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1 Introduction

Higher-dimensional conformal field theories (CFTs) are intrinsically strongly coupled and as
such do not admit traditional Lagrangian descriptions. Therefore alternative techniques must
be used to define and study them. These include holography [1–4], bootstrap methods [5–9],
chiral algebras [10, 11], deconstruction [12, 13] or discrete light cone quantization [14, 15].
However to date there is no systematic approach to these theories.

An alternative approach arises by considering a certain conformal mapping of six-
dimensional (6D) Minkowski space that brings one of the two light cone coordinates, say x+,
into a finite range: x+ ∈ (−πR, +πR) [16], where R is a constant with dimensions of length
that is introduced by the coordinate transformation along with an anti-symmetric and self-dual
tensor Ωij with ΩijΩjk = −R−2δik. This can be done in such a way that ∂+ remains a Killing
direction. In this way we can perform a Kaluza-Klein reduction along x+ while still studying
the non-compact six-dimensional theory. The resulting five-dimensional (5D) theory has an
SU(1, 3)×U(1) spacetime symmetry group that commutes with the momentum generator P+
(which generates the U(1) factor) [17]. Due to the novel coordinate transformation used in the
null compactification one finds that the SU(1, 3) × U(1) symmetry is an Ω-deformed version
of the more familiar z = 2 Schrödinger group of conventional non-relativistic conformal field
theories [18]. In particular the generators of SU(1, 3) are Mi+, K+, P−, Pi, B, CI , T , which
are linearly related to the familiar generators M̂µν , K̂µ, P̂µ, D̂ of SO(2, 6). Here, P− is the
Hamiltonian, and Pi generates spatial translations. B is the rotation generated by Ωij , while
CI are the remaining spatial rotations that commute with Ωij . Finally, T is Lifshitz scaling
symmetry, Mi+ is an Ω-deformed Galilean boost, and K+ is a special conformal generator.

Unlike correlation functions with Schrödinger symmetry, those constrained by SU(1, 3)×
U(1) have power-law suppression in space and time. Indeed, by assembling five-dimensional
operators into Fourier series along the compact null direction, one can recover the correlation
functions of six-dimensional CFTs in Minkowski space without having to take the limit
R → ∞ [19]. A key benefit of the theories with SU(1, 3) × U(1) symmetry is that they
admit Lagrangian descriptions, including theories with a large number of supersymmetries as
appropriate for reduction of six-dimensional CFTs with (2, 0) or (1, 0) supersymmetry [16, 21].
These are rather non-standard gauge theories and the role of the P+ eigenvalue is given by the
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instanton number. They admit a Lifshitz scaling property and as such might be embedded into
UV complete theories [22]. Thus there is some hope that these Lagrangians give well-defined
path integrals and can be used to compute correlation functions in six-dimensional CFTs
and also elucidate the relation of abstract CFT to gauge field theories.

One of the most important concepts in conformal field theory is the operator product
expansion (OPE), which expresses the product of two local operators located at different
points as an infinite series of local operators located at one of the two points. The existence
of such an expansion is a basic assumption of Lorentzian CFTs like the 6D (2, 0) theory,
and we will assume that the same holds for local scalar operators in the 5D theories which
arise from them via the reduction described above. Note that this may be a nontrivial
assumption since such operators correspond to Fourier modes along the null direction and
are therefore non-local from a 6D perspective. Using the 5D OPE, we then show that if
one of the operators in a three-point function satisfies the constraint p+ = ±∆/2R, where
p+ is the P+ eigenvalue and ∆ is the scaling dimension, then the three-point function can
be fully determined. Moreover, we show that this agrees with the result obtained from
Fourier decomposing a six-dimensional Lorentzian CFT correlator along the compact null
direction. Note that for generic operators, the 5D three-point functions are not completely
fixed by SU(1, 3) × U(1) [19], so it appears that the 5D OPE can be used to deduce 6D
correlators at least for certain operators.

Before proceeding, let us briefly point out an alternative interpretation of the correlation
functions studied in this letter. Most generally, they can be understood as the correlation
functions ⟨L1L2 . . . Ln⟩ of a collection of line operators Li in a six-dimensional Lorentzian
relativistic CFT, each extended along an integral curve of the same null conformal Killing
vector field. This vector field is fixed by the parameter R, and in particular as we take R → ∞,
the lines follow parallel null geodesics. We expect our results to generalise to SU(1, n) theories,
corresponding to correlation functions of null line operators in 2n-dimensional relativistic
conformal field theory.

This letter is organised as follows. In section 2, we review some basic properties of the
5D theories and their symmetries. In section 3, we consider the OPE of scalar operators
in the 5D theories and show that SU(1, 3) × U(1) symmetry can be used to fix the OPE
coefficients for all the descendants of a primary operator appearing the expansion in terms
of the coefficient of that operator, i.e. the leading OPE coefficient. In general, the leading
OPE coefficient is an unfixed function, however we find that when p+ = ±∆/2R all the
OPE coefficients can be determined. In section 4 we show that scalar three-point functions
are determined by the leading coefficient in the OPE of two of the operators. Hence, we
can fix the form of a three-point function if one of the operators in a three-point correlator
satisfies p = ±∆/2R, and we show that this form arises from Fourier expanding 6D Lorentzian
correlators. In section 5 we give a short conclusion.

2 Review

The five-dimensional theories we consider arise from placing the 6D Lorentzian CFTs on
a manifold with metric

ds2 = −2dx+
(

dx− − 1
2Ωijxidxj

)
+ dxidxi, (2.1)
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where i ∈ {1, 2, 3, 4}, −πR ≤ x+ ≤ πR, and Ω is an anti-self-dual 2-form satisfying ΩikΩjk =
R−2δij . This metric is conformally flat and can be obtained from a standard 6D Minkowski
metric ds2 = dx̂µdx̂µ via a change of variables and Weyl transformation [19]. Reducing along
x+ then gives rise to a five-dimensional theory that admits a Lagrangian description which
can in principle be used to compute 6D observables non-perturbatively via path integrals [20].
Although we will not explicitly need the Lagrangians, for the interested reader we display
the bosonic part below [16]:

Lbos ∝ Tr
{1

2Fi−F i
− + 1

2GijF ij − 1
2∇iX

I∇iXI
}

, (2.2)

where ∇i = Di − 1
2ΩijxjD−, with D− and Di being standard covariant derivatives for

the gauge fields A− and Ai, Gij is a self-dual Lagrange multiplier, Fij is a field strength
constructed from a linear combination of the field strengths Fij and F−i, and XI are scalars.
Here, I is an R-symmetry index.

The Lagrangian enjoys an SU(1, 3) × U(1) spacetime symmetry, which is the isometry
group of the metric in (2.1) after reducing along the x+ direction. From the 6D perspective
the U(1) is generated by P+ = ∂+ while in the 5D Lagrangian theory it corresponds to
the instanton number [20]. Among the 15 generators of SU(1, 3), the ones that we will
primarily make use of in this paper are

(Mi+)∂ =
(

1
2Ωijx−xj − 1

8R−2|x|2xi
)

∂− + x−∂i + (1
2Ωikxkxj + 1

2Ωjkxkxi − 1
4Ωij |x|2)∂j ,

(K+)∂ = (2(x−)2 − 1
8R−2|x|4)∂− + (1

2Ωijxj |x|2 + 2x−xi)∂i ,

(T )∂ = 2x−∂− + xi∂i , (2.3)

where |x|2 = xixi. In the limit R → ∞ these generators reduce to Galilean boosts, special
Schrödinger transformations, and a Lifshitz scaling, respectively. For more details of the
symmetry algebra, see [17, 20].

Primary operators are labelled by their Liftshitz dimension ∆, and P+ eigenvalue p+ (in
what follows we drop the subscript + to clear up the notation), as well as their irreducible
representation (RO[B], RO[CI ]) under the U(1) × SU(2) rotation subgroup. They are defined
by the following transformation properties:

[O(x), Mi+] = (Mi+)∂ O(x) +
(

1
2∆Ωijxj − ipxi + 2

RxiRO[B] − ΩikηI
jkxjRO[CI ]

)
O(x)

[O(x), K+] = (K+)∂ O(x) +
(
2∆ x− − ip|x|2 + 2

R |x|2RO[B] − xixjΩikηI
jkRO[CI ]

)
O(x)

[O(x), T ] = (T )∂ O(x) + ∆O(x) . (2.4)

We will only look at scalar operators so we can drop the RO[CI ] and RO[B] terms. Such
operators then satisfy the conditions

[O(0), Mi+] = 0
[O(0), K+] = 0 (2.5)

[O(0), T ] = ∆O(0) .
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Note that conservation of P+ implies that the sum over all the U(1) charges of the operators
in a given correlator should vanish, i.e.

∑
K pK = 0. Although we will not need to be explicit

about the scalar operators which appear in correlation functions, to get an idea of the kind
of operators we have in mind, recall that in the 6D (2, 0) theory one can construct protected
operators by taking the trace of a product of scalar fields XI which are symmetrised and
traceless in the R-symmetry indices. Upon reduction to 5D, we once again get a trace of a
product of XI fields but it will be dressed with an instanton operator which encodes the
mode number along the compact null direction [20].

As shown in [19], the two-point scalar correlators of the theory are completely fixed by
the SU(1, 3) × U(1) symmetry and take the form

⟨OI(x1)OJ(x2)⟩ = cIJδpI ,−pJ δ∆I ,∆J

( 1
z12z̄12

)∆I
2
(

z12
z̄12

)RpI

, (2.6)

where for any two points

zab = x−
a − x−

b + 1
2Ωijxi

axj
b + i

4R
(xi

a − xi
a)(xi

a − xi
b) , (2.7)

which satisfies z̄ab = −zba. Moreover, three-point scalar correlators are constrained by the
SU(1, 3) Ward identities to take the form

⟨OI(x1)OJ(x2)OK(x3)⟩ =
( 1

z12z̄12

)∆I +∆J −∆K
4

( 1
z23z̄23

)−∆I +∆J +∆K
4

( 1
z13z̄13

)∆I −∆J +∆K
4

×
(

z12
z̄12

)R
3 (pI−pJ ) (z23

z̄23

)R
3 (pJ−pK) (z13

z̄13

)R
3 (pI−pK)

× HIJK

(
z21z23z31
z̄12z̄23z̄31

)
δ−pK ,pI+pJ , (2.8)

for an unknown function HIJK of the single variable ζ = z12z23z31/z̄12z̄23z̄31.
It was shown in [19] that the above forms for the 2-point (2.6) and 3-point functions (2.8)

are consistent with the correlation functions of local operators in the initial SO(2, 6)-invariant
6D theory, with the pI corresponding to momentum along a conformally compactified sixth
direction, as they must be. That is, we can dimensionally reduce the well-known form of 2-
and 3-point functions to obtain 5D correlators of the above form. In particular, the functions
HIJK are entirely fixed, up to an overall factor of the relevant 6D OPE coefficient, as we
review in detail in section 4.1. Conversely, it was shown that we can perform a Fourier
resummation of such 5D correlators — taking care of certain ordering ambiguities — to
recover their 6D counterparts. This is the essential mechanism by which one might study
6D correlation functions from a 5D perspective.

3 5D operator product expansion

In general, the operator product expansion of two primary operators can be written as a
sum over primaries and descendants, which are obtained by acting with derivatives on the
primaries. The coefficients in this sum are known as OPE coefficients. Our goal in this

– 4 –



J
H
E
P
0
6
(
2
0
2
4
)
0
5
5

section will be to show that SU(1, 3) symmetry can be used to fix all the descendent OPE
coefficients in terms of the primary OPE coefficients. This is a standard result in relativistic
CFT, and was extended to theories with Schrödinger symmetry in [23, 24]. Following those
references, we consider an OPE of scalar primary operators of the form

OI(x)OJ(0) =
∑

K,n⃗,m

CK,n⃗,m
IJ (x)∂n⃗∂m

−OK(0)

=
∑
K

(
CK,⃗0,0

IJ (x)OK(0) + CKi,0
IJ (x)∂iOK(0)

+ CKij,0
IJ (xI)∂i∂jOI(0) + CK,⃗0,1

IJ (x)∂−O(0) + . . .
)

, (3.1)

where the sum is over primary operators OK as well as their descendants ∂n⃗∂m
−OK . Here

n⃗ is short hand for a string of partial spatial derivatives with length |n⃗| and m = 0, 1, 2, . . .

counts the number of ∂− derivatives. In the second line we have explicitly written out the
first four terms for illustration.

The idea is to commute T , Mi+ and K+ given in section 2 with the left and right hand
side of (3.1) and then evaluate the left hand side using (3.1). This leads to a set of differential
equations that relate the various coefficients CK,i,0

IJ , CK,kl,0
IJ etc. to CK,⃗0,0

IJ .
For example we can consider T . Using (2.4) and (2.5) on the left hand side of (3.1) we find

[T,OI(x)OJ(0)] = [T,OI(x)]OJ(0)+OI(x)[T,OJ(0)]

=−((T )∂ OI(x)+∆IOI(x))OJ(0)−OI(x)(∆JOJ(0))

=−(T )∂ OI(x)OJ(0)−(∆I +∆J)OI(x)OJ(0)

=−
∑

K,n⃗,m

(T )∂ CK,n⃗,m
IJ (x)∂n⃗∂m

− OK(0)−(∆I +∆J)
∑

K,n⃗,m

CKn⃗,m
IJ (x)∂n⃗∂m

− OK(0) .

(3.2)

Note that (T )∂ involves derivatives with respect to x−, xi and hence does not act on ∂n⃗∂m
−OI(0).

On the other hand on the right hand side we find

[
T,
∑

I,n⃗,m

CK,n⃗,m
IJ (x)(x)∂n⃗∂m

−OK(0)
]

=
∑

I,n⃗,m

CK,n⃗,m
IJ (x)[T, ∂n⃗∂m

−OK(0)]

= −
∑

K,n⃗,m

(∆I + |n⃗| + 2m)CK,n⃗
|n⃗|,m(x)∂n⃗∂m

−OK(0) . (3.3)

Comparing the two sides leads to the infinite series of differential equations satisfied by
each of the coefficients CK,n⃗,m

IJ (x):

(T )∂ CK,n⃗,m
IJ (x) − (∆K + |n⃗| + 2m − ∆I − ∆J)CK,n⃗,m

IJ (x) = 0 , (3.4)

which simply tell us how the coefficients CKn⃗,m
IJ (x) need to scale as functions of x−, xi.
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Let us now turn evaluate the commutator with Mi+. Since [Mi+,OJ(0)] = 0 the left
hand side is

[Mi+,OI(x)OJ(0)] = [Mi+,OI(x)]OJ(0)

= −((Mi+)∂ OI(x) +
(

1
2∆IΩijxj − ipIxi

)
OI(x))OJ(0)

= −
∑

K,n⃗,m

(Mi+)∂ CK,n⃗,m
IJ (x)(x)∂n⃗∂m

−OK(0)

−
(

1
2∆IΩijxj − ipIxi

) ∑
K,n⃗,m

CK,n⃗
|n⃗|,m(x)∂n⃗∂m

−OK(0) . (3.5)

On the other hand[
Mi+,

∑
K,n⃗,m

CK,n⃗,m
IJ (x)∂n⃗∂m

−OK(0)
]

=
∑

K,n⃗,m

CK,n⃗,m
IJ (x)[Mi+, ∂n⃗∂m

−OK(0)] . (3.6)

To evaluate this we can first consider

[Mi+, ∂n⃗∂m
−OK(x)] = ∂n⃗∂m

− [Mi+,OK(x)]

= −∂n⃗∂m
−

(
(Mi+)∂ OK(x) +

(
1
2∆KΩijxj − ipKxi

)
OK(x)

)
, (3.7)

and then set x = 0. One can evaluate the first two terms to find

[Mi+,OK(0)] = 0

[Mi+, ∂kOK(0)] = −
(1

2∆KΩik − ipKδik

)
OK(0) (3.8)

Comparing the coefficients of OK(0) and ∂kOK(0) we can read off the equations

(Mi+)∂ CK,⃗0,0
IJ +

(1
2∆IΩijxj − ipIxi

)
CK,⃗0,0

IJ = −i

(
pKδij + i

2∆KΩij

)
CK,j,0

IJ . (3.9)

We could keep going by including higher order descendants and their coefficients but this
becomes increasingly tedious. It is clear that in general these equations can be used to
determine CK,n⃗,m

IJ in terms of CK,⃗0,0
IJ .

3.1 A special case

Let us consider special case where

pK = ±∆K/2R . (3.10)

Then we have (
pKδij − i

1
2∆KΩij

)(
pKδjk + i

1
2∆KΩjk

)
= 0 , (3.11)

and hence from (3.9) we find the equation(
δij ∓ i

1
2Ωij

)(
(Mj+)∂ CK,⃗0,0

IJ + 1
2∆IΩjkxkCK,⃗0,0

IJ − ipIxjCK,⃗0,0
IJ

)
= 0 . (3.12)
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The reason for this reduction is that for p2
K = ∆2

K/4R2

ÕiK = pK∂iOK + i

2∆KΩij∂jOK , (3.13)

is also a primary operator if OK is a scalar primary. Said another way, an OK with (3.10)
is the highest weight state of a special, short conformal multiplet.

Thus we find a single first order differential equation for CK,⃗0,0
IJ alone. To solve this we

can assume CK,⃗0,0
IJ is of the form CK,⃗0,0

IJ = CK,⃗0,0
IJ (x−, |x|2). Indeed, this follows from the

consistency of the OPE with the rotational symmetries. If we define

z = x− + i

4R
|x|2 , (3.14)

then the differential equation for CK,⃗0,0
IJ reduces to

z∂CK,⃗0,0
IJ = −(∆I/2 − pIR)CK,⃗0,0

IJ + sign

z̄∂̄CK,⃗0,0
IJ = −(∆I/2 + pIR)CK,⃗0,0

IJ − sign . (3.15)

These are solved by

CK,⃗0,0
IJ = z−

1
2 ∆I+RpI C̃K,⃗0,0

IJ (z̄) + sign

CK,⃗0,0
IJ = z̄−

1
2 ∆I−RpI C̃K,⃗0,0

IJ (z) − sign (3.16)

for any (anti) holomorphic function C̃K,⃗0,0
IJ . However we note that CK,⃗0,0

IJ must satisfy (3.4)
which, in terms of z, z̄ is

2(z∂ + z̄∂̄)CK,⃗0,0
IJ = (∆K − ∆I − ∆J)CK,⃗0,0

IJ , (3.17)

and this fixes C̃K,⃗0,0
IJ up to a multiplicative constant cK

IJ . In particular we find

CK,⃗0,0
IJ = cK

IJ

( 1
zz̄

) 1
2 αIJ,K

(
z

z̄

)RpI∓
1
2 αIK,J

, (3.18)

where we introduced the notation

αIJ,K = 1
2∆I + 1

2∆J − 1
2∆K . (3.19)

Hence, when a primary operator appearing in an OPE satisfies the constraint in (3.10), we
can determine the functional form of its OPE coefficient. In [23], a similar argument was
used to deduce the OPE coefficients of primary operators satisfying the unitarity bound
∆ = d/2 in theories with Schrödinger symmetry, where d is the number of spatial dimensions.
While the method we used is basically the same, the physical interpretation of our result is
very different. First of all, the constraint in (3.10) leads to a first-order differential equation
for the OPE coefficients, whereas the unitarity bound leads to a second order differential
equation. Noting that our correlators reduce to Schrödinger correlators with d = 4 when
Ω → 0, it would be interesting to investigate how the Ω-deformed version of the unitarity
bound constrains OPE coefficients, which is a different constraint than the one in (3.10).
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4 Correlators from OPEs

Let us see how we can use the OPE coefficients to learn about correlation functions. First we
will demonstrate the that the solution in (3.18) can be used to derive the two-point scalar
correlators reviewed in section 2. Next we will show that any three-point scalar correlator
can be determined in terms of a certain OPE coefficient in the OPE of two operators in the
correlator. If one of the operators in the correlator satisfies the constraint in (3.10), it is then
possible to determine the functional form of the three-point function and we will show that it
agrees with the result of dimensionally reducing 6D Lorentzian correlators. Along the way,
we will also derive an analogue of crossing symmetry for three-point correlators.

We start be deriving scalar two-point functions from the OPE coefficients computed
in (3.18) by simply noting that

⟨OI(x1)OJ(x2)⟩ =
∑

K,n⃗,m

CK,n⃗,m
IJ (x1, x2)⟨∂n⃗∂m

−OK(x2)⟩

=
∑
n⃗,m

C0,n⃗,m
IJ (x1, x2)∂n⃗∂m

− ⟨O0(x2)⟩

= C0,⃗0,0
IJ (x1, x2) . (4.1)

Here we have used the fact that only the identity operator, denoted by O0, has a non-
vanishing one-point function; ⟨O0(0)⟩ = 1. Furthermore the identity operator satisfies
p0 = ±∆0/2R = 0 so we can impose both signs in (3.12) (indeed the left-hand-side vanishes
without the projector) and hence we know from (3.18) that

C0,⃗0,0
IJ (x1, x2) = c0

IJ

( 1
z12z̄12

) 1
2 αIJ,0 (z12

z̄12

)RpI∓
1
2 αI0,J

= c0
IJ

( 1
z12z̄12

) 1
4 (∆I+∆J ) (z12

z̄12

)RpI∓
1
4 (∆I−∆J )

. (4.2)

Lastly we note that since either choice of sign must work this requires ∆I = ∆J , as is
well-known for two-point functions. In this way we recover (2.6), which was previously derived
by solving the conformal Ward identities [19].

Now let us consider three-point correlators. Taking the OPE of the first two operators
in a three-point correlator gives

⟨OI(x1)OJ(x2)OK(x3)⟩ =
∑

L,n⃗,m

CL,n⃗,m
IJ (z12, z̄12)∂n⃗∂m

− ⟨OL(x2)OK(x3)⟩

=
∑

I,n⃗,m

cKLδ∆K ,∆L
δ−pK ,pLCL,n⃗,m

IJ (z12, z̄12)

× ∂n⃗∂m
−

( 1
z23z̄23

)∆K
2
(

z23
z̄23

)−RpK

 , (4.3)

where the derivatives are with respect to x2. Thus, formally, there is a differential operator
that acts on two-point functions to produce three-point functions. We have argued above that
in principle all the CK,n⃗,m

IJ can be determined from CK,⃗0,0
IJ . On the other hand, the general
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solution to the conformal Ward identities in (2.8) contains an unfixed function HIJK . Thus
the form of the three-point functions are fixed by symmetries of the theory and the unknown
function HIJK is determined by the leading OPE coefficient CK,⃗0,0

IJ . More generally the
operator appearing in the last line of (4.3) acts on n-point functions to produce (n + 1)-point
functions and we recover the result, familiar from Lorentzian CFTs, that all the n-point
functions are in principle determined by the OPE coefficients CK,n⃗,m

IJ . Of course this is a
formidable task in general.

Recall that two and three-point functions in Lorentzian CFTs are completely fixed by
conformal symmetry while four-point functions are determined up to an unknown function
of conformal cross ratios. In this sense, we see that three-point functions of SU(1, 3) × U(1)
theories are analogous to four-point functions in Lorentzian CFTs. In Lorentzian CFTs,
four-point functions are further constrained by crossing symmetry, which forms the foundation
of the conformal bootstrap [25–28]. We may therefore expect a similar constraint to play a
role for three-point functions of SU(1, 3)×U(1) theories. To see how this works, we first take
the limit x1 → x2 in (4.3) keeping z12/z̄12 and z23 finite and arbitrary. If we write

CK,n⃗,m
JK (z12, z̄12) = xn⃗

12(x−
12)mC̄K,n⃗,m

JK (z12, z̄12) , (4.4)

where xn⃗ is shorthand for a string of coordinates xixj . . . of length |n⃗| (it could also involve
contributions from Ωjkxk in place of xj) then it follows from (3.4) that

C̄K,n⃗,m
JK (z12, z̄12) =

( 1
z12z̄12

)1
2 αIJ,K

F K,n⃗,m
JK (z12/z̄12) , (4.5)

for an unknown function F K,n⃗,m
JK (z12/z̄12). Thus the most singular term comes from CK,⃗0,0

IJ

and we get

lim
x1→x2

⟨OI(x1)OJ(x2)OK(x3)⟩

=
∑
L

CL,⃗0,0
IJ (z12, z̄12)⟨OL(x2)OK(x3)⟩ + . . .

=
∑
L

cKLδ∆L,∆K
δ−pL,pK CL,⃗0,0

IJ (z12, z̄12)
( 1

z23z̄23

)∆K
2
(

z23
z̄23

)−RpK

+ . . .

=
∑
L

cKLδ∆K ,∆L
δ−pL,pK F L,⃗0,0

IJ

(
z12
z̄12

)( 1
z12z̄12

)∆I +∆J −∆L
4

( 1
z23z̄23

)∆K
2
(

z23
z̄23

)−RpK

+ . . . ,

(4.6)

where the ellipsis are less singular terms.
On the other hand taking the same limit of (2.8) and noting that z31 = −z̄13 we find

lim
x1→x2

⟨OI(x1)OJ(x2)OK(x3)⟩ = lim
x1→x2

δ−pK ,pI+pJ

( 1
z12z̄12

)∆I +∆J −∆K
4

( 1
z23z̄23

)∆K
2

×
(

z12
z̄12

)R
3 (pI−pJ ) (z23

z̄23

)R
3 (pI+pJ−2pK)

HIJK

(
z12
z̄12

)
.

(4.7)

– 9 –



J
H
E
P
0
6
(
2
0
2
4
)
0
5
5

The first term is diverging but it matches in both expressions. So do the second and fourth
terms (since pI + pJ + pK = 0). The p-conserving delta-functions also match in both
expressions as pL = pI + pJ . Thus comparing (4.6) with (4.7) we read off

HIJK

(
z12
z̄12

)
=
∑
L

cKLδ∆K ,∆L
δ−pL,pK F L,⃗0,0

IJ

(
z12
z̄12

)(
z12
z̄12

)−R
3 (pI−pJ )

. (4.8)

Alternatively we can consider a different limit x2 → x3:

lim
x2→x3

⟨OI(x1)OJ(x2)OK(x3)⟩

=
∑
L

CL,⃗0,0
JK (z23, z̄23)⟨OI(x1)OL(x3)⟩+. . .

=
∑
L

cILδ∆I ,∆I
δ−pI ,pI CL,⃗0,0

JK (z23, z̄23)
( 1

z13z̄13

)∆I
2
(

z13
z̄13

)RpI

+. . .

=
∑
L

cILδ∆I ,∆L
δ−pI ,pLF L,⃗0,0

JK

(
z23
z̄23

)( 1
z23z̄23

)∆J +∆K −∆L
4

( 1
z13z̄13

)∆I
2
(

z13
z̄13

)RpI

+. . . .

(4.9)

Again taking the same limit of (2.8) we find

lim
x2→x3

⟨OI(x1)OJ(x2)O3(x3)⟩

= lim
x2→x3

( 1
z12z̄12

)∆I +∆J −∆K
4

( 1
z23z̄23

)−∆I +∆J +∆K
4

( 1
z13z̄13

)∆I −∆J +∆K
4

×
(

z12
z̄12

)R
3 (pI−pJ )(z23

z̄23

)R
3 (pJ−pK)(z13

z̄13

)R
3 (pI−pK)

HIJK

(
z12z23z31
z̄12z̄23z̄31

)
δ−pK ,pI+pJ

= lim
x2→x3

( 1
z23z̄23

)∆J +∆K −∆I
4

( 1
z13z̄13

)∆I
2
(

z13
z̄13

)RpI
(

z23
z̄23

)R
3 (pJ−pK)

HIJK

(
z23
z̄23

)
δ−pK ,pI+pJ .

(4.10)

This time matching gives us

HIJK

(
z23
z̄23

)
=
∑
L

cILδ∆I ,∆L
δpI ,−pLF L,⃗0,0

JK

(
z23
z̄23

)(
z23
z̄23

)−R
3 (pJ−pK)

. (4.11)

However we must find the same function HIJK in both limits and so we require that in general∑
L

cKLδ∆L,∆K
δ−pL,pK F L,⃗0,0

IJ (ζ) ζ−
R
3 (pI−pJ ) =

∑
L

cILδ∆L,∆I
δ−pI ,pLF L,⃗0,0

JK (ζ) ζ−
R
3 (pJ−pK) ,

(4.12)

where ζ is the SU(1, 3)-invariant cross-ratio defined below (2.8). We can think of this as a
form of crossing symmetry for scalar three-point functions of SU(1, 3) × U(1) theories. We
expect that this relation holds for any consistent set of OPE coefficients. Indeed we will
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be able to check this in the special case below where both the first and third operators
satisfy (3.10) and hence the OPE coefficients are determined by (3.18). Conversely in the
general case it would be interesting to know if this constraint can be used to restrict or even
determine the OPE coefficients. We leave this for future work.

4.1 Comparison with dimensional reduction

Let us compare the above results with what we find from dimensional reduction. After Fourier
expanding three-point scalar correlators of a 6D Lorentzian CFT along a compact null direction
and comparing to (2.8), one finds that the functionHIJK takes the following form [19]:

HIJK(ζ) = h
∞∑

m=0

(
−pKR−∆K

2 +αJK,I−m−1
−pKR−∆K

2 −m

)(
pIR−∆I

2 +αIJ,K−m−1
pIR−∆I

2 −m

)(
αKI,J +m−1

m

)

×ζ−
1
2 αKI,J + 1

3 (pIR−pKR)−m , (4.13)

where h is a constant and assume that all ∆I are even integers. Note that the formally infinite
sum is in fact finite as the binomial coefficients vanish when the lower entry is negative.

One case we can check is pK = −∆K/2R. In this case HIJK(ζ) simplifies to

HIJK(ζ) = hζ−
1
2 αKI,J + R

3 (pI−pK) . (4.14)

Since all the operators that appear in (4.8) have pL = −pK and ∆L = ∆K we know that
pL = ∆L/2R also. Therefore F L

IJ must take the simple monomial form found in (3.18):

F L,⃗0,0
IJ (ζ) = fL

IJζ−
1
2 αKI,J +pIR . (4.15)

Thus we find, from (4.8),

HIJK(ζ) =
∑
L

cILδ∆L,∆K
δ−pL,pK F K,⃗0,0

IJ (ζ) ζ−
R
3 (pI−pJ )

∝ ζ−
1
2 αKI,J + R

3 (pI−pK) , (4.16)

in agreement with (4.14).
As another case we can take pI = ∆I/2R where HIJK in (4.13) also takes the form (4.14).

Now we use the crossed form (4.11)

HIJK(ζ) =
∑
L

cILδ∆L,∆K
δ−pL,pI F L,⃗0,0

JK (ζ) ζ−
R
3 (pJ−pK) . (4.17)

We see that now pL = −pI and ∆L = ∆I so pL = −∆L/2R and F L
JK has just one term:

F L,⃗0,0
JK = fL

JKζ
1
2 αIJ,K+pJ R

= fL
JKζ−

1
2 αKI,J + 1

2 ∆I+pJ R

= fL
JKζ−

1
2 αKI,J +pIR+pJ R , (4.18)
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and hence

HIJK(ζ) ∝ ζ−
1
2 αKI,J +pIR+pJ R−R

3 (pJ−pK)

= ζ−
1
2 αKI,J + R

3 (pI−pK) , (4.19)

in agreement with (4.14). And hence it follows that if both pI = ∆I/2R and pK = −∆K/2R

then the crossing symmetry relation (4.12) is satisfied (as one can also check directly).

5 Conclusions

In this letter we have considered the operator product expansion for scalar operators in
5D field theories with an SU(1, 3) × U(1) spacetime symmetry. In particular we showed
that if a primary operator OK appearing an OPE of primary operators OI and OJ satisfies
pKR = ±∆K/2 (where ∆K is its scaling dimension and pK is its U(1) charge), then its OPE
coefficient CK,⃗0,0

IJ can be determined in terms of a single constant. Furthermore, following the
argument presented in [23] (see also [24]), we showed how the unknown function HIJK(ζ) that
appears in the general solution to the three-point Ward identities can be determined from
CK,⃗0,0

IJ . In the special case pKR = ±∆K/2 we were therefore able to determine HIJK(ζ) and
we found that it agrees with dimensional reduction of 6D Lorentzian conformal correlators.
Thus at least one special class of three-point functions in 5D SU(1, 3) theories are necessarily
those of a 6D Lorentzian conformal field theory. This provides some hope that these 5D
theories can be used to compute some quantities in more traditional, but non-Lagrangian,
6D theories such as the famous (2, 0) theory.

In future work we hope to extend our results to more general classes of operators. As
a first step, it would be important to better understand the physical interpretation of the
5D OPE studied in this paper. Indeed, since local operators in the 5D theory correspond to
Fourier modes along an internal null direction they are non-local operators in six dimensions.
Moreover their Kaluza-Klein numbers in six dimensions correspond to instanton numbers in
five dimensions. If we construct 5D operators by taking traces of products of fundamental
scalar fields XI dressed with instanton operators, the constraint pKR = ±∆K/2 corresponds
to attaching a single instanton or anti-instanton to each scalar field (which has classical scaling
dimension equal to two). In [19], this was shown to be the minimal number of instantons
needed to have nonzero two-point functions. More generally, we could relax this constraint
by attaching more instantons to each scalar field, which would correspond to probing higher
modes along the null direction. We may then explore how to generalise the solution for CK,⃗0,0

IJ

when pKR = ±∆K/2 to other cases, for example when an operator in the OPE satisfies
an Ω-deformed analogue of the unitarity bound ∆ = d/2, which was shown to fix OPE
coefficients in theories with Schrödinger symmetry in [23]. It would also be interesting to
explore whether the crossing symmetry relation for three-point functions found in (4.12)
provides the starting point for a non-relativistic conformal bootstrap. We hope to address
these exciting questions in the future.
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