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Problem definition: This paper studies the single-warehouse assortment selection problem that aims to

minimize the order fulfillment cost under the cardinality constraint. We propose two fulfillment-related cost

functions corresponding to spillover fulfillment and order-splitting, respectively. This problem includes the fill

rate maximization problem as a special case. We show that although the objective function is submodular for

a broad class of cost functions, the fill rate maximization problem with the largest order size being two is NP-

hard. Methodology: To make the problem tractable to solve, we formulate the general warehouse assortment

problem under the two types of cost functions as mixed integer linear programs (MILPs). We also provide

a dynamic programming algorithm to solve the problem in polynomial time if orders are non-overlapping.

Furthermore, we propose a simple heuristic called the marginal choice indexing (MCI) policy that allows

the warehouse to store the most popular products. This policy is easy to compute and hence is scalable to

large-size problems. Although the performance of MCI can be arbitrarily bad in some extreme scenarios, we

find a general condition under which it is optimal. This condition is satisfied by many multi-purchase choice

models. Managerial implications: Through extensive numerical experiments on a real-world dataset from

RiRiShun Logistics, we find that the MCI policy is surprisingly near-optimal in all the settings we tested.

Simply applying the MCI policy, the fill rate is estimated to improve by 9.18% on average compared to the

current practice for the local transfer centers (LTCs) on the training data set. More surprisingly, the MCI

policy outperforms the MILP optimal solution in 14 out of 25 cases on the test data set, illustrating its

robustness against demand fluctuations.

Key words : warehouse assortment selection, demand choice models, submodular functions, marginal choice

probability
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1. Introduction

The growth of e-commerce has brought out the need for responsive delivery (Aryapadi et al. 2020).

Many online retailers, such as Amazon and Alibaba, offer same-day or even two-hour delivery

services. To achieve this, e-commerce companies often operate warehouses in urban areas to be

closer to customers, which makes selecting assortments to stock in these warehouses challenging.

Logistics companies (e.g., RiRiShun Logistics) that handle bulky and heavy items, such as furniture

and appliances, also face similar challenges. If the products stored in such local warehouses are not

carefully selected, significant transshipment and order fulfillment costs could drastically harm the

company’s profit.

The primary goal of a local warehouse is to select its product assortment to fulfill customer

orders at the lowest possible fulfillment cost. Unlike assortment planning problems where companies

maximize revenue by choosing an optimal product assortment, in warehouse assortment selection

problems, a set of products is selected to store at a local warehouse to minimize fulfillment costs

based on the customer demand distribution. Specifically, when a customer places an order, the

cost of fulfilling this order is the least when it can be fully satisfied by the target local warehouse.

However, if this local warehouse cannot fully cover the customer’s order, the order is either fulfilled

by a back-end warehouse through spillover fulfillment or split into several suborders fulfilled by

other local warehouses. In either case, substantial additional shipment and operational costs may

occur, resulting in increased fulfillment costs.

Warehouse assortment selection has become more challenging as e-commerce companies encour-

age customers to place larger orders by offering promotions such as reduced delivery fees and

discounts for orders that exceed a certain amount. This practice significantly increases the order

size, resulting in a higher probability that an order cannot be fulfilled by the local warehouse.

In an ideal scenario, if the local warehouse has sufficient capacity, then it would store all of the

SKUs and fulfill all the orders sent to this warehouse resulting in the most cost-efficient scenario.

However, storing a wide variety of SKUs adds complexity to operations, leading to a reduction in
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operational efficiency and an increase in both storage and retrieval costs (Wan and Dresner 2015).

Due to space constraints and high handling costs, local warehouses usually have tight constraints

on the number of SKUs they can store.

The primary focus of this work is on selecting the optimal warehouse assortment subject to

the SKU capacity constraint. On the one hand, an increasing number of e-commerce companies

(e.g., Alibaba, Shipbob) have begun to pay attention to the SKU capacity of individual warehouses

within their distribution networks, aiming to enhance the logistical efficiency and improve the

customer experience (Lopienski 2021, Alfaro and Corbett 2003). On the other hand, managing a

large number of SKUs may incur significant operational and handling costs, whereas focusing on a

limited number of SKUs simplifies operational complexity and reduces both handling and retrieval

costs. Furthermore, the SKU capacity constraint is widely used in warehouse planning literature,

such as Catalán and Fisher (2012), Wu et al. (2019), Zhu et al. (2021).

In this paper, we take the initiative in investigating the single-warehouse assortment selection

problem, subject to the same SKU capacity constraint as in the literature, i.e., the cardinality

constraint. The objective is to minimize the total fulfillment cost, equivalent to minimizing the

expected additional cost incurred when a local warehouse cannot fully fulfill its orders. We propose

two types of order-related additional fulfillment costs, reflecting spillover and order-splitting costs.

Specifically, we consider the spillover cost as a function of the complete set of ordered items, if they

cannot be fully fulfilled by the local warehouse, and the order-splitting cost as a function of the

subset of ordered items not included in the assortment of the local warehouse. In particular, the

order fill rate maximization problem is a special case of the warehouse assortment problem under

either type of cost function. The contributions of our paper are as follows.

First, we show that the objective function is submodular for a broad class of cost functions,

irrespective of the demand distribution considered. This result is absent from the literature, even

for the order fill rate maximization problem. Hence, techniques used in minimizing submodular

functions can be applied here. This result bridges the warehouse assortment problem with the

extensive literature on submodular function minimization.
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Second, we show that the order fill rate maximization problem is NP-hard even when the largest

order size is two, and the greedy policy can perform arbitrarily badly. To our knowledge, these are

the first theoretical results on the computational tractability of the single-warehouse assortment

selection problem. We then formulate the warehouse assortment problem under both types of cost

functions as two mixed integer linear programming (MILP) problems. Additionally, we provide a

dynamic programming algorithm to exactly solve the warehouse assortment problem with type-I

cost functions in polynomial time if the orders are non-overlapping.

Third, we propose a simple heuristic called the marginal choice indexing (MCI) policy to solve the

warehouse assortment problem. The MCI policy selects the K products with the highest marginal

choice probability to store at the warehouse. Although the MCI policy may perform arbitrarily

badly, we identify a sufficient condition on the customers’ demand distribution for the MCI policy

to be optimal. This condition holds for the classic discrete choice model, independent choice model,

and some recently proposed multi-purchase choice models in Tulabandhula et al. (2023), Bai et al.

(2023), and Lin et al. (2022). To our knowledge, the MCI policy is the only approach in the

literature that guarantees optimality under some non-trivial conditions.

Finally, we conduct extensive numerical experiments on a real-world logistic dataset from

RiRiShun Logistics. We find that the proposed MILP formulations are tractable in a practical size,

allowing us to solve the optimal solution and analyze the MCI policy. Additionally, the MCI policy

is near-optimal in all the settings we tested. We also identify a performance index, partial fulfill-

ment rate (PFR), which can be used to explain the differences between the MCI policy and the

MILP optimal solution. Simply applying the MCI policy, it is estimated that we can improve the

order fill rate by 9.18% on average compared to the current practice for the local transfer centers

on the training data set. Surprisingly, the MCI policy outperforms the MILP optimal solution in

14 out of 25 cases on the test data set. This implies that the MCI policy is robust with respect to

demand changes.

The rest of the paper is organized as follows. In Section 2, we provide a comprehensive literature

review. In Section 3, we set up the model under two types of cost functions, and show that the
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objective function is submodular under mild conditions. In Section 4, we establish the NP-hardness

of the warehouse assortment selection problem and formulate two MILPs to address the problem

under different cost functions. In addition, we introduce a dynamic programming method for the

case where orders are non-overlapping. In Section 5, we introduce the MCI policy and discuss

conditions under which this policy is optimal. In Section 6, we conduct a case study on the real-

world data from RiRiShun Logistics. In Section 7, we conclude this work and provide some future

research directions.

2. Literature Review
2.1. Assortment Optimization

This paper lands in the area of assortment optimization. In what follows, we first explain the

difference between our problem and the well-studied assortment planning problems. Then, we

discuss papers related to warehouse assortment selection.

Assortment Planning and Choice Models. In the revenue management literature, the problem

of assortment planning has been widely studied since its introduction in the seminal work of Ryzin

and Mahajan (1999). The modern development of revenue management heavily relies on modeling

demand using discrete choice models (see, e.g., Gallego and Topaloglu 2019 for a complete review).

Instead of independently modeling the demand for each product, the discrete choice model assumes

that each customer picks his or her most preferred product among the set of products offered or

leaves without a purchase. Discrete choice models capture customers’ substitution patterns when

the offered set or product prices change. However, these models are unsuitable for our warehouse

assortment selection problem because they assume each customer chooses one product at most,

which is unlikely in practice.

Some recent papers on the choice model also allow customers to purchase multiple products

in a single order. These models include the well-known multivariate logit model (e.g., Cox 1972)

and its variants, multivariate MNL model (e.g., Russell and Petersen 2000), bundle multivariate

logit model (e.g., Tulabandhula et al. 2023), multiple discrete-continuous extreme value (MDCEV)
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model (e.g., Bhat 2005), threshold utility model (TUM) (Gallego and Wang 2019), and multi-

purchase random utility model (Bai et al. 2023, Lin et al. 2022). Among these choice models,

the MDCEV model and its variants (e.g., the multiple discrete continuous (MDC) choice model

proposed by Huh and Li 2022) allow the purchase of multiple units of the same item and the TUM

is a demand model based on aggregate level demand. These demand models are beyond the scope

of this paper. For the rest of the aforementioned demand models, we discuss the corresponding

warehouse assortment and provide sufficient conditions under which MCI is optimal.

The main difference between the assortment planning problem and the warehouse assortment

problem is that the former aims to maximize revenue by offering an appropriate assortment to

customers, while the latter aims to minimize cost by selecting a warehouse assortment to cover as

many customers’ orders as possible. In assortment planning problems, the customers’ substitution

behavior is taken into account, and no penalty is incurred if not all customer’s product needs are

met. However, in warehouse assortment problems, a penalty is incurred if a customer’s order is not

fully fulfilled by the warehouse. Additionally, when customers make choices, their decisions are not

affected by the assortment of the warehouse.

Warehouse Assortment Selection. Compared to assortment planning in revenue management,

studies on warehouse assortment problems are scarce. Among them, most papers (e.g., Catalán and

Fisher 2012, Zhu et al. 2021, Söylemez 2021) consider the multi-warehouse assortment allocation

problem that aims to minimize the number of split orders. They formulate the problem as mixed

integer programs and study the properties of the corresponding linear programming relaxations.

They also propose several heuristics and numerically test their performance. On the theoretical

side, Catalán and Fisher (2012) show that the problem is NP-hard for the two-location problem.

Söylemez (2021) briefly mention the case where there is only one warehouse. The corresponding

formulation aligns with the order fill rate maximization problem, which is a specific case studied

in our paper. The single-warehouse order fill rate maximization is also studied in Wu et al. (2019).

They propose a model combining exponential smoothing and community detection to predict
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future demand. Then, based on the estimated demand function, they propose a robust optimization

formulation to deal with the demand uncertainty and solve it using a heuristic. To the best of

our knowledge, no literature studies the theoretical properties of the order fill rate maximization

problem. In contrast, we systematically study a more general version of the warehouse assortment

problem. We obtain a series of theoretical properties, including submodularity and NP-harness.

We also propose a simple heuristic and identify conditions under which it is optimal.

The order fill rate problem is widely studied in the inventory management literature. It is an

important service measure in the industry that is first applied in Song (1998) to the inventory

system. They consider the continuous-review multi-item inventory system and define the order fill

rate as the probability that a complete order can be satisfied within a time window. Subsequent

research works on this topic include Song and Yao (2002), Lu et al. (2003), Lu and Song (2005),

etc. For these problems, the assortment is fixed, and the main decision is the inventory control

policy. Instead, we focus on the assortment decision without considering the inventory constraints.

2.2. Submodular Function Optimization

Both submodular function maximization and minimization problems have been extensively studied

in the literature. In general, even unconstrained submodular function maximization is NP-hard

to solve (e.g., Nemhauser and Wolsey 1978). For monotone submodular function maximization

problems under the cardinality constraint, Nemhauser et al. (1978) have demonstrated that the

greedy algorithm has the 1− 1/e performance guarantee. This guarantee is shown to be the best

possible in Nemhauser and Wolsey (1978) for any algorithms that query the objective function at a

polynomial number of sets. Additionally, various special cases of this problem have been proven to

be NP-hard, including weighted coverage (Feige 1998) or mutual information (Krause and Guestrin

2012).

On the contrary, the unconstrained submodular function minimization problem is possible to be

solved in polynomial time using the Lovász extension (e.g., Lovász 1983, Schrijver 2003). Addi-

tionally, several constant approximation bounds are available for various variants, as demonstrated
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by Nemhauser et al. (1978), Lee et al. (2009), and Feige et al. (2011). However, for the monotone

submodularity function minimization with cardinality lower bound (SMCL) (e.g., Svitkina and

Fleischer 2011), it is NP-hard to obtain a constant approximation ratio. More precisely, Svitkina

and Fleischer (2011) show that it is impossible to obtain a solution that is ρ-approximation to

the objective and σ-feasible if ρ
σ

= o

(√
n

logn

)
for (SMCL). The O

(√
n

logn

)
-approximation can

be achieved using their algorithm, matching the impossibility result. Other algorithms for solving

(SMCL) problems are presented in subsequent papers, e.g., Nagano et al. (2011), Iyer and Bilmes

(2013), Goemans et al. (2009). As will be shown in Section 3.1, our objective function is monotone

and submodular under some mild conditions. Therefore, under certain conditions, our problem can

be viewed as a special class of (SMCL). The solution approaches and insights developed for our

problem may shed light on similar submodular function minimization problems.

3. Model Setting

In this section, we formally define our general problem and several variants. Consider N distinct

products indexed 1,2, . . . ,N . Denote N = {1,2, . . . ,N} as the universe product set. The demand

function π(·) characterizes the probability of customers choosing any subset, i.e., for any subset

T ⊆ N , π(T ) is the probability that a random customer buys the set T . Then, π(T ) ≥ 0 and∑
T ⊆N π(T ) = 1. Without loss of generality, we assume that all the products in N can be reached,

i.e., for any n∈N , there exists T ⊆N such that n∈ T and π(T )> 0.

For the assortment selection problem, an e-company selects a subset of products S ⊆ N to

store in the local warehouse. The set S contains at most K products. Given that S is stored, if a

customer orders a set T ⊆N , then the company incurs a basic cost if T can be completely fulfilled

by S. However, if T cannot be completely fulfilled by S, then the company incurs an additional

cost of C(T |S) to fulfill T . In particular, we consider two types of order-dependent additional

fulfillment cost functions: (i) type-I cost function C(T |S) = G(T ) if T * S and 0 otherwise, (ii)

type-II cost function C(T |S) =G(T \S) if T * S and 0 otherwise, where G(·) is a non-negative set

function satisfying G(∅) = 0. Intuitively, if T ⊆ S, there would not be any additional fulfillment
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cost; otherwise, the type-I cost depends on T , while the type-II cost depends on T \S. When T * S,

additional costs would incur. On the one hand, the type-I cost function is plausible if the company

does not split the order and fulfill the entire order T from elsewhere (e.g., from the back-end

warehouse). On the other hand, the type-II cost function is plausible if the company partially fulfills

the order T using the products stored at the local warehouse and fulfills the remaining order from

elsewhere, in which case the fulfillment cost would depend on those products that are not stored

at the local warehouse. The expected additional fulfillment cost is f(S) =
∑
T ⊆N π(T )C(T |S).

The company’s goal is to select S ⊆N to minimize its expected fulfillment cost. Since all orders

must be fulfilled, minimizing the total fulfillment is equivalent to minimizing the additional ful-

fillment cost. Therefore, the company solves the following cardinality-constrained set function

minimization problem:

(CP ) : min
S⊆N , |S|≤K

f(S),

where |S| refers to the number of products in S. Note that different from the product assortment

planning problems in revenue management literature, here all customers share the same offer set,

the universe product set N , and the warehouse assortment S is selected from the offer set. To

facilitate the discussion, we define several common properties of a set function.

Definition 1. Consider a set function G(T ),T ⊆N . (i) G(·) is increasing(decreasing) if G(T )≤

(≥)G(T ′) for all T ⊆ T ′ ⊆N ; (ii) G(·) is size-based if there exist a function c(·) such that G(T ) =

c(|T |) for all T ⊆ N ; (iii) G(·) is binary if G(T ) = 1 for all T 6= ∅, and G(∅) = 0; (iv) G(·) is

submodular(supermodular) if G(T ) +G(T ′)≥ (≤)G(T ∪T ′) +G(T ∩T ′) for all T ,T ′ ⊆N .

Throughout the paper, we refer to increasing and decreasing in the weak sense.

3.1. Monotonicity and Submodularity

If K =N , it is obvious that the optimal policy for the company is to store all of the products and

incur zero additional fulfillment cost. If K <N and the objective f(·) is decreasing, then offering

an assortment S of size K is optimal. In the following proposition, we provide conditions under

which f(·) is decreasing.
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Proposition 1. The objective function f(·) is decreasing if either of the following conditions

holds: (i) the cost function is type-I; (ii) the cost function is type-II and G(·) is increasing. More-

over, in this case, (CP ) is equivalent to (CP ′) provided as follows:

(CP ′) : min
S⊆N , |S|=K

f(S).

All the proofs of statements can be found in Section EC.1. Note that the objective function is

decreasing under the type-I cost function even if G(·) is not monotone. This is because if order T

is not a subset of S, then the additional fulfillment cost is not a function of S. Since the goal of

(CP ) is to minimize the expected additional fulfillment cost, a larger S is clearly better.

We can also show that the objective function f(·) is submodular under some general conditions.

Theorem 1. The objective function f(·) is submodular if either of the following conditions holds:

(i) the cost function is type-I; (ii) the cost function is type-II and G(·) is submodular. In particular,

if G(·) is size-based, then it is submodular if and only if c(·) is concave.

Nonetheless, f(S) being monotone and submodular does not imply that (CP ) can be easily

solved. To see this, note that if f(S) is a submodular function, then its complement func-

tion, g(S) , f(N\S), is also a submodular function. Since f(S) is submodular implies that

g(S) + g(S ′) = f(N\S) + f(N\S ′)≥ f ((N\S)∪ (N\S ′)) + f ((N\S)∩ (N\S ′)) = f (N\(S ∩S ′)) +

f (N\(S ∪S ′)) = g(S ∩ S ′) + g(S ∪ S ′), g(S) is also submodular. Therefore, (CP ) is equivalent to

minimizing g(S) subject to |S| ≥ N −K, which is a submodular minimization with cardinality

lower bound (SMCL).

In the existing literature, a number of algorithms have been developed to approximately solve

(SMCL) problems (e.g., Svitkina and Fleischer 2011, Nagano et al. 2011, Iyer and Bilmes 2013,

Goemans et al. 2009). Note that the monotonicity and submodularity properties, as demonstrated

in Proposition 1 and Theorem 1, hold for any demand function π(·). Consequently, (CP ) can

be addressed using existing techniques from the (SMCL) problem for any demand function π(·),

provided the aforementioned conditions are met.
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3.2. Special Case: Order Fill Rate Maximization

An important special case of the cost function is when G(·) is binary. In this case, both type-I and

type-II cost functions reduce to: C(T |S) equals to 0 if T ⊆ S, and 1 otherwise. Let T1,T2, . . . ,TM

be the M different types of orders with choice probabilities π1, π2, . . . , πM > 0 and
∑M

m=1 πm =

1. Then, f(S) =
∑M

m=1 πmI(Tm * S), where I(A) is the indicator function that event A occurs,

is the probability that the local warehouse cannot completely fulfill an order. Thus, OFR(S) ,∑M

m=1 πmI(Tm ⊆ S) = 1− f(S) is the order fill rate (OFR) of the local warehouse. Then, (CP )

can be reformulated as an order fill rate maximization problem (OFRM) with the same optimal

solution but OFR(·) as the objective function

(OFRM) : max
S⊆N , |S|≤K

OFR(S). (1)

This formulation is also seen in Wu et al. (2019) and Söylemez (2021). Its corresponding cost

minimization formulation, i.e., the order fill rate maximization problem in the cost form (OFRM-C)

is as follows

(OFRM-C) : min
S⊆N , |S|≤K

1−OFR(S). (2)

The following corollary follows directly from Proposition 1 and Theorem 1.

Corollary 1. The objective function in (OFRM) is increasing and supermodular, while the

objective function in (OFRM-C) is decreasing and submodular. Thus, (OFRM-C) belongs to

(SMCL). The size constraints in both (OFRM-C) and (OFRM) are tight under optimality.

To our knowledge, this is the first result that relates (OFRM) to the submodular minimization

problem. Due to this result, existing methods for (SMCL) can be directly applied to (OFRM).

As demonstrated in Svitkina and Fleischer (2011), approximating (SMCL) to a factor of

o

(√
n

logn

)
is unattainable even when the objective function is monotonic. However, this complex-

ity result is not directly applicable to (OFRM-C) since it is a special case of (SMCL). On the

other hand, although the algorithms for general submodular function minimization with cardinal-

ity constraint (e.g., Goemans et al. 2009, Svitkina and Fleischer 2011, Nagano et al. 2011, Iyer and
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Bilmes 2013) can be applied to (CP) under mild conditions, the algorithms are usually very com-

plex and the guaranteed performance ratio are usually not attractive for this special case. In light

of these considerations, we shall dig deeper into the warehouse assortment selection problem in the

subsequent subsections. Specifically, we show that even the order fill rate maximization problem,

the simplest special case of our problem, is already NP-hard. Also, we introduce two mixed-integer

linear programming formulations tailored to different cost functions, allowing us to find the exact

solution of (CP). Besides, unlike the generally complicated algorithms proposed in the literature

for approximating (SMCL), we present an easy-to-implement heuristic and prove its optimality

under some mild conditions.

4. Problem Solving

In this section, we study the tractability of (CP). First, we show that even the (OFRM) with the

largest order size being two is NP-hard, and the approximation ratio of the greedy algorithm can

be arbitrarily bad. Second, we introduce two MILP formulations for solving (CP) with respect to

two different types of cost functions. In addition, we propose a dynamic programming approach to

find the optimal assortment under type-I cost functions when the orders are non-overlapping.

4.1. Computational Complexity and the Greedy Policy

To study the computational complexity of (CP), in this subsection, we focus on the (OFRM),

which is a special case of (CP) for both types of cost functions. For ease of analysis, we denote

L∈ [N ] as the largest order size, where [n] denotes {1,2, . . . , n} for any n∈N+ , {1,2, . . .}. Without

specifying a particular L, L=N by default. We first show that (OFRM) is already NP-hard when

L= 2 by a reduction from the Densest k-Subgraph Problem.

Theorem 2. Both (OFRM) and (OFRM-C) are NP-hard even when L = 2. Thus, (OFRM),

(OFRM-C), and (CP) are NP-hard.

To our knowledge, the only related result in the literature is the NP-hardness result shown

in Catalán and Fisher (2012) for the two-warehouse split-order minimization problem, which is

much more general than (OFRM). They show the hardness by reducing the problem to the graph
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bisection problem. Instead, we show that the single-warehouse (OFRM) when L= 2 includes the

Densest k-Subgraph Problem as a special case, and thus is NP-hard.

For the submodular optimization problems, the greedy policy is commonly discussed and studied.

The greedy policy adds products to the assortment in a greedy manner, i.e., in each step, the policy

adds one product that improves the objective the most. It is not hard to see that the greedy policy

can perform arbitrarily badly even for small N .

Example 1. [Greedy Policy] Assume N = {1,2,3} and K = 2. There are two possible orders

T1 = {1}, T2 = {2,3}, with choice probabilities π(T1) = ε, π(T2) = 1− ε for some small ε > 0. Then,

the optimal solution is clearly S = {2,3} with the fill rate 1− ε. However, the greedy policy would

add product 1 in the first step and thus yield a fill rate ε. As ε approaches 0, the approximation

ratios for (OFRM) and (OFRM-C) are arbitrarily bad. �

Besides the arbitrarily bad approximation ratio in the worst case, the greedy policy has two

shortfalls. First, it is highly possible that more than one product leads to the same maximum

objective improvement. Then, a tie occurs, resulting in different assortment outputs for different

tie-breaking policies. Second, the computational complexity of the greedy policy could be high.

It takes O(KNM) operations to solve (OFRM) and (OFRM-C), which can be unacceptable for

real-world applications (details will be shown in Section 6.1).

4.2. Mixed Integer Linear Programming Formulations

In this subsection, we derive two mixed integer linear programming (MILP) formulations to solve

(CP) where the cost function is type-I or type-II size-based.

4.2.1. (CP) with type-I cost functions. Let ξ ∈ {0,1}N be the binary decision variable

with ξn = 1 if product n is included in the assortment S and 0 otherwise. Let ζ ∈ {0,1}M be

the binary decision variable with ζm = 1 if order m can be fulfilled by S, i.e. Tm ⊆ S, and 0

otherwise. Then, for a given type-I cost function, the objective function can be written as f(S) =∑M

m=1 πmgm(1− ζm) =
∑M

m=1 πmgm −
∑M

m=1 πmgmζm, where gm =G(Tm). Note that the first term

in the objective is a constant, thus minimizing f(S) is equivalent to maximizing
∑M

m=1 πmgmζm.
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Now we provide the following MILP for (CP):

max
ξ,ζ

M∑
m=1

πmgmζm,

s.t.
N∑
n=1

ξn =K,

ζm ≤ ξn, ∀m∈ [M ], n∈ Tm,

ξn ∈ {0,1}, ∀n∈ [N ],

ζm ≥ 0, ∀m∈ [M ],

(3)

In Problem (3), the first constraint implies S should consist of K products, which is a direct

consequence of Proposition 1. The rest of the constraints imply that an order can be fulfilled only

if all the products in the order are included. Since the formulation is separable in ζ, given that ξ

is binary, ζm has to be binary for all m under optimality.

Compared to the MILP formulation in Wu et al. (2019), formulation (3) has two distinct features.

First, we can solve (CP) with any type-I cost by solving Problem (3) whereas the MILP formulations

in Wu et al. (2019) are only for solving (OFRM). Second, ζ is not binary, while the existing

formulations impose the binary assumption. This simple twist of the formulation greatly reduces

the number of integer variables, from M +N to N .

Given that M can be as large as 2N , directly solving MILP (3) may be infeasible when N or

M is substantially large. As a remedy, we introduce a method utilizing Benders decomposition to

solve MILP (3) in Section EC.2.

4.2.2. (CP) with type-II size-based cost functions Let ξ ∈ {0,1}N be the binary deci-

sion variable with ξn = 1 if product n is included in the assortment S and 0 otherwise and τ =

[τm,l]M×(N+1) ∈ {0,1}M×(N+1) be the binary decision variable with τm,l = 1 if order m has l prod-

ucts that cannot be fulfilled by S, i.e. |Tm\S| = l, and 0 otherwise. Note that l can take the

value 0 for any m ∈ [M ] and τm,l = 0 for l > |Tm|. In addition, for a given m ∈ [M ], only one

τm,l, l ∈ {0,1, . . . , |Tm|}, can take the value 1 whereas the rest take the value 0. Then, for a given

increasing type-II size-based cost function G(T ) = c(|T |), the objective function can be written
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as f(S) =
∑M

m=1

∑|Tm|
l=0 πmclτm,l, where cl = c(l). The following MILP formulation for (CP) with

increasing type-II size-based cost functions:

min
ξ,τ

M∑
m=1

|Tm|∑
l=1

πmclτm,l,

s.t.
N∑
n=1

ξn =K,

|Tm|∑
l=0

τm,l = 1, ∀m∈ [M ],

∑
n∈Tm

ξn =

|Tm|∑
l=0

(|Tm| − l) τm,l, ∀m∈ [M ],

ξn ∈ {0,1}, ∀n∈ [N ],

τm,l ≥ 0, ∀m∈ [M ], l ∈ {0,1, . . . , |Tm|},

τm,l = 0, ∀m∈ [M ], l ∈ {|Tm|+ 1, . . . ,N}.

(4)

In Problem (4), the fourth constraint ensures that for any m ∈ [M ], only |Tm| − l products in Tm

is included in S where l refers to the only τm,l that equals 1. Similar to the MILP for (CP) with

type-I cost functions, τm,l is forced to be binary at optimality provided ξ is binary, and formulation

(4) also only involves N binary variables.

To our knowledge, formulation (4) is the first MILP formulation in the literature for solving (CP)

with type-II cost functions. It is structurally different from the MILP formulations in Catalán and

Fisher (2012) and Wu et al. (2019), yet all of them include fill rate maximization as special cases.

4.3. Optimal Algorithm for Non-Overlapping Orders

This subsection explores a specific instance of the (OFRM) that can be solved within polynomial

time. Our focus rests on the scenario where there is no overlap between distinct orders, i.e., Tm ∩

Tm′ = ∅ for all m,m′ ∈ M̃ and m 6= m′, where there are M̃ (M̃ ≤N) possible orders denoted by

T1, . . . ,TM̃ with corresponding sizes s1, . . . , sM̃ .

For (OFRM), if all potential orders are non-overlapping, then we can claim that: (i) introducing

product j into S will not augment the expected order fill rate if j /∈ Tm for all m ∈ M̃ ; (ii) the

expected order fill rate is improved by πm only if all the products within Tm are included in S.

Consequently, rather than determining which product to incorporate into the assortment, we can
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consider each potential order as an integral unit. To facilitate analysis, we reindex the orders so

that π1 ≤ π2 ≤ · · · ≤ πM̃ . We denote x= [x1, . . . , xM̃ ]> ∈ {0,1}M̃ as the vector of the new decision

variables, where xm = 1 if Tm is included in S and 0 otherwise. Then, (OFRM) can be reformulated

as

max
x∈{0,1}M̃

M̃∑
m=1

πmxm

s.t.
M̃∑
i=1

smxm ≤K.
(5)

Problem (5) remains a nontrivial task to solve, as demonstrated by Example 1. One intuitive

modification to the greedy policy is to select orders based on the profit-to-weight ratio πi/si.

The following example illustrates that even with this adjustment, the greedy policy can still yield

arbitrarily bad results.

Example 2. [Modified Greedy Policy] Assume N = {1,2, . . . ,N} and K = N − 1. There are

two possible orders S1 = {1} and S2 = {2,3, . . . ,N} with choice probabilities π(S1) = 1
n

+ ε and

π(S2) = n−1
n
− ε for some small ε > 0. The optimal solution is S = {2,3, . . . ,N} with fill rate n−1

n
− ε.

However, the modified greedy policy selects {1} in the first step thus yields a fill rate of 1
n

+ ε. Let

ε= 1/n2. As n→∞, the approximation ratio for Problem (5) is arbitrarily bad. �

However, the following proposition provides an efficient way to solve Problem (5).

Proposition 2. Problem (5) can be solved in run time O(NK) using dynamic programming.

The key idea underlying the proof of Proposition 2 is to reduce Problem (5) to a 0−1 knapsack

problem. Although the 0− 1 knapsack problem is NP-complete (Williamson and Shmoys 2011), it

can be effectively solved using a dynamic programming algorithm. Moreover, since sm ∀m ∈ [M̃ ]

are integers and K is upper bounded by N , it turns out the algorithm becomes polynomial-time

for Problem (5).

In light of Proposition 2, we can effectively solve (OFRM) to exact optimality without solving

the MILP (3) when dealing with non-overlapping orders. It is also noteworthy that Proposition 2

can be easily extended to the cost minimization problem with arbitrarily type-I cost functions by

replacing πm with πm ·G(Tm) in the analysis. In the following section, we will introduce a simple-

to-implement heuristic and demonstrate its ability to achieve optimality under specific conditions.
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5. The Marginal Choice Indexing Policy

In this section, we introduce a simple heuristic, referred to as the Marginal Choice Indexing (MCI)

policy, which leverages the unique nature of the warehouse assortment selection problem. To define

the MCI policy, we start by introducing an indexing rule. For a universe set N = {1,2, . . . ,N}, an

indexing rule I is a permutation of all elements in N with I(n) denoting the index of element n

in I and I−1(n) denoting the element indexed n.

Let ωn =
∑
T ⊆N π(T ) ·I(n∈ T ) be the marginal choice probability of product n∈N . An indexing

rule I is called marginal choice indexing (MCI) if all products are indexed in the descending order of

their marginal choice probabilities, i.e. ωI−1(1) ≥ ωI−1(2) ≥ · · · ≥ ωI−1(N). If more than two products

have the same marginal choice probability, then any such indexing following a deterministic tie-

breaking rule is an MCI. Then, the MCI policy chooses the first K products to be the assortment.

Intuitively, the MCI policy selects the most popular K products based on historical data. A

salient feature of the MCI policy is that it only depends on the marginal choice probability of each

product, which only involves N parameters. Thus, this policy is simple to calculate and implement.

However, the MCI policy does not always guarantee a good solution. Here, we provide two examples

to illustrate that the MCI policy can perform arbitrarily badly.

Example 3. [MCI Policy for (OFRM)] Assume N = {1,2,3,4} and K = 2. There are four pos-

sible orders T1 = {1,3}, T2 = {3,4}, T3 = {1,2}, T4 = {2,4}, with choice probabilities π(T1) =

0.5− ε+ ξ, π(T2) = ε− ξ − η, π(T3) = ε, π(T4) = 0.5− ε+ η for some small ε, ξ, η > 0 such that

ξ > η and ε > ξ + η. Then, we have ω1 = 0.5 + ξ, ω2 = 0.5 + η, ω3 = 0.5− η, ω4 = 0.5− ξ, and

ω1 > ω2 > ω3 > ω4. Apparently, the optimal solution is {1,3}, while the MCI policy gives {1,2}.

For (2), we have limε→0+
f({1,2})
f({1,3}) = limε→0+

1−ε
1−(0.5−ε+ξ) = 2, which means selecting {1,2} could incur

twice the cost compared to selecting {1,3}. However, in terms of the order fill rate maximization

Problem (1), we have limε→0+
OFR({1,2})
OFR({1,3}) = limε→0+

π({1,2})
π({1,3}) = limε→0+

ε
0.5−ε+ξ = 0, which implies that

the MCI policy can perform arbitrarily badly. �

Example 4. [MCI Policy for (OFRM-C)] Assume N = 2n for n > 1. N = {1, . . . ,2n} and K =

n. There are n + 1 distinct orders T1 = {1}, . . . Tn = {n}, Tn+1 = {n + 1, . . . ,2n}, with choice
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probabilities π(T1) = · · ·= π(Tn) = (n− 1)/n2, π(Tn+1) = 1/n. Then, we have ω1 = · · ·= ωn = (n−

1)/n2 < ωn+1 = · · ·= ω2n = 1/n. The MCI policy gives solution {n+ 1, . . . ,2n}, while the optimal

policy is {1, . . . , n}. For (2), we have limn→+∞
f({n+1,...,2n})
f({1,...,n}) = limn→+∞

1−1/n
1−(n−1)/n = limn→+∞ n−1 =

+∞. Thus, the MCI policy is arbitrarily bad. Note that as n→+∞, the fill rate under the optimal

policy converges to 1 yet that of the MCI policy converges to 0. This implies that the MCI policy

can perform arbitrarily badly, resulting in a low fill rate. �

Examples 3 and 4 indicate that the MCI policy may have arbitrarily bad performance compared to

the optimal solution even for (OFRM). However, the MCI policy is simple and intuitive as it selects

the products with the highest marginal choice probabilities. This motivates us to find conditions

under which the MCI policy is optimal.

5.1. Optimality Condition of MCI Policy

We first make a relatively simple observation for the case where the cost is type-II linear size-based.

Proposition 3. If the cost function is type-II size-based and c(|T |) is linear in |T | for every

subset T ⊆N , then the MCI policy is optimal for (CP).

The proof of Proposition 3 converts (CP) into a knapsack problem with the same weight. Thus,

the greedy policy is optimal and equivalent to the MCI policy.

Proposition 3 can be easily extended if the cost function is of type-II and the additional fulfill-

ment cost is the summation of the individual cost of the products that cannot be fulfilled by the

target warehouse. Specifically, if the cost function is type-II with G(T ) =
∑

n∈T κn, where κn ≥ 0

represents the product-specific additional fulfillment cost associated with product n∈N , for every

subset T ⊆ N , and let ωnκn be the choice-weighted fulfillment cost of product n, we define a

modified MCI that ranks the products in descending sequence according to their choice-weighted

fulfillment costs. Subsequently, the modified MCI policy selects the K products with the largest

choice-weighted fulfillment costs to store. The following proposition establishes the optimality of

this modified MCI policy.

Proposition 4. If the cost function is type-II with G(T ) =
∑

n∈T κn for every subset T ⊆ N ,

then a modified MCI Policy is optimal for (CP).
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When the product-specific additional fulfillment cost is the same across all products, Proposition 4

reduces to Proposition 3. However, these linear additional cost functions presented in Proposi-

tions 3 and 4 are rather restrictive and do not capture the non-linearity of the cost functions. In

the remainder of this work, we focus on more general cost functions and primarily analyze the

performance of the MCI policy.

To characterize the optimality conditions of the MCI policy, we define the dominant indexing

rule as follows.

Definition 2 (Dominant Indexing Rule w.r.t. Demand Function π). For a universe

set N = {1,2, . . . ,N} and a given demand function π, we call an indexing rule I is dominant w.r.t

demand function π if π(S)≥ π(T ) holds for any pair of subsets S = {si}ki=1 ⊆N and T = {ti}ki=1 ⊆

N (of the same size k ∈ [N ]) with I(s1)< · · ·< I(sk), I(t1)< · · ·< I(tk), and I(si)≤I(ti) ∀i∈ [k].

Note that for a given demand function π, a dominant indexing rule may not always exist. Intuitively,

if a demand function has a dominant indexing rule, then, given any two subsets of the same size,

the subset with smaller indexed components has a higher choice probability than the other with

larger indexed components. The following theorem identifies a general condition for the MCI policy

to be optimal.

Theorem 3. For a given demand function π, if an indexing rule is dominant w.r.t. π, then

it must be an MCI, and the corresponding MCI policy is optimal, provided that the cost function

satisfies one of the following conditions: (i) type-I size-based; (ii) increasing type-II size-based.

Theorem 3 equips us with a simple sufficient condition to derive the optimal solution for (CP),

i.e. finding a dominant indexing rule among the class of MCIs. If a dominant indexing rule exists,

then it must be an MCI; however, the reverse may not always be true. For example, consider

N = {1,2,3} and π({1}) = 0.4, π({2}) = 0.1, π({3}) = 0, π({1,2}) = 0.1, π({1,3}) = 0.1, π({2,3}) =

0.3, π({1,2,3}) = 0. Since ω1 = π({1}) + π({1,2}) + π({1,3}) + π({1,2,3}) = 0.6 > ω2 = π({2}) +

π({1,2}) + π({2,3}) + π({1,2,3}) = 0.5 > ω3 = π({3}) + π({1,3}) + π({2,3}) + π({1,2,3}) = 0.4,

then the current index is the unique MCI. However, π({1,3})<π({2,3}) indicating that the current

index is not dominant.
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Next, we show that for a wide range of demand functions, the dominant indexing exists and can

be easily found.

Single-Purchase Discrete Choice Models. When each customer purchases at most one prod-

uct, the single-purchase Discrete Choice Models (DCMs) apply and ωn = πDCM({n}) ∀n ∈N , i.e.

the choice probability of each product is exactly its marginal choice probability. Obviously, any

MCI is a dominant indexing rule in this special case. In addition, the two types of cost functions

are the same and can be represented as C({n}|S) = 0 if n ∈ S, and C({n}|S) =G({n}) if n /∈ S.

Note that the cost function is product-dependent. We have the following proposition stating the

optimal assortment selection under the single-purchase DCMs.

Proposition 5. If each customer purchases at most one product, then the optimal assortment

is to select the K products that have the largest πDCM({n})G({n}). If the cost function is product-

independent, i.e. G(·) is a constant independent of n ∀n ∈ N , then the optimal assortment is to

select the K products that have the largest πDCM({n}), i.e. the MCI policy is optimal.

Proposition 5 implies that it is sufficient to consider whether a single product can be fulfilled by

the local warehouse or not, and there is no partial fulfillment. Hence, the optimal solution to (CP)

is to select the products with the largest expected cost of not being selected.

Independent Choice Models. Under the independent choice model (ICM), a customer selects

each product independently of the other products (see e.g., Lin et al. 2022 for reference). We denote

pn as the probability of product n∈N being selected. Then, for any set T ⊆N , the probability it

is selected is πICM(T ) =
∏
i∈T pi

∏
j∈N\T (1− pj). It is easy to verify that

∑
T ⊆N πICM(T ) = 1. We

index the products such that p1 ≥ p2 ≥ · · · ≥ pN ≥ 0. Since ωn =
∑
T ⊆N πICM(T ) · I(n∈ T ) = pn, the

decreasing order of pn ∀n∈N is an MCI, and we have the following proposition.

Proposition 6. Under the ICM, indexing based on the decreasing order of p= {p1, .., pN}, i.e.

p1 ≥ p2 ≥ · · · ≥ pN , is an MCI and is dominant. Hence, an optimal solution to (CP ) is S∗ =

{1,2, . . . ,K}, provided the cost function is type-I size-based or increasing type-II size-based.
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Multi-Choice Random Independent Utility Models. One of the general multi-purchase

choice models is the multi-choice random utility model (MC-RUM) proposed by Lin et al. (2022).

In this model, a customer may purchase multiple products from the universe product set N with

a random intended purchase quantity (IPQ) Q that can take a value of {0,1, . . . ,N}. Each prod-

uct n has a utility Un, n ∈ N , where product 0 is the outside option. We let U = {U1, . . . ,UN},

U+ = U ∪ {U0}, and N+ = N ∪ {0}. In general, U+ and Q are jointly distributed. A customer

will choose at most Q different products whose utilities are the highest and larger than the utility

of the outside option. The probability that a customer purchases set T ⊆ N is πMC−RUM(T ) =

P
(
Q= |T |,mini∈T Ui >maxj∈N+\T Uj

)
+P

(
Q> |T |,mini∈T Ui >U0,U0 >maxk∈N\T Uk

)
. In partic-

ular, the ICM is a special case of MC-RUM by letting P(Q=N) = 1.

Suppose U+ and Q are independent, U1,U2, . . . ,UN are independent and no assumption is posed

on the distribution of U0. We call this model the Multi-Choice Random Independent Utility Model

(MC-RIUM). In order to characterize the structure of the optimal warehouse assortment under

MC-RIUM, we introduce the definition of the first-order stochastic dominance (see, e.g., Section

6.B.1 of Shaked and Shanthikumar 2007 for reference).

Definition 3 (First-Order Stochastic Dominance (FSD)). For two random variables

U ′ and U ′′ with cumulative distribution functions (CDFs) F ′ and F ′′, respectively, U ′ first-order

stochastic dominates U ′′ (denoted as U ′ �1 U
′′) if and only if F ′′(u)≥ F ′(u) ∀u∈ (−∞,∞).

Then, we have the following proposition.

Proposition 7. Under the MC-RIUM, if products can be indexed such that utilities are in the

descending FSD order, i.e., U1 �1 U2 �1 · · · �1 UN , then this indexing is an MCI and is dominant.

Hence, the optimal solution for (CP ) is S∗ = {1,2, . . . ,K}, provided the cost function is type-I

size-based or increasing type-II size-based.

Moreover, if Un = Vn+εn ∀n∈N+ for some deterministic utility V + = [V0, V1, . . . , VN ]> and idiosyn-

cratic noise ε= [ε0, ε1, . . . , εN ]>, then U1,U2, . . . ,UN are independent is equivalent to ε1, . . . , εN are

independent. In this case, the multi-purchase multinomial logit (MP-MNL) model proposed by Bai
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et al. (2023) is a special case of the MC-RIUM by setting ε= [ε0, ε1, . . . , εN ]> to be i.i.d. Gumbel.

Furthermore, if ε1, . . . , εN are independent and identically distributed, then the decreasing FSD

order of the utility is equivalent to the decreasing order of the deterministic utility. Thus, we have

the following corollary as a direct consequence of Proposition 7.

Corollary 2. Under the MC-RIUM, if random utilities have the form Un = Vn + εn ∀n ∈N+

and ε1, . . . , εN are independent and identically distributed, then indexing based on the decreasing

order of deterministic utility, i.e., V1 ≥ V2 ≥ · · · ≥ VN , is an MCI and is dominant.

Bundle Multivariate Logit Models. The Bundle Multivariate Logit (BundleMVL) model

is first proposed by Russell and Petersen (2000) to solve the market basket selection problem

and is brought to solve the assortment optimization problem by Tulabandhula et al. (2023).

In the BundleMVL model, for any given maximum purchase quantity L ∈ [N ] (a predeter-

mined parameter), the conditional random utility of selecting product n ∈ N can be repre-

sented as U(n|{Xn′ = xn′ : n
′ ∈ N , n′ 6= n}) = (Vn +

∑
n′∈N ,n′ 6=n βnn′xn′ + εn)I(

∑
j∈N ,n′ 6=n xn′ <

L), where Xn′ ∀n′ ∈ N represent binary random variables that signify whether product n′

is chosen or not (xn′ are the corresponding realizations), Vn is the intrinsic utility and εn

is the Gumbel distributed random noise of product n, and parameters βnn′ capture interac-

tions between product pairs n and n′ (βnn′ = βn′n). Then, the probability of choosing subset

T ⊆ N with |T | ≤ L can be represented as πBundleMV L−L(T ) = VT
1+

∑
T ′⊆N ,|T ′|≤L VT ′

, where VT =

exp
(∑

n∈N Vnxn +
∑

n∈N
∑

n′∈N ,n′<n βnn′xnxn′
)

, and xn′ = 1 if n′ ∈ T and 0 otherwise. Note that

positive βnn′ implies complementary relations between product n and n′, while negative βnn′ implies

substitution relations between product n and n′.

If βni ≥ βnj ∀n∈N\{i, j} for any i, j ∈N with Vi ≥ Vj, then indexing according to the decreasing

order of deterministic utilities is dominant. Formally, we have the following proposition.

Proposition 8. For any BundleMVL-L model with L∈ [N ], if βni ≥ βnj ∀n∈N\{i, j} for any

i, j ∈ N with Vi ≥ Vj, then indexing based on the decreasing order of the deterministic utilities,

i.e., V1 ≥ V2 ≥ · · · ≥ VN , is an MCI and is dominant. Hence, the optimal solution for (CP ) is

S∗ = {1,2, . . . ,K}, provided the cost function is type-I size-based or increasing type-II size-based.
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Note that the assumption on β is imposed on its relative values but not its absolute values. That

is, given any i, j ∈ N , βni ≥ βnj for any n ∈ N\{i, j} if Vi ≥ Vj. Then, the utility of any subset

containing product i is higher than that containing j provided the other products in the subset are

the same. In other words, the products can be ranked consistently such that selecting a product with

a smaller index would always result in a higher utility for any given subset of products. However,

a product with a higher intrinsic utility does not indicate a higher level of complementarity (see

Feng et al. 2018) with other products because βnn′ could be negative for some n and n′.

6. A Case Study from RiRiShun Logistics

In this section, we conduct a case study on the real-world logistics operational-level data from

RiRiShun (RRS) Logistics, who focuses on home appliance delivery and installation in China. The

logistics network of RRS consists of 7 central distribution centers (CDCs), 26 regional distribution

centers (RDCs), 100 local transfer centers (LTCs), and more than 6,000 last-mile hubs (Guo et al.

2021). Due to the specialty of home appliances, which are usually bulky and heavy, their delivery

services typically require special equipment and involve special installation procedures. According

to Table 1, orders with more than one SKU consist of more than 23% of total orders. Thus, we can

reasonably assume that any spillover order fulfillment or order splitting would incur non-negligible

extra shipping and delivery costs. As a result, it is interesting to investigate whether this additional

order fulfillment cost could be reduced by wisely planning the warehouse assortment.

Table 1 Proportion of Orders with Distinct Amounts of SKUs

Number of Distinct SKUs in Each Order 1 2 3 ≥ 4

Proportion in Total Number of Orders 76.79% 22.98% 0.19% 0.04%

Since each DC also serves as a warehouse in RRS’s logistics network (Guo et al. 2021) and no

warehouse information is available, we do not differentiate DC and warehouse in the experiment.

Since we focus on the strategic level of assortment selection for DCs, we assume that the inventory

level of each SKU is large enough to satisfy all demand. Such an assumption would be plausible if

RRS took care of the inventory control.

According to Guo et al. (2021), each order has an associated last-mile hub (LMH) that serves as

the last stop before customers receive their orders. Hence, we treat each LMH as a demand zone.
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For any LMH, we identify the dominant DC as the one that delivers the most orders to this LMH.

We then allocate all LMHs to their dominant DC as service regions. Then, we have a set of DCs

and their dedicated service regions. As we have no access to the actual fulfillment cost, we mainly

focus on maximizing the OFR.

In the rest of this section, we undertake two sets of experiments. First, we evaluate the potential

for improvement in the current assortment selections of the distribution centers and assess the

performance of the proposed methods faced with demand changes. In addition, we test several dis-

tinct cost functions to gain further insights into the MCI policy. Second, we explore the assortment

selection problem if we want to separate a front-end distribution center that only serves a chosen

city. All the computation is done on a MacBook Pro 13-inch (2018) with 2.3 GHz quad-core Intel

Core i5, and the MILPs are solved using Gurobi v9.0.2.

6.1. Experiments on Dominant Distribution Centers

From the data of the recorded year, we find 62 dominant DCs and their corresponding service

regions. For any given dominant DC, the demand is determined by aggregating the demand of its

service regions. In addition, we notice from the data that some SKUs stored in the DCs only ship

to LMHs that are not part of their service regions. To ensure a fair comparison, we assume the

current assortment of any given DC contains the SKUs that have been shipped from this DC to

its service region. We set the size of the current assortment as the DC’s SKU capacity K.

For the DCs whose SKU capacities are less than the total number of demanded SKUs, it is worth

exploring if we can find a better assortment selection than the current assortment and improve the

OFR. We compare OFR of the current DC assortment with that of the optimal (OPT) assortment

computed using MILP in formulation (3) and the assortment derived by the MCI policy. We also

tested the greedy algorithm, which iteratively selects the SKU such that it leads to the largest

improvement of the OFR. However, due to O(KNM) complexity and the relatively large number

of products, we find that for a case with N = 5143, M = 5554, and K = 3000, the greedy algorithm

does not stop after several hours, which is much slower than solving the MILP (finishes within 3
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seconds). For this reason, we do not bring the greedy policy into the comparison. We also compare

the random pick (RP) policy that randomly selects an assortment of size K, and we denote TRP

as the randomly selected assortment. To reduce the variance of the performance of the RP policy

while retaining a manageable run time, all the reported results of the RP policy are the average

performance of 100 randomly selected assortments.

In the experiment, we do the train-test split based on the order date. The orders are recorded

from May 30th, 2018 to Sept. 30th, 2019. However, there are 15 abnormal orders with dates prior

to 2017 (1 in 2016 and 14 in 2000), which are subsequently omitted. Then, we set the first half of

the orders whose order dates are before Feb. 1st, 2019 as the training set and the rest of the orders

as the test set. Note that the demands, the DCs’ current assortments, and the SKU capacity all

depend on the training data. In the test set, all the SKUs that do not appear in the training data

are eliminated. After this adjustment, 4 DCs end up with no valid orders, so we do not include

them in our experiment.

We separate the results into three parts: LTC as dominant DC in Tables 2 and 3, RDC as

dominant DC in Tables EC.1 and EC.2, and CDC as dominant DC in Tables EC.3 and EC.4.

Since our main motivation is to study the warehouse assortment selection for local warehouses,

the results for LTCs are our main focus. Due to space limitations, we only present the results for

LTCs. The results for RDCs and CDCs can be found in Section EC.3.1.

In these tables, # SKU denotes the number of demanded SKUs in the service regions, # Diff

Orders denotes the number of different orders, OPT IMP Current and MCIP IMP Current denote

the improvement on the order fill rate of the MILP optimal assortment selection and the MCI policy

selection over the current assortment, respectively. Solving the MILP, we found that: (i) LTCs have

the potential for a 10.32% improvement in OFR on average over current assortments; (ii) RDCs

have the potential for a 5.84% improvement in OFR on average over current assortments; (iii)

CDCs have the potential for a 1.37% improvement in OFR on average over current assortments.

LTCs have the most significant potential for improvement, as they have smaller capacity and
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Table 2 In-Sample OFR Comparison Results for LTCs

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

Current

OFR (%)

OPT

OFR (%)

MCIP

OFR (%)

Avg RP

OFR (%)

OPT IMP

Current (%)

MCIP IMP

Current (%)

ORFMCIP
ORFOPT

(%)

MILP

Time (s)

RRSZX005 672 367 609 71.6 87.01 86.51 51.94 21.52 20.82 99.42 0.26
RRSZX012 328 239 302 91.21 95.13 93.53 70.37 4.29 2.54 98.32 0.2
RRSZX021 28 13 15 75.51 83.67 83.67 21.14 10.81 10.81 100.0 0.17
RRSZX028 454 306 425 78.02 84.49 82.54 65.64 8.29 5.79 97.69 0.21
RRSZX034 36 27 19 85.11 89.36 85.11 57.77 5.0 0.0 95.24 0.14
RRSZX036 40 23 35 77.53 84.27 83.15 54.78 8.7 7.25 98.67 0.14
RRSZX037 3655 2013 3779 86.16 97.18 96.99 53.36 12.79 12.56 99.8 1.0
RRSZX047 828 577 784 91.05 95.1 94.79 68.72 4.45 4.11 99.67 0.58
RRSZX049 236 202 228 93.68 97.12 96.34 85.6 3.67 2.84 99.2 0.2
RRSZX050 3270 1380 3291 85.01 93.42 93.1 40.04 9.88 9.51 99.66 1.07
RRSZX055 41 24 41 58.73 73.02 73.02 58.4 24.32 24.32 100.0 0.34
RRSZX057 594 419 531 83.26 92.31 90.78 67.88 10.87 9.04 98.35 0.46
RRSZX061 1429 891 1279 86.49 93.67 93.63 58.78 8.31 8.26 99.96 0.68
RRSZX065 101 75 101 83.41 87.8 87.32 74.35 5.26 4.68 99.44 0.17
RRSZX066 202 149 177 84.86 90.0 85.95 71.75 6.05 1.27 95.5 0.21
RRSZX068 177 128 164 79.38 86.25 83.51 71.65 8.66 5.19 96.81 0.2
RRSZX075 182 147 185 92.28 93.57 93.57 80.46 1.39 1.39 100.0 0.18
RRSZX076 200 150 196 86.81 90.21 89.36 74.11 3.92 2.94 99.06 0.2
RRSZX077 626 335 605 73.15 84.05 83.81 52.89 14.89 14.56 99.72 0.42
RRSZX096 33 25 30 76.47 94.12 92.94 74.79 23.08 21.54 98.75 0.15
RRSZX105 2134 1087 1923 81.79 92.58 92.23 46.12 13.19 12.76 99.62 0.72
RRSZX106 2543 1195 2364 82.13 91.89 91.57 44.01 11.88 11.48 99.64 0.61
RRSZX107 951 503 837 77.44 89.88 89.59 48.84 16.06 15.69 99.68 0.3
RRSZX108 948 551 881 82.25 91.44 90.96 56.1 11.18 10.59 99.48 0.3
RRSZX109 39 28 42 78.75 86.25 86.25 68.57 9.52 9.52 100.0 0.18

can only store a limited number of products. This aligns with our focus on carefully selecting

assortments for front-end distribution centers, which can significantly reduce fulfillment costs.

Surprisingly, although the MCI policy can perform poorly in some situations (e.g., Example 3),

it performs extremely well in the experiments. We find that applying the MCI policy to select the

assortments will have 9.18%, 5.59%, and 1.29% of improvement over the OFR over the current

practice for LTCs, RDCs, and CDCs, respectively. This improvement ratio is very close to that of

the MILP optimal selection, which is also revealed by ORFMCIP
ORFOPT

whose values all are nearly 100%.

In contrast, the performance of the RP policy is rather poor, which implies the importance of

optimizing the assortment for each warehouse or distribution center.

Besides examining the in-sample performance, we also apply the MILP optimal and the MCI

assortments derived from the training set to the test set. Since we have no information on how the

assortments are updated by the firm over time, we do not compare them with DCs’ assortments

in the test set. In these tables, “HS OPT” denotes the OFR calculated by the hindsight MILP

optimal solution, i.e. deriving from solving the MILP with the underlying demand distribution.

Analyzing Table 3, Tables EC.2 and EC.4, we can see that the MILP optimal assortments

computed from the training dataset are not necessarily optimal on the testing set. For LTCs, the

MCI policy performs better in 14 out of 25 cases; for RDCs, the MCI policy performs better in 14

out of 26 cases; for CDCs, the MCI policy performs better in 3 out of 7 cases. Although the MCI
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Table 3 Out-of-Sample OFR Comparison Results for LTCs

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

HS

OPT

OFR (%)

Test

OPT

OFR (%)

Test

MCIP

OFR (%)

Test MCIP

IMP Over

Test OPT (%)

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

HS

OPT

OFR (%)

Test

OPT

OFR (%)

Test

MCIP

OFR (%)

Test MCIP

IMP Over

Test OPT (%)

RRSZX005 672 367 435 98.42 87.58 86.46 -1.28 RRSZX065 101 75 54 100.0 89.94 85.85 -4.55
RRSZX012 328 239 206 100.0 93.65 94.81 1.24 RRSZX066 202 149 97 100.0 86.83 86.52 -0.36
RRSZX021 28 13 8 100.0 46.71 51.5 10.26 RRSZX068 177 128 78 100.0 77.01 80.46 4.48
RRSZX028 454 306 287 100.0 78.72 84.02 6.73 RRSZX075 182 147 157 99.57 91.59 90.0 -1.74
RRSZX034 36 27 15 100.0 96.17 97.12 1.0 RRSZX076 200 150 129 100.0 81.73 81.06 -0.81
RRSZX036 40 23 22 99.41 91.76 82.94 -9.62 RRSZX077 626 335 471 96.8 82.36 82.78 0.51
RRSZX037 3655 2013 3380 99.01 93.07 93.45 0.41 RRSZX096 33 25 16 100.0 97.78 98.33 0.57
RRSZX047 828 577 582 99.99 88.94 90.9 2.2 RRSZX105 2134 1087 1578 97.89 88.94 88.95 0.02
RRSZX049 236 202 150 100.0 98.5 97.01 -1.52 RRSZX106 2543 1195 2079 96.77 87.78 88.61 0.95
RRSZX050 3270 1380 2936 96.69 87.79 89.3 1.72 RRSZX107 951 503 598 98.46 86.08 87.38 1.51
RRSZX055 41 24 15 100.0 90.0 85.0 -5.56 RRSZX108 948 551 619 99.35 91.44 91.27 -0.18
RRSZX057 594 419 333 100.0 81.7 85.51 4.66 RRSZX109 39 28 33 100.0 94.08 87.57 -6.92
RRSZX061 1429 891 934 99.37 92.76 92.68 -0.08

policy is not necessarily optimal, it outperforms the training-optimal solution for the majority of

cases. This result implies that the MCI policy is robust to the change in demand.

Also, we carry out supplementary experiments in Section EC.3.3 to evaluate the performance

of the MCI policy across various cost functions, as well as the modified MCI policy discussed

in Proposition 4 when facing an additional fulfillment cost calculated as the sum of the costs

for unfulfilled products. We find that, in comparison to current practices, the MCI policy yields

substantial cost reductions regardless of which size-based cost function is tested. Furthermore,

minor adjustments to the MCI policy can yield significant improvements, particularly when tailored

to address specific type-II cost functions.

6.2. Experiments on the Most Popular Cities

In this section, we zoom into some popular cities or areas and investigate insights into warehouse

assortment problems. We choose five popular cities that have the most orders during the recorded

year. The details of the five cities are listed in Table EC.5 in Section EC.3. For each chosen city,

we calculate the MILP optimal assortment (blue curve), the assortment derived from the MCI

policy (red curve), and the assortment derived by the RP policy (green curve) with cardinality

constraint being {1,21,41,61, . . .}. Besides comparing the normal OFR, we also examine the par-

tial fulfillment rate (PFR), i.e., the proportion of multi-purchase orders that are partially fulfilled

(for single-purchase orders, as they can only be fully fulfilled or not fulfilled, they are out of con-

sideration in this index). Specifically, PFR equals the proportion of multi-purchase orders that

are partially fulfilled by the selected assortment divided by the total proportion of multi-purchase

orders. Here, multi-purchase and single-purchase orders are referred to as orders with the purchase
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of multiple distinct SKUs and a single SKU, respectively. A larger PFR indicates a more “ineffi-

cient” assortment selection. Moreover, to gain deeper insights into the MCI policy, we also plot the

ratio of products that are both in the MCI assortment and the MILP optimal assortment. Because

the structures of the results for all five cities are similar, we only present the results for the most

popular city and the rest can be found in Section EC.3. In Figure 1, the red curves nearly merge
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with the blue curves implying that the MCI policy is near optimal for all values of the SKU capac-

ity. Figure 2 implies that even if the MCI policy does not fully coincide with the MILP optimal

solution, it still provides a near-optimal solution. Thus, when no further information about the

customers’ demands is available, the MCI policy can be a good choice.

Furthermore, a high OFR can be achieved with a relatively small SKU capacity since the OFR

curve of the MILP optimal solution and MCI policy are concave with a steep slope at zero. For

example, in Figure 1 with N = 5143, an assortment of around 2000 can achieve an OFR of over

90%. This observation suggests a way to design the assortment at warehouses in different levels

of the logistics network: the front-end distribution centers should have a small SKU capacity and

keep the most popular products to fulfill the majority of orders while the back-end distribution

centers should connect several front-end distribution centers for fulfilling demands that cannot be

completely satisfied by the front-end distribution centers.

We compare the performance of the RP policy, MCI policy, and MILP optimal solution with

respect to PFR in Figure 3. We find that the MILP optimal solution results in the least PFR

followed by the MCI policy. In contrast, the RP policy results in the highest PFR. Similar to the

construction of Example 4, assortment selections with high PFR will result in a bad performance

in improving OFR. These figures imply that the main difference between the MCI policy and the
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MILP optimal solution is that the MCI policy does not reduce PFR as much as the MILP optimal

solution. When the orders contain more items, the gap between these two policies may be larger.

7. Conclusion and Future Research Directions

In this study, we investigate the cardinality-constrained single warehouse assortment selection prob-

lem, which aims to minimize the fulfillment cost incurred at the local warehouse by selecting the

optimal assortment. The problem includes the well-known order fill rate maximization problem,

which we prove to be NP-hard. Indeed, we construct examples to illustrate that the greedy pol-

icy can perform arbitrarily badly. Although numerous well-established submodular minimization

techniques from the literature may be employed when some trivial conditions are met, the general

submodular minimization methodology does not account for the unique feature of the warehouse

assortment selection problem. In response to this, we formulate two MILPs of the warehouse assort-

ment selection problem for different cost functions. Moreover, leveraging the nature of the problem,

we propose a simple heuristic, the MCI policy, which selects the K products with the highest

marginal choice probabilities and shows that it can be optimal under mild conditions. Our numer-

ical studies show that the MCI policy results in near-optimal performance and can improve the fill

rate by 9.18%, on average, compared to the current practice for local transfer centers. Additionally,

the MCI policy exhibits robustness in the face of demand fluctuations.

Our findings offer several promising avenues for future research. First, a natural extension to our

work would be exploring the multi-warehouse assortment selection problem. The introduction of

a multi-warehouse system considerably complicates the assortment selection problem, as various

fulfillment policies must be considered. Besides, not only are the overall efficiency of the logistics

network and cost reduction vital metrics, but the workload balance across the entire system also

emerges as a potential concern. This complexity makes the multi-warehouse system a rich and

fruitful direction for future investigation. Second, while our study primarily focuses on SKU capac-

ity in warehouse planning, we recognize that inventory management remains a critical component

of supply chain management. As such, a promising future direction lies in studying the joint ware-

house assortment and inventory planning problem. By integrating these two aspects, researchers
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may uncover novel insights and solutions that advance our understanding of optimal warehouse

management and supply chain efficiency.
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EC.1. Proofs of Statements

Proof of Proposition 1 Proof of part (i): Consider any S,S ′ ⊆N with S ⊆ S ′, we have

C(T |S) =


0 if T ⊆ S

G(T ) if T * S
=


0 if T ⊆ S

G(T ) if T * S and T ⊆ S ′

G(T ) if T * S ′

,

and

C(T |S ′) =


0 if T ⊆ S

0 if T * S and T ⊆ S ′

G(T ) if T * S ′

.

So, given G(T )≥ 0 ∀T ⊆N , we have C(T |S)≥C(T |S ′) ∀T ⊆N .

Thus, given π(T )≥ 0 ∀T ⊆N , we have f(S) =
∑
T ⊆N

π(T )C(T |S)≥
∑
T ⊆N

π(T )C(T |S ′) = f(S ′). That is, the larger

S is, the lower the total fulfillment costs. Since we want to minimize the cost, (CP ′) is equivalent to (CP ).

Proof of part (ii): Consider any S,S ′ ⊆N with S ⊆ S ′, we have

C(T |S) =


0 if T ⊆ S

G(T \S) if T * S
=


0 if T ⊆ S

G(T \S) if T * S and T ⊆ S ′

G(T \S) if T * S ′

,

and

C(T |S ′) =


0 if T ⊆ S

0 if T * S and T ⊆ S ′

G(T \S ′) if T * S ′

.

Since (T \S ′)⊆ (T \S) ∀T ⊆N and G(X)≤G(Y ) ∀X ⊆ Y ⊆N (the type-II cost function is increasing), then we

have G(T \S)≥G(T \S ′). So, C(T |S)≥C(T |S ′) ∀T ⊆N .

Thus, given π(T )≥ 0 ∀T ⊆N , we have f(S) =
∑
T ⊆N

π(T )C(T |S)≥
∑
T ⊆N

π(T )C(T |S ′) = f(S ′). That is, the larger

S is, the lower the total fulfillment costs. Since we want to minimize the cost, problem (CP ′) is equivalent to problem

(CP ). �

Proof of Theorem 1 Proof of part (i): For type-I cost functions and any S,S ′ ⊆N , take any set T ⊆ N . There

are five cases: (a) T ⊆ S ′ ∩ S; (b) T ⊆ S ′ but T 6⊆ S; (c) T 6⊆ S ′ but T ⊆ S; (d) T ⊆ S ′ ∪ S but T 6⊆ S ′ and T 6⊆ S;

and (e) T 6⊆ S ′ ∪S.
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Under case (a) C(T |S ′∩S) =C(T |S ′) =C(T |S) =C(T |S ′∪S) = 0; under case (b) C(T |S ′∩S) =C(T |S) =G(T )

and C(T |S ′) =C(T |S ′∪S) = 0; under case (c) C(T |S ′∩S) =C(T |S ′) =G(T ) and C(T |S) =C(T |S ′∪S) = 0; under

case (d) C(T |S ′∩S) =C(T |S ′) =C(T |S) =G(T ) and C(T |S ′∪S) = 0; and under case (e) C(T |S ′∩S) =C(T |S ′) =

C(T |S) =C(T |S ′ ∪S) =G(T ).

For cases (a)-(c) and (e), C(T |S ′∩S)+C(T |S ′∪S) =C(T |S ′)+C(T |S). For case (d) C(T |S ′∩S)+C(T |S ′∩S) =

G(T )≤ 2G(T ) = C(T |S ′) +C(T |S). Thus, for any given T ⊆N , C(T |S) is submodular in S. Taking the weighted

sum over all T , we have f(S) is submodular in S.

Proof of part (ii): For type-II cost functions with G(·) being submodular and any S,S ′ ⊆N , we have

C(T |S) +C(T |S ′) = G(T \S) +G(T \S ′)

≥ G
(
(T \S)∩ (T \S ′)

)
+G

(
(T \S)∪ (T \S ′)

)
= G

(
(T \(S ∩S ′)

)
+G

(
(T \(S ∪S ′)

)
= C(T |S ∩S ′) +C(T |S ∪S ′).

Thus, C(T |S) is submodular in S. Taking the weighted sum over all T , we have f(S) is submodular in S.

If G(S) is size-based, i.e., G(S) = c(|S|) ∀S ⊆N for some function c(·), then G(S ′) +G(S)≥G(S ′∩S) +G(S ′∪S)

is equivalent to c(|S ′|) + c(|S|) ≥ c(|S ′ ∩ S|) + c(|S ′ ∪ S|). Note that |S ′|+ |S| = |S ′ ∩ S|+ |S ′ ∪ S| and |S ′ ∩ S| ≤

|S ′|, |S| ≤ |S ′ ∪ S|. Hence, c(|S ′|) + c(|S|) ≥ c(|S ′ ∩ S|) + c(|S ′ ∪ S|) is equivalent to c(·) is concave. Thus, G(S) is

submodular is equivalent to c(·) is concave. �

Proof of Corollary 1 In terms of (OFRM-C), let f(S) =
∑M
m=1 πmI(Tm * S). It is obvious that the objective

function in (OFRM-C) is decreasing and submodular. In terms of (OFRM), let OFR(S) =
∑M
m=1 πmI(Tm ⊆ S) =

1− f(S). On the one hand, for any S,S ′ ⊆N with S ⊆ S ′, we have

C(T |S) =


0 if T ⊆ S

1 if T * S
=


0 if T ⊆ S

1 if T * S and T ⊆ S ′

1 if T * S ′

,

and

C(T |S ′) =


0 if T ⊆ S

0 if T * S and T ⊆ S ′

1 if T * S ′

.

Hence, we have C(T |S) ≥ C(T |S ′) ∀T ⊆ N . So, given π(T ) ≥ 0 ∀T ⊆ N , we have OFR(S) = 1 − f(S) = 1 −∑
T ⊆N π(T )C(T |S)≤ 1−

∑
T ⊆N π(T )C(T |S ′) = 1− f(S ′) = OFR(S ′). That is, OFR(·) is increasing.

On the other hand, for any S,S ′ ⊆N , take any set T ⊆N . There are five cases: (a) T ⊆ S ′ ∩ S; (b) T ⊆ S ′ but

T 6⊆ S; (c) T 6⊆ S ′ but T ⊆ S; (d) T ⊆ S ′∪S but T 6⊆ S ′ and T 6⊆ S; and (e) T 6⊆ S ′∪S. Under case (a) C(T |S ′∩S) =
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C(T |S ′) = C(T |S) = C(T |S ′ ∪ S) = 0; under case (b) C(T |S ′ ∩ S) = C(T |S) = 1 and C(T |S ′) = C(T |S ′ ∪ S) = 0;

under case (c) C(T |S ′ ∩S) =C(T |S ′) = 1 and C(T |S) =C(T |S ′ ∪S) = 0; under case (d) C(T |S ′ ∩S) =C(T |S ′) =

C(T |S) = 1 and C(T |S ′ ∪S) = 0; and under case (e) C(T |S ′ ∩S) =C(T |S ′) =C(T |S) =C(T |S ′ ∪S) = 1. For cases

(a)-(c) and (e), C(T |S ′ ∩ S) +C(T |S ′ ∪ S) = C(T |S ′) +C(T |S). For case (d) C(T |S ′ ∩ S) +C(T |S ′ ∩ S) = 1≤ 2 =

C(T |S ′) +C(T |S). Hence, for any given T ⊆N , C(T |S) is submodular in S. So, 1−C(T |S) is supermodular in S.

Taking the weighted sum over all T ⊆N , we have OFR(S) is supermodular in S. �

Proof of Theorem 2 We prove by a reduction from the Densest k-Subgraph (DkS) Problem, which is known to

be NP-hard (Corneil and Perl 1984).

We start by presenting the DkS problem. Consider a undirected simple graph G(V,E) with V = {1,2, . . . ,N},

E ⊆ {{i, j}|i, j ∈ V, i 6= j} (loops are permitted), and |E|=m. Given a parameter k, the goal of the DkS problem is

to find a subgraph of G induced on k vertices that contains the largest number of edges.

Let A be the adjacency matrix of G, then the DkS problem can be formulated as follows

max
x

x>Ax

s.t.
∑N
i=1 xi = k

xi = {0,1} i∈ {1,2, . . . ,N},

(EC.1)

where xi a binary decision variable which equals to 1 if vertex i is in the densest k-subgraph and 0 otherwise.

Now, we construct an instance of the (OFRM) problem with L= 2 and cardinality constraint k. Assume that there

are N different items and let N = {1,2, . . . ,N}. For any i, j ∈N , subset {i, j} has a probability of 1
m

to be chosen if

{i, j} ∈E, and the rest subsets are never been chosen. Let B = {bi,j}N×N with bi,j = 1
2m
∀{i, j} ∈E, and 0 otherwise,

then the (OFRM) problem with L= 2 for this instance can be formulated as follows.

max
x

x>Bx

s.t.
∑N
i=1 xi ≤K

xi = {0,1} i∈N ,

(EC.2)

where xi a binary decision variable which equals to 1 if product i is selected in assortment S and 0 otherwise.

Moreover, according to Proposition 1, Problem (EC.2) is equivalent to

max
x

1
2m
·x>Ax

s.t.
∑N
i=1 xi =K

xi = {0,1} i∈N .

(EC.3)

Since when K = k, Problem (EC.3) is equivalent to Problem (EC.1). Thus, we conclude that the (OFRM) problem

with L= 2 is NP-hard.

Furthermore, by the equivalence of the (OFRM) problem and the (OFRM-C) problem, we also conclude that the

(OFRM-C) problem with L= 2 is NP-hard. �
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Proof of Proposition 2 We will show that Problem (5) can be reduced to a knapsack problem, which can be solved

using dynamic programming.

We start by presenting the common 0− 1 knapsack problem. Assume that there are n items with v1, . . . , vn being

the associated item values and w1, . . . ,wn being the associated item sizes, where item sizes are assumed to be positive

integers. The goal of the knapsack problem is to find a subset of items such that the total value (of the subset of

items) is maximized and the total size (of the subset of items) does not exceed the knapsack size W ∈N+. We assume

that the items are indexed such that v1 ≤ v2 ≤ · · · ≤ vn. Let x= [x1, . . . , xn]T be the decision variable with xi = 1 if

item i is included in the interested subset and 0 otherwise. Then, the knapsack problem is formulated as follows.

max
x∈{0,1}n

n∑
i=1

vixi

s.t.

n∑
i=1

wixi ≤W.
(EC.4)

Now, we construct an instance of the knapsack problem with n= M̃ items. We let vi = πi and wi = si ∀i∈ [M̃ ] be

the item value and item size, respectively. Additionally, we let the knapsack size W =K. So, compare both problem

formulations, solving Problem (5) is equivalent to solve the constructed knapsack Problem (EC.4).

Generally, the 0− 1 knapsack problem is (binary) NP-complete (Williamson and Shmoys 2011) and can be solved

via a dynamic programming algorithm (Algorithm 1).

Algorithm 1: Dynamic Programming Algorithm for 0− 1 Knapsack Problem

Input : v1, . . . , vn, w1, . . . ,wn, W

Output: mn,W

1 mi,0← 0 ∀i∈ [n] ;

2 m0,j← 0 ∀j ∈ [W ] ;

3 for i← 1 to n do do

4 for j← 1 to W do do

5 if wi ≤ j then

6 mi,j = max{mi−1,j−wi + vi, mi−1,j} ;

7 else

8 mi,j =mi−1,j ;

9 end

10 end

11 end

12 return mn,W
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The computational complexity of Algorithm 1 is O(nW ), which means the general 0− 1 knapsack problem can be

solved in pseudo-polynomial time (given that W can be arbitrary large). However, in our special case, n= M̃ ≤N

and W =K ≤N is capped by the total number of products, the constructed 0− 1 knapsack problem can be solved

in run time O(NK). Thus, Problem (5) can be solved in polynomial time using dynamic programming Algorithm 1.

�

Proof of Proposition 3 Without loss of generality, we assume c(n) = n. Then, problem (CP ) is equivalent to the

following integer programming

max
ξ

∑N
n=1

(∑
m:Tm3n πm

)
ξn

s.t.

N∑
n=1

ξn ≤K

ξn ∈ {0,1} ∀n∈ [N ],

(EC.5)

where ξ ∈ {0,1}N denotes the binary decision variable with ξn = 1 if product n is included in the assortment S and

0 otherwise. Problem (EC.5) is a knapsack problem with the same weight, as a result, the optimal policy is to select

K ξns with the largest
∑
m:Tm3n πm among the N products, setting them to be 1. Note that

∑
m:Tm3n πm is the

marginal choice probability of product n. Thus, the MCI policy is optimal. �

Proof of Proposition 4 Considering type-II cost function with G(T ) =
∑
n∈T κn, (CP) can be reformulated as the

following integer programming

max
ξ

∑N
n=1

(∑
m:Tm3n πm

)
κnξn

s.t.

N∑
n=1

ξn ≤K

ξn ∈ {0,1} ∀n∈ [N ],

(EC.6)

where ξ ∈ {0,1}N denotes the binary decision variable with ξn = 1 if product n is included in the assortment S and 0

otherwise. Problem (EC.6) is a knapsack problem with the same weight, as a result, the optimal policy is to select K

ξns with the largest
(∑

m:Tm3n πm
)
κn among the N products, setting them to be 1. Note that

(∑
m:Tm3n πm

)
κn =

ωnκn is the choice-weighted fulfillment cost of product n. Thus, the modified MCI policy described in Proposition 4

is optimal. �

Proof of Theorem 3 Without loss of generality, we assume the elements in N are already indexed according to I.

For the first half, we need to show that ωi ≥ ωj for all i, j ∈N with i < j. Consider arbitrary i, j ∈N with i < j. Since

the elements in N are indexed according to I, which is a dominant indexing rule w.r.t. the choice model π, then for

any T ⊆N , we have π(T ∪ {i})≥ π(T ∪ {j}). So,

ωi =
∑
T ⊆N

π(T ) · I(i∈ T ) =
∑

T ⊆N\{i}

π(T ∪ {i}) =
∑

T ⊆N\{i,j}

π(T ∪ {i}) +π(T ∪ {i, j})

≥
∑

T ⊆N\{i,j}

π(T ∪ {j}) +π(T ∪ {i, j}) =
∑

T ⊆N\{j}

π(T ∪ {j}) = ωj .

Thus, if a dominant indexing rule exists, then it is an MCI.

For the second half, we need to show that S∗ = {1,2, . . . ,K} is the optimal solution.
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(i) According to part 1 of Proposition 1, problem (CP ′) is equivalent to problem (CP ) under type-I size-based

cost functions for any choice model. So, we only have to prove S∗ is an optimal solution for problem (CP ′).

We prove the proposition by constructing a contradiction. Assume that S0 = {1,2, . . . , l − 1,m, l + 1, . . . ,K}

such that f(S0)< f(S∗) for some l ∈ {1, . . . ,K} and m∈ {K + 1, . . . ,N}.

Let S̃ = {1, . . . , l− 1, l+ 1, . . . ,K}. Then, we have S∗ = S̃ ∪ {l} and S0 = S̃ ∪ {m}. So,

f(S∗) =
∑
T ⊆N

π(T )C(T |S∗) =
∑

T ⊆N ,T *S∗
π(T )c(|T |) =

N∑
n=1

 ∑
T ⊆N ,T *S∗,|T |=n

π(T )c(n)


=

N∑
n=1

c(n)

1−
∑

T ⊆S∗,|T |=n

π(T )

=
N∑
n=1

c(n)

1−
∑

T ⊆S̃,|T |=n

π(T )−
∑

T ⊆S̃,|T |=n−1

π(T ∪ {l})

 ,

and

f(S0) =
∑
T ⊆N

π(T )C(T |S0) =
∑

T ⊆N ,T *S0

π(T )c(|T |) =

N∑
n=1

c(n)

1−
∑

T ⊆S0,|T |=n

π(T )


=

N∑
n=1

c(n)

1−
∑

T ⊆S̃,|T |=n

π(T )−
∑

T ⊆S̃,|T |=n−1

π(T ∪ {m})

 .

Since I is a dominant indexing rule w.r.t. the choice model π, for any T ⊆ S̃, we have π(T ∪{l})≥ π(T ∪{m}).

So, f(S0) ≥ f(S∗). It contradicts the assumption. In a similar sense, we can iteratively replace elements in

{1, . . . ,K} with elements in {K+1, . . . ,N} and show that selecting S∗ = {1, . . . ,K} has the lower cost compared

to that of any other S0 ⊆N with |S0|=K.

Thus, f(S∗)≤ f(S) ∀S ⊆N with |S|=K. This proves that S∗ is optimal.

(ii) According to part 2 of Proposition 1, problem (CP ′) is equivalent to problem (CP ) under increasing type-II

size-based cost functions for any choice model. So, we only have to prove S∗ is an optimal solution for problem

(CP ′).

We prove this by constructing a contradiction. Assume that S0 = {1,2, . . . , l − 1,m, l + 1, . . . ,K} such that

f(S0)< f(S∗) for some l ∈ {1, . . . ,K} and m∈ {K + 1, . . . ,N}.
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Let S̃ = {1, . . . , l − 1, l + 1, . . . ,K}, S̄ = {K + 1, . . . ,m − 1,m + 1, . . . ,N}. Then, we have S∗ = S̃ ∪ {l} and

S0 = S̃ ∪ {m}. Additionally, we let S̄∗ = S̄ ∪ {m} and S̄0 = S̄ ∪ {l}. So,

f(S∗) =
∑
T ⊆N

π(T )C(T |S∗) =
∑

T ⊆N ,T *S∗
π(T )c(|T \S∗|)

=

N−K∑
n=1

 ∑
T ⊆N ,T *S∗,|T \S∗|=n

π(T )c(n)

=

N−K∑
n=1

c(n)

 ∑
X⊆S∗

∑
Y⊆S̄∗,|Y |=n

π(X ∪Y )


=

N−K∑
n=1

c(n)

∑
X⊆S̃

∑
Y⊆S̄∗,|Y |=n

π(X ∪Y ) +
∑
X⊆S̃

∑
Y⊆S̄∗,|Y |=n

π(X ∪Y ∪{l})


=

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ) +

N−K∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n−1

π(X ∪Y ∪{m})

+

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{l}) +

N−K∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n−1

π(X ∪Y ∪{l}∪ {m})

=

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ) +

N−K∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n−1

π(X ∪Y ∪{l}∪ {m})

+

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{l}) +

N−K−1∑
n=0

c(n+ 1)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{m}),

and

f(S0) =
∑
T ⊆N

π(T )C(T |S0) =
∑

T ⊆N ,T *S0

π(T )c(|T \S0|)

=

N−K∑
n=1

 ∑
T ⊆N ,T *S0,|T \S0|=n

π(T )c(n)

=

N−K∑
n=1

c(n)

 ∑
X⊆S0

∑
Y⊆S̄0,|Y |=n

π(X ∪Y )


=

N−K∑
n=1

c(n)

∑
X⊆S̃

∑
Y⊆S̄0,|Y |=n

π(X ∪Y ) +
∑
X⊆S̃

∑
Y⊆S̄0,|Y |=n

π(X ∪Y ∪{m})


=

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ) +

N−K∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n−1

π(X ∪Y ∪{l})

+

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{m}) +

N−K∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n−1

π(X ∪Y ∪{m}∪ {l})

=

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ) +

N−K∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n−1

π(X ∪Y ∪{m}∪ {l})

+

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{m}) +

N−K−1∑
n=0

c(n+ 1)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{l}).

Electronic copy available at: https://ssrn.com/abstract=4212027



ec8 e-companion to Author: Warehouse Assortment Selection for E-Commerce Companies

Since I is dominant w.r.t. π, then for any X ⊆ S̃ and Y ⊆ S̄, we have π(X ∪Y ∪{l})≥ π(X ∪Y ∪{m}). So,

f(S∗)− f(S0)

=

N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{l}) +

N−K−1∑
n=0

c(n+ 1)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{m})

−
N−K−1∑
n=1

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{m})−
N−K−1∑
n=0

c(n+ 1)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{l})

=

N−K−1∑
n=0

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{l}) +

N−K−1∑
n=0

c(n+ 1)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{m})

−
N−K−1∑
n=0

c(n)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{m})−
N−K−1∑
n=0

c(n+ 1)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

π(X ∪Y ∪{l})

−c(0)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=0

π(X ∪Y ∪{l}) + c(0)
∑
X⊆S̃

∑
Y⊆S̄,|Y |=0

π(X ∪Y ∪{m})

=

N−K−1∑
n=0

[c(n)− c(n+ 1)]

∑
X⊆S̃

∑
Y⊆S̄,|Y |=n

(π(X ∪Y ∪{l})−π(X ∪Y ∪{m}))


≤ 0.

It contradicts the assumption. In a similar sense, we can iteratively replace elements in {1, . . . ,K} with elements

in {K + 1, . . . ,N} and show that selecting S∗ = {1, . . . ,K} has the lower cost compared to that of any other

S0 ⊆N with |S0|=K.

Thus, f(S∗)≤ f(S) ∀S ⊆N with |S|=K. This proves that S∗ is optimal. �

Proof of Proposition 6 For the first half, we claim that indexing products such that p1 ≥ p2 ≥ · · · ≥ pN is dominant

w.r.t. the ICM.

Since ωn =
∑
T ⊆N πICM (T ) · I(n ∈ T ) = pn ∀n ∈ N , then such indexing rule is exactly an MCI. For any subset

T ⊆N and two distinct elements l,m∈N\T with l <m. Let T ′ = T ∪{l} and T ′′ = T ∪{m}. Then, we have pl ≥ pm,

1− pm ≥ 1− pl, and

πICM (T ′) = πICM (T ∪ {l})

= pl
∏
i∈T pi

∏
j∈N\T ,j 6=l(1− pj)

= pl(1− pm)
∏
i∈T pi

∏
j∈N\T ,j 6=l,j 6=m(1− pj)

≥ pm(1− pl)
∏
i∈T pi

∏
j∈N\T ,j 6=l,j 6=m(1− pj)

= πICM (T ∪ {m}) = πICM (T ′′).

In a similar sense, we can iteratively pick a pair of elements (il, im) with il, im ∈N\T and il < im, and verify that

πICM (T ′ ∪{il})≥ πICM (T ′′ ∪{im}). Thus, we conclude this indexing rule is dominant w.r.t the ICM.

For the second half, it holds directly from Theorem 3 as we find the MCI is dominant w.r.t. the ICM. �

Proof of Proposition 7 For the first half, we claim that indexing products such that U1 �1 U2 �1 · · · �1 UN is

dominant w.r.t. the MC-RIUM.
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The choice probability of a set T ⊆N under MC-RIUM can be represented as

πMC−RIUM (T ) = P
(
Q= |T |,min

i∈T
Ui > max

j∈N+\T
Uj

)
+P

(
Q> |T |,min

i∈T
Ui >U0,U0 > max

k∈N\T
Uk

)
= P (Q= |T |) ·P

(
min
i∈T

Ui > max
j∈N+\T

Uj

)
+P (Q> |T |) ·P

(
min
i∈T

Ui >U0,U0 > max
k∈N\T

Uk

)
= P(Q= |T |) ·P

(
T = arg max

S⊆N+,|S|=|T |

∑
i∈S

Ui

)

+P (Q> |T |) ·P

(
T = arg max

S⊆N+,|S|=|T |

∑
i∈S

Ui,T ∪ {0}= arg max
S′⊆N+,|S′|=|T |+1

∑
i∈S′

Ui

)

= P (Q= |T |) ·P

(∑
t∈T

Ut = max
S⊆N+,|S|=|T |

∑
i∈S

Ui

)

+P (Q> |T |) ·P

(∑
t∈T

Ut = max
S⊆N+,|S|=|T |

∑
i∈S

Ui,
∑
t∈T

Ut +U0 = max
S′⊆N+,|S′|=|T |+1

∑
i∈S′

Ui

)
.

Given that U1 �1 U2 �1 · · · �1 UN , if Ul �1 Um, we have

ωl =
∑
T⊆N

πMC−RIUM (T ) · I(l ∈ T )

=
∑

T⊆N ,l∈T

[
P (Q= |T |) ·P

(∑
t∈T

Ut = max
S⊆N+,|S|=|T |

∑
i∈S

Ui

)

+ P (Q> |T |) ·P

∑
t∈T

Ut = max
S⊆N+,|S|=|T |

∑
i∈S

Ui,
∑
t∈T

Ut +U0 = max
S′⊆N+,|S′|=|T |+1

∑
i∈S′

Ui


=

∑
T⊆N\{l,m}

[
P(Q= |T |+1) ·P

(
Ul +

∑
t∈T

Ut = max
S⊆N+,|S|=|T |+1

∑
i∈S

Ui

)

+P(Q= |T |+2) ·P
(
Ul +Um +

∑
t∈T

Ut = max
S⊆N+,|S|=|T |+2

∑
i∈S

Ui

)

+P(Q> |T |+1) ·P


Ul +

∑
t∈T

Ut = max
S⊆N+,|S|=|T |+1

∑
i∈S

Ui,

Ul +
∑
t∈T

Ut +U0 = max
S′⊆N+,|S′|=|T |+2

∑
i∈S′

Ui


+ P(Q> |T |+2) ·P


Ul +Um +

∑
t∈T

Ut = max
S⊆N+,|S|=|T |+2

∑
i∈S

Ui,

Ul +Um +
∑
t∈T

Ut +U0 = max
S′⊆N+,|S′|=|T |+3

∑
i∈S′

Ui)




≥
∑

T⊆N\{l,m}

[
P(Q= |T |+1) ·P

(
Um +

∑
t∈T

Ut = max
S⊆N+,|S|=|T |+1

∑
i∈S

Ui

)

+P(Q= |T |+2) ·P
(
Ul +Um +

∑
t∈T

Ut = max
S⊆N+,|S|=|T |+2

∑
i∈S

Ui

)

+P(Q> |T |+1) ·P


Um +

∑
t∈T

Ut = max
S⊆N+,|S|=|T |+1

∑
i∈S

Ui,

Um +
∑
t∈T

Ut +U0 = max
S′⊆N+,|S′|=|T |+2

∑
i∈S′

Ui


+ P(Q> |T |+2) ·P


Ul +Um +

∑
t∈T

Ut = max
S⊆N+,|S|=|T |+2

∑
i∈S

Ui,

Ul +Um +
∑
t∈T

Ut +U0 = max
S′⊆N+,|S′|=|T |+3

∑
i∈S′

Ui)




= ωm.

Hence, Ul �1 Um implies ωl ≥ ωm ∀l,m∈N and l 6=m. So, indexing products such that U1 �1 U2 �1 · · · �1 UN is an

MCI. For any subset T ⊆N with |T |= k for some non-negative integer k and two distinct elements l,m∈N\T with
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l <m. Let T ′ = T ∪ {l} and T ′′ = T ∪ {m}. Then, we have Ul �1 Um and

πMC−RIUM (T ′) = πMC−RIUM (T ∪ {l})

= P(Q= k+ 1) ·P

 ∑
t∈T ∪{l}

Ut = max
S⊆N+,|S|=k+1

∑
i∈S

Ui



+P(Q>k+ 1) ·P


∑

t∈T ∪{l}

Ut = max
S⊆N+,|S|=k+1

∑
i∈S

Ui,

∑
t∈T ∪{l}

Ut +U0 = max
S′⊆N+,|S′|=k+2

∑
i∈S′

Ui


= P(Q= k+ 1) ·P

(
Ul +

∑
t∈T

Ut = max
S⊆N+,|S|=k+1

∑
i∈S

Ui

)

+P(Q>k+ 1) ·P


Ul +

∑
t∈T

Ut = max
S⊆N+,|S|=k+1

∑
i∈S

Ui,

Ul +
∑
t∈T

Ut +U0 = max
S′⊆N+,|S′|=k+2

∑
i∈S′

Ui


≥ P(Q= k+ 1) ·P

(
Um +

∑
t∈T

Ut = max
S⊆N+,|S|=k+1

∑
i∈S

Ui

)

+P(Q>k+ 1) ·P


Um +

∑
t∈T

(Vt + εt) = max
S⊆N+,|S|=k+1

∑
i∈S

Ui,

Um +
∑
t∈T

Vt + εt +U0 = max
S′⊆N+,|S′|=k+2

∑
i∈S′

Ui


= πMC−RIUM (T ∪ {m}) = πMC−RIUM (T ′′).

In a similar sense, we can repeatedly pick a pair of elements (il, im) with il, im ∈ N\T and il < im, and verify

that πMC−RIUM (T ′ ∪ {il}) ≥ πMC−RIUM (T ′′ ∪ {im}). Thus, we conclude this indexing rule is dominant w.r.t the

MC-RIUM.

For the second half, it holds directly from Theorem 3 as we find the MCI is dominant w.r.t. the MC-RIUM. �

Proof of Corollary 2 Assume that random utilities have the form Un = Vn + εn ∀n ∈ N+ and ε1, . . . , εN are

independent and identically distributed. For any l,m∈N , if Vl ≥ Vm, then we have

P(Ul ≤ u) = P(Vl + εl ≤ u)≤ P(Vm + εl ≤ u) = P(Um ≤ u).

By the definition of first-order stochastic dominance, the decreasing order of the utility in the FSD sense is equivalent

to the decreasing order of the deterministic utility.

Thus, according to Proposition 7, indexing products such that V1 ≥ V2 ≥ . . . VN is an MCI and is dominant w.r.t.

the MC-RIUM. �

Proof of Proposition 8 For the first half, if βil ≥ βim ∀i∈N\{l,m} for any l,m∈N with Vl ≥ Vm, we claim that

indexing products such that V1 ≥ V2 ≥ · · · ≥ VN is dominant w.r.t. the BundleMVL-L model.

The choice probability of a set T ⊆ N under BundleMVL-L model can be represented as πBundleMV L−L(T ) =

VT
1+

∑
T ′⊆N ,|T ′|≤L VT ′

, where VT = exp
(∑

i∈T Vi +
∑
i,j∈T ,i<j βij

)
. Given βil ≥ βim ∀i ∈ N\{l,m} for any l,m ∈ N

Electronic copy available at: https://ssrn.com/abstract=4212027



e-companion to Author: Warehouse Assortment Selection for E-Commerce Companies ec11

with Vl ≥ Vm, if Vl ≥ Vm, we have

ωl =
∑

T ⊆N ,|T |≤L

πBundleMV L−L(T ) · I(l ∈ T )

=
∑

T ⊆N ,|T |≤L,l∈T

exp
(∑

i∈T Vi +
∑
i,j∈T ,i<j βij

)
1 +

∑
T ′⊆N ,|T ′|≤L exp

(∑
i∈T ′ Vi +

∑
i,j∈T ′,i<j βij

)
=

∑
T ⊆N\{l,m},|T |≤L−1

exp
(

(Vl +
∑
j∈T ,j 6=l βjl) +

∑
i∈T Vi +

∑
i,j∈T ,i<j βij

)
1 +

∑
T ′⊆N ,|T ′|≤L exp

(∑
i∈T ′ Vi +

∑
i,j∈T ′,i<j βij

)
+

∑
T ⊆N\{l,m},|T |≤L−2

exp
(

(Vl +
∑
j∈T ,j 6=l βjl +Vm +

∑
j∈T ,j 6=m βjm) +

∑
i∈T Vi +

∑
i,j∈T ,i<j βij

)
1 +

∑
T ′⊆N ,|T ′|≤L exp

(∑
i∈T ′ Vi +

∑
i,j∈T ′,i<j βij

)
≥

∑
T ⊆N\{l,m},|T |≤L−1

exp
(

(Vm +
∑
j∈T ,j 6=m βjm) +

∑
i∈T Vi +

∑
i,j∈T ,i<j βij

)
1 +

∑
T ′⊆N ,|T ′|≤L exp

(∑
i∈T ′ Vi +

∑
i,j∈T ′,i<j βij

)
+

∑
T ⊆N\{l,m},|T |≤L−2

exp
(

(Vl +
∑
j∈T ,j 6=l βjl +Vm +

∑
j∈T ,j 6=m βjm) +

∑
i∈T Vi +

∑
i,j∈T ,i<j βij

)
1 +

∑
T ′⊆N ,|T ′|≤L exp

(∑
i∈T ′ Vi +

∑
i,j∈T ′,i<j βij

)
= ωm.

Hence, Vl ≥ Vm implies ωl ≥ ωm ∀l,m∈N and l 6=m. So, indexing products such that V1 ≥ V2 ≥ · · · ≥ VN is an MCI.

For any subset T ⊆ N with |T |= k ≤ L− 1 for some non-negative integer k and two distinct elements l,m ∈ N\T

with l <m. Let T ′ = T ∪ {l} and T ′′ = T ∪ {m}. Then, we have Vl ≥ Vm and

πBundleMV L−L(T ′) = πBundleMV L−L(T ∪ {l}) =
exp

(
(Vl +

∑
j∈T ,j 6=l βjl) +

∑
i∈T Vi +

∑
i,j∈T ,i<j βij

)
1 +

∑
R⊆N ,|R|≤L exp

(∑
i∈R Vi +

∑
i,j∈R,i<j βij

)
≥

exp
(

(Vm +
∑
j∈T ,j 6=m βjm) +

∑
i∈T Vi +

∑
i,j∈T ,i<j βij

)
1 +

∑
R⊆N ,|R|≤L exp

(∑
i∈R Vi +

∑
i,j∈R,i<j βij

)
= πBundleMV L−L(T ∪ {m}) = πBundleMV L−L(T ′′).

In a similar sense, we can repeatedly pick a pair of elements (il, im) with il, im ∈N\T and il < im, and verify that

πBundleMV L−L(T ′ ∪ {il})≥ πBundleMV L−L(T ′′ ∪ {im}). Thus, we conclude this indexing rule is dominant w.r.t the

BundleMVL-L model provided βil ≥ βim ∀i∈N\{l,m} for any l,m∈N with Vl ≥ Vm.

For the second half, it holds from Theorem 3 as we find the MCI is dominant w.r.t. the BundleMVL-L model

provided βil ≥ βim ∀i∈N\{l,m} for any l,m∈N with Vl ≥ Vm. �

EC.2. A Method Utilizing Benders Decomposition for Solving (CP)
with Type-I Cost Functions

First, we reformulate Problem (3) as follows

max
ξ,λ

M∑
m=1

πmgmλm,

s.t. λm ≤ hm(ξ), ∀m∈ [M ],

N∑
n=1

ξn =K,

ξn ∈ {0,1}, ∀n∈ [N ],

(EC.7)
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where subproblem hm(ξ) is defined as follows

hm(ξ) = max
ζm

ζm,

s.t. ζm ≤ ξn, ∀n∈ Tm,

ζm ≥ 0.

(EC.8)

Similar to the analysis of the MILP (3), when ξ is binary, the constraints in Problem (EC.8) automatically forces ζ

to be the correct binary value. Let A(m)(ξ) = {ζ|ζ ≤ ξn ∀n∈ Tm, ζ ≥ 0} be the feasible set of ζm for the subProblem

(EC.8), then we can rewrite the main Problem (EC.7) as

max
ξ,λ

M∑
m=1

πmgmλm,

s.t. λm ≤ ζm, ∀m∈ [M ], ζm ∈Am(ξ),

N∑
n=1

ξn =K,

ξn ∈ {0,1}, ∀n∈ [N ].

(EC.9)

According to the straightforward structure of subProblem (EC.8), we can easily derive an optimal solution. We

present this formally in the following proposition.

Proposition EC.1. Given ξ ∈ {0,1}N , the optimal solution of Problem (EC.8) for order m∈ [M ] with the assort-

ment represented by ξ is

ζm =


0 if minj∈Tm ξj < 1,

1 otherwise.

Proposition EC.1 provides us with a simple approach to test whether an integer solution (ξ,λ) to Problem (EC.8)

violates any constraint or not, i.e., we generate ζm according to Proposition EC.1 and compare it with λm for each

m∈ [M ]. If λm is less or equal to ζm, then the mth set of constraints remains unviolated; otherwise, if λm is strictly

larger than ζm, then we have identified a violated constraint and add it to the formulation. This procedure is inspired

by Bertsimas and Mǐsić (2019), which proposes a Benders decomposition method to solve the product line design

problem under the classic single-purchase rank list model. Note that the structure of Problem (3) is simpler than that

presented in Bertsimas and Mǐsić (2019), so applying Benders decomposition to our problem is expected be more

efficient.

EC.3. Supplementary Materials for Numerical Experiments
EC.3.1. Supplementary Materials for Section 6.1

In-sample and out-of-sample comparisons of order fill rates under different methods for RDCs are shown in Table EC.1

and Table EC.2. In-sample and out-of-sample comparisons of order fill rates under different methods for CDCs are

shown in Table EC.3 and Table EC.4.
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Table EC.1 In-Sample OFR Comparison Results for RDCs

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

Current

OFR (%)

OPT

OFR (%)

MCIP

OFR (%)

Avg RP

OFR (%)

OPT IMP

Current (%)

MCIP IMP

Current (%)

ORFMCIP
ORFOPT

(%)

MILP

Time (s)

RRSZX001 3985 3601 3901 98.84 99.7 99.6 89.22 0.87 0.76 99.9 2.18
RRSZX002 2915 1932 2730 88.04 97.14 96.82 63.05 10.34 9.98 99.67 1.01
RRSZX003 3323 2441 3205 93.24 98.59 98.48 70.49 5.74 5.62 99.89 0.82
RRSZX004 3463 2525 3410 94.39 98.76 98.58 71.18 4.63 4.44 99.82 0.89
RRSZX020 3256 2580 3204 96.61 99.21 99.16 78.53 2.68 2.63 99.95 0.85
RRSZX022 47 31 26 66.1 86.44 84.75 46.02 30.77 28.21 98.04 0.14
RRSZX023 922 658 852 96.39 98.57 98.44 70.41 2.26 2.13 99.87 0.29
RRSZX033 2992 1905 2940 92.82 97.91 97.76 62.17 5.49 5.32 99.84 0.87
RRSZX038 3084 1911 3054 83.94 96.64 96.52 59.62 15.13 14.98 99.88 0.88
RRSZX039 1436 1041 1313 94.57 99.34 99.17 70.92 5.04 4.86 99.83 0.42
RRSZX040 1148 1049 1044 99.16 99.8 99.71 90.72 0.64 0.55 99.9 0.33
RRSZX041 4279 3054 4335 94.85 99.0 98.94 67.94 4.38 4.31 99.93 1.12
RRSZX043 4128 3102 4140 96.59 99.35 99.27 72.13 2.86 2.77 99.92 1.67
RRSZX044 3630 2720 3571 95.22 98.78 98.71 71.91 3.74 3.66 99.92 1.19
RRSZX045 3748 2792 3772 95.21 98.87 98.69 71.98 3.84 3.66 99.82 1.22
RRSZX058 4363 3230 4515 97.11 99.44 99.38 72.34 2.4 2.34 99.94 1.88
RRSZX059 4444 3410 4568 97.03 99.52 99.46 74.33 2.57 2.51 99.94 1.72
RRSZX060 4061 3018 4170 97.29 99.38 99.29 72.05 2.15 2.06 99.9 1.39
RRSZX073 3002 1986 3026 91.06 97.54 97.23 64.51 7.12 6.78 99.68 1.47
RRSZX074 3055 2070 3138 93.35 98.36 98.23 66.78 5.37 5.23 99.86 1.16
RRSZX082 3475 2298 3535 93.91 98.43 98.3 65.0 4.81 4.68 99.87 1.31
RRSZX083 3655 2568 3645 95.26 98.9 98.78 68.85 3.82 3.69 99.88 1.25
RRSZX084 3988 2960 3937 95.79 99.21 99.09 72.82 3.56 3.44 99.88 1.57
RRSZX094 1597 957 1569 84.46 94.86 94.5 58.49 12.32 11.9 99.62 0.6
RRSZX095 2879 1884 2817 92.21 97.67 97.39 64.51 5.93 5.63 99.72 0.92
RRSZX110 4108 3189 3911 95.72 98.93 98.88 74.96 3.36 3.31 99.95 1.04

Table EC.2 Out-of-Sample OFR Comparison Results for RDCs

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

HS

OPT

OFR (%)

Test

OPT

OFR (%)

Test

MCIP

OFR (%)

Test MCIP

IMP Over

Test OPT (%)

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

HS

OPT

OFR (%)

Test

OPT

OFR (%)

Test

MCIP

OFR (%)

Test MCIP

IMP Over

Test OPT (%)

RRSZX001 3985 3601 3505 100.0 98.63 98.85 0.22 RRSZX044 3630 2720 3287 99.92 96.58 96.53 -0.05
RRSZX002 2915 1932 2323 99.63 95.44 95.49 0.05 RRSZX045 3748 2792 3534 99.92 96.68 95.98 -0.73
RRSZX003 3323 2441 2764 99.89 96.53 95.9 -0.65 RRSZX058 4363 3230 3846 99.98 98.42 98.26 -0.15
RRSZX004 3463 2525 2868 99.91 96.83 97.21 0.4 RRSZX059 4444 3410 3868 100.0 98.16 98.05 -0.11
RRSZX020 3256 2580 2685 100.0 97.95 98.0 0.04 RRSZX060 4061 3018 3595 99.98 98.03 97.97 -0.06
RRSZX022 47 31 13 100.0 48.91 42.39 -13.33 RRSZX073 3002 1986 2676 99.56 93.35 94.5 1.23
RRSZX023 922 658 686 99.82 97.48 97.72 0.25 RRSZX074 3055 2070 2760 99.75 96.45 96.64 0.2
RRSZX033 2992 1905 2465 99.66 95.16 95.89 0.77 RRSZX082 3475 2298 3114 99.69 95.99 96.12 0.13
RRSZX038 3084 1911 2658 99.33 94.64 94.98 0.35 RRSZX083 3655 2568 3251 99.86 96.15 96.15 -0.0
RRSZX039 1436 1041 1058 99.95 96.81 96.92 0.11 RRSZX084 3988 2960 3422 99.95 97.72 97.38 -0.35
RRSZX040 1148 1049 904 100.0 98.33 98.66 0.34 RRSZX094 1597 957 1264 99.22 93.17 93.4 0.25
RRSZX041 4279 3054 3986 99.88 97.78 97.52 -0.28 RRSZX095 2879 1884 2415 99.7 96.56 96.29 -0.28
RRSZX043 4128 3102 3753 99.95 98.23 97.81 -0.44 RRSZX110 4108 3189 3320 100.0 97.64 97.65 0.01

Table EC.3 In-Sample OFR Comparison Results for CDCs

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

Current

OFR (%)

OPT

OFR (%)

MCIP

OFR (%)

Avg RP

OFR (%)

OPT IMP

Current (%)

MCIP IMP

Current (%)

ORFMCIP
ORFOPT

(%)

MILP

Time (s)

RRSZX031 4410 3973 4631 99.22 99.8 99.74 89.43 0.58 0.52 99.94 1.55
RRSZX042 3981 3680 4021 98.68 99.82 99.72 91.33 1.16 1.05 99.9 1.58
RRSZX056 4084 3722 4136 99.22 99.85 99.79 90.35 0.64 0.58 99.94 1.67
RRSZX072 3838 3420 3888 97.4 99.64 99.55 87.42 2.3 2.2 99.91 1.61
RRSZX081 4087 3870 4042 99.54 99.91 99.83 93.96 0.38 0.29 99.92 1.55
RRSZX093 4030 3659 4011 98.65 99.74 99.67 89.82 1.11 1.04 99.93 1.06
RRSZX104 3648 2754 3494 95.75 99.03 98.92 72.31 3.43 3.32 99.9 0.84

Table EC.4 Out-of-Sample OFR Comparison Results for CDCs

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

HS

OPT

OFR (%)

Test

OPT

OFR (%)

Test

MCIP

OFR (%)

Test MCIP

IMP Over

Test OPT (%)

DC

Code
# SKUs

SKU

Cap

# Diff

Orders

HS

OPT

OFR (%)

Test

OPT

OFR (%)

Test

MCIP

OFR (%)

Test MCIP

IMP Over

Test OPT (%)

RRSZX031 4410 3973 4144 100.0 98.25 98.1 -0.15 RRSZX081 4087 3870 3480 100.0 99.68 99.84 0.16
RRSZX042 3981 3680 3651 100.0 99.06 99.26 0.2 RRSZX093 4030 3659 3635 100.0 99.25 98.53 -0.73
RRSZX056 4084 3722 3634 100.0 99.66 99.49 -0.17 RRSZX104 3648 2754 3103 99.94 96.35 96.8 0.47
RRSZX072 3838 3420 3577 100.0 98.17 98.07 -0.1
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EC.3.2. Supplementary Materials for Section 6.2

Detail of the chosen cities is listed in Table EC.5.

Table EC.5 Details of Chosen Cities

City Code # SKU # Distinct Orders Avg MILP Solving Time

City 1 b3bbd6bcd84bc84f8bb874d96cee51e6 5143 5554 1.54

City 2 e7e6252a02709c4f1bfab796ebd3efe2 5140 5663 1.60

City 3 2942fa707f340db57611c88fca53a211 4952 5264 1.47

City 4 08641489dbf16de3f0fbdb8095d8721d 4984 5268 1.47

City 5 b0cadecbe35d998f1758ff45f23dffbb 4841 4910 1.35

Figures of OFR comparisons, PFR comparisons, and the ratios comparisons for City 2 to 5 are shown in Figure EC.1

to Figure EC.12.
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Figure EC.1 City 2 OFRs
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Figure EC.2 City 2 PFRs
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Figure EC.3 City 2 Ratios
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Figure EC.4 City 3 OFRs
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Figure EC.5 City 3 PFRs
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Figure EC.6 City 3 Ratios
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Figure EC.7 City 4 OFRs
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Figure EC.8 City 4 PFRs
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Figure EC.9 City 4 Ratios
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Figure EC.10 City 5 OFRs
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Figure EC.11 City 5 PFRs
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Figure EC.12 City 5 Ratios
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EC.3.3. Experiments on General Cost Functions

We further test the MCI policy on some general cost functions. The experiment settings are the same as that in

Section 6.1.

EC.3.3.1. Size-Based Cost Functions We fist consider both the type-I and type-II size-based cost

functions with c(n) = nα ∀n∈ {1,2, . . .}, where α= 1/3,1/2,1,2. Table EC.6 reports the average cost reduction ratio

of applying the MCI policy and the MILP optimal solution compared to the current policy at different distribution

centers. It demonstrates the high potential for additional fulfillment cost reduction by carefully selecting the warehouse

assortment for all (either concave, linear, or convex) cost functions. Specifically, the MCI policy results in a significant

average cost reduction ranging from 33.76% to 80.44% under both types of cost functions. Indeed, as is shown in

Proposition 3, when the cost function is type-II size-based with α= 1, the MCI policy is optimal. Besides, we find that

for most cases, as α becomes smaller (from 2 to 1/3), the average cost reduction by applying the MCI policy becomes

larger under type-I size-based cost functions; while the reverse is true under type-II size-based cost functions. Note

that the more different cost functions are from linear functions, the larger gap the MCI policy performs in comparison

to the MILP optimal solution. However, although formulation (3) can be solved within seconds considering type-I cost

functions, it takes much longer (more than half an hour) for solving (CP) with type-II cost functions through MILP

formulation (4) when N and M are larger than 3000. In this regard, the MCI policy with near-optimal performance

solved in milliseconds is quite acceptable.

Table EC.6 In-Sample Average Cost Reduction Comparison Results

DC

Type

Cost

Type

α

MCIP

AVG Cost

Reduction

Over Current

OPT

AVG Cost

Reduction

Over Current

DC

Type

Cost

Type

α

MCIP

AVG Cost

Reduction

Over Current

OPT

AVG Cost

Reduction

Over Current

DC

Type

Cost

Type

α

MCIP

AVG Cost

Reduction

Over Current

OPT

AVG Cost

Reduction

Over Current

LTC

Type I

0.33 38.04% 43.62%

RDC

Type I

0.33 72.02% 74.49%

CDC

Type I

0.33 72.81% 79.24%
0.5 37.98% 43.26% 0.5 71.74% 74.01% 0.5 72.42% 78.37%
1 37.43% 42.12% 1 70.68% 72.97% 1 71.05% 76.59%
2 33.76% 48.35% 2 66.86% 76.66% 2 66.73% 83.59%

Type II

0.33 39.18% 44.03%

Type II

0.33 72.55% 75.20%

Type II

0.33 74.15% 80.63%
0.5 39.73% 43.41% 0.5 72.59% 74.55% 0.5 74.56% 79.50%
1 41.23% 41.23% 1 72.71% 72.71% 1 76.09% 76.09%
2 43.63% 49.24% 2 72.98% 77.46% 2 80.44% 82.69%

Moreover, since RDCs usually have more SKU capacities than LTCs and CDCs usually have more SKU capacities

than RDCs, Table EC.6 implies that as the SKU capacities become larger, the average cost reduction of using the

MCI policy becomes more evident. This finding complements the result in Section 6.1 where the MCI policy results

in larger OFR improvement for facilities with smaller SKU capacities.

Electronic copy available at: https://ssrn.com/abstract=4212027



ec16 e-companion to Author: Warehouse Assortment Selection for E-Commerce Companies

EC.3.3.2. Type-II Cost Functions with G(T ) =
∑

n∈T κn In this subsection, we specifically

consider the case where the cost function is type-II with G(T ) =
∑
n∈T κn, which is discussed in the beginning of

Section 5.1. Specifically, we designate the product-specific additional fulfillment cost κn as the volume or weight of

the product in our experiments. According to Proposition 4, a modified MCI policy (MMCIP), which selects the

K products with the largest choice-weighted fulfillment costs to store, achieves optimality. In these experiments, we

engage in a comparative analysis of the cost reduction achieved by applying both MMCIP and the standard MCI

policy (MCIP). The results of the comparison are summarized in Table EC.7. We observe that although applying

Table EC.7 In-Sample Average Type-II Cost with G(T ) =
∑
n∈T κn Reduction Comparison Results

DC Type
Product-Specific Cost (κn)

Based on

MCIP AVG Cost Reduction

Over Current

MMCIP AVG Cost Reduction

Over Current

MMCIP AVG IMP

Over MCIP

LTC
volume -5.38% 65.79% 48.12%

weight 35.00% 66.25% 45.32%

RDC
volume 56.27% 81.99% 53.17%

weight 67.27% 82.61% 44.87%

CDC
volume 48.47% 91.47% 74.77%

weight 76.65% 90.95% 61.89%

the standard MCI policy leads to reduced additional fulfillment costs in most instances compared to the current

practice, the modified MCI policy consistently delivers more substantial cost reductions across all test cases. These

findings suggest that when the additional fulfillment cost exhibits a type-II structure and is intricately related to

product-specific features, it is important to incorporate these features into the design of the assortment selection

policy. Indeed, a minor adjustment to the standard MCI policy can significantly enhance its performance.

Additionally, recall from Table EC.6 that it is verified the MMCIP reduces to the MCIP and achieves optimality

when the cost function is type-II with G(T ) =
∑
n∈T κn and the product-specific additional fulfillment cost is uniform

across all products (type-II sized-based with α= 1).

Owing to space constraints, all detailed results of the experiments conducted on different cost func-

tions within this subsection are available in https://docs.google.com/spreadsheets/d/1OUI8j4YfKRGoZqS_

LHstto6SItuu0e8QMwClqgBUEZs/edit?usp=sharing.
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