less consistent
and difficult to maintain across different objects, making them
less applicable to real-world applications. In this work, we
explore a self-supervised framework for learning keypoints of
both humans and objects, which is a more versatile and robust
approach for keypoint estimation.

B. End-to-end Transformer-based Methods

Transformers have shown superior performance in many
fields including HOI detection due to their advanced network
architecture and high capacity. They are first adopted in [17],
[12], [16] by utilizing the vanilla Transformer architecture [18]
to map the parametric interaction queries into a set of HOI
predictions with a bipartite matching loss. Later, Kim et al.
[35] introduced a multi-scale Transformer architecture to boost
HOI detection. Recently, a multiplex relation network that
disentangled Transformer decoders to encourage rich context
exchange was proposed in [36]. Unlike two-stage methods
that optimize instance detection and interaction detection in
separate stages, these end-to-end frameworks infer human-
object relationships from a global contextual perspective. They
predict all elements of HOI triplets directly, significantly
surpassing the performance of existing two-stage approaches.
Nevertheless, the rich prior knowledge, such as spatial features
[9], are not exploited in the above Transformer-based attempts.

Some studies have attempted to inject prior knowledge
into Transformer architectures, to address the aforementioned
limitation. Iftekhar et al. [13] proposed to utilize the seman-
tic features (i.e., text embeddings) and the spatial features
(i.e., the relative spatial configuration of human and object
bounding box locations) to enhance the query representations
of decoders. Zhang et al. [19] exploited the inter-interaction
semantic structure and intra-interaction spatial structure over
interaction proposals (i.e., human-object pairs) to strengthen
HOI predictions. Xie et al. [20] proposed a novel category

query learning approach where interaction queries are ex-
plicitly associated with specific and fixed image categories,
facilitating HOI detection. We observe that spatial features,
such as instance bounding boxes and human-object layout
used in these works are too coarse to capture fine-grained
relationships between human body parts and object parts,
which have been demonstrated to be beneficial in existing two-
stage HOI models [10], [33], [34]. In this paper, we leverage
the geometric keypoint features to facilitate HOI classification
in an end-to-end Transformer-based framework.
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Fig. 1. Simple illustration of STIP. The solid bi-directional arrow means
whether or not two HOI triplets share the same human or object, and the
dashed bi-directional arrow denotes they do not share anything. (a) Given an
input image, DETR is used to detect humans and objects. (b) By constructing
all possible human-object pairs, the interaction proposal network uses pairwise
features to filter non-interactive ones. (c) Next, an interaction-centric graph
is built to inject rich inter-interaction semantic structure and intra-interaction
spatial structure. (d) Finally, a structure-aware Transformer is utilized to output
a set of HOI predictions.

III. OVERVIEW OF GEOHOI

This work aims to improve end-to-end Transformer-based
HOI detection networks with fine-grained geometric features
of humans and objects. To this end, we propose GeoHOI. It uti-
lizes learnable fine-grained geometric features (i.e., keypoint
positions) to facilitate the interactiveness prediction of human-
object pairs and to enhance interaction query representations.
Inspired by the process of HOI detection with prior knowledge,
we improve the structure-aware Transformer over interaction
proposals (STIP [19]) by using keypoint features. As shown
in Fig. 1, STIP is an improved network over the vanilla
Transformer with prior knowledge of inter-interaction (i.e.,
whether or not two HOI triplets share the same human or
object) and intra-interaction (i.e., the layout of human and
object) structure. It becomes a natural backbone of GeoHOI
due to its decompose-style design of HOI predictions, i.e., in-
teraction proposals are first generated, followed by interaction
classification. Such design allows us to explore rich geometric
features for effective interaction proposal generation and non-
parametric interaction query representation.

Specifically, our framework introduces three novel com-
ponents to STIP, i.e., keypoints detection with our novel
UniPointNet, keypoint-aware interactiveness prediction mod-
ule for predicting interactive human-object pairs, and part
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Fig. 2. An overview of our GeoHOI framework, in which denotes the concatenation operation. (a) Given an image, we adopt the off-the-shelf Panoptic DETR
[18] to detect the human and object instances within this image, generating their bounding boxes and segmentation masks. Based on the masks, we use our
proposed UniPointNet to detect keypoints for all instances. (b) With the detected instances, the keypoint-aware interactiveness prediction module enumerates
all possible human-object pairs. It then generates interactive ones with the highest interactiveness scores using coarse instance-level features, including pairwise
and holistic graph features. (c) By taking all the interactive human-object pairs, we enhance their representations with human and object local patches, which
are attended by self-attention. This encourages each interaction query to focus on informative human and object parts. The final concatenated representations
serve as interaction queries which are then fed into the structure-aware Transformer [19] to output a set of HOI predictions.

attention module to enhance interaction query representation
with informative human and object local parts. We start
with GeoHOI architecture (Section III-A), then introduce
the keypoint-aware interactiveness prediction module (III-B)
and the part attention module (III-C). Section IV details the
keypoints detection network (UniPointNet).

A. Architecture of GeoHOI

An overview of GeoHOI is shown in Fig. 2. Given an input
image x ∈ RH×W×C , where H , W , and C represent the
image height, width and channels, accordingly, GeoHOI first
extracts the image feature map Fx ∈ RH′×W ′×d with a CNN
backbone of ResNet. Fx is then sent to Panoptic DETR [18]
to obtain instance detections including bounding boxes and
segmentation masks. Next, the segmentation masks are fed
into UniPointNet to obtain keypoints for each instance. After
that, the keypoint-aware interactiveness prediction module
constructs pairwise and holistic graph features for instance-
level feature presentation. It then predicts and outputs inter-
active pairs, enhanced by local cues from keypoints in the
part attention module. Finally, the structure-aware Transformer
generates HOI predictions. Details are introduced in the fol-
lowing sections.

B. Keypoint-aware Interactiveness Prediction Module

The Keypoint-aware Interactiveness Prediction (KIP) mod-
ule aims to suppress non-interactive human-object pairs using
coarse instance-level features. It transforms the random para-
metric interaction queries in the vanilla Transformer to non-

parametric interaction proposals equipped with prior knowl-
edge (e.g., instance visual features and their spatial layout),
facilitating relational reasoning among interactions in HOI set
prediction [19]. When learning the interactiveness of a human-
object pair, visual cues can be explored not only from the
targeted human and object but also from other humans and
objects in the scene [21], providing a more comprehensive
understanding of the scene. However, previous works such as
[37], [19] only consider target pairwise features, failing to
effectively extract interactive pairs. As a potential solution,
mining cues from a global cross-instance perspective, i.e.,
using other humans and objects as a reference, would offer
helpful and supplementary information for interactiveness in-
ference. Therefore, in addition to pairwise features, we incor-
porate graph features using keypoint positions measuring the
geometric distance with a graph convolutional network from
a global perspective, extracting cross-instance cues. We first
enumerate all human-object pairs using the detected instances
by Panoptic DETR, and the KIP then estimates the likelihood
of interaction for each pair based on both pairwise features
and holistic graph features through a multi-layer perceptron
(MLP). Finally, the KIP module outputs the top-K human-
object pairs with the highest probability scores.

Concretely, for each human-object pair, the human visual
feature fv

h, object visual feature fv
o , spatial feature fu

s , union
feature fv

u are represented as 256-dimensional vectors, while
the object’s semantic feature f c

o (the embedding of the object
class label) is a 300-dimensional vector. We refer to these
as pairwise features. For the graph representation, we model
humans and objects as nodes, connecting each human to all
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Fig. 3. Illustration of the graph convolution layer, in which ⊗ represents
the tensor product, and ⊕ is the residual connection. The output graph
features encode relationships between all humans and objects from a global
perspective, with keypoint similarity measuring their connectivity.

objects and each object to all humans. As shown in Fig. 3,
the node features are represented with visual features fv

h, fv
o .

We use the similarities between human keypoints and object
keypoints to define the adjacency matrix A. This highlights
that closer keypoints between a human and an object indicate a
higher likelihood of interaction. Unlike the implicit adjacency
matrix representation (i.e., it is predicted from instance visual
features) in [9], the keypoints similarity explicitly captures
the geometric distance prior knowledge between a human and
an object, resulting in effective interactiveness prediction. As
depicted in Fig. 3, given the keypoint features fp

h ∈ RN×2

of a human and fp
o ∈ RN×2 of an object, they are first

embedded by a linear layer with 128-dimensional vectors and
the similarity between them is served as their edge weight
Aho ∈ A, which is expressed as follows:

Aho = ϕ(fp
h)⊗ ϕ(fp

o), (1)

where ϕ is implemented with a linear layer to encode keypoint
positions, ⊗ denotes the dot product. Note that the edge weight
between a human and an object is symmetric, i.e., Aho = Aoh.
The graph features fg

h and fg
o are then defined as follows:

fg
h = fv

h +
Ô∑

o=1

Ahof
v
o→h, (2)

fg
o = fv

o +

Ĥ∑
h=1

Aohf
v
h→o, (3)

where Ô and Ĥ are the numbers of humans and objects, fv
o→h

is the projection of object visual feature fv
o in the human

space, and fv
h→o is the projection of human visual feature fv

h

in the object space.
Finally, the instance-level features for interactiveness pre-

diction of each human-object pair in this module are obtained
as the concatenation of all the features as follows:

fho = fv
h fv

o fg
h fg

o fs
u f c

o fv
u. (4)

C. Part Attention Module

While the instance-level features provide coarse information
for interactions, specific interaction types are defined with fine-
grained details. They highlight local information on human

and object parts that are unlikely to be captured in instance-
level features [8]. In addition, the fine-grained correlations
among human body parts and object parts (e.g., the spatial
layout between the human hands and the laptop keyboard
shown in Fig. 2) implicitly depict the consistent spatial, scale,
and co-occurrence relationships between humans and objects,
providing a finer granularity context information of an image
[33]. However, existing works [38], [21] only consider human
body parts while overlooking object structure parts.

To address the aforementioned limitation, we introduce a
Part Attention Module (PAM) designed to identify the most
relevant parts of both humans and objects for detecting a
specific interaction category. We use self-attention to learn the
part-level features of a given human-object pair, enabling each
part to aggregate information from all other parts, regardless of
their distance or position. This allows the network to extract
richer and more comprehensive context features, leading to
a deeper understanding of the scene. This module serves to
enhance the interaction query representation of each selected
interactive human-object pair, improving the effectiveness of
classifying particular interactions.

In detail, given the human keypoints fp
h =

{
fp1
h . . . ,fpN

h

}
,

we define a local region xpi ∈ R4 for each keypoint ph
i , it

is centered at ph
i and has a size γ proportional to the size

of the human bounding box. We adopt RoI-Align [39] to
generate local patch features and rescale them to a resolution
of Rp×Rp. We apply the same operations to object keypoints
fp
o =

{
fp1
o . . . ,fpN

o

}
to generate their local patch features as

well. For the sake of simplicity, we denote the extracted patch
features of humans and objects as fp′

=
{
fp′1 . . . ,fp′2N

}
.

In addition, we embed each keypoint as positional encodings to
its corresponding patch. By doing this, the model can capture
more detailed spatial relationships and configurations within
each human-object pair. It also ensures a richer representation
of the data, allowing the model to make more context-aware
predictions of specific interaction types.

We then represent patch features of each human-object
pair, integrated with their corresponding positional encodings,
as a sequence of queries q̂ = (q̂1, . . . , q̂2N ), keys k̂ =(
k̂1, . . . , k̂2N

)
, and values v̂ = (v̂1, . . . , v̂2N ). Following

the self-attention mechanism [40], each patch is computed by
aggregating all values weighted with attention, and an attended
patch feature is represented as follows:

f p̂
i =

∑
j

αij (W v̂v̂j) , (5)

where each αij =
exp(eij)∑
j exp(eij)

is the normalized attention
weight with softmax. Here the primary attention weight eij
is the scaled dot-product between each key k̂ and query q̂:

eij =
(W q̂q̂i)

T
(
W k̂k̂j

)
√
dkey

, (6)

note that W q̂ , W k̂, W v̂ are learnable embedding matrices,
and dkey is the embedding dimension of keys.
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Fig. 4. Overview of the self-supervised keypoints learning framework (UniPointNet). Given an object segmentation, we detect the keypoints with learnable
graph edge weights by reconstructing its binary mask. The edge weights are represented by a color matrix and are shared across segmentation masks within
clusters of similar shapes and structures. The masked segmentation binary map provides minimal appearance information, forcing the network to focus on
learning keypoints that are important for representing the structure and shape of an object.

The attended local part feature for a human-object pair is
calculated by concatenating all patches:

f p̂ = f p̂
1 f p̂

2 . . . f p̂
2N . (7)

Finally, each interaction query q ∈ Q is represented by
the fusion of instance-level interactiveness features and the
attended part features:

q = fho f p̂. (8)

They are fed into the structure-aware Transformer [19] for
HOI classification.

D. Training and Inference

We follow the training and inference procedure of the STIP
[19]. The KIP module is optimized with focal loss (FL) [41]:

Linteractiveness =
1∑N̂

i=1 zi

N̂∑
i=1

FL (ẑi, zi) , (9)

where N̂ is the number of sampled human-object pairs, zi ∈
{0, 1} denotes the existence of ground-truth interaction, and
ẑi is the predicted interactiveness score. For each of the output
human-object pair of KIP, the focal loss is also used as the
multi-label classification loss to train the possible interactions:

Lclass =
1∑N̂

i=1

∑Ĉ
j=1 yij

N̂∑
i=1

Ĉ∑
j=1

FL (ŷij , yij) , (10)

where Ĉ is the number of interaction classes, yij ∈ {0, 1}
indicates the ground-truth interaction class, and ŷij is the pre-
dicted probability of j-th interaction class. The overall training
objective of our GeoHOI integrates the above interactiveness
loss and the interaction classification loss:

LGeoHOI = Linteractiveness + Lclass. (11)

IV. SELF-SUPERVISED OBJECT KEYPOINT DETECTION

As a core of our model, we propose leveraging keypoints as
fine-grained geometric features of both humans and objects,
to facilitate HOI prediction, but it is essential to detect these
keypoints before utilizing them. Existing keypoints detection
models typically focus on a single object class (e.g., human

pose estimation [42]) rather than common objects. The dif-
ficulties lie in the complexity of distinct spatial structures
and appearance distributions exhibited by various objects and
the limited annotation availability. In addition, there is very
limited work in detecting keypoints across different objects in
HOI [10] due to a large number of object categories (e.g., 80
common object categories in MS-COCO [43]) and occlusions.

To address this challenge, we propose UniPointNet which
can detect keypoints for arbitrary objects. We employ the self-
supervised keypoints learning framework of AutoLink [44].
While AutoLink was proposed to learn keypoints for single
object classes, our goal is to detect keypoints across all classes
present in the HOI task. To this end, we make two key changes
to AutoLink. First, we feed object segmentation masks into the
network instead of RGB images. This eliminates the appear-
ance variations across different object classes, simplifying their
appearance distribution. As a result, the network can focus on
learning object shapes and structures. Second, instead of using
an individual edge graph with shared graph weight to align all
samples, we opt for a set of edge graphs with different graph
weights, aligning samples within their respective clusters. This
design accommodates object masks with significant variations,
thus allowing the network to detect keypoints across a diverse
range of object categories.

Using such a network to detect keypoints for humans and
all the other object classes is advantageous. First, it unifies
keypoints detection for different object classes within a single
network, which is more applicable in real-world applications
in which diverse object types are often involved. Second,
it ensures the consistency of keypoints distribution across
different object categories including humans, resulting in a
unified and consistent keypoints representation that facilitates
network learning. Third, unlike the common keypoints rep-
resentation in occluded cases (e.g., zeros for occluded or
invisible joints of a human), all the detected keypoints in our
UniPointNet contribute to the representation of an object’s
shape. This guarantees a more robust keypoints representation
when objects are partially visible.

A. Architecture of UniPointNet

An overview of UniPointNet is shown in Fig. 4. Given an
object segmentation binary map B ∈ RH×W×1 with a height
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of H and a width of W , our goal is to learn a set of keypoints
κ =

{
ki|i = 1, 2, 3, . . . , N ;ki ∈ [0, 1]× [0, 1] ⊂ R2

}
, where

N is the number of keypoints. As per [44], keypoints are
detected by the encoder with ResNet and upsampling, and
each pair of keypoints is connected with a differentiable edge
[45]. This kind of graph connectivity defines a unique structure
of a group of objects with similar shapes that share the same
cluster label, learned in a self-supervised manner. The edge
map E ∈ RH×W is concatenated with the masked binary map
Bm ∈ RH×W×1 along the channel dimension, and fed into
the decoder to obtain the reconstructed segmentation binary
map B′. Detailed encoder and decoder network architectures
can be referred to [44].

B. Segmentation Structure Representation
Here, we introduce keypoints representation and the edge

map generation. H =
{
hi|i = 1, 2, 3, . . . , N ;hi ∈ RH×W

}
is the N heatmaps generated by the Encoder from the input
mask. The keypoint ki is obtained by the differentiable soft-
argmax function,

ki =
∑
p

ψ(hi)p, (12)

where ψ(hi) is the Softmax operation on a single heatmap
hi, defined as,

ψ(hi) =
exp(hi(p))

N∑
j=1

exp(hj(p))

, (13)

where p is normalized pixel coordinates.
According to [44], a differentiable edge map Eij is gener-

ated for any two keypoints ki and kj , by assigning a value
of 1 to pixels on the edge connecting the keypoints. For
other pixels, their values decrease exponentially based on their
distance to the line. The edge map Eij is a Gaussian that
extends along the line [45], and it is formally expressed as,

Eij(p) = exp
(
d2ij(p)/σ

2
)
, (14)

where the hyperparameter σ controls the thickness of the line,
and d2ij(p) is the L2 distance between the pixel p and the
line from keypoints ki and kj . According to the location of
the pixel p, i.e., before the starting keypoint ki, between the
starting keypoint ki and the ending keypoint kj , or after the
ending keypoint kj , it is defined as,

dij(p) =

 ∥p− ki∥2 if t ≤ 0,
∥p− (ki + tkj)∥2 if 0 < t < 1,
∥p− kj∥2 if t ≥ 1,

where t =
(p− ki) · (kj − ki)

∥ki − kj∥22
.

(15)

The final edge map E ∈ RH×W is obtained by taking the
maximum at each pixel of all the heatmaps,

E(p) = max
ij

wijEij(p), (16)

where wij is a learnable edge weight. As explained in [44],
opting for the maximum value at each pixel helps untangle
the edge weights from the convolution kernel weights and
generates better performance.

C. Segmentation Reconstruction

The masked segmentation Bm is obtained by randomly
masking out 90% of the input segmentation. It is then con-
catenated with the edge map and is fed into the decoder to
reconstruct the original segmentation,

B′ = Decoder(αBm E), (17)

where denotes concatenation along the channel dimension
and the parameter α is a learnable factor that adjusts for
the variation in edge weight magnitude during training and
is initialized to 1. The L1 loss and VGG perceptual loss
[46] are used to minimize the difference between the original
segmentation and the reconstructed one,

L =
1

M

M∑
i=1

(|Bi −B′
i|+ ∥Γ (Bi)− Γ (B′

i)∥
2
2), (18)

where M represents the total number of examples, and Γ
indicates the feature extractor, i.e., the VGG network.

V. EXPERIMENTS

In this section, we introduce HOI benchmark datasets V-
COCO [23] and HICO-DET [24], followed by experimental
settings and implementation details. We then evaluate our
proposed model against state-of-the-art approaches and pro-
vide insights on per-class performance by comparing it with
the backbone STIP. Finally, we present ablation studies on
the selection of the number of keypoints and the impact of
individual component designs of our model.

A. Datasets

V-COCO is a popular HOI detection dataset and is a subset
of MS-COCO [43] including 29 different action classes. It
consists of 10,346 images, with 2533 images for training, 2867
images for validating, and 4946 images for testing. Following
the settings in previous works [17], [19], [10], we apply the
Average Precision (AProle) metric over 24 interactions for
the evaluation. Five actions are omitted as one of them has
limited samples and the other four have no object associated
with humans. Two types of AProle (i.e., AP#1

role and AP#2
role)

are reported under different scenarios with different scoring
criteria for cases where objects are occluded. Concretely, in
the scenario of AP#1

role, the occluded object bounding box must
be predicted as empty, i.e., [0, 0, 0, 0]. In contrast, in scenario
AP#2

role, the occluded object is ignored. A human-object pair is
considered a true positive if the predicted bounding boxes for
both the human and the object have an Interaction-over-Union
(IoU) ratio greater than 0.5 with their corresponding ground-
truth annotation and the interaction category is accurate.

HICO-DET is a larger HOI detection dataset consisting of
47,051 images with 37,535 training and 9,515 testing images.
It has 600 annotated human-object interactions and covers
the same 80 object categories in MS-COCO [43]. We follow
previous works [12], [19] and report in two different settings,
i.e., Default and Known Object. The Default setting represents
the evaluation of AP across all testing images, whereas the
Known Object setting calculates the AP of each object solely
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TABLE I
PERFORMANCE COMPARISON WITH END-TO-END METHODS OF MAP ON V-COCO AND HICO-DET. THE BEST RESULTS ARE MARKED IN BOLD AND

THE SECOND BEST RESULTS ARE MARKED WITH UNDERLINE.

Method Published In Backbone
V-COCO HICO-DET

AP#1
role AP#2

role

Default Known Object
Full Rare Non-Rare Full Rare Non-Rare

UnionDet [47] ECCV 2020 R50-FPN 47.5 56.2 17.58 11.72 19.33 19.76 14.68 21.27
IPNet [14] CVPR 2020 HG-104 51.0 - 19.56 12.79 21.58 22.05 15.77 23.92

GGNet [48] CVPR 2021 HG-104 54.7 - 29.17 22.13 30.84 33.50 26.67 34.89
HOTR [17] CVPR 2021 R50 55.2 64.4 23.46 16.21 25.60 - - -
QPIC [16] CVPR 2021 R50 58.8 61.0 29.07 21.85 31.23 31.68 24.14 33.93
DSSF [49] IEEE TIM 2022 HG-104 57.6 - 25.23 18.72 27.17 28.53 21.68 30.57
MSTR [35] CVPR 2022 R50 62.0 65.2 31.17 25.31 32.92 34.02 28.83 35.57
ERNet [29] IEEE TIP EfficientNet 64.2 - 31.57 26.76 33.10 - - -

MUREN [36] CVPR 2023 R50 68.8 71.0 32.87 28.67 34.12 35.52 30.88 36.91
STIP [19] CVPR 2022 R50 66.0 70.7 28.81 27.55 29.18 32.28 31.07 32.64

STIP* [19] CVPR 2022 R50 - - 32.22 28.15 33.43 35.29 31.43 36.45
GeoHOI (Ours) - R50 67.8 73.3 30.07 29.72 30.13 33.36 32.97 33.43

GeoHOI* (Ours) - R50 69.4 74.4 35.05 33.01 35.71 37.12 34.79 37.97

TABLE II
PERFORMANCE COMPARISON WITH TWO-STAGE METHODS OF MAP ON V-COCO AND HICO-DET. THE NOTATION IS THE SAME AS IN TABLE I.

Method Published In Backbone
V-COCO HICO-DET

AP#1
role AP#2

role

Default Known Object
Full Rare Non-Rare Full Rare Non-Rare

InteractNet [25] CVPR 2018 R50-FPN 40.0 48.0 9.94 7.16 10.77 - - -
TIN [37] CVPR 2019 R50 48.7 - 17.22 13.51 18.32 19.38 15.38 20.57
DRG [50] ECCV 2019 R50-FPN 51.0 - 24.53 19.47 26.04 27.98 23.11 29.43

FCMNet [51] ECCV 2020 R50 53.1 - 20.41 17.34 21.56 22.04 18.97 23.12
IDN [52] NeurIPS 2020 R50 53.3 60.3 23.36 22.47 23.63 26.43 25.01 26.85
iHOI [53] IEEE TMM 2020 R50-FPN 45.8 - 13.39 9.51 14.55 - - -

ACP++ [54] IEEE TIP 2021 R152 53.2 - 18.90 16.80 19.52 24.78 23.87 25.05
HRNet [55] IEEE TIP 2021 R152 53.1 - 21.93 16.30 23.62 25.22 18.75 27.15
IPGN [56] IEEE TIP 2021 R50-FPN 53.8 - 21.26 18.47 22.07 - - -

CP-HOI [57] IEEE TPAMI 2022 R50 50.4 - 19.42 13.98 20.91 22.01 15.73 22.80
UPT [58] CVPR 2022 R101-DC5 61.3 67.1 32.62 28.62 33.81 36.08 31.41 37.47

ViPLO [31] CVPR 2023 ViT 62.2 68.0 37.22 35.45 37.75 40.61 38.82 41.15
GeoHOI (Ours) - R50 67.8 73.3 30.07 29.72 30.13 33.36 32.97 33.43
GeoHOI* (Ours) - R50 69.4 74.4 35.05 33.01 35.71 37.12 34.79 37.97

on images that contain that object class. We report the AP for
each setting over three different sets of HOI categories based
on the number of training samples, i.e., Full (all 600 HOI
categories), Rare (138 HOI categories that have less than 10
training samples), and Non-Rare (462 HOI categories with at
least 10 training samples).

B. Implementation Details
To train UniPointNet, we extract object segmentation masks

from the COCO dataset [43]. Masks with a ratio less than 0.2
relative to the image are discarded, since we aim to learn object
shapes and structures and these tiny masks do not contain
enough pixels to compute shape features. We finally collected
a total of 50,238 training samples. We then apply ResNet to
group all samples into 100 clusters with K-means clustering.
Each cluster is associated with a unique set of graph weights
during training, aligning the shape of samples within that
cluster. Following AutoLink [44], the network is trained for
20k iterations with Adam optimizer, a learning rate of 10−4,
a batch size of 64, and the edge thickness of σ2 = 5e − 5.
During inference, an input sample is assigned a cluster label
based on its distance to each cluster centroid. Subsequently, its
keypoints are detected using the corresponding graph weights.
The number of keypoints can range from 4 to 48.

We adopt the object detector Panoptic DETR [18] pre-
trained over MS-COCO, for both object bounding box de-
tection and segmentation. It provides segmented inputs to

UniPointNet, thereby enabling us to seamlessly incorporate
UniPointNet into GeoHOI. The UniPointNet is then utilized
as a pre-trained component of GeoHOI, detecting HOIs in
an end-to-end manner. The backbone RestNet-50 is used for
image feature extraction. We present results for two variations
of our proposed method: GeoHOI and GeoHOI*. GeoHOI is
trained for the HOI detector only with frozen parameters in
Panoptic DETR, whereas GeoHOI* is trained with joint fine-
tuning of both the object detector and HOI detector in an
alternate manner. In the experiments, same as STIP, we output
top-32 interactive human-object pairs of the Keypoints-aware
Interactiveness Prediction module. Following the previous
practice in [8], the RoI-Align in PAM is set to a resolution of
Rp = 5, and the size of human and object patches is γ = 0.1
of their respective instance bounding box height and width.
Then all the patch features are scaled to 5 × 5. The whole
architecture is trained for 30 epochs over a single NVIDIA
A100 GPU with a mini-batch size of 6, initial learning rate
5× 10−5, and AdamW optimizer.

C. Comparisons with State of the Art
We evaluate the performance of GeoHOI and compare

it with state-of-the-art models, including methods that use
geometric features of both humans and objects.

Table I shows the performance comparison with end-to-end
methods. For V-COCO, our method beats all existing end-to-
end methods by a large margin in both scenarios. In particular,
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3

Good Cases

eat-obj carry-objlay-instrdrink-obj

hit-instr hit-obj talk_on_phone

Fig. 5. Qualitative results. The upper row showcases the effectiveness of the keypoints representation, while the lower row depicts failure cases.

compared with MUREN [36], which is the previous state-of-
the-art method, GeoHOI achieves a significant performance
gain of 0.6 mAP in AP#1

roleand 3.4 mAP in AP#2
role. For

HICO-DET, GeoHOI achieves consistent performance gains
and surpasses all the previous state-of-the-art methods. These
results indicate our method’s effectiveness in capturing the
holistic cross-instance cues between humans and objects using
their keypoints through graph convolutional networks and
enhancing interaction query representations with local patches.

In table II, we compare GeoHOI against two-stage methods.
Our GeoHOI outperforms all the existing two-stage methods
on V-COCO. Compared with the latest method ViPLO [31],
it obtains large performance improvements of 7.2 mAP in
AP#1

roleand 6.4 mAP in AP#2
role. This is mainly because most

of these two-stage methods use CNNs or vanilla Transformers
for HOI classification, leading to limited model capacity or
prior knowledge. For HICO-DET, we also achieve comparable
performance to previous state-of-the-art methods. Compared
to ViPLO, the performance gain is not as noticeable as on V-
COCO. Considering the complexity and end-to-end nature of
GeoHOI, we follow STIP to use the lightweight ResNet for
image feature extraction, while ViPLO employs the advanced
Transformer backbone ViT [59] in their first stage of object
detection. We believe ViT has a larger capacity than ResNet
and is superior for handling the larger HICO-DET.

TABLE III
COMPARISON OF PERFORMANCE WITH OBJECT-STRUCTURE-AWARE

METHODS ON V-COCO.

Method Published In AP#1
role AP#2

role

SGCN4HOI [10] IEEE SMC 2022 53.1 57.9
Liu et al. [60] Pattern Recognition 2022 52.3 -
HOKEM [34] IEEE ICIP 2023 54.6 59.7

ObjectPart [33] Pattern Recognition 2023 62.5 -
GeoHOI (Ours) - 67.8 73.3

Table III compares our results with existing methods using
human and object keypoints on V-COCO. We omit comparison
on HICO-DET because most of these methods did not provide
results on this dataset. For fairness, we compare GeoHOI
without fine-tuning the object detector against these methods.
The proposed GeoHOI outperforms all of them by a marked
margin in both AP#1

role(5.3 mAP) and AP#2
role (13.6 mAP).

Demonstrating the effectiveness of GeoHOI, i.e., by taking
advantage of both the advanced Transformer architecture and
the fine-grained geometric keypoints, it boosts HOI detection.

TABLE IV
PER-CLASS AP#1

role PERFORMANCE COMPARISONS WITH STIP.

HOI Class STIP [19] GeoHOI
hold-obj (#pos = 3608) 56.07 57.68 (↑ 0.71)
sit-instr (#pos = 1916) 56.44 58.99 (↑ 2.55)
ride-instr (#pos = 556) 75.35 75.52 (↑ 0.17)
look-obj (#pos = 3347) 46.09 (↑ 0.88) 45.21
hit-instr (#pos = 349) 82.21 (↑ 2.91) 79.30
hit-obj (#pos = 349) 78.22 (↑ 3.43) 74.79
eat-obj (#pos = 521) 65.48 74.52 (↑ 9.04)
eat-instr (#pos = 521) 77.44 80.65 (↑ 3.21)

jump-instr (#pos = 635) 82.37 (↑ 1.09) 81.28
lay-instr (#pos = 387) 61.50 69.70 (↑ 8.2)

talk on phone (#pos = 285) 57.30 (↑ 2.75) 54.55
carry-obj (#pos = 472) 39.56 48.97 (↑ 9.41)
throw-obj (#pos = 244) 55.25 56.22 (↑ 0.97)
catch-obj (#pos = 246) 53.59 (0.98) 52.61
cut-instr (#pos = 269) 57.00 57.57 (↑ 0.57)
cut-obj (#pos = 269) 70.35 72.33 (↑ 1.98)

work on comp (#pos = 410) 75.80 79.03 (↑ 3.23)
ski-instr (#pos = 424) 55.03 (↑ 0.83) 54.20
surf-instr (#pos = 486) 79.88 86.51 (↑ 6.63)

skateboard-instr (#pos = 417) 92.66 (↑ 1.59) 91.07
drink-instr (#pos = 82) 55.30 65.20 (↑ 9.9)
kick-obj (#pos = 180) 73.89 76.20 (↑ 2.31)
read-obj (#pos = 111) 51.92 (↑ 0.89) 51.03

snowboard-instr (#pos = 277) 82.54 84.30 (↑ 1.76)
Average 65.89 67.81 (↑ 1.92)

1

input image work_on_computer: 0.81 | 0.67 work_on_computer: 0.64 | 0.53 sit_instr: 0.67 | 0.50 

input image hold_obj: 0.82 | 0.79 hit_obj: 0.67 | 0.74 look_obj: 0.58 | 0.54  

Fig. 6. Visualization of the attention in simple cases. The prediction scores
of GeoHOI and STIP are shown (left: GeoHOI, right: STIP).

In Table IV, we report the per-class performance of GeoHOI
and compare it with the backbone model STIP on V-COCO.
We run the pre-trained checkpoint of STIP to obtain its per-
class results since they are not provided in the original paper.
We can see that GeoHOI outperforms the backbone STIP in
the majority of classes, particularly in the “eat-obj”, “lay-
instr”, “carry-obj”, and “drink-instr” classes. From the upper
row of Fig. 5, objects in these classes are generally either
partially occluded with humans or quite large. For example,
the objects in “drink-instr” are often occluded with human
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input image hold_obj: 0.64 | 0.57 sit_instr: 0.77 | 0.48 look_obj: 0.09 | 0.10  

input image hold_obj: 0.72 | 0.51 hold_obj: 0.37 | 0.33 look_obj: 0.38 | 0.60  

Fig. 7. Visualization of the attention in complex cases. The prediction scores
of GeoHOI and STIP are shown (left: GeoHOI, right: STIP). The black color
represents true positive interactions and the green color means true negative
interactions.

hands. In these cases, we believe that keypoints can provide
valuable information on the visible parts of these objects and
how they are being interacted with the human, resulting in
enhanced performance. Moreover, objects such as beds and
surfboards, often associated with the “lay-instr” and “carry-
obj” actions, are typically quite large. The detected keypoints
can capture their shapes pretty well. As a result, it boosts the
performance of interaction detection.

On the other hand, GeoHOI performs much worse than
STIP in the “hit-instr”, “hit-obj”, and “talk on phone” classes.
First, objects such as baseball bats and tennis rackets shown in
the lower row of Fig. 5, typically appear in crowded scenes,
leading to inaccurate object detection. Second, the inherent
slender shape of baseball bats and the varying perspectives of
tennis rackets hinder our UniPointNet from detecting their rep-
resentative keypoints effectively. Third, balls associated with
the “hit-obj” action and cell phones in the “talk on phone”
action are too small. Thus, their masks have very small areas
compared to the entire images, leading to noisy keypoints that
harm interaction detection.

Fig. 6 shows qualitative results and compares GeoHOI
with the backbone STIP. The top 3 interaction prediction
probabilities of GeoHOI are visualized. The images show
the variance in object sizes, human visibilities, and different
interaction classes. First, the attention maps highlight different
local regions for the same interaction category in the same
image. For example, the hands are highlighted in different
regions for action “work on computer” as shown in the first
row. Second, when the human and object are far away from
each other, they also gather a certain amount of information
from their neighbourhood as illustrated in the second row,
indicating both local and cross-instance cues are essential
for HOI classification. We further showcase crowded scenes
with multiple humans and objects in Fig. 7. GeoHOI shows
higher confidence for true interaction actions “hold obj” and
“sit instr” and less confidence for true negative interaction
“look obj”, indicating its effectiveness. Overall, GeoHOI im-
proves the backbone of STIP by predicting higher scores in
various true interactions and lower scores in negative ones in
most cases. More qualitative results of GeoHOI on complex
scenes can be found in the supplementary material.

In Table V, we report the performance, number of pa-
rameters, and speed for training and inference on V-COCO

TABLE V
COMPARISON OF PERFORMANCE, NUMBER OF PARAMETERS, AND TIME
FOR TRAINING AND INFERENCE ON V-COCO. WE CONDUCT BOTH THE

TRAINING AND INFERENCE PROCESS WITH A BATCH SIZE OF 1 ON A
SINGLE QUADRO RTX 5000 GPU. THE NUMBER OF PARAMETERS IS

REPRESENTED IN MILLIONS (M). THE SPEED MEANS THE ELAPSED TIME
(MS) FOR PROCESSING ONE IMAGE.

Method AP#1
role ↑ AP#2

role ↑ #Params↓ Training↓ Inference↓
STIP [19] 66.0 70.7 13.2 M 143.2 ms 117.8 ms
GeoHOI 67.8 73.3 17.8 M 794.4 ms 588.6 ms

of STIP and GeoHOI for an objective comparison. GeoHOI
outperforms STIP by a significant margin of 1.8 and 2.6 in
terms of mAP in AP#1

role and AP#2
role with a comparable

number of parameters. GeoHOI’s training and inference time
is slower than STIP but remains within an acceptable one-
second threshold. Compared to STIP, GeoHOI requires two ad-
ditional modules (object segmentation and keypoint detection)
executed sequentially, resulting in higher time consumption.

D. Ablation Studies

In this section, we analyze each GeoHOI design by dis-
cussing its possible variants on V-COCO to provide more
insights. All experiments are carried out under the training
setting of the pre-trained object detector with frozen weights.

TABLE VI
PERFORMANCE CONTRIBUTION ANALYSIS OF EACH COMPONENT IN

GEOHOI ON V-COCO.

Method AP#1
role AP#2

role

Baseline 65.2 69.8
+ KIP 66.2 (↑ 1.0) 71.0 (↑ 1.2)
+ PAM (w/o human patch) 66.2 (↑ 1.0) 71.1 (↑ 1.3)
+ PAM (w/o object patch) 66.5 (↑ 1.3) 71.4 (↑ 1.6)
+ PAM (w/o positional encodings) 66.3 (↑ 1.1) 71.1 (↑ 1.3)
+ PAM 66.7 (↑ 1.5) 71.9 (↑ 2.1)
+ KIP + PAM (GeoHOI) 67.8 (↑ 2.6) 73.3 (↑ 3.5)

Impact of Individual Components. We conduct ablation
experiments by comparing different variants of GeoHOI in
Table VI. We start with the baseline model (Baseline), which
adopts the structure-aware HOI network introduced in [19], but
with its object detector replaced by Panoptic DETR. Next, we
extend the Baseline model by integrating our keypoint-aware
graph convolution network into its interactiveness prediction
module, incorporating the holistic graph features, yielding
Baseline + KIP which demonstrates better performance.
After that, we enhance the Baseline model with our Part
Attention Module but without human patches. This variant of
our model (Baseline + PAM (w/o human patch)) achieves
better performance than both the Baseline model and Baseline
+ KIP. Another variant of our model (Baseline + PAM
(w/o object patch)) shows even better performance. This
indicates that the human patch features are more important
than the object patch features. We believe this is because
the rich poses of humans captured by keypoints are more
beneficial for recognizing interactions, which aligns with the
findings in [10]. To evaluate the benefits of using keypoints
as positional encodings, we create (Baseline + PAM (w/o
positional encodings)). It outperforms other variants, though
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it is slightly worse than Baseline + PAM that incorporates
both patch features and keypoints. Both Baseline + PAM (w/o
positional encodings) and Baseline + PAM demonstrate the
effectiveness of using local features with self-attention. Finally,
when jointly upgrading the Baseline model with the keypoint-
aware interactiveness prediction module and part attention
module (i.e., our GeoHOI), it results in the best performance.

TABLE VII
PERFORMANCE COMPARISON BY USING THE DIFFERENT NUMBER OF

KEYPOINTS (N ) ON V-COCO.

# of keypoints (N ) AP#1
role AP#2

role

4 65.6 70.3
8 66.6 71.5
16 66.8 71.7
32 67.8 73.3
48 67.0 71.9

1

N=4 N=8 N=16 N=32 N=48

Fig. 8. Examples illustrating different numbers of keypoints. When there are
very few keypoints, they only represent the basic shape of an object. For
example, with N = 4, only edge corners are represented. With abundant
keypoints, the representation can be redundant.

Effect of Different Numbers of Keypoints. Here, we vary
N from 4 to 48 to demonstrate the relationship between the
performance and the select keypoints number N . Table VII
shows the quantitative ablation tests, and the best performance
is obtained when N is 32. The increasing number of keypoints
(until N = 32) can generally boost the performance. This
is expected since more details can be captured with more
keypoints. For example, when N = 4, only the upper part
of the horse is modelled as shown in the first column of the
third row in Fig. 8. In addition, when the object’s mask is
separated into multiple fragments due to occlusion (as seen
in the last two rows in Fig. 8), a higher number of keypoints
can span more of these segments, generating a more accurate
shape representation of an object. However, when N is greater
than 32, i.e., 48, the performance decreases. We speculate that
too many keypoints might introduce more noise, leading the
model to overfit, which results in affecting its generalization.
As such, we have empirically selected N to be 32.

To evaluate the effectiveness of UniPointNet, in Table
VIII, we compare it with the existing skeleton-based key-
point representation (Skeletal Keypoint) for HOI detection
[10], which also utilizes object segmentation. GeoHOI (Uni-
PointNet) means the keypoints in GeoHOI are detected by

TABLE VIII
EFFECT OF UNIPOINTNET IN GEOHOI ON V-COCO.

Method AP#1
role AP#2

role

GeoHOI (UniPointNet) 67.8 73.3
GeoHOI (Skeletal Keypoint [10]) 66.7 71.3

our proposed UniPointNet, and GeoHOI (Skeletal Keypoint)
represents that the keypoints are obtained from [10]. We
can see that UniPointNet surpasses the skeletal keypoints in
both AP#1

role and AP#2
role, showcasing the effectiveness of the

proposed UniPointNet. The Skeletal Keypoint is a skeleton-
driven method, it is only robust for articulated objects like
humans and dogs, which demonstrate a clear and consistent
structure of joints and parts. It is also limited when extracting
keypoints from non-articulated objects such as pizzas and
phones because of its skeletonization process. In contrast,
UniPointNet is a shape-driven representation, making it robust
to arbitrary shapes of objects.

E. A Case Study in Post-Disaster Rescue with UAVs

The proposed HOI detector (GeoHOI) has a wide range of
applications, including vision-based instrumentation and mea-
surement. To showcase the generalization of our GeoHOI and
evaluate its performance in real-world applications relevant to
instrumentation and measurement, we conducted a case study
in Post-Disaster Rescue with unmanned aerial vehicles (UAVs)
on the PDD dataset [61]. It was collected from real-world
ruins, including various post-disaster scenes, from multiple
angles of UAVs and different distances and resolutions. Disas-
ters include natural calamities such as earthquakes and outdoor
rescue scenarios, among others. It consists of 832 training, 100
validation, and 100 testing images.

By conducting the experiments on the PDD dataset, we
evaluate our GeoHOI for human detection task and compare it
with the baseline methods. GeoHOI is designed for HOI de-
tection, outputting triplets as ⟨human, interaction, object⟩.
To evaluate it on human detection, we measure its outputs of
detected human bounding boxes and ignore interaction and
object bounding box predictions. To make a fair comparison
between our methods and baselines in [61], we requested the
PDD test set (100 images) from the authors for evaluation,
and we also used the same evaluation metrics, i.e., average
precision (AP), F1 score, recall, and precision. We directly
apply the pre-trained GeoHOI and STIP (both are trained on
V-COCO) on the test set of the PDD dataset. In addition, we
conduct a qualitative analysis of HOI detection to showcase
that the proposed method can further facilitate post-disaster
rescue with UAVs. For example, detecting individuals in
wheelchairs or needing medical assistance allows rescue teams
to effectively prioritize rescue efforts such as aid and resources
for those who need them most.

In Table IX, we compare the quantitative performance of
HOI-based models, including our proposed GeoHOI and its
backbone STIP and baselines proposed in [61]. With the
default number of 32 output proposals in the Keypoint-aware
Interactiveness Prediction (KIP) module, GeoHOI outperforms
all the baselines on AP and achieves comparable precision,
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ride_instr: 0.56

talk_on_phone_instr: 0.82

ride_instr: 0.92

hold_obj: 0.66

lay_instr: 0.55 hold_obj: 0.86

hold_obj: 0.67 hold_obj: 0.75

Fig. 9. Case study in post-disaster rescue. Different interactions and scenes are shown, and the top 1 interaction of each image is given.

TABLE IX
PERFORMANCE EVALUATION OF GENERALIZING GEOHOI IN HUMAN
DETECTION ON THE PDD TEST SET. “DETECTION-BASED” DENOTES

HUMAN DETECTION MODELS USED IN THE PDD DATASET, AND
“HOI-BASED” REPRESENTS HOI DETECTION MODELS THAT ARE

EVALUATED ON HUMAN DETECTION. NOTE THAT “K” IS THE NUMBER OF
OUTPUT PROPOSALS FROM OUR KIP MODULE.

Model AP@0.5 F1 Recall Precision

Detection-based [61]

YOLOv5s 84.15% 0.86 80.31% 93.58%
YOLOv5m 84.36% 0.87 82.49% 92.58%
YOLOv5l 84.25% 0.88 83.92% 93.45%

im-YOLOv5s 80.82% 0.85 78.43% 92.59%
im-YOLOv5m 83.32% 0.88 82.28% 94.14%
im-YOLOv5l 84.38% 0.87 82.03% 93.33%

YOLOv7 85% 0.86 82.56% 90.64%
YOLOv7x 87.35% 0.89 85.88% 91.63%
YOLOv8s 85.52% 0.85 83.33% 87.76%
YOLOv8m 90.78% 0.89 85.66% 91.70%
YOLOv8l 87.81% 0.88 84.05% 91.53%

YOLO-NASs 86.08% 0.86 86.61% 85.27%
YOLO-NASm 85.94% 0.86 86.38% 85.06%
YOLO-NASl 87.26% 0.86 88.72% 84.13%

DETR 87.89% 0.88 89.08% 87.24%
DDETR 76.87% 0.64 84.23% 51.01%

DAB-DETR 88.78% 0.91 88.42% 93.47%
DN-DETR 87.17% 0.9 86.15% 94.92%

DINO 91.03% 0.91 89.66% 92.86%
faster R-CNN 88.52% 0.87 89.19% 84.62%

HOI-based

STIP 91.01% 0.80 71.51% 91.58%
GeoHOI (K = 32) 92.32% 0.81 71.94% 92.63%
GeoHOI (K = 64) 88.65% 0.88 89.41% 88.04%

GeoHOI (K = 100) 84.64% 0.88 91.48% 86.49%

demonstrating its effectiveness in detecting humans in post-
disaster scenes. STIP obtains similar performance in both AP
and precision, and we believe the main reason is that the
HOI-based detection systems can enhance human bounding
box precision by leveraging contextual information (i.e., inter-
actions between humans and objects) and joint optimization
(i.e., optimizing the predictions of humans, interactions, and
objects simultaneously). The integrated analysis of humans,
objects, and their interactions refines human detection accu-
racy compared to these baselines designed alone for human
detection. The lower performance on the F1 score and recall
of GeoHOI and STIP indicate that the HOI-based systems have
a higher missed detection rate. We think the KIP module that
suppresses non-interactive human-object pairs is the primary
cause since it can filter out humans who do not interact with

objects, resulting in compromised performance in recall. To
verify this, we increase the number of proposals (K) to 64
and 100, respectively. Recall significantly improves with the
number of proposals and outperforms all the baselines at
K = 100. This indicates our model’s adaptability in balancing
recall and precision by tuning the number of output proposals
in our KIP module in practical applications.

In addition, we show the qualitative results of HOI de-
tection in Fig. 9 to provide an in-depth analysis of how
HOI detection can facilitate post-disaster rescue. GeoHOI
demonstrates a varied performance across different scenarios.
For instance, it predicts relatively high confidence scores in
recognizing the interactions of “ride instr” (riding a bicycle),
“talk on phone instr”, and “hold obj” where the scenes are
less complicated. In contrast, it shows diminished confidence
in more complex scenes, such as a person lying down in the
rubble, or when the scene is crowded, e.g., the image in the
first row and column. This indicates the challenges in detecting
interactions in cluttered post-disaster scenes.

The qualitative results show that our proposed GeoHOI is
able to detect different human interactions in post-disaster
scenes, facilitating search and rescue operations. For instance,
identifying individuals in wheelchairs or those lying on the
ground enables rescue teams to prioritize medical attention.
Observations of people using phones or riding bicycles provide
crucial insights into the operational status of communication
networks and the accessibility of various areas. Additionally,
recognizing survivors holding onto pets or personal belongings
allows rescue teams to provide not only necessities like food
and water but also support for pet care and the safekeeping of
valuables, enhancing the overall rescue operation.

VI. CONCLUSION

In this paper, we have proposed GeoHOI, an end-to-end
Transformer-style model for detecting human-object interac-
tions using fine-grained geometric keypoint features of hu-
mans and objects. We have also presented UniPointNet, a
self-supervised framework that detects keypoints for arbitrary
objects and enhances HOI performance. The KIP module
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uses keypoints to mine cross-instance cues via a graph net-
work, enhancing pairwise cues for optimizing the prediction
of interactive human-object pairs. The PAM module uses
self-attention on keypoint patches to discover informative
local cues, facilitating the prediction of specific interaction
categories. Extensive experimental results have shown that
GeoHOI improves the backbone of STIP and achieves su-
perior performance on public HOI benchmarks. We further
demonstrated the advantages of using GeoHOI on human-
centric applications such as the case study on post-disaster
rescue. The presented UniPointNet also facilitates visual mea-
surement tasks, including object pose estimation [4] and 3-D
reconstruction [62].

The end-to-end GeoHOI is limited in training and analysis
of the geometric features. For future research, the proposed
geometric features can be employed in two-stage frameworks
such as [31], facilitating more analysis and insights into the
geometric context (e.g., relative keypoint distance) in HOI
detection. As discussed in the experiments, our UniPointNet
struggles with tiny or slender objects due to their limited
spatial resolution in images, which hinders accurate shape
reconstruction and keypoint detection. Future work could
explore better keypoint representation for these objects, such
as adaptively selecting the optimal numbers and locations of
keypoints to represent objects in different sizes. Additionally,
investigating how to incorporate semantic information in key-
point detection and evaluating the effect on HOI detection
would also be valuable.

Furthermore, recent advancements in large language mod-
els, especially those with integrated vision-language capabili-
ties such as CLIP [63], have demonstrated their effectiveness
in zero-shot HOI detection [64], [65]. Given that annotating
HOI triplets is challenging and rare HOIs are not learned as
effectively as non-rare ones, it is worth further exploring the
capabilities of large language models in the future to tackle
the long-tail problem and zero-shot learning in HOI detection,
facilitating real-world HOI applications.
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