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Abstract: Satellite remote sensing plays a significant role in the detection of smoke from forest fires.
However, existing methods for detecting smoke from forest fires based on remote sensing images
rely solely on the information provided by the images, overlooking the positional information and
brightness temperature of the fire spots in forest fires. This oversight significantly increases the
probability of misjudging smoke plumes. This paper proposes a smoke detection model, Forest
Smoke-Fire Net (FSF Net), which integrates wildfire smoke images with the dynamic brightness
temperature information of the region. The MODIS_Smoke_FPT dataset was constructed using a
Moderate Resolution Imaging Spectroradiometer (MODIS), the meteorological information at the
site of the fire, and elevation data to determine the location of smoke and the brightness temperature
threshold for wildfires. Deep learning and machine learning models were trained separately using
the image data and fire spot area data provided by the dataset. The performance of the deep learning
model was evaluated using metric MAP, while the regression performance of machine learning
was assessed with Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The selected
machine learning and deep learning models were organically integrated. The results show that
the Mask_RCNN_ResNet50_FPN and XGR models performed best among the deep learning and
machine learning models, respectively. Combining the two models achieved good smoke detection
results (Precisionsmoke = 89.12%). Compared with wildfire smoke detection models that solely use
image recognition, the model proposed in this paper demonstrates stronger applicability in improving
the precision of smoke detection, thereby providing beneficial support for the timely detection of
forest fires and applications of remote sensing.

Keywords: smoke detection; dynamic brightness temperature threshold; deep learning; machine
learning; forest fires

1. Introduction

Forest fires, as one of the most severe disasters affecting the global forest ecosystem,
pose a significant threat to human life and the ecosystem [1–8]. The massive amount of
smoke produced during forest fires causes severe air pollution and poses a serious threat to
human health [9–11]. However, fire smoke is one of the important signals of forest fires
and plays a crucial role in forest fire detection [12,13].

In early forest fire detection tasks, forest biomass sensors were used as the main means
of early fire detection [14,15]. However, fire detection based on sensor data has significant
accuracy and rationality issues, and fire detection that relies solely on thermal information
overlooks the important characteristics of fire smoke.

To achieve the precise identification of forest fires, researchers have turned to image
recognition methods based on computer vision for smoke detection. Zhang et al. [16]
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addressed the lack of forest fire data by synthesizing forest fire smoke images by inserting
real smoke into forest backgrounds and used these data to train a model with Faster R-
CNN for detecting forest smoke. Yuan et al. [17] proposed a learning-based fuzzy smoke
detection method that combines drone data with fuzzy logic, image segmentation, and
the intelligent adjustment rules of an extended Kalman filter. Huang et al. [18] aimed to
improve the detection capability for small-target smoke in early forest fires by proposing an
improved end-to-end object detection model. This model combines a Multi-scale Context-
Contrast Local Feature module (MCCL) and a Dense Pyramid Pooling Module (DPPM) to
enhance the perception of small-target smoke features. Li et al. [19] addressed the issue
of false negatives and false positives in smoke detection in complex scenes by improving
the YOLOv5 model, adding a Coordinate Attention module to increase the accuracy of
smoke detection. Additionally, to better focus on the global information of fire smoke,
the SPPF module was replaced with the RFB module combined with Bi-FPN for better
feature fusion. Experimental results demonstrated that the improved model achieved
significant improvements in the detection of fires and smoke in realistic forest fire images.
In the area of image-based forest fire smoke detection, researchers have made significant
breakthroughs in accurately identifying smoke and addressing challenges in complex
scenarios. However, despite the high accuracy and real-time advantages of target detection-
based smoke identification, these computer vision-based detection methods face challenges,
such as difficulty in multi-target processing and limited adaptability to scenes, rendering
them less applicable to large-scale forest fire smoke detection tasks.

Remote sensing, with its wide coverage and high timeliness, performs well in detection
tasks across areas of high spatial–temporal heterogeneity and large spatial–temporal scales.
With the rise of remote sensing technology, researchers have introduced remote sensing
into the task of forest fire smoke detection. Ba et al. [20] collected data on clouds, dust,
haze, land, seaside, and smoke from around the world using Moderate Resolution Imaging
Spectroradiometer (MODIS) data, and formed the USTC_SmokeRS dataset with true color
RGB images generated from bands 1, 4, and 3. Additionally, they proposed a Convolutional
Neural Network (CNN) model that combines spatial and channel attention based on
remote sensing data. Experimental results showed that the accuracy of smoke classification
on the USTC_SmokeRS dataset reached 92.75%, achieving accurate classification results.
Li et al. [21] processed MODIS data for forest fire smoke, converting it into reflectance or
brightness temperature and combining it with a multi-threshold method and BP neural
network for seasonal training, classifying smoke plumes against other types of plumes
under different seasonal backgrounds. Dewangan et al. [22] proposed a public dataset
(FIgLib) containing 25,000 fire smoke images, addressing the impact of limited dataset
sizes and unreliable data on previous deep learning methods. They introduced a new deep
learning framework, SmokeyNet, which demonstrated good smoke detection performance
on the FIgLib dataset.

However, clouds share similar shapes and properties with wildfire smoke, often
leading to misidentification between smoke and clouds in large-scale detection [23]. Smoke
and clouds both have low transparency, obscuring ground features in remote sensing
images and making it difficult to distinguish ground features [24–27]. The interference
from clouds poses a significant challenge to the precise identification of wildfire smoke and
fire monitoring. Miao et al. [28] proposed a method using edge detection to identify smoke
and clouds in satellite images based on the strip-like characteristics of smoke, showing
that this method can effectively detect strip-like smoke. Although smoke and clouds share
similar shapes and transparency, the temperature characteristics of smoke from wildfires
are usually higher than the surrounding atmosphere and clouds [29–31]. The heat from
fires can raise the smoke to higher altitudes, detectable by certain infrared remote sensing
bands, showing temperature differences from surrounding clouds [32]. Additionally, in
terms of location and shape, wildfire smoke typically originates from the ground in an
inverted cone shape, while clouds are at various altitudes in the atmosphere, usually in
more regular shapes like layered or rolled [33]. These different characteristics between
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smoke and clouds provide reliable support for the more precise identification of wildfire
smoke. However, in large-scale, high-temporal–spatial constraint wildfire smoke detection
tasks, researchers have not considered the combination of wildfire smoke and regional
brightness temperature thresholds, leading to false negatives and false positives in long-
duration smoke detection tasks. This limitation has restricted the effectiveness of remote
sensing satellite images in wildfire smoke detection [34].

This paper proposes Forest Smoke-Fire Net (FSF Net), a wildfire smoke detection
model, which combines MODIS remote sensing images with dynamic regional brightness
temperature thresholds. This model organically integrates deep learning techniques with
machine learning algorithms and introduces the fire spot brightness temperature threshold
into the wildfire smoke detection task. This method fully utilizes the shape characteristics of
remote sensing smoke and the land temperature characteristics (dynamic fire spot threshold)
at the time of smoke generation to increase the accuracy of wildfire smoke identification.
Compared to algorithms that solely use remote sensing images for wildfire smoke detection,
the proposed wildfire smoke detection model is more accurate, significantly reducing false
negatives and false positives in large-scale, long-duration wildfire smoke detection tasks.

2. Dataset and Data Preprocessing
2.1. Dataset Construction

In the current research, datasets combining remote sensing smoke images of forest fires
with regional dynamic brightness temperature thresholds are scarce. The most commonly
used datasets for smoke detection in forest fires, such as the USTC_SmokeRS dataset [20]
and the FIgLib dataset [35], primarily focus on visual smoke detection without consider-
ing the brightness temperature information of the smoke’s location. To address this, by
collecting and processing a large amount of MODIS remote sensing images and channel
data, this paper first constructs a forest fire smoke dataset that includes both remote sens-
ing smoke images and regional dynamic brightness temperature information, named the
MODIS_Smoke_FPT dataset. The dataset comprises two parts: (1) true color images of
forest fire smoke constructed based on channels 1, 3, and 4, which are used for the identifi-
cation and segmentation of fire smoke; (2) based on the spatiotemporal information of the
forest fire site, including elevation data, meteorological information, and fire spot threshold
values, this part is used to acquire and determine the region’s brightness temperature
threshold information.

2.1.1. Study Area

To enhance the broad applicability of the research, this paper collects data on large-
scale forest fire events from different locations and time periods around the world to better
construct the MODIS_Smoke_FPT dataset. Utilizing search engines such as Google and
Baidu, a historical review of forest fire incidents worldwide was conducted, gathering
information that covers six continents (excluding Antarctica). Given that large-scale forest
fires frequently occur in North America, the collected smoke data is primarily focused on
this region. Based on the detailed information of these events, including the type of incident,
the time of occurrence, and geographical coordinates, the locations and times of forest fires
are determined. Remote sensing data for the corresponding areas are downloaded via
Worldview (website address). Figure 1 presents the distribution of the forest fire locations
collected in this study across the globe.
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Figure 1. The distribution of forest fires around the world, including the red five-pointed stars where
wildfires occur.

2.1.2. Data Source

The MODIS sensors onboard the Terra and Aqua satellites have been widely applied
in the detection of forest fires and smoke. In the decades following the launch of the
Terra and Aqua satellites, satellite remote sensing has captured a vast amount of forest fire
data. Additionally, the unique spectral range of the MODIS sensor has provided strong
support for the accurate capture of forest fire data. Specifically, the MODIS sensor covers a
broad spectral range from visible to thermal infrared wavelengths, approximately from
0.4 µm to 14.4 µm. Moreover, the MODIS sensor features 36 spectral channels designed
to observe various characteristics of the Earth, including the atmosphere, clouds, bodies
of water, and land surfaces. These features of the MODIS sensor offer robust support for
the detection of forest fires and smoke. In constructing the dataset for this paper, we use
Worldview (https://worldview.earthdata.nasa.gov/ accessed on 1 July 2023) to obtain and
download MODIS Level-2 data. In further processing, we use bands 1, 4, and 3 to assign
red, green, and blue channels, respectively, to generate true color images. We also extract
the Normalized Difference Vegetation Index (NDVI) from the location to compute fire spot
thresholds for use in machine learning models (the interpretation of fire spot thresholds is
presented in Appendix A of this paper).

2.1.3. MODIS Wildfire Smoke Images

In the identification of remote sensing images, clouds possess characteristics similar
to those of wildfire smoke. However, as the most significant interference in the task of
detecting smoke from forest fires, the related properties of clouds present a substantial
challenge to the accurate monitoring of wildfire smoke. Specifically, in terms of spectral
characteristics, both wildfire smoke and clouds have reflective and absorptive properties
in the visible and infrared wavelengths. Therefore, they may appear extremely similar
in certain spectral channels. In the task of detecting wildfire smoke, which is marked
by high spatiotemporal heterogeneity, extensive areas of wildfire smoke and clouds can
display similar textures and colors, especially in images of lower resolution. In terms of
dynamics and mobility, the propagation of wildfire smoke and clouds is influenced by
wind speed and direction, showing certain similarities in their flow and changes. Based
on this, in the construction of the MODIS_Smoke_FPT dataset, we strive to select images
where smoke and clouds are present in the same area as much as possible. Specifically, in
the same remote sensing image, there can be several situations such as smoke and clouds
side by side, smoke mixed with clouds, and smoke and clouds with intervals between them.
Figure 2 provides examples of wildfire smoke images where smoke and clouds coexist.

https://worldview.earthdata.nasa.gov/
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In the construction of the dataset, MODIS bands 1, 4, and 3 are assigned to the red,
green, and blue channels, respectively, to generate true color images of forest fire smoke
(see Figure 2). The characteristics of MODIS bands 1, 3, and 4 are presented in Table 1 [20].
To build a model for detecting smoke from forest fires, true color RGB image datasets,
which can generally be produced by optical satellite sensors, were chosen. This choice
was made not only because they are more universal compared to multispectral data, but
also because they offer greater applicability and scalability for in-depth exploration across
different models.

Table 1. Characteristics of MODIS sensor bands 1, 3, and 4.

Aisle Wavelength (nm) Spectral Characteristics Main Application

1 620–670 red light land/cloud boundary

3 459–479 Blu-ray Land/Cloud
Properties4 545–565 green light

2.1.4. Data Annotation

In this paper, the LabelMe image annotation tool was utilized to label MODIS remote
sensing smoke images. LabelMe is an open-source image annotation software that allows
users to make precise annotations through a simple user interface. Using LabelMe, smoke
areas within each image were segmented and labeled. This process involves identifying
the smoke areas in the image and drawing boundaries around them to accurately segment
smoke and non-smoke areas.

Furthermore, to enhance the accuracy and consistency of the annotations, the method
of cross-annotation was employed for annotating the dataset. Cross-annotation is a data
annotation method, especially common in image processing and machine learning fields,
used to improve the quality and reliability of annotated data. In the cross-annotation
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process, different parts of the same dataset are annotated by different annotators. The main
purpose of this approach is to reduce the bias and errors of individual annotators, thereby
improving the overall accuracy and consistency of the dataset. Through this method, a
high-quality, high-precision remote sensing smoke dataset can be generated.

2.2. Dynamic Brightness Temperature Threshold Inversion

In our previous work, a method for the inversion of dynamic fire spot thresholds
was proposed to determine the regional fire spot brightness temperature thresholds under
different environmental factors [32]. This method takes into account the differences in
weather, vegetation status, topography, and other environmental factors of different fires
to adaptively determine the fire spot brightness temperature thresholds. Compared with
fixed thresholds, dynamic thresholds can better determine the brightness temperature
thresholds of wildfires under different regional factors, thereby providing valuable auxiliary
evidence for the identification of fire occurrences. This paper introduces the method of
dynamic brightness temperature threshold inversion to calculate the dynamic brightness
temperature thresholds for different regions, which can then be combined with the smoke
areas determined by remote sensing images to judge the occurrence of wildfires. The
process of dynamic brightness temperature threshold inversion mainly consists of the
following four steps:

(1) Channel Information Extraction: To swiftly construct the regional brightness tem-
perature data in the MODIS_Smoke_FPT dataset, this paper developed a script for
quickly exporting the 36-channel data of MODIS remote sensing image HDF files.
This method allows for the rapid export of MODIS’s 36-channel data, with the specific
algorithmic process shown in Table A1 in Appendix B.

(2) Brightness Temperature Calculation: Brightness temperature refers to the equivalent
temperature value exhibited by ordinary objects within a specific spectral range. This
temperature is based on the object’s radiant brightness matching the radiant bright-
ness of an ideal black body at a corresponding black body temperature. Specifically,
when an object’s radiant brightness is equivalent to that of an absolute black body,
the temperature of this black body can be considered the object’s brightness temper-
ature [36,37]. Brightness temperature can be calculated using the Planck formula,
which converts the emissivity of an object in a specific band (such as band 21) into
the corresponding luminous temperature. The Planck formula is the core calculation
method for this process, as shown in Equation (1):

Ti =
C2

λi ln(1 + C1
λ5

i Ri
)

, (1)

where Ti is the temperature of the first channel (K), λi is the central wavelength of
channel i, and C1 and C2 are constants, C1 = 1.19104365 × 10−6 W·m2, and C2 =
1.4387685 × 104 µm·K.

(3) Otsu’s Algorithm Processes Regional Binarized Images: Otsu’s algorithm, also known
as Otsu’s thresholding method, automatically determines the threshold by maximiz-
ing the inter-class variance, effectively separating the image foreground from the
background. It is widely used in image processing and visual analysis [38,39]. In
the experiments, Otsu’s method is utilized to differentiate between burning and non-
burning areas, enhancing the role of high-temperature pixels such as flames in image
segmentation. A high-pass filter (setting the threshold at Pixel ≥ 60) is applied, before
binarizing the image to filter out low-temperature pixels more effectively, making the
image segmentation more accurate. The result of the binarization process is shown
in Figure 3, where the image is clearly divided into two parts: the low-temperature
area representing the unburned region, and the high-temperature area indicating the
burning region.
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(4) Identifying Anomalous Brightness Temperature Values: For the smoke areas seg-
mented using deep learning techniques, the brightness temperature values of each
pixel in the region are calculated iteratively. The brightness temperature values and
their geographic coordinates (latitude and longitude) of pixels that exceed the regional
brightness temperature threshold are marked. The marked anomalous brightness
temperature values will serve as crucial information for assisting in the identification
of wildfire smoke.
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2.3. Other Information

To more accurately determine the dynamic threshold information of fire spots, ele-
vation and meteorological information are incorporated into the machine learning model
used to determine the area of fire occurrence, to assist in calculating the dynamic bright-
ness temperature threshold of fire spots. The specific variable names for elevation and
meteorological information are shown in Table 2.

Table 2. Elevation information and meteorological information.

Serial Number Other Information Names

1 high
2 average temperature
3 dew point temperature
4 air pressure
5 visibility
6 average wind speed
7 maximum sustained wind speed
8 maximum temperature
9 minimum temperature

3. Methods

Figure 4 presents the overall architecture of the FSF Net model. The first step involves
collecting remote sensing channel information captured by the MODIS satellite sensor
and using this information to draw true color images of the fire. The second step, based
on the true color images, utilizes a deep learning model to identify smoke areas within
them and complete semantic segmentation, mapping the identified smoke images to binary
images, where the smoke areas are differentiated from other parts. At the same time, by
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integrating features such as the elevation information and meteorological information of
the smoke areas, a machine learning model is used to dynamically calculate the brightness
temperature thresholds of each smoke area. Areas exceeding the brightness temperature
threshold are mapped to binary, distinguishing the brightness temperature areas from
other areas. The third step overlays the binary smoke areas and brightness temperature
areas pixel by pixel, based on which a final determination is made as to whether or not it is
wildfire smoke.
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3.1. Use Deep Learning Models to Identify Smoke Areas in Images

This paper utilizes Mask R-CNN combined with true color smoke images to achieve
semantic segmentation of smoke images. Mask R-CNN is a powerful deep learning model
used for image segmentation and object detection tasks [40]. Its primary goal is to achieve
precise object detection and pixel-level image segmentation. It can also identify multiple
objects in an image and generate high-quality segmentation masks for each object. Mask
R-CNN integrates two crucial tasks: object detection and segmentation, allowing it to
not only determine the location of objects within an image but also to segment the pixels
of objects accurately. This combined capability makes it very useful in computer vision
tasks, such as instance segmentation, semantic segmentation, and object recognition [41].
Mask R-CNN includes a backbone network and a region proposal network. The backbone
network extracts features from the input image, which are then used for subsequent object
detection and segmentation tasks. The Region Proposal Network (RPN) is a part of Mask
R-CNN used to generate suggestions for potential object locations [42]. It slides a window
over the output of the backbone network, identifying areas that may contain objects. The
object detection head is responsible for detecting objects in the image and generating the
location and category of bounding boxes for each detected object. The overall framework
of Mask R-CNN is shown in Figure 5.
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thresholds, making the locations of anomalous brightness temperature areas more appar-
ent. Following the dynamic brightness temperature threshold inversion method pre-
sented in Section 2.2, we finalize the dynamic brightness temperature thresholds for the 
smoke areas identified by the deep learning model and mark the pixels that exceed these 
regional brightness temperature thresholds. The areas containing anomalous brightness 
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3.2. Recognize and Construct Dynamic Brightness Temperature Threshold Binarized Images Based
on Machine Learning

This paper utilizes machine learning technology to determine the dynamic brightness
temperature thresholds for each smoke area and binarizes the areas that exceed these
thresholds, making the locations of anomalous brightness temperature areas more apparent.
Following the dynamic brightness temperature threshold inversion method presented in
Section 2.2, we finalize the dynamic brightness temperature thresholds for the smoke
areas identified by the deep learning model and mark the pixels that exceed these regional
brightness temperature thresholds. The areas containing anomalous brightness temperature
information are processed through binarization. Figure 6 shows a schematic diagram of
the results of binarizing the anomalous brightness temperature areas.
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Figure 6. Binarized map of abnormal brightness temperature area. (a) Indicates the brightness
temperature region of the aggregated fire point. (b) Indicates the brightness temperature area of mildly
dispersed fire points. Among them, white represents the abnormal brightness temperature area, that
is, the fire point area, and black represents the area without abnormal brightness temperature.
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3.3. Identify Fire Points Based on Smoke Area Brightness Temperature Information

The smoke area segmented by deep learning technology is overlaid with the abnor-
mal brightness temperature area identified by machine learning technology to determine
whether the smoke image in this area is real smoke, thereby determining the occurrence of
wildfires. This process can be calculated by Formulas (2) and (3) to express:

SFf ire+smoke =

{
Pf ire(Pf ire1 , Pf ire2 , Pf ire3 . . . . . . Pf iren)
Psmoke(Psmoke, Psmoke2 , Psmoke3 . . . . . . Psmoken)

}
, (2)

SFModel =

{
Pf ire1 ⊗ Psmoke1 = Smoketure . . . . . .
Pf ire0 ⊗ Psmoke2 = Smoke f alse . . . . . .

}
, (3)

where SFf ire+smoke represents the dataset combining dynamic fire spot threshold images
and smoke images, Pf ire signifies the dynamic fire spot threshold image, Psmoke indicates
the smoke image identified by deep learning. SFModel denotes the model proposed in
this paper, ⊗ stands for the overlay and fusion of images (the fusion process is shown in
Figure 4), and Pf ire0 represents the absence of fire spots.

By overlaying and analyzing these two types of binary images (smoke and brightness
temperature), the algorithm can identify smoke areas more accurately, reducing misjudg-
ments caused by environmental factors (such as cloud cover).

3.4. Evaluation Index

This paper primarily identifies wildfire smoke by segmenting smoke in remote sensing
images and modeling regional brightness temperature threshold information. Considering
the different technologies used in the two processes, appropriate evaluation metrics will be
selected to choose the optimal model separately.

(1) In the task of segmenting smoke areas in remote sensing images using deep learning
models, mAP and recall are used as the evaluation metrics for the model, with the
formulas for these metrics shown as (4) and (5).

mAP =
1
N ∑N

i=1 APi (4)

recall =
TP + FN

TP
(5)

The calculation formula of AP is: AP = ∑n(Rn − Rn−1), TP is the number of positive
class instances correctly predicted, and FN is the actual number of positive class
instances incorrectly predicted as negative class.

(2) In the task of determining regional brightness temperature thresholds by using a
machine learning model, RMSE and MAE are selected as the evaluation metrics, as
shown in Formulas (6) and (7).

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (6)

MAE =
1
m

m

∑
i=1

|(yi − ŷi)| (7)

(3) In the task of finally merging the two aspects of features to identify wildfire smoke,
metric Precisionsmoke is used to evaluate the model’s overall performance. Formula
(8) serves as a part of the calculation to determine the accuracy of fire spots in each
image, with the overall evaluation formula shown as (9):

PrecisionFire =
Number f ire

Tsmoke
(8)
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Precisionsmoke =
Sum(PrecisionFire)

Pnumber
(9)

wherein PrecisionFire is the accuracy of fire spots in each image, Number f ire is the
number of smoke instances with fire spots, Tsmoke is the total number of smoke
instances, Precisionsmoke is the accuracy rate of smoke detection, and Precisionnumber
is the number of images.

4. Results
4.1. Experimental Results of Smoke Area Segmentation in Remote Sensing Images

In this part of the experiment, this paper compares the effects of two state-of-the-art
semantic segmentation models in wildfire area segmentation. Table 3 demonstrates the
specific information of the two models (Mask_R-CNN and Cascade_Mask), using 500 sets
of data for model training and 59 sets of data for model verification.

Table 3. Experimental model.

Model Backbone Network Feature Pyramid

Mask_R-CNN
ResNet50 FPN

ResNet101 FPN

Cascade_Mask
ResNet50 FPN

ResNet101 FPN

Figure 7 presents the accuracy of smoke area segmentation by two models. It is evident
that under metrics mAP75 and mAP50, Mask_R-CNN_ResNet50_FPN achieved the best
results, with its scores for mAP50 = 0.9722 and mAP75 = 0.7353.

Forests 2024, 15, 839 12 of 23 
 

 

 
Figure 7. Model accuracy for wildfire smoke segmentation detection. Red represents 50mAP , and 
blue represents 75mAP  . MRR50F, MRR101F, CMRR50F, CMRR101F correspond to Mask_R-
CNN_ResNet50_FPN, Mask_R-CNN_ResNet101_FPN, Cascade_Mask_R-CNN_ResNet50_FPN, 
and Cascade_Mask_R-CNN_ResNet101_FPN, respectively. 

Figure 8 shows the change in loss values during the training process of the Mask_R-
CNN_ResNet50_FPN model. In the figure, loss_cls represents “classification loss”, which 
measures the model’s errors in the classification part, i.e., the errors when the model at-
tempts to predict a category or categories for a given input. loss_bbox represents “bound-
ing box loss”, which measures the difference between the predicted position and size of 
the bounding box and the true values. Both types of loss values decrease as the number of 
iterations increases, indicating that the model is learning and improving its prediction 
accuracy with each iteration. 

In summary, this paper will utilize the Mask_R-CNN_ResNet50_FPN model to com-
plete the semantic segmentation of smoke areas in remote sensing images. 

 
Figure 8. Loss trend chart of Mask_R-CNN_ResNet50_FPN. 

4.2. Wildfire Smoke Detection Visual Results Display 
Figure 9 provides examples of visualized results for smoke segmentation in remote 

sensing images using the Mask_R-CNN_ResNet50_FPN model. The figure shows the ren-
derings of three groups of images before and after segmentation, where (a) represents the 
original image, and (b) is the image after smoke segmentation has been applied to (a). The 

Figure 7. Model accuracy for wildfire smoke segmentation detection. Red represents mAP50,
and blue represents mAP75. MRR50F, MRR101F, CMRR50F, CMRR101F correspond to Mask_R-
CNN_ResNet50_FPN, Mask_R-CNN_ResNet101_FPN, Cascade_Mask_R-CNN_ResNet50_FPN, and
Cascade_Mask_R-CNN_ResNet101_FPN, respectively.

It should be noted that the same model’s segmentation accuracy varies significantly
under metrics mAP75 and mAP50. This discrepancy may be due to mAP75 being calculated
at a higher IoU threshold (usually 75%). A higher IoU threshold means that the model
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needs to perform more accurate object detection under stricter IoU requirements, thus
demanding higher precision in localization.

Figure 8 shows the change in loss values during the training process of the Mask_R-
CNN_ResNet50_FPN model. In the figure, loss_cls represents “classification loss”, which
measures the model’s errors in the classification part, i.e., the errors when the model at-
tempts to predict a category or categories for a given input. loss_bbox represents “bounding
box loss”, which measures the difference between the predicted position and size of the
bounding box and the true values. Both types of loss values decrease as the number of
iterations increases, indicating that the model is learning and improving its prediction
accuracy with each iteration.
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In summary, this paper will utilize the Mask_R-CNN_ResNet50_FPN model to com-
plete the semantic segmentation of smoke areas in remote sensing images.

4.2. Wildfire Smoke Detection Visual Results Display

Figure 9 provides examples of visualized results for smoke segmentation in remote
sensing images using the Mask_R-CNN_ResNet50_FPN model. The figure shows the
renderings of three groups of images before and after segmentation, where (a) represents
the original image, and (b) is the image after smoke segmentation has been applied to (a).
The results show that smoke detection and segmentation in remote sensing images with
few clouds are relatively accurate. However, in some remote sensing images with more
clouds, there is a tendency to mistakenly identify clouds as smoke (in the a images of group
(Figure 9A) and the b image of group (Figure 9C) in Figure 9). This indicates that relying
solely on semantic segmentation technology in cloud-heavy remote sensing images makes
it difficult to precisely separate smoke from clouds, which reduces the accuracy of smoke
detection and wildfire detection.
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and cloudy situation. Group (C) is the case where smoke and clouds are mixed.

4.3. Bright Temperature Threshold Identification Experimental Results

Determining the dynamic brightness temperature threshold essentially addresses a
regression problem, which involves predicting continuous variable values. The determi-
nation of dynamic brightness temperature thresholds is crucial for identifying anomalous
brightness temperature points and, thereby, accurately identifying smoke. Therefore, the
choice of regression model is particularly important; it needs to be able to learn the varia-
tion pattern of fire spot brightness temperature data from the data, thus providing reliable
regional brightness temperature threshold support for further smoke detection.

Based on the dataset constructed in this paper, leave-one-out cross-validation and full-
sample validation are used to test the regression effects of five of the most commonly used
machine learning models (RR, LR, SVMR, RF, XGR) [43–49]. In the leave-one-out method,
the number of each test set is one, at which time RMSE = MAE is used. When validating
with all samples, RMSE and MAE are also used as evaluation metrics for the model.

Figures 10 and 11, respectively, show the scores of each model on metric RMSE/MAE
under leave-one-out cross-validation and full-sample validation. Figure 10 indicates that
under leave-one-out cross-validation, the RMSE/MAE values obtained for the five regres-
sion models are: RR (0.12525), LR (0.12642), SVR (0.1370), RF (0.12536), and XGR (0.07296).
Among them, the XGR model has the lowest score for RMSE/MAE, indicating the best
fitting effect for dynamic brightness temperature thresholds. The results displayed in
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Figure 11 draw a similar conclusion. Among the five machine learning models under full-
sample validation, the XGR model shows the best fitting effect, with its values for RMSE
and MAE being the lowest among all models. Therefore, in the subsequent experiments,
this paper will utilize the XGR model to determine the dynamic brightness temperature
thresholds for different regions.
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4.4. Wildfire Smoke Recognition Results Combining Smoke Semantic Segmentation and Regional
Dynamic Brightness Temperature Threshold

The smoke areas segmented by the deep learning model will be combined with the
regional brightness temperature thresholds identified by the machine learning model to de-
termine if the smoke in the remote sensing images is indeed from a wildfire. The smoke
segmentation images will be mapped at the pixel level with the regional brightness tempera-
ture images. If there are anomalous points exceeding the brightness temperature threshold
within the smoke area, it can be determined that the area indeed contains wildfire smoke;
otherwise, it does not. Figure 12 displays the detection effect of wildfire smoke combined with
dynamic brightness temperature thresholds. The left image shows the smoke area segmented
by the Mask_R-CNN_ResNet50_FPN, while the right image displays points exceeding the
brightness temperature threshold in the region identified by the XGR model. Overlaying
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the two can more accurately determine whether the smoke is from an actual fire, effectively
eliminating the influence of clouds and other interferences on wildfire smoke detection.
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Figure 12. Smoke detection effect diagram of wildfire smoke detection model combined with dynamic
fire point threshold. (a) shows the situation where there is a fire point at the root of the scattered
smoke. (b) shows the situation where there is a fire point under the concentrated smoke. (c) shows
the situation where the fire point and the “smoke” are far away, that is, the cloud is excluded.
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In Figure 12a, the white area in the left image represents the smoke area obtained from
semantic segmentation, and the white points in the right image are the anomalous points
exceeding the regional brightness temperature threshold. Overlaying the two images, it is
evident that the two areas have an overlap of 11 anomalous brightness temperature pixels.
This indicates that a fire must have occurred in the area, and the smoke in the image is
indeed from a real wildfire.

Similarly, the process can determine that the smoke identified in Figure 12b is also
from a wildfire, as anomalous brightness temperature points appear in that area. In the
smoke area shown in Figure 12c, no anomalous brightness temperature points are present,
leading to the conclusion that the area does not contain wildfire smoke and is likely a
misidentification of clouds or other interferences.

Figure 13 presents the effect of smoke recognition before and after the integration
of brightness temperature thresholds, using Precisionsmoke as the evaluation metric. SFN
represents our proposed FSF Net, while SN refers to a smoke detection model that solely
uses image segmentation. It is evident that after incorporating brightness temperature
thresholds, the accuracy of smoke recognition increased from 85.70% to 89.12%, an improve-
ment of 3.42%. This indicates that adding an examination of whether there are anomalous
brightness temperature points in the smoke area helps to eliminate the influence of clouds
and other interferences, effectively enhancing the precision of smoke recognition.
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Figure 13. Figure (a) shows a comparison of the accuracy between the wildfire smoke detection
model that integrates dynamic fire point thresholds and the smoke detection model that uses images
alone. Figure (b) presents a schematic diagram of fire smoke detection and cloud discrimination.

4.5. Comparison with Advanced Models

To verify the relevance of the FSF Net forest fire detection model and whether its accu-
racy in recognizing fire smoke can be further improved after excluding cloud interference,
a comparison was conducted. This comparison involved the Yolov9 [50] and DEtection
Transformer (Rt-Detr) [51] models on the MODIS_Smoke_FPT dataset for smoke detection
performance, compared with the model proposed in this paper. As shown in Figure 14,
the precision rates of Yolov9, Rt-Detr, and FSF Net are 0.8326, 0.8259, and 0.8912, respec-
tively. Clearly, the FSF Net model significantly outperforms the other two models in smoke
detection accuracy. This demonstrates that introducing dynamic brightness temperature
thresholds in forest fire smoke detection not only effectively reduces cloud interference but
also enhances the accuracy of smoke detection.
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5. Discussion

The visualization results of wildfire smoke detection indicate that the wildfire smoke
detection model proposed in this paper, Forest Smoke-Fire Net (FSF Net), achieves very
ideal effects in detecting wildfire smoke. The model combines the tasks of semantic seg-
mentation of remote sensing images with the identification of dynamic fire spot brightness
temperature thresholds, complementing the features obtained from both tasks. It effec-
tively eliminates the interference of clouds and other elements in remote sensing images,
enhancing the accuracy of wildfire smoke detection. In previous extensive spatiotemporal
constraint wildfire smoke detection studies, related research often treated these two aspects
as independent parts, either identifying wildfire smoke in remote sensing images solely
based on deep semantic segmentation technology, or solely based on machine learning tech-
nology by exploring regional environmental information [18–21]. The method combination
comparison table is shown in Table 4.

Table 4. Comparative Study on Forest Fire Smoke Detection.

Reference Number Smoke Detection
Accuracy

Can Smoke Be
Distinguished from Clouds?

Is the Integration of Fire Information Used
to Comprehensively Judge Wildfire Smoke?

[18] 0.8840 NO NO

[19] 0.6040 NO NO

[20] 0.9275 YES NO

[21] 0.9763 YES NO

Our 0.8912 YES YES

These independent studies could only provide unilateral information for wildfire
smoke detection, leading to frequent false positives and false negatives in long-duration,
wide-area wildfire smoke detection. Our experiments verify that integrating these two
tasks can effectively complement wildfire characteristics. Semantic segmentation of remote
sensing images provides a baseline for wildfire smoke detection areas, and regional bright-
ness temperature data helps eliminate the influence of clouds and other interferences. The
organic integration of these two tasks effectively enhances the model’s ability to recognize
real wildfire smoke.
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However, due to the traditional separation of the two tasks, there was no dataset
combining both tasks in practice [22–24]. This prompted us to collect and integrate various
wildfire data, forming the MODIS_Smoke_FPT dataset that includes both research tasks.
This dataset not only contains the true color images processed from remote sensing images
but also includes the brightness temperature information, elevation information, and
meteorological information related to wildfire locations, providing a fundamental data
guarantee for exploring the effects of combining the two tasks.

In terms of integrating machine learning and deep learning, this paper maps and
overlays the dynamic fire spot brightness temperature maps (fire spot location maps)
found by machine learning models with wildfire smoke images identified by deep learning.
Through binary image comparison for overlap, if the fire occurs below the smoke area,
this part can be further confirmed as wildfire smoke. Moreover, if the wildfire area and
the smoke are far apart, or if there are no wildfire areas and high-temperature areas below
the identified smoke image, we consider it a false image, meaning this part is not wildfire
smoke. Additionally, in cases where multiple smoke plumes exist in the same image,
often involving a mix of smoke and clouds, it makes the identification of wildfire smoke
extremely difficult. In such cases, if the wildfire area is concentrated, the wildfire smoke
is mostly distributed near and above the wildfire area. If the wildfire area is dispersed,
regional wildfire smoke detection can be followed, segmenting discontinuous fire areas
into independent blocks for further wildfire smoke detection. Due to the unique properties
of the MODIS satellite sensors we selected, data are collected over large areas. Therefore, a
single wildfire smoke image contains a vast area. Moreover, under the detection nature of
long duration and wide areas, smoke dispersion tends to gradually dissipate with distance.
However, identifying smoke that is nearly dissipating is not significantly meaningful for
the timely discovery of wildfires. Therefore, we exclude cases where the wildfire area
and the smoke are far apart. Specifically, in long-duration, wide-area settings, aggregative
smoke lingers near and above the fire area and is rarely found far from the fire area.

In this approach, the detection of smoke and brightness temperature thresholds is no
longer conducted independently. Instead, by comprehensively utilizing the information
provided by both, the accuracy of smoke detection or wildfire detection is enhanced. This
strategy of combining the semantic segmentation of wildfire smoke with regional brightness
temperature information allows for the full integration and utilization of remote sensing
images and actual regional environmental information. This provides more valuable feature
information for wildfire smoke detection, improving the detection outcomes and further
enhancing the model’s generalizability and robustness.

Moreover, besides MODIS data, the model proposed in this paper can also be applied
to sensor data from other satellites, such as the Himawari-8, Landsat-8, and the Gaofen-4
(GF-4) satellite, among others. For example, the Himawari-8 satellite can use channels 3, 2,
and 1 to create true color images. The Landsat-8 satellite can use channels 4, 3, and 2 for
true color imaging. The Gaofen-4 satellite can produce true color images using red, green,
and blue channels. In terms of fire point threshold calculation and inversion, the Himawari-
8 satellite can detect high-temperature features on the ground using channels 7 and 14,
commonly used for fire point detection. Landsat-8 can specifically use channels 10 and 11
to measure ground surface temperatures, particularly effective in detecting and monitoring
fire hotspots. The Gaofen-4 satellite uses infrared channels to detect the locations of forest
fire hotspots.

Additionally, since MODIS operates from a polar orbit, the spatial features provided
by its remote sensing data are limited. In the future, geostationary satellites could be consid-
ered, to delve deeper into the spatiotemporal information of wildfire smoke, further explor-
ing the dynamic diffusion properties of smoke and the timeliness of wildfire smoke within
fixed areas, offering valuable support for the sustainable development of forest ecosystems.
Simultaneously, this paper encourages researchers engaged in remote sensing and wildfire
detection tasks to continue exploring and expanding the MODIS_Smoke_FPT dataset.
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6. Conclusions

This paper proposes a wide-area wildfire smoke detection model, Forest Smoke-Fire
Net (FSF Net), that combines the task of semantic segmentation of remote sensing images
with the task of inverting fire spot brightness temperature thresholds. This is to effectively
address the issue of misidentifications or missed detections caused by the difficulty of
distinguishing smoke from clouds and other interferences in complex scenes. By collecting
hundreds of remote sensing images of major wildfires globally and integrating correspond-
ing meteorological, elevation, and fire spot brightness temperature information, a wildfire
smoke dataset suitable for the fusion task (MODIS_Smoke_FPT) was constructed. Utilizing
the deep learning model Mask_R-CNN_ResNet50_FPN, the segmentation of smoke areas
in remote sensing images is realized, serving as the foundational area for ultimately identi-
fying real smoke. With the help of the XGR model, the adaptive inversion of brightness
temperature thresholds in smoke areas is achieved, thereby obtaining the distribution of
anomalous brightness temperature pixels in different smoke areas. The derived brightness
temperature thresholds for different smoke areas vary because different smoke areas have
distinct environmental and climatic characteristics, leading to different minimum tempera-
ture thresholds for fire spots. By overlaying the obtained smoke segmentation map with
the anomalous brightness temperature area map and matching them, it can be determined
whether real wildfire smoke has occurred. The experimental results demonstrate that the
model proposed in this paper effectively improves the accuracy of wildfire smoke detection,
having significant research importance for reducing cloud misidentification problems and
enhancing the precision of smoke detection. In the future, further exploration into the
spatiotemporal information and inherent characteristics of wildfire smoke will continue,
aiming to enhance the effectiveness of wildfire smoke detection and provide more valuable
support for forest protection.
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Appendix A

In this paper, the term “fire spot threshold” refers to the threshold temperature of a
fire at the time of occurrence. In previous fire spot detection algorithms, a fixed threshold
criterion was used where a point could be identified as a fire spot if the surface brightness
temperature exceeded 325K. However, this threshold is not absolute and may be adjusted
in actual applications, as fire spot detection depends not only on brightness temperature
but may also involve other factors, such as background temperature, land surface type,
and other environmental variables.

Based on this, the “fire spot threshold” we use refers to the method of calculating
dynamic fire spot thresholds from our previous work [32].

https://pan.baidu.com/s/1W4i-E9E92qqySgejfZ3E1Q?pwd=tvpw
https://pan.baidu.com/s/1W4i-E9E92qqySgejfZ3E1Q?pwd=tvpw
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Appendix B

Table A1. MODIS HDF file exports 36-channel source code.

Source Code:

import os
import numpy as np
from pyhdf.SD import SD, SDC

HDF_FILR_URL = r”demo.hdf”
file = SD(HDF_FILR_URL)

datasets_dic = file.datasets()
for idx,sds in enumerate(datasets_dic.keys()):
print(idx,sds)
sds_obj = file.select(idx)
print(sds_obj.attributes())
print(sds_obj.dimensions())
print(‘----------------------------------------------------------------------’)

# Latitude = 0
sds_obj = file.select(0)
latitude = sds_obj.get()

# Longitude = 1
sds_obj = file.select(1)
longitude = sds_obj.get()

# EV_1KM_Emissive = 4
sds_obj = file.select(4)
data = sds_obj.get()
Band20_DN = data[0,:]
Band21_DN = data[1,:]
Band22_DN = data[2,:]
Band23_DN = data[3,:]
Band24_DN = data[4,:]
Band25_DN = data[5,:]
Band27_DN = data[6,:]
Band28_DN = data[7,:]
Band29_DN = data[8,:]
Band30_DN = data[9,:]
Band31_DN = data[10,:]
Band32_DN = data[11,:]
Band33_DN = data[12,:]
Band34_DN = data[13,:]
Band35_DN = data[14,:]
Band36_DN = data[15,:]

# EV_1KM_RefSB = 2
sds_obj = file.select(2)
data = sds_obj.get()
Band8_DN = data[0,:]
Band9_DN = data[1,:]
Band10_DN = data[2,:]
Band11_DN = data[3,:]
Band12_DN = data[4,:]
Band13lo_DN = data[5,:]
Band13hi_DN = data[6,:]
Band14lo_DN = data[7,:]
Band14hi_DN = data[8,:]
Band15_DN = data[9,:]
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Table A1. Cont.

Source Code:

Band16_DN = data[10,:]
Band17_DN = data[11,:]
Band18_DN = data[12,:]
Band19_DN = data[13,:]
Band26_DN = data[14,:]

# EV_250_Aggr1km_RefSB = 6
sds_obj = file.select(6)
data = sds_obj.get()
Band1_DN = data[0,:]
Band2_DN = data[1,:]

# EV_500_Aggr1km_RefSB = 9
sds_obj = file.select(9)
data = sds_obj.get()
Band3_DN = data[0,:]
Band4_DN = data[1,:]
Band5_DN = data[2,:]
Band6_DN = data[3,:]
Band7_DN = data[4,:]
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