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a b s t r a c t 

This article focuses the recovery of prokaryotic organisms 

including bacteria and archaea from 9 different groups of 

chicken raised in different farm setups in Pakistan. The 

groups comprise of three different breeds (Broilers, White 

Layers, and Black Australorp) of chicken raised in differ- 

ent farming setups that include antibiotic-free control, com- 

mercial (open and controlled shed), and backyard farms. 

We have recovered 569 Metagenomics-Assembled Genomes 

(MAGs) with a completeness of ≥50 % and contamination of 

≤10 %. For each MAG, functional annotations were obtained 

that include KEGG modules, carbohydrate active enzymes 

(CAZymes), peptidases, geochemical cycles, antibiotic resis- 

tance genes, stress genes, and virulence genes. Furthermore, 
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two different sets of Single Copy Genes (SCGs) were used to 

construct the phylogenetic trees. Based on the reconstructed 

phylogeny, phylogenetic gain of each MAG is calculated to 

give an account of novelty. 

© 2024 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 
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Subject Biological Sciences: Microbiology: Microbiome 

Specific subject area Caecal microbial communities of three chicken breeds (Broilers, White Layers, and 

Black Australorp). 

Type of data FASTA files/Tables 

How the data was acquired Illumina NovaSeq X Plus platform (10B FC) (375Gb per lane) ensuring ∼9.15 GB 

reads per sample (41 samples); Illumina TruSeq ensuring ∼20 M reads per samples 

for 4 Broiler Control samples using 2 × 100 bp reads. 

Data format Raw and Analysed 

Description of data collection The genomic DNA was extracted from the caecal samples collected from three 

chicken breeds, Broilers, White Layers, and Black Australorp. For Broiler and White 

Layer, three different farming setups were used on commercial scale: 1. controlled 

house / shed system; 2. open house / shed system; and 3. birds reared as 

antibiotic free control group. For Black Australorp breed, samples were collected 

from antibiotic free control group, free range rearing setup and from commercial 

open shed. This breed is a preferred choice by locals to keep as a major backyard 

chicken breed. Furthermore, it is acclimatized to the local environment and is 

known to be resistant to many diseases. Note that, on commercial scale in 

Pakistan, only open sheds are functioning and rearing in closed controlled houses 

is few and far between. 

Data source location City/Country: Islamabad/Pakistan; Latitude and Longitude: 33.6844 ° N, 73.0479 ° E 

Data accessibility Figshare: http://dx.doi.org/10.6084/m9.figshare.24901884 

. Value of the Data 

• The data offers insights into the genomic content of bacterial and archaeal candidates found

in the cecum of various commercial and backyard breeds of chickens raised in diverse farm-

ing environments. 

• Evaluating the functional potential of genomes will be valuable in determining which chicken

breed and farming setup are effective in managing routine outbreaks. The data is relevant for

a comparative genomic study involving 569 distinct prokaryotic candidates. 

• Data will also help in resistome (antibiotic resistance genes) analysis as there are genotypic

and phenotypic variations, to highlight the farming setup which is at high risk of emergence

of antibiotic resistance. 

• Data will help in improving the management strategies for different poultry farming envi-

ronments in Pakistan. 

. Background 

The purpose of the study is to compare different poultry rearing setups and their impact on

he caecal microbiome and resistome of the locally raised commercial breeds. The experiment

as initiated by procuring day old chicks of Broiler, White Layer and Black Australorp from a

ocal market in Islamabad, Pakistan. All breeds were reared as antibiotic free control group in

eparate semi-controlled rooms and fed with standard feed without prophylactic or remedial

ntibiotic administration till maturity (22 weeks for White Layer and Black Australorp; ∼8 weeks

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.24901884
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for Broilers when their weight reached 1.5 kg). Additionally, samples were also collected from

commercial open and controlled sheds for Broiler and White Layer. For Black Australorp, the

samples were collected from open shed and free range setup. Irrespective of farm setup, within

a breed, the age of bird at sampling is same. 

3. Data Description 

The workflow is given in Fig. 1 . The resulting dataset has a repository structure depicted

in Fig. 2 , encompassing a total of 569 metagenome-assembled genomes (MAGs). For each MAG

number (x), the corresponding files are provided in the FINAL_MAGs main directory: 

• bin.x.fasta.gz → Obtained genomic sequence of the contigs that make the MAG 

• bin.x.gene.gz → Obtained genomic sequences for genes 

• bin.x.faa.gz → Obtained protein sequences for genes 

• bin.x.gff.gz → Comprehensive annotation of MAGs, detailing various types of features 

along with their respective locations on the length of contigs 

The METABOLIC_result.xlsx in the METABOLIC_Annotations main directory comprises follow- 

ing 6 spreadsheets: 

• HMMHitNum → The occurrence or absence of customized Hidden Markov Model (HMM)

profiles, the frequency of HMM profile identification within a MAG, and the Open Reading

Frame(s) (ORF) representing the identified protein. 

• FunctionHit → The presence or absence of sets of proteins, individually identified in the

sheet titled “HMMHitNum”. For each MAG, the functions are marked as either “Present”

or “Absent”. 

• KEGGModuleHit → Each MAG is annotated with modules from the KEGG database, cate-

gorized by metabolic functions. The status of each module in a MAG is indicated as either

“Present” or “Absent”. 

• KEGGModuleStepHit → The occurrence or absence of modules from the KEGG database

within each (MAG), delineated into the individual steps comprising the module. For each

MAG, the module steps are identified as “Present” or “Absent”. 

• dbCAN2Hit → The annotation results from dbCAN2 for all MAGs, including CAZyme num-

bers and hits. Each MAG is presented with two columns indicating the frequency of

CAZyme identification and the corresponding Open Reading Frame(s) representing the

protein. 

• MEROPSHit → The search results for MEROPS peptidases, including peptidase numbers 

and hits, are provided for each MAG. Two columns are allocated for each MAG, indicating
Fig. 1. Diagram illustrating the workflow used for generation of MAGs. 
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Fig. 2. Diagram illustrating the structure of the repository. Nine archives contain sequencing data and annotation for the 

MAGs. The green rounded corner nodes denote directories or compressed directories, while the grey nodes represent 

individual files. Ellipses indicate the repetition of these files for each MAG. 
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the frequency of peptidase identification and the corresponding ORF(s) representing the

protein. 

The GTDB-Tk files in the METABOLIC_Annotations main directory are provided as: 

• gtdtbtk.ar122.classify.tree → Phylogenetic tree in Newick format representing MAGs clas-

sified as archaea. 

• gtdtbtk.ar122.summary.tsv → Taxonomic categorization of MAGs identified as archaea

across various taxonomic ranks 

• gtdtbtk.bac120.classify.tree → Phylogenetic tree in Newick format depicting MAGs classi-

fied as bacteria. 

• gtdtbtk.bac120.summary.tsv → Taxonomic categorization of MAGs identified as bacteria

across various taxonomic ranks. 

The Nutrient_Cycling_Diagrams directory is the sub-directory of METABOLIC-Figures of the

ETABOLIC_Annotations main directory. It includes files for each MAG (x replaces the MAG

umber), where a red arrow signifies the presence, and a black arrow indicates the absence

f a pathway step, respectively: 

• bin.x.draw_other_cycle_single.PDF 

• bin.x.draw_carbon_cycle_single.PDF 

• bin.x.draw_nitrogen_cycle_single.PDF 

• bin.x.draw_sulfur_cycle_single.PDF 

Furthermore, the directory includes summary diagrams for pathways on a community scale 

• draw_nitrogen_cycle_total.PDF 
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• draw_other_cycle_total.PDF 

• draw_carbon_cycle_total.PDF 

• draw_sulfur_cycle_total.PDF 

Two sequential transformation diagrams, Sequential_transformation_01.pdf and Sequen- 

tial_transformation_02.pdf, are available. These diagrams summarize and visualize MAG num-

bers and coverages, potentially involved in the sequential transformation of both inorganic and

organic compounds. The Metabolic_Sankey_diagram.pdf illustrates the function fractions con- 

tributed by various microbial groups in a given community. 

The Functional_network_figures directory is the sub-directory of METABOLIC-Figures of the

METABOLIC_Annotations main directory. It includes diagrams that depict metabolic connections

of biogeochemical cycle steps at both the phylum and community levels. 

The GTOTREE_files main directory contains the following files: 

• Bacteria_and_Archaea_gain_file.txt → Phylogenetic gain, both in absolute and percentage 

terms, was computed for each MAG relative to all other MAGs. 

• Bacteria_and_Archaea.tre → Phylogenetic tree in Newick format derived from 25 gene 

SCGs for MAGs. 

• Universal_Hug_et_al_gain_file.txt → Phylogenetic gain, measured in both absolute and 

percentage terms, was calculated for each MAG relative to all other MAGs. This calculation

serves as a means to determine novelty. 

• Universal_Hug_et_al.tre → Phylogenetic tree in Newick format derived from 16 gene SCGs 

for MAGs. 

ABRICATE_I40_C25, ABRICATE_I70_C50, and ABRICATE_I90_C75 main directories all contain 

the following files repeated for each MAG (x replaces the MAG number): 

• bin.x_argannot.tab → Antimicrobial Resistance (AMR) genes detected using ARG-ANNOT 

server [ 1 ]. 

• bin.x_card.tab → AMR genes detected using Comprehensive Antibiotic Resistance Database 

(CARD) [ 2 ]. 

• bin.x_ecoh.tab → Genes detected through the EcOH database of O- and H- surface anti-

gens of Escherichia coli [ 3 ]. 

• bin.x_ecoli_vf.tab → Virulence factors for E. coli using the database available at https://

github.com/phac-nml/ecoli_vf 

• bin.x_megares.tab → Antimicrobial drug, biocide, and metal resistance genes detected us- 

ing MEGARes 2.0 [ 4 ]. 

• bin.x_ncbi.tab → Genes detected using Bacterial antimicrobial resistance reference gene 

database maintained at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047 

• bin.x_plasmidfinder.tab → Detection of whole plasmid sequences from members of the 

family Enterobacteriaceae . [ 5 ] 

• bin.x_resfinder.tab → AMR genes detected using RESFINDER [ 6 ]. 

• bin.x_vfdb.tab → Genes detected through the virulence factor database (VFDB) [ 7 ]. 

AMRFINDER_I40_C25, AMRFINDER_I70_C50, and AMRFINDER_I90_C75 main directories all 

contain the following files repeated for each MAG (x replaces the MAG number): 

• bin.x_amrfinder.tab → Genes detected using AMRFinderPlus [ 8 ] that contains resistance,

stress response, and virulence genes. 

4. Experimental Design, Materials and Methods 

4.1. Sample collection 

The caecal samples from the antibiotic free control groups were collected after euthanizing

the chicken and stored and −80 °C. Meanwhile, caecal sample from selected chicken breeds

https://github.com/phac-nml/ecoli_vf
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA313047


6 F. Saleem, A. Ameer and B. Star-Shirko et al. / Data in Brief 54 (2024) 110552 

r  

a  

w  

A  

p  

c

4

 

i  

t  

w  

a

4

 

o  

C  

t  

o  

m  

P  

9  

o  

m  

u

D  

T  

p  

fi  

C  

m  

p

4

 

r  

n  
eared in different farming setups (controlled shed, open shed and free range) with variable

ntibiotic usage were also collected aseptically after euthanasia. Five samples from broiler and

hite layer chicken rearing in commercial controlled and open sheds were collected. For Black

ustralorp, five samples collected from each free range and commercial open shed. All the sam-

les were stored immediately at −80 °C. The 45 samples (including a negative blank control)

omprise of: 

• Broiler antibiotic free control ( n = 4) 

• Broiler controlled shed ( n = 5) 

• Broiler open shed ( n = 5) 

• White Layer antibiotic free control ( n = 5) 

• White Layer controlled shed ( n = 5) 

• White Layer open shed ( n = 5) 

• Black Australorp antibiotic free control ( n = 5) 

• Black Australorp open shed = 5 

• Black Australorp free range = 5 

.2. DNA extraction 

DNA was extracted using the Invitrogen PureLinkTM Microbiome DNA Purification Kit follow-

ng manufacturer’s instructions, followed by quality check through NanoDrop spectrophotome-

er. Quality genomic DNA indicates over 50 ng/μl per sample (sufficient for library preparation),

ith confirmation of purity checked via 260/280 ratio, and selection of samples as close to 1.8

s possible. All samples passed the threshold and generated libraries for sequencing. 

.3. Shotgun sequencing 

Genomic DNA was normalised to 5 ng/μl with Elution Buffer (EB) (10 mM Tris–HCl). 0.5 μl

f Tagmentation Buffer (TB1) was mixed with 0.5 μl Bead Linked Transposomes (BLT) (Illumina

atalogue No. 20,018,704) and 4 μl PCR grade water in a master mix. Aliquots of 5 μl were added

o wells of a 96 well plate. 2 μl of normalised DNA (10 ng total) was pipette mixed with the 5 μl

f the tagmentation mix and heated to 550 C for 15 mins in a PCR block. A PCR master mix was

ade up using 10 μl KAPA 2 G Fast Hot Start Ready Mix (Merck Catalogue No. KK5601) and 2 μl

CR grade water per sample. 12 μl of this mastermix was added to each well to be used in a

6-well plate. 1 μl of 10 μM 8 bp Unique Dual Indexes were added to each well. Finally, the 7 μl

f Tagmentation mix was added and mixed. The PCR was run with 720 C for 3 min, 950 C for 1

in, 14 cycles of 950 C for 10 s, 550 C for 20 s and 720 C for 3 min. The libraries were quantified

sing the Promega QuantiFluor® dsDNA System (Catalogue No. E2670) and run on a GloMax®

iscover Microplate Reader. Libraries were pooled following quantification in equal quantities.

he final pool was double-SPRI size selected between 0.5 and 0.7X bead volumes using sample

urification beads (Illumina® DNA Prep, (M) Tagmentation (96 Samples, IPB), 20,060,059). The

nal pool was quantified on a Qubit 3.0 instrument and run on a D50 0 0 ScreenTape (Agilent

atalogue No. 5067–5579) using the Agilent Tapestation 4200 to calculate the final library pool

olarity. Sequencing was performed using an Illumina NovaSeq X Plus platform (10B FC) (375Gb

er lane) ensuring ∼9.15 GB reads per sample. 

.4. Recovery of metagenomic-assembled genomes 

For a set of 45 metagenomic samples, the sequencing center provided adapter-trimmed

eads. The workflows used on these samples is given in Fig. 1 . The raw metage-

omics reads underwent quality trimming using Sickle v1.200 [ 9 ]. This involved removing
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Fig. 3. Figures A and B depict the completion and contamination, respectively, of bins initially recovered through original 

software (metaBAT2, MaxBin2, and CONCOCT). These bins were subsequently refined by MetaWRAP, using the criteria of 

≥50 % completion and ≤10 % contamination, resulting in the final set of 569 Metagenome-Assembled Genomes (MAGs). 

The x-axis represents the sorted (descending) rank of MAGs in terms of a chosen metric whether completion or con- 

tamination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reads where the average Phred quality fell below 20 and retaining paired-end reads

with a post-trimming length exceeding 50 bp. This gave us a total of 1230,968,126

reads from all samples with statistics given in Supplementary Table S1. We aggregated

both the forward and reverse reads and conducted a co-assembly for all samples us-

ing Megahit. The assembly was performed with the parameters: --k-list 27,47,67,87
--kmin-1pass -m 0.95 --min-contig-len 1000 [ 10 ]. This gave us a total of 1331,681

contigs, a total of 3274,466,202 base pairs (bp), maximum of 285,598 bp, average

length of 2459 bp, and an N50 score of 2820 bp. We then used MetaWRAP pipeline

[ 11 ] (using metawrap binning -o INITIAL_BINNING -t 48 -a final.contigs.fa
--metabat2 --maxbin2 --concoct READS_DIRECTORY/∗.fastq ) and binned the con- 

tigs using three different binning algorithms i.e. metabat2 (1095 bins) [ 12 ], maxbin2 (907 bins)

[ 13 ], and CONCOCT (398 bins) [ 14 ]. 

CheckM was applied within MetaWRAP framework on these bins [ 15 ] to as-

sess their completion and contamination. Within MetaWRAP framework, the bins

from the three binners were consolidated together (see Fig. 3 ) (using metawrap
bin_refinement -o BIN_REFINEMENT -A INITIAL_BINNING/metabat2_bins/ -B 
INITIAL_BINNING/maxbin2_bins/ -C INITIAL_BINNING/concoct_bins/ -c 50 
-x 10 ), retaining bins with ≥50 % completion and ≤10 % contamination to give a final set of

569 bins (MAGs). We obtained a mean genome completion of 74.53 % and a mean contamina-

tion of 1.77 % for bins. The summary statistics of these MAGs are given in Supplementary Table

S2 with Fig. 4 showing the assignment at phyla level along with distribution of statistics. 

4.5. Functional annotation 

To derive metabolic functions, particularly nutrient cycling diagrams for carbon and

sulfur, and to incorporate taxonomy using GTDB-TK [ 16 ], we employed the METABOLIC

pipeline [ 17 ] (using METABOLICC.pl -m-cutoff 0.75 -in-gn GENOMES -kofam-db
small -r input_files.txt -o METABOLIC_out where input_files.txt is the 

comma delimited path of paired-end sample reads each on a separate line and GENOMES is a
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Fig. 4. Statistics of 569 MAGs including the proportion of MAGs assigned to different phyla based on GTDB-TK taxonomy. 

Each panel shows density and histogram of the distribution of data over a continuous interval of a particular metric 

given in the Supplementary Table S2. 
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irectory containing separate fasta file of each bin). METABOLIC facilitated the recovery of pro-

ein annotations through databases such as KEGG [ 18 ], TIGRfam [ 19 ], Pfam [ 20 ], custom hidden

arkov model (HMM) databases [ 21 ], dbCAN2 [ 22 ], and MEROPS [ 23 ]. 

.6. Antibiotic resistance genes 

We then employed AMRFinderPlus [ 8 ] to recover Antimicrobial Resistance (AMR) genes for

he above detected bins. Since there is no real consensus on an optimal threshold for amino

cids matching in the reference databases, we have employed three thresholds (from relaxed to

tringent criteria) as used previously: coverage 25 %, identity 40 % [ 24 ]; coverage 50 %, iden-

ity 75 % [ 25 ]; and coverage 75 %, identity 90 % [ 26 ] (using the standard parameters along

ith --ident_min X --coverage_min Y in AMRFinderPlus, run separately for each bin).

e used the same three criteria again with ABricate software ( https://github.com/tseemann/

bricate ) to give additional annotations (using the standard parameters along with --minid
 --mincov Y and --db Z in ABricate, run separately for each bin, and where Z specifies

ny of the databases available in ABricate). 

.7. Phylogenetic tree generation 

To deduce the phylogeny of the MAGs, we employed GToTree [ 27 ]. The software offers various

ingle Copy Genes (SCGs) sets based on the resolution of domains and the taxonomic rank of

nterest. Specifically, we utilized two SCG sets: a 25-gene set for Bacteria and Archaea (resulting

https://github.com/tseemann/abricate
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in the phylogeny recovery for 261 MAGs) and a 16-gene set (resulting in the phylogeny recovery

for 232 MAGs) as proposed by [ 28 ], encompassing all major domains of life. To identify novel

MAGs, we utilized the Genome Tree Toolkit available at https://github.com/donovan- h- parks/

GenomeTreeTk using the command: genometreetk pd NEWICK_TREE.nwk bin_ID.txt 
--per_taxa_pg_file bin_gain.txt where bin_ID.txt contains the ID of a single bin,

one of the leaf nodes of the NEWICK_TREE.nwk, and bin_gain.txt file is the output

file containing phylogenetic gain for that particular bin. This involved assessing the phyloge-

netic gain for each MAG against the rest of the tree, with higher values potentially indicat-

ing novel species, and is used previously in [ 29 ]. We calculated these values for each MAG

in the trees recovered using both the 25-gene Bacteria and Archaea SCGs (using GToTree
-f all_genomes.txt -H Bacteria_and_Archaea ) and the 16-gene SCGs from [ 28 ]

(using GToTree -f all_genomes.txt -H /PATHTO/Universal_Hug_et_al.hmm -o 
Universal_Hug_et_al ), respectively, where all_genomes.txt contains the path to fasta

file of all bins each in a separate line. Some of the statistics were obtained from the MetaWRAP

and METABOLIC software, whilst for others, custom bash scripts were written. 

Data Accessibility 

The FASTA files, tables, annotations, and visualisations are provided at Figshare: http://dx.doi.

org/10.6084/m9.figshare.24901884 . The raw per sample sequencing data is available from the

corresponding authors upon request. 
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