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Abstract: Generalized zero-shot learning (GZSL) aims to simultaneously recognize both seen classes
and unseen classes by training only on seen class samples and auxiliary semantic descriptions. Recent
state-of-the-art methods infer unseen classes based on semantic information or synthesize unseen
classes using generative models based on semantic information, all of which rely on the correct
alignment of visual–semantic features. However, they often overlook the inconsistency between
original visual features and semantic attributes. Additionally, due to the existence of cross-modal
dataset biases, the visual features extracted and synthesized by the model may also mismatch with
some semantic features, which could hinder the model from properly aligning visual–semantic
features. To address this issue, this paper proposes a GZSL framework that enhances the consistency
of visual–semantic features using a self-distillation and disentanglement network (SDDN). The aim is
to utilize the self-distillation and disentanglement network to obtain semantically consistent refined
visual features and non-redundant semantic features to enhance the consistency of visual–semantic
features. Firstly, SDDN utilizes self-distillation technology to refine the extracted and synthesized
visual features of the model. Subsequently, the visual–semantic features are then disentangled
and aligned using a disentanglement network to enhance the consistency of the visual–semantic
features. Finally, the consistent visual–semantic features are fused to jointly train a GZSL classifier.
Extensive experiments demonstrate that the proposed method achieves more competitive results on
four challenging benchmark datasets (AWA2, CUB, FLO, and SUN).

Keywords: generalized zero-shot learning; self-distillation; disentanglement network; visual–semantic
feature consistency

1. Introduction

Deep learning models typically necessitate extensive, heavily labeled data during
training, incurring significant human and resource costs. The introduction of Zero-Shot
Learning (ZSL) effectively mitigates this constraint of deep learning models by learning
the mapping relationship from auxiliary (e.g., semantic) to visual space, facilitating the
classification and recognition of unseen classes [1]. However, traditional ZSL settings are
somewhat idealized as they assume that the test set solely comprises samples from seen
classes, which is not reflective of real-world scenarios. Generalized Zero-Shot Learning
(GZSL) introduces a more rigorous task where the test set can encompass samples from
both seen and unseen classes, better aligning with practical needs.
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Presently, research on GZSL primarily centers on two distinct strategies. Firstly, some
researchers focus on methods grounded in Generative Adversarial Networks
(GANs) [2–7], which employ generative models to learn the mapping relationship from
semantic attributes to visual features and subsequently synthesize visual samples of un-
seen classes based on semantic information. Secondly, other researchers concentrate on
embedding-based methods [8–14], striving to embed visual samples into a shared feature
space to accurately reflect the semantic similarity between different classes. Through this
approach, models can conduct classification reasoning using structural information in the
embedding space with minimal or zero samples. Both of these strategies align visual–
semantic features through either generative or embedding methods, tackling the challenges
inherent in ZSL.

However, they introduce a new challenge: they often overlook the potential inconsis-
tency in the visual–semantic features to be aligned. As illustrated in Figure 1, certain visual
features, such as “fish fin”, demonstrate distinctiveness in discerning image samples within
the visual modality. However, these features are not encompassed within the manually
annotated semantic attributes, thus termed as semantically inconsistent visual features.
Moreover, within the semantic modality, there may also be redundant semantic attributes
that are inconsistent with visual features. For instance, classes like “dolphin”, “seal”, and
“killer whales” in Figure 1 share multiple redundant semantic attributes unrelated to their
visual features, such as “stripe:no”, “tree:no”, “vegetation:no”, “long legs:no”, and “long
neck:no”. Most GZSL methods overlook these inconsistent visual–semantic features and
forcibly align them, potentially introducing biases in visual–semantic feature alignment
and undermining the recognition of unseen classes. Moreover, current GZSL approaches
frequently employ pre-trained ImageNet models for extracting GZSL visual features and
training generative models to synthesize visual features of unseen classes. However, the
presence of cross-modal dataset bias [3] implies that the extracted and synthesized visual
features might lack refinement and could stray from the visual features necessary for ZSL
tasks, thereby worsening the problem of visual–semantic feature inconsistency.

Semantically inconsistent visual features, e.g., fin shape

Stripes: no

Tail: no

Tree: no

Tusks: no

Ocean: yes

Black back: yes

...

Vegetation: no

Long leg: no

Long neck: no

Bipedal: no

Wing: no

Attributes

Figure 1. Illustration of visual features inconsistent with annotated attributes (highlighted in yellow
boxes) and redundant annotated attributes inconsistent with visual features (highlighted in red text).

We think that extracting and synthesizing refined visual features to enhance the seman-
tic consistency of visual features, and segregating semantic-consistent visual features and
visually consistent non-redundant semantic features from raw visual–semantic features to
bolster the consistency of visual–semantic features, can alleviate the aforementioned issues.
Hence, this paper proposes a GZSL framework that enhances the consistency of visual–
semantic features using self-distillation and disentanglement network. Specifically, we
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first devise a self-distillation module that leverages self-distillation technology to augment
both the feature extraction model and the generative model in the context of generative
GZSL. This enables them to concurrently acquire refined mid-layer features and soft label
knowledge from the auxiliary self-teacher network, thereby stimulating the model to ex-
tract and synthesize refined visual features. Additionally, we devise a disentanglement
network applied to the visual–semantic modality. For instance, in the visual modality,
the visual disentanglement encoder projects visual features into zr and zd. To ensure the
consistency of zr with semantic features, visual–semantic features are cross-reconstructed,
and a semantic relationship-matching method is employed to calculate the compatibility
score between zr and semantic information to guide the learning of zr. Furthermore, a
latent representation-independent method is applied to enforce the independence between
zr and zd. Ultimately, the disentanglement network attains consistent visual–semantic
features, which are amalgamated to jointly train a GZSL classifier.

In summary, the contributions of this paper are as follows:

• We identified that most models typically do not handle visual–semantic inconsistent
features and directly align them, which may lead to alignment bias. We propose an
approach to enhance the consistency of visual–semantic features by refining visual
features and disentangling original visual–semantic features.

• We designed a self-distillation embedding module, which generates soft labels through
an auxiliary self-teacher network and employs soft label distillation and feature map
distillation methods to refine the original visual features of seen classes and synthe-
sized visual features of unseen classes from the generator, thereby enhancing the
semantic consistency of visual features.

• We proposed a disentanglement network, which encodes visual–semantic features into
latent representations and promotes visual–semantic consistent features to be separated
from original features through semantic relation matching and latent representation inde-
pendence methods, significantly enhancing the consistency of visual–semantic features.

• Extensive experiments on four GZSL benchmark datasets demonstrate that our model
can separate refined visual–semantic features with consistency from original visual–
semantic features, thereby alleviating alignment bias caused by visual–semantic in-
consistency and improving the performance of GZSL models.

2. Related Work
2.1. Generative-Based Generalized Zero-Shot Learning

In recent years, numerous studies have employed generative models to bolster the
efficacy of GZSL tasks. GANs or VAEs are commonly utilized in generative GZSL to
synthesize visual features for unseen classes. These synthesized visual features for unseen
classes are subsequently integrated with original visual features for seen classes to train
classifiers. For example, Narayan et al. [15] employed VAEs and GANs to refine the quality
of synthesized visual features for unseen classes. They introduced a feedback module
to regulate the generator’s output, effectively diminishing ambiguity between classes.
Zhang et al. [16] combined generative and embedding-based models by projecting real
and synthesized samples onto an embedding space for classification, establishing a hybrid
ZSL framework that effectively addresses data imbalance issues. Li et al. [17] proposed an
innovative approach that integrates a Transformer model with VAE and GAN, capitalizing
on the rich data representation from VAE and the diversity of data generated by GAN to
mitigate dataset diversity bias, while utilizing Transformer to enhance semantic consistency.
DGCNet [18] introduced a Dual Uncertainty Guided Cycle-Consistent Network, which
examines the relationship between visual and semantic features through a cycle-consistent
embedding framework and dual uncertainty-aware modules, effectively addressing align-
ment shift problems and enhancing model discriminability and adaptability. However,
these methods often ignore the existence of semantically inconsistent visual features and
redundant semantic attributes in the original visual–semantic features, which may affect the
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correct alignment of visual–semantic features. Instead, by first decoupling visual–semantic
consistent features before alignment, we have improved the model’s accuracy.

2.2. Knowledge Distillation

Knowledge distillation [19] serves as a model compression technique, aiming to
reduce the size and computational complexity of a model by transferring knowledge from
a complex neural network (referred to as the teacher network) to a smaller neural network
(referred to as the student network). Initially, the concept of knowledge distillation emerged
by encouraging the student network to imitate the output log-likelihood of the teacher
network [20]. Subsequent research introduced intermediate layer distillation methods,
enabling the student network to acquire knowledge from the convolutional layers of the
teacher network with feature map-level locality [21–24], or from the penultimate layer of
the teacher network [25–29]. However, these methods necessitate pre-training a complex
model as the teacher network, a process consuming substantial time and resources. Some
recent studies have proposed self-knowledge distillation [30,31], enhancing the training
of the student network by leveraging its own knowledge without requiring an additional
teacher network. For instance, Zhang et al. [32] segmented the network into several parts
and compressed deep-layer knowledge into shallow layers. DLB [33] utilizes instant soft
targets generated in the training process of the previous iteration for distillation, achieving
performance improvement without altering the model structure. FRSKD [34] introduces
an auxiliary self-teacher network to refine knowledge transfer to the student’s classifier
network, capable of performing self-knowledge distillation using both soft labels and
feature map distillation. This paper adopts the concept proposed by FRSKD to construct a
self-distillation embedding module, aiming to refine the original seen visual features and
the unseen visual features synthesized by the generator.

3. Materials and Methods
3.1. Problem Definition

In GZSL, the dataset comprises visual features X, semantic attributes C, and labels
Y, which can be divided into seen classes S and unseen classes U. Specifically, the visual
feature set is defined as X = {XS, XU}, and the corresponding label set is represented
as Y = {YS, YU}, where YS and YU are disjoint sets. Semantic attributes are defined as
C = {CS, CU}. Visual features xi

s and xi
u are defined as the ith visual feature, where xi

s ∈ XS
and xi

u ∈ XU . The corresponding labels for seen and unseen classes are denoted as yi
s and

yi
u, while ci

s and ci
u represent the ith semantic feature, where ci

s ∈ CS and ci
u ∈ CU . Thus,

the training dataset is defined as Ds =
{

xi
s, ci

s, yi
s
}Ns

i=1, and the testing dataset is defined as

Du =
{

xi
u, ci

u, yi
u
}Nu

i=1. The objective of GZSL is to learn a classifier FGZSL : X → YS ∪ YU .

3.2. Overall Framework

The SDDN architecture primarily comprises two key modules, as depicted in Figure 2.
The first module, known as the self-distillation embedding module, utilizes feature fusion
techniques and an auxiliary self-teacher network to transfer refined visual features to the
student network. It then employs both soft label distillation and feature map distillation
to facilitate the generation of refined features by the generative model, thereby enhanc-
ing the consistency of visual–semantic features. The second module, referred to as the
disentanglement network, employs semantic relationship matching (SRM) method and
latent representation independent (IND) method to guide the visual–semantic disentangle-
ment autoencoder in decoupling semantic-consistent visual features and non-redundant
semantic features, further strengthening the consistency of visual–semantic features.
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Figure 2. The framework of our SDDN model.

3.3. Self-Distillation Embedding Module

In order to refine the seen visual features extracted by the pre-trained ResNet101 [35]
and the unseen visual features synthesized by the generator, thereby improving their se-
mantic consistency. We designed a self-distillation embedded (SDE) module, as shown
in Figure 3. The SDE module, comprised of a self-distillation feature refinement (SDFR)
module and a self-distillation conditional generation (SDCG) module, was designed for
this purpose. The SDFR module integrates top-down and bottom-up feature fusion meth-
ods [36] to direct the auxiliary self-teacher network in generating refined intermediate
feature maps and soft labels. Following this, feature distillation and soft label distillation
methods refine the visual features extracted by the student network. The SDCG module
encompasses a generator and a discriminator. It trains the generator to synthesize visual
features through a generative adversarial approach and employs feature map distillation
and soft label distillation methods for refining the generated visual features.

L
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False

Seen Images

N~(0,1)

Seen Attributes

'
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Claws
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Self-Distillation Feature Refinement
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F F F
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c

Figure 3. Architecture of the self-distillation embedding module. Here, Ai denotes the block of
the student network, Ti represents the block of the auxiliary self-teacher network, G stands for the
generator, and D signifies the discriminator. ft and fa denote the classifier layers of the auxiliary
self-teacher network and the student network, respectively, while Pt and Pa represent the soft labels
outputted by the auxiliary self-teacher network and the student network, respectively.
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3.3.1. Auxiliary Self-Teacher Network

To refine the visual features extracted by the pre-trained ResNet101 and pass them
to the generator of the SDCG module, we devised an auxiliary self-teacher network T
based on the architecture proposed by Ji et al. [34]. This auxiliary self-teacher network,
depicted in green in Figure 3, also uses the pre-trained ResNet101. Subsequently, we
utilized top-down and bottom-up feature fusion methods [36] to guide the auxiliary self-
teacher network in generating refined intermediate feature maps xt

Ti
. At the layer preceding

the classification layer ft, this network outputs the final extracted visual features xt, while
the last classification layer ft outputs soft labels Pt. Deep neural networks excel at learning
representations at various levels; hence, outputs from intermediate and output layers
can both contribute to training the student network. In our methodology, we employ
ResNet101 (depicted in blue in Figure 3) as the student network A, enriching the visual
features extracted by ResNet101 with soft labels Pt from the output of the self-teacher
network and refined feature maps xt

Ti
from the intermediate layers. The formula for

generating Pt in the auxiliary self-teacher network is defined as follows:

Pt =
exp( ft(xt)/T)

∑n
j=1 exp( ft(xt

j)/T) (1)

Here, T is the temperature parameter [20], typically set to 1. Higher values of T result
in softer class probability distributions. ft denotes the classifier of the auxiliary self-teacher
network. The student network learns from Pt through KL divergence, expressed as

LKD(xa, Pt, T) = DKL

(
exp( fa(xa)/T)

∑n
j=1 exp( fa(xa

j )/T)
||Pt

)
(2)

The intermediate layer feature outputted by the ith student network block is denoted
as xa

Ai
. The student network learns the refined intermediate layer features xt

Ti
produced

by the auxiliary self-teacher network through the feature distillation method, which is
implemented by the loss function LF. The definition of LF is as follows:

LF(xt
Ti

, xa
Ai
) =

n

∑
i=1

||ϕ(xt
Ti
)− ϕ(xa

Ai
)||2 (3)

where ϕ represents the channel pooling function. Additionally, class predictions are made
on the enhanced visual features, and the cross-entropy loss LCE between the prediction
results and the true labels is minimized to ensure the accuracy of the enhanced visual
features. Finally, the loss function for refining visual features by the auxiliary self-teacher
network is denoted as LSTN , which is defined as

LSTN = LCE(xt, y) + LCE(xa, y) + αLKD(xa, Pt, T) + βLF(xt
Ti

, xa
Ai
) (4)

3.3.2. Self-Distillation Conditional Generation Module

In order to synthesize refined visual features for unseen classes, thereby addressing
the issue of lacking unseen visual features in ZSL, we devised a self-distillation conditional
generation module. This module employs a conditional generator G and a discriminator D
to form a generative adversarial network. During the training of this module, Gaussian
noise N(0, 1) and semantic descriptors of seen classes cs are firstly utilized as conditional
inputs to G, to synthesize visual features x

′
s = G(cs, N). Subsequently, the synthesized x

′
s

is fed into the trained student network classifier fa to obtain soft label fa(x
′
s). To create a

clear contrast with the synthesized fake seen class visual features x
′
s, we define the real

seen visual features xa obtained by the student network in Figure 3 as xs, minimizing the
loss between fa(x

′
s) and soft labels Pt to ensure the consistency between x

′
s and real visual

features xs. The loss function is defined as follows:
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LKD(x
′
s, Pt, T) = DKL

(
exp( fa(x

′
s)/T)

∑n
j=1 exp( fa(x′

sj
)/T)

||Pt

)
(5)

Simultaneously, to ensure the accuracy of the synthesized visual features, we compute
the cross-entropy loss between fa(x

′
s) and the real labels YS. Additionally, the discriminator

D is employed to distinguish between real seen class samples (xs, cs) and synthesized
seen class samples (x

′
s, cs), minimizing their loss Lwgan to ensure that the visual features

synthesized by the generator are close to the real visual features.

Lwgan(xs, x
′
s, cs) = E[D(xs, cs)]−E[D(x

′
s, cs)]− λE[(||∇x̂s D(x̂s, cs)||2 − 1)2] (6)

Here, x̂s = αxs + (1 − α)x
′
s, α ∼ U(0, 1), and λ represents the penalty coefficient. The

loss function for the SDCG module is as follows:

LSDCG = LKD(x
′
s, Pt, T) + Lwgan(xs, x

′
s, cs) + λLCE(x

′
s, YS) (7)

Finally, the overall loss of the SDE module is LSDE = LSTN + LSDCG.

3.4. Disentanglement Network

To further bolster the consistency of visual–semantic features, we propose a disen-
tanglement network. This network utilizes a semantic relation matching method and an
independent latent representation method to guide the visual–semantic disentangled au-
toencoder in separating visually consistent features and non-redundant semantic features
from the original data. Furthermore, it aligns these features using a cross-reconstruction
method to further strengthen their consistency.

3.4.1. Visual–Semantic Disentangled Autoencoder

The visual–semantic disentangled autoencoder (VSDA) comprises two parallel vari-
ational autoencoders dedicated to processing visual and semantic modalities separately.
Each variational autoencoder includes a disentangled encoder and decoder. The disen-
tangled encoder maps the feature space to the latent space, while the decoder maps the
latent space back to the feature space. The primary role of the VSDA is to acquire effective
latent representations, z1 and z2, for visual–semantic features and to separate z1 along
the column dimension into zr and zd, and z2 into cr and cd. Specifically, the visual dis-
entanglement encoder EV and the semantic disentanglement encoder ES encode visual
features x = {xs, x

′
u} and semantic features c into z1 and z2, respectively. Taking z1 as

an example, its row dimension represents the number of samples in a batch n, while the
column dimension represents m. Let l be a value along the column dimension belonging
to the interval (0, m). The elements of z1 from column dimension 0 to l are defined as zr,
and the remaining columns from l to m are defined as zd. z2 follows the same process. This
procedure can be mathematically expressed as

EV(x) = z1 = [zr, zd]

ES(c) = z2 = [cr, cd]
(8)

In the case of the visual modality, it is important to note that zr and zd at this stage
merely represent a simple partitioning of z1 along its dimensions. It is necessary to sub-
sequently use the semantic relationship matching method in Section 3.4.2 and the latent
representation independent method in Section 3.4.3 to make the latent representation repre-
sented by zr semantically consistent, and at the same time change the latent representation
represented by zd into semantically irrelevant.

By minimizing the KL divergence loss between the latent variable distribution and the
predefined prior distribution, the VSDA can effectively learn representations in latent space.
Consequently, to guarantee the validity of the latent representations z1 and z2 obtained
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by the visual–semantic disentangled autoencoder, we optimize the KL divergence loss
between the latent variable distribution and the predefined prior distribution. This process
can be formulated as

LKLD =Eqϕ(z1|x)[log p(x|z1)]− DKL(qϕ(z1|x)∥pθ(z1))

+Eqϕ(z2|c)[log p(c|z2)]− DKL(qϕ(z2|c)∥pθ(z2))
(9)

To reduce information loss between the visual and semantic modalities, we employ
disentangled decoders to reconstruct the latent representations (zr, zd) and (cr, cd), and
minimize the loss between the reconstructed visual–semantic features and the real features.
Specifically, we use the visual disentangled decoder to reconstruct (zr, zd) into visual
features x̄, and the semantic disentangled decoder to reconstruct (zr, zd) into semantic
features c̄. Subsequently, we compute the loss between the reconstructed visual features x̄
and the real visual features x, and the loss between the reconstructed semantic features c̄
and the real semantic features c. Summing these losses yields the total reconstruction loss
LREC. LREC can be expressed as

LREC = ∑
x∈XS

∑
c∈CS

∥x − x̄∥2 + ∥c − c̄∥2
(10)

Simultaneously, to enable the model to learn the association between visual and seman-
tic features and reduce the deviation between modalities, cross-modal cross-reconstruction
is designed. Specifically, we employ a semantic disentangling decoder to reconstruct the
visual latent representation (zr, zd) into semantic features c̄x, and a visual disentangling
decoder to reconstruct the semantic latent representation (cr, cd) into visual features x̄c.
Subsequently, we minimize the reconstruction loss LCROSS_REC between c̄x, x̄c, and the orig-
inal semantic and visual features c and x. This process can be mathematically formulated
as follows:

LCROSS_REC = ∑
x∈XS

∑
c∈CS

|x − x̄c|+ |c − c̄x| (11)

Here, the mean square error (MSE) is utilized to calculate the reconstruction loss
between the original visual features and the reconstructed features. Finally, the overall loss
of the VSDA is

LVSDA = LKLD + LREC + LCROSS_REC (12)

3.4.2. Semantic Relation Matching

To guide the visual disentangled encoder in separating semantically consistent latent
representations into zr, we designed the semantic relation matching (SRM) method. This
method introduces a relation network (RN) [37] to assess the matching relationship between
visual and semantic features, as illustrated in Figure 4. The RN evaluates the distance
between two samples by constructing a neural network, thereby measuring their matching
degree. Thus, we can constrain zr represented latent representations to match with c
using RN. This means that RN will encourage the visual disentangled encoder to encode
semantically consistent visual features from the original features into zr, while semantically
inconsistent visual features will be encoded as zd. In the SRM method, we first concatenate
zr with its uniquely corresponding semantic feature c, and compute their compatibility
score CS. Specifically, when the labels of zr and c are the same, the match is successful, and
CS is set to 1. When the labels of zr and c are different, the match fails, and CS is set to 0.
This process can be formulated as

CS
(

zr(t), c(b)
)
=

{
0, y(t) ̸= y(b)
1, y(t) = y(b)

(13)
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Here, t and b represent the tth semantically consistent representation and the bth
unique corresponding semantic feature in the training batch, and y(t) and y(b) represent
the class labels of zr(t) and c(b), respectively. Utilizing CS defined in Equation (13), a RN
with a sigmoid activation function learns a compatibility score ranging from 0 to 1 for each
pair (zr, c). Then, the following loss function is used to optimize zr:

LSRM =
B
∑

t=1

n
∑

b=1

∥∥∥RN
(

zr(t), c(b)
)
− CS

(
zr(t), c(b)

)∥∥∥2
(14)

Here, B denotes the size of the training batch, and n denotes the number of unique
semantic features corresponding to the training batch. In each training batch, calculate
the mean square error between the output of the relation score of each pair zr(t) and c(b)
and the ground truth CS, optimized by mean square error. This loss ensures that zr is a
semantically consistent latent representation.

Zr

C

Relation Network

 

Relation Score One-Hot encoding

Figure 4. Architecture of semantic relational matching model.

3.4.3. Independence between Latent Representations

In Section 3.4.3, we utilized the SRM method to guide the visual disentangled encoder
to preliminarily transform zr into semantically consistent visual feature latent representa-
tions, while transforming zd into semantically irrelevant latent representations. To further
enhance the decoupling between visually consistent latent representations zr and visually
irrelevant ones zd, while also encouraging the semantic disentangled encoder to encode
visually consistent and visually irrelevant semantic features into latent representations cr
and cd, respectively, we devised the latent representation independence (IND) method.
Specifically, from a probabilistic perspective, zr and zd can be considered to come from
different conditional distributions in the visual modality, while cr and cd can be considered
to come from different conditional distributions in the semantic modality:

zr ∼ ψ1(zr|x), zd ∼ ψ2(zd|x)
cr ∼ ψ3(cr|x), cd ∼ ψ4(cd|x)

(15)

where ψ1 and ψ2 are distributions for zr and zd, respectively, and ψ3 and ψ4 are distributions
for cr and cd, respectively. Therefore, the independence between zr and zd denoted as INDv,
the independence between cr and cd denoted as INDs, and their overall independence
denoted as IND can be expressed as

INDv = KL(ψ∥ψ1 · ψ2) = Eψ(log ψ
ψ1·ψ2

)

INDs = KL(ψ∥ψ3 · ψ4) = Eψ(log ψ
ψ3·ψ4

)

IND = INDv + INDs

(16)

where ψ := ψ(zr, zd|x) is the joint conditional probability of zr and zd, and similarly for the
semantic modality. Taking the visual modality as an example, when y = 1, zr and zd are
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dependent, they are denoted as τ(z1|y = 1), while when y = 0, zr and zd are independent,
they are denoted as τ(z1|y = 0). Therefore, INDv can be represented as

INDv = Eψ(log τ(z1|y=1)
τ(z1|y=0) ) = Eψ(log τ(y=1|z1)τ(z1)/τ(y=1)

τ(y=0|z1)τ(z1)/τ(y=0) ) = Eψ
τ(y=1|z1)

1−τ(y=1|z1)
) (17)

We introduce a discriminator DISv to approximate τ(y = 1|z1); thus, INDv can be
approximated by the following formula:

INDv = Eϕ(log
DISv(z1)

1 − DISv(z1)
) (18)

During the training of the discriminator, we randomly shuffle zr and zd in each training
batch, then concatenate them to obtain ẑ1. Finally, the loss of the discriminator on the visual
modality and the semantic modality is given by

LDIS = DISv + DISs = log DISv(z1) + log(1 − DISv(ẑ1))
+ log DISs(z2) + log(1 − DISs(ẑ2))

(19)

In summary, the total loss of our SDDN framework is formulated as

Ltotal = LSDE + LVSDA + λ1 ∗ LSRM + λ2 ∗ IND + λ3 ∗ LDIS (20)

3.5. Classification

When training the classifier, the seen visual features xs, refined by the auxiliary self-
teacher network, and the synthesized unseen visual features x

′
u from the SDCG module

are combined into x = {xs, x
′
u}. Next, x is processed by the trained visual disentangling

encoder to yield both semantically consistent latent representation zr and semantically
irrelevant latent representation zd. Similarly, the semantic attribute set c for both seen
and unseen classes is fed into the trained semantic disentangling encoder, producing
visually consistent latent representation cr and visually irrelevant latent representation zd.
Subsequently, these representations zr and zd are fused and input into a softmax-based
GZSL classifier for category prediction. Finally, the training concludes by minimizing the
loss between the real and predicted labels. The whole process is shown in Figure 5.

Visual Disentangling 

Encoder

Semantic Disentangling 

Encoder

c
dc

rc

1z

2z

GZSL Classifier

dz

rz
x Predicted 

Labels

Real 

Labels

Figure 5. Scheme of classification.
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4. Experiments
4.1. Datasets

We conducted comprehensive tests on four publicly available benchmark datasets:
Caltech-UCSD Birds-200-2011 (CUB) [38], Animals with Attributes2 (AWA2) [39], SUN
Attribute Dataset (SUN) [40], and Oxford Flowers (FLO) [41]. All datasets and their statistics
are summarized in Table 1. CUB is a fine-grained dataset comprising 11,788 images from
200 different bird species, with 150 seen classes and 50 unseen classes. Each image in
CUB is annotated with 312 dimensions of attributes. FLO is another fine-grained dataset
consisting of flower images, containing 8189 images across 102 classes, including 82 seen
classes and 20 unseen classes. The annotation attributes in FLO have 1024 dimensions.
SUN is a fine-grained image dataset featuring various scenes, with 14,340 images covering
717 classes (645 seen classes and 72 unseen classes). Each scene in SUN is associated
with 102-dimensional attributes describing its characteristics, such as lighting conditions,
weather conditions, and terrain. AWA2 is a coarse-grained dataset with 37,322 animal
images across 50 classes (10 seen classes and 40 unseen classes), covering a wide range
of animals, including mammals, birds, and reptiles. Each image in AWA2 is labeled with
attributes of 85 dimensions.

Table 1. Statistics of the AWA2, CUB, FLO and SUN datasets, including visual feature dimension
Dx, semantic feature dimension Ds, number of seen classes Ns, number of unseen classes Nu and
number of all instances Ni.

Dataset Dx Ds Ns Nu Ni

AWA2 2048 85 40 10 37,322
CUB 2048 312 150 50 11,788
FLO 2048 1024 82 20 8189
SUN 2048 102 645 72 14,340

4.2. Evaluation Protocol

During testing, the accuracy is assessed on the test sets for both seen classes (S)
and unseen classes (U). Here, U represents the average accuracy for each class on test
images of unseen classes, indicating the model’s ability to classify samples from previously
unseen classes. S represents the average accuracy for each class on test images of seen
classes, reflecting the model’s ability to classify samples from seen classes. H (defined
as (H = (2 × S × U)/(S + U)) represents the harmonic mean of S and U, serving as an
evaluation metric for the performance of GZSL classification.

4.3. Implementation Details

SDDN mainly consists of a SDE module and a disentanglement network. The SDE
module mainly consists of a student network, a self-teacher network, a generator and a
discriminator. The student network is a ResNet101 model pre-trained on ImageNet and
is used to extract visual features with a dimension of 2048. The self-teacher network is
composed of the student network itself and the feature fusion method. In addition, the
generator is implemented using a multi-layer perceptron with a hidden layer dimension of
2048, and the discriminator is implemented using a fully connected layer and activation
function. The disentanglement network consists of an encoder, a decoder, a discriminator
and a semantic relationship matching model. Both the encoder and decoder are multi-layer
perceptrons with a single hidden layer and 2048 hidden units. The semantic relationship
matching model consists of two fully connected layers activated with Smooth Maximum
Unit (SMU) [42] activation function and Sigmiod function, respectively. The discriminator
is implemented using a fully connected layer and SMU activation function.

The hardware environment used by SDDN is an Intel i7-10700K CPU, RTX A5000
32GB GPU; the software environment is Ubuntu 20.04 LTS operating system, cuda 11.4.0,
and cudnn 8.2.4. SDDN is implemented in PyTorch 1.10.1. The Adam optimizer is used
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to optimize the parameters of each module. The learning rate of the Adam optimizer is
set to lr = 0.0001, β1 = 0.9 and β2 = 0.999. The batch size is 64. The loss weight λ1 of
the semantic relation matching method, the loss weight λ2 of the latent representation
independence method, and the weight λ3 of the visual–semantic discriminator are set
between 0.1–25.

Comparing with the State of the Art

To validate the effectiveness of our proposed SDDN model, we computed the seen
class accuracy rate S, unseen class accuracy rate U, and their harmonic mean H on the
aforementioned four datasets. We compared them with 15 state-of-the-art models, and the
comparison results are shown in Table 2. These 15 models are categorized into methods
based on generative models and methods not based on generative models. Generative-
based methods typically utilize techniques such as GANs or VAEs to generate synthetic
unseen class data to augment the training dataset. These synthetic data can be used to
train models in ZSL to improve their generalization capability to unseen classes. Non-
generative-based methods, on the other hand, do not rely on generating synthetic data but
achieve generalization to unseen classes through techniques such as feature embedding
and alignment of existing data. Our method belongs to the generative-based methods.

Table 2. Performance comparison in accuracy (%) on four datasets. Displaying the accuracies of seen
and unseen classes in GZSL, denoted as U, S, and H for the harmonic mean. The methods above
and below the horizontal line correspond to non-generative and generative approaches, respectively.
Results in bold font indicate the highest performance.

Method
FLO CUB AWA2 SUN

U S H U S H U S H U S H

TCN [43] - - - 52.6 52.0 52.3 61.2 65.8 63.4 31.2 37.3 34.0
DVBE [9] - - - 53.2 60.2 56.5 63.6 70.8 67.0 45.0 37.2 40.7

RGEN [10] - - - 60.0 73.5 66.1 67.1 76.5 71.5 44.0 31.7 36.8
TDCSS [44] 54.1 85.1 66.2 44.2 62.8 51.9 59.2 74.9 66.1 - - -

f-VAEGAN-D2 [45] 56.8 74.9 64.6 48.4 60.1 53.6 57.6 70.6 63.5 45.1 38.0 41.3
LisGAN [46] 57.7 83.8 68.3 46.5 57.9 51.6 52.6 76.3 62.3 42.9 37.8 40.2
CANZSL [5] 58.2 77.6 66.5 47.9 58.1 52.5 49.7 70.2 58.2 46.8 35.0 40.0
SE-GZSL [6] - - - 41.5 53.3 46.7 58.3 68.1 62.8 30.5 40.9 34.9

TIZSL [7] 70.4 68.7 69.5 52.1 53.3 52.7 76.8 66.9 71.5 32.3 24.6 27.9
FREE [3] 67.4 84.5 75.0 55.7 59.9 57.7 60.4 75.4 67.1 47.4 37.2 41.7

SDGZSL [2] 83.3 90.2 86.6 59.9 66.4 63.0 64.6 73.6 68.8 48.2 36.1 41.3
JG-ZSL [16] - - - 60.8 63.9 62.3 63.1 68.3 65.6 50.2 37.9 43.2
ICCE [47] 66.1 86.5 74.9 67.3 65.5 66.4 65.3 82.3 72.8 - - -

DGCNet-db [18] - - - 51.5 57.5 54.4 50.4 72.8 59.6 26.8 39.6 32.0
DVAGAN [17] - - - 52.5 57.3 54.8 65.9 82.0 73.1 44.7 37.9 41.0

Our SDDN 87.3 90.5 88.9 66.8 68.3 67.5 65.6 74.3 69.7 48.6 42.3 45.2

From the comparison results in the table, firstly, our SDDN achieved the highest
accuracy on U, S, and H on the FLO dataset, surpassing all compared models. Specifically,
we outperformed the second-best model by 2.3% in the H metric. There was a significant
improvement in the U metric, where we led the second-best by 4%. In the S metric, we were
ahead of the second-best by 0.3%. On the CUB dataset, we achieved the highest accuracy on
the U metric, leading the second-best by 1.1%. Additionally, we obtained the second-best
accuracy on both U and S metrics, leading the third-best by 6% and 1.9%, respectively. On
the SUN dataset, we attained the highest accuracy on both S and H metrics, leading the
second-best by 2% in the H metric and 1.4% in the S metric.

Overall, our performance was the best in the H metric on these three fine-grained
datasets, FLO, CUB, and SUN; the best on U in FLO; and the best on S in both FLO and
SUN. This indicates that the richer the information in the dataset, the more effectively our
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proposed method can capture it through self-distillation and disentanglement techniques,
separating visual–semantic consistent features and aligning them effectively.

5. Model Analysis
5.1. Ablation Study

In our ablation study, we aim to isolate the key components of SDDN and assess their
impact on GZSL. We remove the semantic relation matching loss (LSRM) to evaluate the
contribution of the Visual–Semantic Matching module to extracting semantically consistent
visual features. Omitting the Independence score (IND) allows us to evaluate its contribu-
tion to further separating visual–semantic consistent features. Additionally, we exclude
the loss of the self-distillation embedding module (LSDE) and then used the pre-trained
ResNet101 and regular generator without employing the self-distillation technique. This
evaluation helps assess the refinement effect of SDE on extracting and synthesizing visual
features, while validating the effectiveness of the disentanglement network. Our ablation
experiments were conducted on the FLO and CUB datasets, with the experimental results
presented in Table 3 and Figure 6.

Table 3. Ablation study of different component combinations on FLO and CUB datasets. Results are
reported in %, with the best results highlighted in bold.

Method
FLO CUB

U S H U S H

SDDN w/o LSRM and IND and
LSDE

39.6 50.2 44.2 35.3 40.1 37.5

SDDN w/o LSRM and IND 48.7 54.5 51.4 38.6 43.2 40.8

SDDN w/o LSRM 60.3 71.6 65.5 48.1 57.8 52.5

SDDN w/o IND 79.6 81.2 80.4 56.7 60.9 58.7

SDDN w/o LSDE 86.9 88.7 87.8 65.5 67.9 66.7

SDDN 87.3 90.5 88.9 66.8 68.2 67.5

Figure 6. Ablation study on different components combinations of the FLO and CUB datasets.

The results underscore the critical importance of the semantic relation matching
module (LSRM), independence score (IND), and self-distillation embedding module (LSDE)
for the performance of SDDN. Firstly, LSRM is particularly crucial for visual–semantic
feature alignment, as its removal leads to a significant decrease in the accuracy of seen
classes (S), unseen classes (U), and the harmonic mean (H). Secondly, IND is essential
for further separating visual–semantic consistent features from the original features, as
its removal results in lower U, S, and H values. Additionally, LSDE helps refine the
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original visual features of seen classes and the synthesized features of unseen classes, as
the model without LSDE performs lower in U, S, and H compared to the complete SDDN.
Furthermore, when comparing Table 1, it is found that the model without SDE still achieves
the highest H score on FLO and CUB, indicating the effectiveness of the disentanglement
network. Finally, the complete SDDN model demonstrates superior performance across all
metrics, proving its effectiveness in GZSL.

5.2. Hyper-Parameter Analysis

In this study, the optimization objective of SDDN is determined by three critical hy-
perparameters: the coefficient of semantic relationship matching loss (λ1), the coefficient of
independence of latent representations (λ2), and the coefficient of discriminator loss (λ3). To
elucidate the influence of each hyperparameter on model performance, sensitivity analysis
was conducted by varying the hyperparameter values in the experiments. Specifically, λ1
was varied within the range of 0.3–20.0, while λ2 and λ3 were varied within the range of
0.1–3.0. Figure 7 illustrates the significant impact of hyperparameter values λ1, λ2, and
λ3 on the experimental outcomes. Notably, when λ1 is set to 18, λ2 is set to 0.5, and λ3 is
set to 2, the model achieves its highest accuracy on the FLO dataset, whereas when λ1 is
set to 1, λ2 is set to 0.6, and λ3 is set to 0.3, the model achieves its highest accuracy on the
CUB dataset. These observations underscore the substantial influence of hyperparameter
weights on model accuracy, indicating the model’s high sensitivity to these hyperparame-
ters. Based on these findings, we advocate for future experiments to focus on exploring
the specific impact of minor fluctuations in these three hyperparameter values on accuracy.
This systematic analysis of hyperparameters will contribute to a deeper comprehension
of model behavior and offer valuable insights for optimizing model performance across
diverse datasets.

Figure 7. Hyperparameter analysis: the impact of values for weights λ1, λ2, and λ3 on model
performance is examined.

5.3. Zero-Shot Retrieval Performance

To assess the practical application performance of our SDDN framework, we con-
ducted zero-shot retrieval experiments comparing SDDN with two other state-of-the-art
generative-based GZSL frameworks: DGGNet-db and DVAGAN. The experiment follows
the zero-shot retrieval protocol in SDGZSL [2]. In zero-shot retrieval experiments, we
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initially provide semantic features of unseen classes, followed by employing the generation
modules of SDDN, DGGNet-db, and DVAGAN to synthesize a certain number of visual
features for these unseen classes. Throughout this process, the average of the synthesized
visual features for each category is computed as the retrieval feature. Subsequently, the
cosine similarity between the retrieval features and the true features is calculated, and the
true features are ranked in descending order based on this similarity. The performance of
zero-shot image retrieval is evaluated using mean Average Precision (mAP). Experimental
analyses are performed on three datasets: CUB, AWA2, and SUN. The results, illustrated
in Figure 8, compare SDDN, DGGNet-db, and DVAGAN in terms of zero-shot retrieval
performance. The horizontal coordinates 100, 50, and 25 represent the proportions of un-
seen category images in the test dataset, being 100%, 50%, and 25%, respectively, while the
vertical coordinate represents the average retrieval accuracy. Results indicate significantly
higher zero-shot retrieval performance of the SDDN framework on the CUB and SUN
datasets compared to DGGNet-db and DVAGAN. In the AWA2 dataset, we achieve the best
performance when the proportion of unseen category images reaches 50%, and it remains
close to the best performance when the proportion reaches 100%. These zero-shot retrieval
performance tests on the three datasets further validate the effectiveness of the model.

Figure 8. Comparison of zero-shot retrieval performance.

6. Conclusions

In this paper, we propose a generalized zero-shot learning framework that utilizes a
self-distillation and disentanglement network to enhance visual–semantic feature consis-
tency. Initially, for improving the semantic consistency of visual features, we develop a
self-distillation embedding framework integrating self-distillation techniques with a condi-
tional generator to prompt the synthesis of refined visual features. Subsequently, to further
promote visual–semantic feature consistency, we design a disentanglement network. We
use semantic relation matching networks and latent representation independence methods
to facilitate the separation of visually semantically consistent features from inconsistent
features. Additionally, we devise a cross-reconstruction method to align visual and se-
mantic features within a visual–semantic common space, thereby enhancing the semantic
consistency of visual–semantic features. Extensive experiments are conducted on four
widely used benchmark datasets in GZSL. We compare SDNN with current state-of-the-art
methods, thereby demonstrating the superiority of the proposed SDNN framework. In
future work, we intend to optimize the model further and apply it in the field of medical
diagnostics to assist in identifying new disease patterns.
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